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Abstract—Recent advances in synthetic speech have made audio
deepfakes increasingly realistic, posing significant security risks. Existing
detection methods that rely on a single modality, either raw waveform
embeddings or spectral-based features, are vulnerable to non-spoof
disturbances and often overfit to known forgery algorithms, resulting in
poor generalization to unseen attacks. To address these shortcomings,
we investigate hybrid fusion frameworks that integrate self-supervised
learning (SSL)-based representations with handcrafted spectral descriptors
(e.g., MFCC, LFCC, CQCC). By aligning and combining complementary
information across modalities, these fusion approaches capture subtle
artifacts that single-feature approaches typically overlook. We explore
several fusion strategies, including simple concatenation, cross-attention,
mutual cross-attention, and a learnable gating mechanism, to optimally
blend SSL features with fine-grained spectral cues. We evaluate our
approach on four challenging public benchmarks (LA19, DF21, ITW,
ASV5) and report generalization performance. All fusion variants
consistently outperform an SSL-only baseline, with the cross-attention
strategy achieving the best generalization with a 38% relative reduction
in equal error rate (EER). These results confirm that joint modeling
of waveform and spectral views produces robust, domain-agnostic
representations for audio deepfake detection.

1. INTRODUCTION

Recent progress in generative artificial intelligence has significantly
transformed the field of ultra-realistic speech synthesis. Advances
in state-of-the-art text-to-speech (TTS) and voice conversion (VC)
technologies have made it feasible to produce speech outputs that
closely mimic natural human utterances [1]. Moreover, the emergence
of large language models (LLMs) into audio and speech generation
[2]-[4] workflows has further elevated the potential of generating
complex speech signals with high fidelity and nuance. Despite these
encouraging advancements, they have also introduced significant
challenges. The increasing accessibility of tools capable of generating
highly realistic speech has raised concerns about their misuse by
malicious actors. These technologies are being exploited to disseminate
misinformation, incite hate speech, and even support acts of terrorism
activities [5] that pose a direct threat to societal trust and the integrity
of public discourse. Furthermore, synthetic speech has become a
tool for financial fraud; notably, a recent report highlighted that voice
cloning technologies have impacted approximately 7.7% of individuals,
including high-profile cases such as a CEO in the United Kingdom
[6]. Hence, the need for robust countermeasure systems that help
humans discern natural and spoofed speech is paramount.
Nonetheless, detecting synthetic or spoofed speech remains a
significant challenge. One major obstacle is the rapid evolution of
speech synthesis techniques, which often renders existing detection
methods obsolete in a short time. Additionally, the wide variability
in generated speech, arising from differences in synthesis tools,
transmission channels, audio codecs, and environmental noise, further
undermines the effectiveness of current models. As a result, the
pursuit of detection methods that are not only highly accurate but
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Fig. 1: Overall framework of our approach. SF stands for Spectral Features,
and SSL for Self-Supervised Features.

also generalizable and robust across diverse conditions continues to
be a critical research priority.

Early approaches to synthetic speech detection primarily relied
on manually engineered spectral features such as Linear Frequency
Cepstral Coefficients (LFCC) [7], Mel-Frequency Cepstral Coefficients
(MFCC) [8], Constant Q Cepstral Coefficients (CQCC) [9], Constant-
Q Transform (CQT) [10], Short-Time Fourier Transform (STFT) [11],
and Mel-spectrograms [12]. These features capture high-frequency
artifacts that are typically fed into classifiers, often convolutional
neural networks (CNNs) or multilayer perceptrons (MLPs), to perform
binary classification between genuine (bonafide) and spoofed speech.
A variety of CNN-based architectures have been explored for this task,
including ResNet [13], Inception [11], Res2Net [14], ECAPA-TDNN
[15], LCNN [16].

In parallel, end-to-end approaches operate directly on raw audio
waveforms [8], [17]. In particular, the AASIST [18] model processes
raw speech using fixed sinc-convolutional filter banks, followed
by a spectro-temporal graph neural network (GNN) equipped with
attention mechanisms, demonstrating improved performance over
earlier models.

More recent developments leverage self-supervised learning (SSL)
techniques to obtain robust audio representations using transformer-
based encoders such as Wav2vec2.0 [19], XLSR [20], WavLM [21],
HuBERT [21]. These SSL-based methods have shown substantial
improvements over traditional approaches based on handcrafted
features, yet suffer as well from a lack of generalization [22].

