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Abstract—We propose the Wasserstein Black Hole Trans-
former (WBHT) framework for detecting black hole (BH) anoma-
lies in communication networks. These anomalies cause packet
loss without failure notifications, disrupting connectivity and
leading to financial losses. WBHT combines generative modeling,
sequential learning, and attention mechanisms to improve BH
anomaly detection. It integrates a Wasserstein generative ad-
versarial network with attention mechanisms for stable training
and accurate anomaly identification. The model uses long-
short-term memory layers to capture long-term dependencies
and convolutional layers for local temporal patterns. A latent
space encoding mechanism helps distinguish abnormal network
behavior. Tested on real-world network data, WBHT outperforms
existing models, achieving significant improvements in F1 score
(ranging from 1.65% to 58.76%). Its efficiency and ability to
detect previously undetected anomalies make it a valuable tool for
proactive network monitoring and security, especially in mission-
critical networks.

Keywords—generative artificial intelligence, black hole,
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I. INTRODUCTION

The increasing reliance on communication networks for
mission-critical applications, such as emergency services, in-
dustrial Internet of Things (IoT), autonomous transportation,
and critical infrastructure monitoring, makes anomaly detec-
tion a paramount concern in ensuring both network security
and reliability [1]. In particular, anomalies like black holes
(BH), which silently drop data packets without issuing fail-
ure notifications, pose significant threats to these mission-
critical infrastructures [2]. Due to their stealthy nature, they
can cause prolonged undetected interruptions, severely im-
pacting applications such as real-time monitoring in indus-
trial IoT systems, disrupting command-and-control channels
in autonomous transportation systems, and impeding timely
communication in emergency response scenarios.

Despite advancements in generative AI and sequential learn-
ing, existing solutions still face fundamental limitations in ac-
curately identifying BH anomalies in backbone networks [3].
Traditional autoencoder-based methods struggle to reconstruct
complex network traffic, while adversarial learning techniques,
such as generative adversarial networks (GANs), often suf-
fer from unstable training and lack structured latent space

representations for effective anomaly detection. Furthermore,
existing transformer-based approaches, although promising in
capturing long-range dependencies, fail to fully exploit spatial-
temporal relationships within network traffic data.

Recognizing that each learning architecture possesses dis-
tinct advantages, it remains essential to empirically investigate
their efficacy in specific anomaly detection contexts. Motivated
by these challenges and building upon our prior research that
employed an unsupervised convolutional autoencoder (Conv-
AE) combined with density-based spatial clustering of appli-
cations with noise (DBSCAN) [4], this study evaluates the
performance of Wasserstein GANs integrated with attention
mechanisms specifically for BH anomaly detection. While
GANs and transformers have individually or jointly demon-
strated robust performance across various anomaly scenar-
ios, including intrusion detection, fraud detection, network
traffic irregularities, sensor malfunctions, and industrial IoT
anomalies [5], their combined capabilities have yet to be fully
explored and validated in the critical case of BH anomalies.
To validate the effectiveness of our WBHT, we utilize a
substantial dataset in collaboration with an Internet technology
provider 1. The main contributions of this study can be
summarized as follows:

• Unlike conventional GAN-based approaches, WBHT in-
tegrates transformer architectures to capture temporal
dependencies in sequential network traffic.

• WBHT leverages a hybrid approach using Wasserstein-
GAN (WGAN) for stable training and improved anomaly
score estimation, combined with multi-head attention to
refine feature extraction from complex network data.

• WBHT benefits from transformer-based parallelization
and Wasserstein loss stability, making it more efficient
than traditional GAN-based detection methods, especially
in large-scale network monitoring.

II. LITERATURE REVIEW

Recent studies have concentrated on exploring unique char-
acteristics of various anomaly types and leveraging available
data through diverse machine learning approaches, ranging

1https://www.btsgrp.com
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Fig. 1: WBHT: Wasserstein Black Hole Transformer Anomaly Detection Framework.

from supervised and semi-supervised to unsupervised tech-
niques [6].

Autoencoder (AE) models are particularly relevant for un-
supervised anomaly detection, as they learn the underlying
data structure and flag deviations as anomalies. Various AE
architectures have been explored for this purpose, including
deep neural networks for network intrusion detection [7],
convolutional autoencoders for capturing spatial patterns [8],
GRU-based AEs for sequential data [9], and LSTM-AEs
tailored to detecting anomalies in wide area networks [10].