Hybrid models that integrate both SSL representations and tradi-
tional handcrafted spectral features have demonstrated efficacy in
various tasks, including ASR [23] and speaker verification [24], as
well as recently in spoofing detection [25]. Hand-crafted features such
as MFCCs, which offer data-independence and task-robust features
and are sensitive to synthetic artifacts, can enhance overall system
robustness when combined with SSL features.

However, key questions remain open regarding which combinations
of features are most effective for deepfake speech detection, the
optimal mechanisms for integrating handcrafted and SSL-based
representations, and the relative contribution or weighting of each
feature stream in a trained model, highlighting important directions
for future research.

In line with these research gaps, this paper makes the following
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Fig. 2: Illustration of the different investigated fusion strategies, combining spectral features with self-supervised learning representations.

key contributions:

« We investigate the effectiveness of three widely used spectral
features—MFCC, LFCC, and CFCC—when combined with self-
supervised speech representations learned via Wav2Vec2.0 XLSR-
53.

« We explore various fusion strategies, including concatenation,
attention-based, and gating mechanisms, to identify optimal
approaches for integrating spectral and SSL-derived features.

o We analyze the relative contribution of each feature stream
(spectral vs. SSL) during inference to understand their impact
within the trained model.

The proposed methodology is detailed in Section 2, followed by the
experimental setup in Section 3, and the corresponding results and
analysis in Section 4.

2. METHODOLOGY

The overall architecture of our proposed system is shown in Figure
1. The input audio waveform is fed into two parallel streams that
extract complementary speech representations: one based on SSL
model and the other on hand-crafted spectral features (SF). These
representations are fused before being passed to a graph neural
network-based classifier, AASIST [18].

2.1. Speech Representations

Spectral Features (SF): In this work, we focus on the three
most widely used hand-crafted feature extractors in deepfake detection
[26]: Mel-Frequency Cepstral Coefficients (MFCC), Linear-Frequency
Cepstral Coefficients (LFCC), and Constant-Q Cepstral Coefficients
(CQCCQ). All three apply cepstral analysis to extract short-term spectral
features but differ in their frequency scaling. MFCCs are cepstral
features that use a Mel scale to emphasize low-frequency components.
LFCCs adopt a linear frequency scale, preserving high-frequency
detail and enhancing sensitivity to spectral artifacts, particularly in
unseen attack scenarios. Lastly, CQCCs, derived from the constant-
Q transform, combine multiresolution time—frequency analysis with
cepstral representation, making them effective for capturing complex
spectral structures.

Self-Supervised Learning Features (SSL): For the SSL branch,
we employ Wav2Vec2.0 XLSR-53, a transformer-based model trained
on large-scale, unlabeled speech corpora using contrastive objectives.
Wav2Vec2.0 XLSR-53 demonstrates strong capabilities in speech
deepfake detection [27]. These representations often capture rich
contextual and prosodic information, which are essential for identifying
subtle artifacts introduced by generative speech models.

2.2. Fusion Strategies

We extract two parallel feature streams for a given segment S: (i)
SSL features from pre-trained Wav2Vec2.0 model, denoted fssi.(S) €
RTssexDsst: and (ii) Spectral Features (SF) that can be MFCC,
LFCC, or CQCC, denoted fsz(S) € RTSF*Psk Here, Tisr, Tsr are
the number of time frames, and Dssy, Dsr are their respective feature
dimensions.

To fuse these representations, we first align them to a common
temporal and feature resolution. We set a common frame count
T = Tss. and feature dimension D by resampling and projecting.
Specifically, we downsample the SF stream such that Tsg — T, and
apply a linear projection € RPst*? and € RPs**P to map SSL and
SF features into RT*P . After this alignment, we have:

fse(S), fssL(S) € RT*P

Let fsp, fss. € RT*P denote the aligned feature matrices. We
explore four fusion strategies as shown in Figure 2:

Concatenation: We concatenate the features along the feature
dimension and project them back into RT*P:

heoncac = Linear([fSF; fSSL])

where [; ] denotes concatenation along the feature dimension.
Cross-Attention (SSL —SF): SSL features attend to SF features.
Define projections:

QSSL = fSSLVVQ7 Ksr = fSFWK7 Vsk = fss Wy
Then,
KT
Hss, s = Softmax (m> Vsk + fssL
vD

Mutual Cross-Attention: We compute attention in both direc-
tions:

Qsk = fssWq, Kss. = fsse Wk, VssL = fsst Wy
KL
HSF%SSL = Softmax (M> VSSL + fSF
vD

hiuwa = Linear([Hsr—sst; Hsst—sF])



Learnable Gating: SF and SSL are treated as two experts and
we learn per-frame weights:

w(S) = Softmax(fss. We), w(S) e RT*?

Let wsr, wsst. € R” be the two columns of w(S). Then the fused
feature is:

Sruse(S)e = wse(t) fse(S)e + wssL(t) fssL(S)+

or in matrix form:

hfusc = W, ® fz

>

i€ {SF,SSL}
where © denotes element-wise multiplication applied per frame. Since
the weights are normalized per frame, this fusion is both adaptive and
interpretable. Each fused representation hge is passed to a classifier.
The gating weights can be visualized to interpret streams fusions over
time.

2.3. Classifier: AASIST

AASIST [18] is a SOTA audio anti-spoofing back-end classifier that
integrates spectral and temporal information using heterogeneous
graph-based attention and pooling mechanisms. Its architecture
comprises a Graph Attention Layer (GAT) for computing attention
over spectral and temporal features, a Heterogeneous Graph Attention
Layer (HtrgGAT) to refine these features, a graph pooling layer for
selecting salient nodes, residual blocks with convolutional layers and
SELU activations, and an attention mechanism to extract meaningful
representations from the encoded data. This design enables AASIST to
effectively capture complex patterns associated with spoofing attacks
across diverse audio domains.

3. EXPERIMENTAL SETUP
3.1. Datasets and Evaluation Metrics

To assess the effectiveness and generalization capability of our
proposed approach, we conduct experiments on four benchmark
datasets: ASVspoof LA19 (LA19) [28], ASVspoof DF21 (DF21) [29],
In-The-Wild (ITW) [11], and ASVspoof 5 (ASV5) [30]. Our models
are primarily trained on the LA19 training partition, a well-established
benchmark in the speech anti-spoofing community. We then evaluate
the trained models across all four datasets to test their robustness and
cross-domain generalization.

o ASVspoof DF21 (DF21): This dataset introduces a diverse set of
spoofing attacks generated using deepfake synthesis techniques
and encoded with lossy compression codecs. It reflects real-world
scenarios where audio is transmitted or stored under bandwidth
constraints. The dataset includes 14,869 bona fide utterances and
519,059 spoofed samples.

o In-The-Wild (ITW): ITW features a realistic distribution of
spoofed and genuine speech collected from publicly available
online sources such as podcasts and political speeches. The
dataset comprises 17.2 hours of fake and 20.7 hours of authentic
audio, amounting to 31,779 utterances with an average duration of
4.3 seconds. All recordings involve English-speaking celebrities
and politicians.

o ASVspoof 5 (ASV5): The ASVS5 corpus represents the most
recent and challenging benchmark in the domain, incorporating
32 advanced spoofing attack types, including adversarially crafted
samples. It contains 138,688 bonafide and 542,086 spoofed
utterances, designed to evaluate the limits of current anti-spoofing
systems.

We evaluate model performance using the Equal Error Rate (EER),

the standard metric in anti-spoofing tasks.

Table 1: EER% across four evaluation datasets (LA19, DF21, ITW, ASVS5) for
different fusion strategies between spectral features (MFCC, LFCC, CQCC)
and SSL representations. “No Fusion” only spectral features are used. The
AVG column reports the average performance across all datasets. Values in
bold indicate the best performance on each dataset.

LA19 DF21 ITW ASV5S AVG

Baseline 0.28 5.29 14.03 23.88  10.87
No Fusion
MFCC 13.35  33.15 39.20 4295 32.16
LFCC 5.62 3428 38.46 44,02  30.59
cQcc 4.63 34.62 33.68 44.51  29.36
Concatenation
MFCC 0.42 4.68 8.48 18.93 8.13
LFCC 0.82 4.19 9.35 20.06 8.61
cQcc 0.42 4.09 8.62 19.24 8.09
Cross-Attention (SSL —SF)
MFCC 0.46 3.55 7.11 21.25 8.09
LFCC 0.28 3.15 6.87 20.85 7.79
CQcCcC 0.40 2.71 6.03 18.08 6.80
Mutual Cross-Attention
MFCC 0.36 3.49 7.89 20.89 8.16
LFCC 0.58 3.53 8.40 18.68 7.80
cQcc 0.26 3.09 7.04 18.75 7.29
Learnable Gating

MFCC 0.61 3.39 8.75 19.46 8.05
LFCC 0.39 3.77 7.88 21.90 8.49
cQcc 0.53 3.70 9.24 20.00 8.37

3.2. Implementation Details

In the pre-processing stage, all audio samples are first pre-emphasized
using a coefficient of 0.97. Each sample is then either truncated or
zero-padded to a fixed length of approximately 4 seconds (64,600
samples) to ensure uniformity across the dataset. No voice activity
detection or amplitude normalization is applied.

For the Wav2Vec2.0 model, we initialize parameters using the
official pre-trained weights', so the fss. has a shape of 201 x 1024.
For spectral features, we use a 25-ms Hamming window with a 10-ms
frame shift. For each frame, we compute MFCC using a 20-filter
Mel-scale bank, LFCC using a 20-filter linear-scale bank, and CQCC
derived from a Constant-Q transform with 96 bins per octave. We
then append first- and second-order derivatives to each 20-dimensional
vector, producing a 60-dimensional feature vector per frame and a
final tensor fsp of shape 402 x 60. The projection dimension D is
set to 128.

Model training is performed using the Adam optimizer [31] with
B1 = 0.9 and B2 = 0.999. A step-based learning rate scheduler is
used to facilitate faster convergence. All models are trained for 50
epochs with a batch size of 32, an initial learning rate of 1 x 107¢,
and a weight decay of 1 x 10~%. The cross-entropy loss is used as
the objective function.

All training runs are executed on a single NVIDIA H100 GPU.
To ensure robustness and account for variability, each experiment is
repeated three times using different random seeds.

4. RESULTS AND ANALYSIS
4.1. Evaluating Fusion Approaches

As shown in Table 1, under the “No Fusion” setting, models relying
solely on handcrafted spectral features (e.g., MFCC, LFCC, CQCC)
perform poorly in both controlled and in-the-wild conditions, with

Uhttps://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec



average EERs no lower than 29.36%. By contrast, the baseline system,
Wav2Vec2.0 XLSR-53 + AASIST [32], reduces the average EER
to 10.87%, corroborating previous findings that SSL-based features
alone outperform spectral features alone. Nevertheless, this wave-only
baseline remains susceptible to domain shifts, exhibiting an EER
increase of 13.55% on the ITW benchmark and 23.40% on ASVS5.
On the other hand, all examined fusion approaches, concatenation,
cross-attention (SSL—SF), mutual cross-attention, and learnable
gating, exploit additional spectral cues to outperform the wave-only
baseline across every evaluation dataset, and with different proposed
spectral features. They achieve relative improvements ranging from
11.5% to 48.77% on DF21, 33.35% to 57.00% on ITW, and 8.2%
TO 24.28% on ASVS5. These findings show that combining the two
features captures complementary information beneficial for deepfake
detection.

Among these, Cross-Attention (SSL — SF) with CQCC yields
the best overall performance, achieving the lowest average EER of
6.80% and outperforming all fusion systems on DF21 and ITW with
EERs of 2.71% and 6.03%, respectively. This strong performance
can be attributed to the ability of cross-attention to dynamically
learn which components of the spectral features are most relevant
when conditioned on the richer SSL representations. By attending
selectively to complementary cues in the handcrafted features, the
model effectively enhances discriminative capacity in challenging
scenarios. Mutual cross-attention also shows strong performance, with
CQCC-based fusion reaching an average EER of 7.29%. Simple
concatenation and learnable gating yield noticeable gains but fall
short of the attention-based methods, which better capture cross-modal
dependencies.

Across all fusion schemes, on average across datasets, CQCC consis-
tently outperforms MFCC and LFCC, demonstrating its effectiveness
in modeling the fine-grained spectral patterns essential for robust
spoofing detection, which aligns with previous findings [33].