While AE models are valuable in unsupervised intrusion
detection, recent developments have led to the exploration of
GANs, where they employ a generator and discriminator in
an adversarial process. This setup enables GANs to detect
anomalies by contrasting real and generated data, while also
generating new samples that improve the model’s ability
to distinguish normal from anomalous behavior. Among the
notable approaches, DCT-GAN integrates dilated convolutions
and Transformers within a GAN framework to improve time
series anomaly detection by addressing mode collapse and
enhancing generalization [11]. TransEC-GAN combines a
Transformer-enhanced GAN with Wasserstein distance and
adaptive differential privacy for robust anomaly detection in
industrial CPS [12].

Transformers, meanwhile, have advanced anomaly detection
by effectively capturing temporal dependencies, outperforming
traditional RNNs in sequential tasks. Adformer applies a
Transformer-based adversarial framework to IoT sensor data,
enhancing sensitivity to subtle anomalies through attention
mechanisms [13]. Similarly, Transformer-based GANs have
demonstrated superior capability over Autoencoder-based vari-
ants in generating high-quality adversarial samples for intru-
sion and malware detection, underscoring the advantage of
attention-driven models in security contexts [14].

GANs combined with Transformer models have also been
applied beyond time series and IoT contexts. One approach
employs a Transformer-based GAN with Wasserstein GAN-
GP for adversarial USB keystroke attack detection, improving

robustness and accuracy [15]. Another framework leverages
Transformer classifiers trained on GAN-generated data for
intrusion detection, achieving state-of-the-art accuracy and en-
hanced resilience against evolving threats in metaverse security
contexts [16].

Despite these advancements, challenges remain in detect-
ing BH anomalies due to the difficulty of obtaining labeled
datasets [17]–[20]. As a result, most studies rely on unsu-
pervised or semi-supervised methods with limited or unla-
beled data [6]. In this study, we take a different approach
by having access to a dataset known to contain exclusively
normal traffic and use Wasserstein GANs with multi-head self-
attention to learn its representation. This allows the model to
detect anomalies as deviations without needing explicit BH
examples, providing a practical and effective alternative to
fully unsupervised approaches.

III. METHODOLOGY

The flow of the proposed WBHT is given in Fig. 1.
The model leverages a combination of generative modeling,
sequential and adversarial learning, and attention mechanisms
to accurately differentiate between normal network traffic and
anomalous patterns indicative of BH anomalies. The training
phase of WBHT consists of two primary components: the
generative phase and the encoder-decoder phase.

The generative phase is based on the WGAN architecture,
which improves training stability and alleviates common is-
sues, such as mode collapse, often encountered in vanilla
GANs. When comparing loss functions, WGAN uses the
Wasserstein distance (WD) (also known as Earth Mover’s
Distance) as part of the loss function to learn the probability
distribution, whereas GAN uses Jensen-Shannon (JS). JS takes
values from 0 to log 2, whereas WD addresses the issue that
when JS distributions do not overlap, the derivative becomes 0
in the region where log 2 applies. WGAN’s WD is achieved by
enforcing the Lipschitz constraint on the discriminator through
weight-clipping [21].
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In the generative phase of WBHT, minimizing WD ensures
a smooth and more meaningful optimization landscape, allow-
ing the generator G to produce high-quality network traffic
representations that align with the normal data distribution.
On the other hand, the discriminator D is tasked with dis-
tinguishing between the real and generated data, optimizing
this process through the WD, and ensuring stable and efficient
adversarial learning. Here, G combines LSTM layers for
capturing long-term dependencies and convolutional layers for
extracting local temporal patterns. The convolutional layer Ci

e

is formulated as in Equation 1, where Wi and bi represent
learnable weights and biases, while ReLU introduces non-
linearity. The deconvolution layer T i

d is formulated as in
Equation 2, focusing on reconstructing realistic sequences,
where W

′

i and b
′

i denote transposed convolution filters and
biases, ensuring temporal consistency in the generated data.

Ci
e(xi) = ReLU(Wi ∗ xi + bi), i = 0, 1, .., N (1)

T i
d(yi) = ReLU(W

′

i ⊗ yi + b
′

i), i = 0, 1, .., N (2)

WGAN training yields a generator G(z) that maps from
the latent space Z (noise) to the data space X (training data),
but does not provide the inverse mapping from X to Z,
which is essential for anomaly detection in WBHT. To address
this limitation, an encoder E is introduced, which transforms
input network traffic into a compact latent representation. The
encoder is trained separately, while keeping the parameters of
the pre-trained G and D models fixed, such that it learns the
inverse mapping x → z.

The encoder consists of stacked LSTM layers and a multi-
head self-attention (MHSA) [22] mechanism. The LSTM
layers capture sequential dependencies, while MHSA enhances
the model’s ability to focus on relevant time steps. The MHSA
module processes three key components: the Query (Q), Key
(K), and Value (V ) vectors. The Q computes similarity
scores between the current time step and all other time steps,
while the K provides information about the time steps being
compared. The V contains the actual data at each time step.
Attention scores are calculated using a dot product similarity
function, determining the importance of each time step relative
to the current one. These scores are then used to compute a
weighted sum of the V vectors, producing a context vector
that retains critical information from the entire time series.

The overall loss function for WBHT model optimization is
defined as in Equation 3. The first part of the Loss function
comes from the Generator, and the second one is related to the
Discriminator. Here, f(·) represents the discriminator features
extracted from an intermediate layer, nd is the dimensionality
of the intermediate feature representation, and k is a weighting
factor balancing the feature residual, and n denotes the total
number of time steps in the input sequence.

L =
1

n

√√√√ n∑
t=1

x−G(E(x)) +
k

nd

√√√√ n∑
t=1

f(x)− f(G(E(x)))

(3)
The encoder-decoder phase refines the model’s ability to

represent and reconstruct network traffic. The encoder E
transforms input network data into a lower-dimensional latent

representation, which G then attempts to reconstruct. The
D evaluates the reconstructed data, enhancing the model’s
ability to detect deviations from learned normal patterns.
This dual-stage training process enables WBHT to develop a
deep understanding of the statistical characteristics of network
traffic, making it robust against subtle and sophisticated BH
anomalies.

After training, the WBHT model is deployed for post-
modeling anomaly detection. Incoming network traffic is pro-
cessed through the trained model, which classifies sequences
as either normal network activity or BH anomalies. Classifica-
tion relies on reconstruction errors and D’s confidence score.
Sequences that significantly deviate from learned normal pat-
terns are flagged as anomalies, enabling the identification of
potential BH attacks in communication networks.

IV. EXPERIMENTAL RESULTS

The real ISP network data containing BH traffic used in
this study is collected, processed and cleaned according to
procedures explained in our previous study [4]. Beyond the
previous study, this approach gives a semi-supervised learning
performed with all candidate forecasting models and the BH
labeled samples were used only in the evaluation of the test
set results. The subsections elaborate on the following aspects:
Section IV-A presents the formation of the WBHT, while
Section IV-B provides a comparative analysis of state-of-the-
art models with WBHT for BH detection.

A. Formation of the Wasserstein Black Hole Transformer

We conducted a series of experiments to develop the WBHT
model, as summarized in Table I. Our primary objectives
are: (i) to compare the performance of WGAN and vanilla
GAN, (ii) to identify the most effective E model, and (iii) to
determine the best-performing G model. These experiments
select an optimal architecture that enhances model robustness
and generalization.

We evaluated various E and G architectures, including Fully
Connected Neural Networks (FCNN), Conv, LSTM, Con-
vLSTM, and Transformer-based architectures incorporating
Multi-Head Attention mechanisms (ConvMultiHead, LSTM-
MultiHead). To assess model performance, we utilized several
key evaluation metrics: Detection Rate (DR), False Alarm Rate
(FAR), F1 Score (F1), and Accuracy (Acc). Among these,
the F1 Score was prioritized for model selection due to its
balanced consideration of precision and recall, which is crucial
for mitigating the trade-off between false positives-negatives.