4.2. Analysis of Learnable Gating Weights

Figure 3 reports the average normalized weights wsr and wgssr, as
shown in Section 2.2, assigned by the learnable gating module to
the spectral and SSL branches, respectively, on the DF21 and ITW
evaluation sets. By construction, wsr(t) + wgsr(t) = 1 for every
frame ¢, so higher wsr implies greater reliance on hand-crafted cues.

Across the three spectral representations, the model consistently
allocates approximately 15-22% of its weight to the spectral branch
and 78-85% to the SSL branch. This results demonstrate that: (i)
Although SSL features dominate the fusion, spectral features still
account for a stable ~ 20% of the fused representation. This indicates
that the handcrafted features contribute a significant amount of
spoof-related information. (ii) The near-identical weight distributions
on DF21 and ITW indicate that our gating mechanism learns a
general-purpose fusion policy, rather than overfitting to dataset-specific
artifacts.

These results validate this hybrid approach for deepfake detection,
by blending both views, the model retains the spoofing cues of
hand-crafted while exploiting the rich context captured by SSL
features.

4.3. Comparison with SOTA models

Table 2 positions our cross-attention fusion of Wav2Vec2.0 embed-
dings and CQCC against recent SOTA models on both DF21 and ITW.
While Nes2Net-X and WaveSpec attain the lowest EER on DF21, our
model matches their DF21 performance closely (2.71% vs. 1.91%)

Normalized Weight

LFCC
Spectral Features

Fig. 3: Normalized learnable gating weights for spectral features and SSL
across ITW and DF21. Bars show the contribution of spectral features (wgr,
blue) and SSL features (wsgr,, orange), with solid fill for ITW and hatched
fill for DF21, for each feature type (CQCC, LFCC, MFCC).

Table 2: Comparison of EER (%) on DF21 and ITW for various deepfake
detection methods, including our best cross-attention fusion of Wav2Vec2.0
and CQCC.

DF21 ITW AVG
Wav2Vec2.0 Ensembling [34] 8.74 18.60 13.67
Wav2Vec2.0 AASIST [35] 529 14.03 9.66
WavLM ASP+MLP [36] 447  12.87 8.67
SLIM [37] 440 1250 8.45
MoE [38] 2.54 9.17 5.86
TCM [39] 2.06 7.79 4.93
WaveSpec [25] 2.01 7.26 4.64
Nes2Net-X [40] 1.91 6.60 4.26

Cross-Attention (SSL —SF)

Wav2Vec2.0+CQCC (Ours) 2.71 6.03 4.37

and establishes a new best result on the more challenging ITW set
compared with all newly reported SOTA models.

Crucially, this competitive edge is achieved without resorting to
large ensembles compared to [34], multi-branch architectures [39], or
dataset-specific augmentations (e.g., Rawboost [41] used for DF21).
Instead, our approach rests on a single, lightweight cross-attention
module that dynamically balances handcrafted spectral features and
self-supervised representations. This not only simplifies the model
but also makes fusion explicitly interpretable (cf. Figure 3).

In summary, our approach delivers: (i) Strong results on both in-the-
wild and controlled datasets with no domain-specific tuning. (ii) Clear
gating weights that reveal how much each feature source contributes
to the fused model.

These results demonstrate that integrating spectral features with
SSL representations enhances complementary information critical for
enhancing cross-domain deepfake detection robustness.

5. CONCLUSION

We have analyzed how the fusion framework that combines SSL
features with classical spectral features (MFCC, LFCC, CQCC)
reinforces deepfake detection under severe domain shifts. By sys-
tematically comparing four fusion strategies, concatenation, cross-
attention, mutual cross-attention, and learnable gating, within a
GNN classifier, we demonstrate consistent and substantial gains
over an SSL-only baseline across four benchmarks (LA19, DF21,
ITW, ASVS5). Through learnable gating analysis, we verify that
spectral cues contribute roughly 20% of the fused representation in a
dataset-agnostic manner. In our Future work, we will explore these
findings with different backend classifiers, and with the incorporation
of additional handcrafted descriptors from formant trajectories and
prosody features extracted from OpenSmile [42] with SSL features
as complementary features to enrich the fusion space.
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