Based on the results, the WGAN consistently outperformed
the vanilla GAN across multiple configurations. Addition-
ally, among E architectures, the LSTMMultiHead encoder
demonstrated superior performance, particularly in capturing
temporal dependencies and complex patterns. For G archi-
tectures, the ConvLSTM model achieved the best results,
effectively balancing spatial and temporal feature extraction.
As a result of these experiments, WBHT was formed as a
model incorporating WGAN as the generative AI method,
LSTMMultiHead as the E, and ConvLSTM as the G. This
combination leverages the strengths of both Transformer-based
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TABLE I: WBHT Performance: Evaluating GAN vs. WGAN with Different E and G Architectures

WGAN
G: FCNN G: Conv. G: LSTM

DR FAR F1 Acc. DR FAR F1 Acc. DR FAR F1 Acc.
E: FCNN 0.9447 0.0842 0.9174 0.9253 0.9430 0.0804 0.9194 0.9272 0.9490 0.0825 0.9202 0.9278
E: Conv 0.9481 0.0825 0.9199 0.9275 0.9498 0.0817 0.9211 0.9286 0.9124 0.0747 0.9118 0.9211
E: LSTM 0.9498 0.0842 0.9194 0.9269 0.9473 0.0870 0.9164 0.9242 0.9354 0.0895 0.9101 0.9186
E: ConvLSTM 0.9473 0.0813 0.9205 0.9281 0.9379 0.0903 0.9105 0.9189 0.9179 0.0527 0.9199 0.9275
E: ConvMultiHead 0.9515 0.0813 0.9221 0.9294 0.9379 0.0767 0.9201 0.9281 0.9498 0.0796 0.9226 0.9300
E: LSTMMultiHead 0.9507 0.0796 0.9229 0.9303 0.9405 0.0796 0.9190 0.9269 0.9481 0.0804 0.9214 0.9289

G: ConvLSTM G: ConvMultiHead G: LSTMMultiHead
DR FAR F1 Acc. DR FAR F1 Acc. DR FAR F1 Acc.

E: FCNN 0.9252 0.0957 0.9019 0.9111 0.9456 0.0800 0.9207 0.9283 0.9311 0.0920 0.9068 0.9156
E: Conv 0.9515 0.0829 0.9209 0.9283 0.9371 0.0957 0.9064 0.9150 0.9515 0.0821 0.9215 0.9289
E: LSTM 0.9532 0.0792 0.9242 0.9314 0.9456 0.0837 0.9181 0.9258 0.9558 0.0817 0.9234 0.9306
E: ConvLSTM 0.9490 0.0767 0.9243 0.9317 0.9439 0.0862 0.9157 0.9236 0.9532 0.0792 0.9242 0.9314
E: ConvMultiHead 0.9515 0.0821 0.9215 0.9289 0.9515 0.0817 0.9218 0.9292 0.9524 0.0804 0.9230 0.9303
E: LSTMMultiHead 0.9575 0.0788 0.9261 0.9331 0.9422 0.0846 0.9162 0.9242 0.9532 0.0780 0.9250 0.9322

GAN
G: FCNN G: Conv. G: LSTM

DR FAR F1 Acc. DR FAR F1 Acc. DR FAR F1 Acc.
E: FCNN 0.8478 0.0802 0.8826 0.8964 0.9354 0.0858 0.9127 0.9211 0.9498 0.0837 0.9197 0.9272
E: Conv 0.9184 0.0932 0.9010 0.9106 0.9022 0.0982 0.8913 0.9019 0.9405 0.0870 0.9138 0.9219
E: LSTM 0.9396 0.0800 0.9184 0.9264 0.9507 0.0825 0.9209 0.9283 0.9439 0.0854 0.9162 0.9242
E: ConvLSTM 0.9379 0.0854 0.9140 0.9222 0.8963 0.1011 0.8870 0.8981 0.9473 0.0813 0.9205 0.9281
E: ConvMultiHead 0.8997 0.1019 0.8878 0.8986 0.9405 0.0809 0.9182 0.9261 0.9515 0.0825 0.9212 0.9286
E: LSTMMultiHead 0.9388 0.0982 0.9053 0.9139 0.8520 0.0759 0.8872 0.9006 0.9507 0.0821 0.9212 0.9286

G: ConvLSTM G: ConvMultiHead G: LSTMMultiHead
DR FAR F1 Acc. DR FAR F1 Acc. DR FAR F1 Acc.

E: FCNN 0.9303 0.0870 0.9099 0.9186 0.9490 0.1341 0.8844 0.8931 0.9498 0.0833 0.9200 0.9275
E: Conv 0.9362 0.0788 0.9180 0.9261 0.9515 0.0895 0.9162 0.9239 0.9490 0.0796 0.9223 0.9297
E: LSTM 0.9532 0.0825 0.9218 0.9292 0.9464 0.0833 0.9187 0.9264 0.9532 0.0804 0.9233 0.9306
E: ConvLSTM 0.9524 0.0813 0.9224 0.9297 0.9507 0.0821 0.9212 0.9286 0.9507 0.0784 0.9238 0.9311
E: ConvMultiHead 0.9481 0.0776 0.9234 0.9308 0.9490 0.0813 0.9211 0.9286 0.9473 0.0780 0.9228 0.9303
E: LSTMMultiHead 0.9532 0.0796 0.9239 0.9311 0.9473 0.0821 0.9199 0.9275 0.9515 0.0796 0.9232 0.9306

encoders and spatiotemporal feature extractors, ultimately im-
proving overall model performance.

B. WBHT Black Hole Detection Evaluation

To validate the effectiveness of our proposed WBHT model,
we compare its performance against state-of-the-art baseline
models, as explained in the following:

AE consists of only Linear layers. This model has four
Linear layers, the first two used for encoding and the last two
for decoding, which respectively transform {#features, 16, 8,
16, #features}.

Con-AE has 3 Conv1D and 3 T − Conv1D layers, the
filters are 32, 16, 8, 16, 32, 1 and dropout rates: 0.2, 0,
0.2, 0, 0 from the left side, respectively. LSTM-AE consists of
LSTM encoder and decoders with the hyperparameter values:
hiddensize: 8.

ConvLSTM-AE is Con-AE’s version with an LSTM layer
added between encoding and decoding.

ConvMultiHead-AE is Con-AE’s version with MHSA
mechanisms with numberofattentionheads: 4 after first
Conv1D and T−Conv1D. MHSA allows the model to attend
to different parts of the time series simultaneously, capturing
long-range dependencies and temporal patterns in the data.

LSTMMultiHead-AE is LSTM-AE’s version with MHSA
mechanisms with numberofattentionheads: 4

AnoGAN [23] is an anomaly detection model based on
vanilla GAN with a single G and a single D. AnoGAN
is trained using the JSD loss, which can sometimes cause
unstable training. A major drawback of AnoGAN is the
absence of an E, requiring an iterative optimization process to
find the best latent representation of an input during inference.

MADGAN [24] improves time series anomaly detection by
introducing multiple D’s but suffers from training instability
due to its vanilla GAN’s JSD and lacks an E for fast inference
like f-AnoGAN. However, since MADGAN still uses a vanilla
GAN’s JSD loss instead of WGAN-GP, training stability can
be an issue, particularly in complex datasets. Additionally,
MADGAN does not include an E, meaning it does not benefit
from the fast inference provided by f-AnoGAN.

f-AnoGAN [25] improves upon AnoGAN by introducing
an E network, which maps real input data to the latent space,
bypassing the need for optimization, in addition to G and D.
f-AnoGAN also replaces JSD loss with WGAN-GP, resulting
in more stable training and a better latent space representation.

AutoFormer [26] employs a decomposition-based archi-
tecture that separates time series into trend and seasonal
components as Xt = AvgPool(Padding(X)), Xs = X−Xt

where Xt is the smoothed trend component, and Xs captures
seasonal variations. Additionally, Autoformer introduces an
Auto-Correlation Mechanism to identify periodic dependencies
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Fig. 2: Comparative Performance Evaluation of BH Detection Models

efficiently.
TimeSeriesTransformer is an encoder-decoder architecture

designed for long-term time series forecasting. It leverages
self-attention to capture long-range dependencies efficiently,
making it suitable for applications like energy forecasting,
finance, and health monitoring. Its self-attention mechanism
computes dependencies between inputs as A(Q,K, V ) =

Softmax
(
(QKT )/

√
d
)
V where Q, K, and V represent

query, key, and value matrices, and d is the dimensionality.
Informer [27] addresses the computational inefficiencies

of self-attention by introducing ProbSparse Self-Attention,
which selectively focuses on the most significant attention
scores. The attention mechanism is defined as A(Q,K, V ) =

Softmax
(
(Q′KT )/

√
d
)
V , where Q′ contains only the top-u

queries based on sparsity constraints, reducing complexity.

TABLE II: Performance Benchmarking of WBHT

DR FAR F1 Acc.
AE 0.2007 0.0062 0.5827 0.7347
Conv-AE 0.3104 0.0136 0.6569 0.7656
LSTM-AE 0.4566 0.0190 0.7423 0.8097
ConvLSTM-AE 0.5238 0.0194 0.7784 0.8314
ConvMultiHead-AE 0.5893 0.0309 0.8034 0.8450
LSTMMultiHead-AE 0.6344 0.0330 0.8236 0.8583
AnoGAN 0.7049 0.0499 0.8438 0.8700
MADGAN 0.8478 0.0802 0.8826 0.8964
f-AnoGAN 0.9303 0.0870 0.9099 0.9186
AutoFormer 0.8677 0.2183 0.8205 0.8394
TimeSeriesTransformer 0.9241 0.2485 0.8459 0.8673
Informer 0.9334 0.1922 0.8760 0.8920
WBHT (proposed) 0.9532 0.0780 0.9250 0.9322

The results are presented in Table II. The complexity
requirements of our model are assessed by benchmarking it

against more primitive AE-based methods, namely LSTM-
AE, ConvLSTM-AE. These models, while effective in cap-
turing temporal dependencies, struggle with high-dimensional
network traffic patterns and lack the adversarial learning
necessary to distinguish subtle BH anomalies. Additionally, we
investigate the adequacy of incorporating only Transformer-
based architectures by comparing WBHT against Transformer-
based baselines. While primitive Transformer-based models,
such as ConvLSTM-MultiHeadAE, introduce self-attention
mechanisms for improved feature extraction and temporal
dependencies, they still lack the generative modeling needed
for anomaly detection in general. More advanced Transformer
architectures, including Informer, AutoFormer, and Time-
SeriesTransformer, excel in capturing long-range dependencies
in anomalies as an enhancement but fail to effectively localize
anomalies. This is mainly due to the key characteristic of BH
anomalies, occurring over short, bursty time intervals. Finally,
we contrast our approach with advanced generative models
that do not incorporate Transformers, such as AnoGAN, f-
AnoGAN, and MADGAN. This comparison also enables us
to analyze the impact of using WGAN (w/ f-AnoGAN) versus
standard GAN architectures (w/ AnoGAN and MADGAN).
The closest model to our WBHT approach for BH anomaly
detection is obtained in f-AnoGAN model due to its im-
provement in training stability, unlike other GAN baseline
models. However, its performance is slightly lower than that
of WBHT, likely due to its lack of structured spatial-temporal
awareness. Overall, WBHT successfully integrates WGAN for
stable training, LSTM-based encoding for sequential learning,
and Multi-Head Attention for fine-grained feature extraction,
allowing it to outperform all baseline models. For enhanced
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visual interpretability, Fig. 2 provides a comparative perfor-
mance evaluation in terms of F1 and DR. The results demon-
strate that our WBHT model consistently outperforms state-of-
the-art alternatives, achieving the best F1 and DR scores. This
confirms the effectiveness of our proposed approach in BH
detection tasks, surpassing existing methodologies in terms of
both accuracy and robustness.

V. CONCLUSION

In this study, we proposed the WBHT framewotk for BH
anomaly detection in communication networks using time
series tabular data. Our approach integrates generative mod-
eling, sequential learning, and attention mechanisms, building
on WGAN architecture to enhance the model’s stability and
performance.

Through a series of evaluations, we showed that WBHT out-
performs traditional GAN-based models, Transformer-based
architectures, and other advanced generative methods in BH
detection tasks. Specifically, WBHT’s ability to leverage LST-
MMultiHead as the encoder and ConvLSTM as the generator
enabled the model to effectively capture both spatial and
temporal dependencies, making it highly suitable for real-
time network anomaly detection. Our findings confirm that
the combination of WGAN’s stability, the encoder’s temporal
learning capabilities, and the generator’s spatial feature extrac-
tion significantly enhances the accuracy and robustness of BH
detection.
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[23] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and
G. Langs, “Unsupervised anomaly detection with generative adversarial
networks to guide marker discovery,” in Information Processing in
Medical Imaging. Cham: Springer International Publishing, 2017, pp.
146–157.

[24] D. Li, D. Chen, B. Jin, L. Shi, J. Goh, and S.-K. Ng, “Mad-gan:
Multivariate anomaly detection for time series data with generative
adversarial networks,” in International conference on artificial neural
networks. Springer, 2019, pp. 703–716.
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