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Abstract—This paper provides an integrated perspective on
addressing key challenges in developing reliable and secure Quan-
tum Neural Networks (QNNs) in the Noisy Intermediate-Scale
Quantum (NISQ) era. In this paper, we present an integrated
framework that leverages and combines existing approaches
to enhance QNN efficiency, security, and privacy. Specifically,
established optimization strategies, including efficient parameter
initialization, residual quantum circuit connections, and system-
atic quantum architecture exploration, are integrated to mitigate
issues such as barren plateaus and error propagation. Moreover,
the methodology incorporates current defensive mechanisms
against adversarial attacks. Finally, Quantum Federated Learn-
ing (QFL) is adopted within this framework to facilitate privacy-
preserving collaborative training across distributed quantum
systems. Collectively, this synthesized approach seeks to enhance
the robustness and real-world applicability of QNNSs, laying
the foundation for reliable quantum-enhanced machine learning
applications in finance, healthcare, and cybersecurity.

Index Terms—Quantum Neural Networks, Quantum Machine
Learning, Quantum Federated Learning

I. INTRODUCTION

Quantum Neural Networks (QNNs) have emerged as a
promising paradigm at the intersection of quantum computing
and machine learning, offering potential advantages in pro-
cessing complex data structures and solving computationally
intensive tasks [1]. In the current Noisy Intermediate-Scale
Quantum (NISQ) era, characterized by quantum processors
with limited qubit counts and susceptibility to noise [2],
hybrid quantum-classical QNNs are envisioned to leverage
quantum mechanics to achieve high performance in specific
applications [3]-[5].

Despite their theoretical potential, the practical deployment
of QNN faces several significant challenges inherent to NISQ
devices. One of the critical issues is the occurrence of barren
plateaus in the optimization landscape, where gradients vanish
exponentially with system size [6], which hinders the effective
training of variational quantum circuits. Additionally, the lim-
ited number of qubits and their short coherence times constrain
the scalability of QNNs, making it challenging to handle high-
dimensional data. The presence of noise and decoherence
further complicates the reliable execution of quantum circuits,
affecting the expressibility and robustness of QNN models [7].
Moreover, concerns regarding the security and privacy of
quantum machine learning systems, especially in adversarial
settings, remain largely unexplored.

To address these challenges, we propose a comprehensive
cross-layer methodology aimed at enhancing the efficiency,
security, and privacy of QNNs in the NISQ era. Our contribu-
tions are as follows:

o Trainability and Scalability Optimization: We deploy
techniques to mitigate barren plateaus, such as layer-wise
training and parameter initialization strategies, and explore
quantum circuit cutting methods to enable scalable QNN
architectures on limited qubit devices.

« Noise-Aware Design and Architecture Exploration: We
conduct an in-depth analysis of QNN robustness against
various noise models, including phase flip, bit flip, and
depolarizing channels, and guide the design of robust QNNss.

o Security and Privacy Enhancements: We investigate the
vulnerability of QNNs to adversarial attacks and their re-
spective defense mechanisms. Furthermore, we explore the
integration of federated learning and encryption techniques
to ensure data privacy in distributed QNN scenarios.

« Application Outlook: We provide an overview of emerging
applications for next-generation QNNs, highlighting their
potential impact in fields such as intelligent transportation,
finance, and healthcare.

II. METHODOLOGY

We present an end-to-end framework designed to support
the development of next-generation QNNs, with a focus on
enhancing their trainability, scalability, and ensuring security
and privacy. An overview of our proposed methodology is
illustrated in Fig. 1.

A. Trainability and Scalability

Trainability is a key challenge in developing QNNs, pri-
marily due to barren plateaus (BP), regions in the optimization
landscape where the gradient variance vanishes exponentially
with system size [6], rendering gradient-based training infea-
sible (see Fig. 2).

BPs are linked to random initialization [8], global cost
functions [9], hardware noise [10], and the expressibility of
parameterized quantum circuits (PQCs) [11]. Mitigation strate-
gies include careful parameter initialization, residual learning,
and noise-assisted training. In particular, Xavier initialization
has shown superior performance in reducing BP effects [8], as
illustrated in Fig. 3, while narrower initialization ranges further
enhance trainability [12]. Residual connections, inspired by
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Fig. 1: Overview of our methodology to design efficient, robust, and secure QNNs.
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Fig. 3: Variance decay and training results with different initialization tech-

niques [8].

classical deep networks, preserve gradient flow and enable
deeper QNN [13], [14].

Scalability is constrained by limited qubit counts and noise
in NISQ hardware. Current QNN architectures are restricted
to small-scale models that fit within the available quantum
resources. To overcome this, quantum circuit cutting has been
proposed [15], allowing large circuits to be decomposed into
smaller subcircuits. As shown in Fig. 4, a 6-qubit circuit can be
executed using 4-qubit subcircuits. Intermediate measurement
results are stored and reused in subsequent subcircuits. Impor-
tantly, this approach preserves model accuracy while enabling
deployment on limited hardware.

B. Noise-Aware Design and QNN Architecture Exploration

In the NISQ era, integrating hardware noise considerations
into QNN design is vital for practical deployment. Noise-
aware training and architecture exploration are essential to
identify robust configurations that perform reliably under
realistic noise conditions.

The work in [16] presents a detailed study on how different

quantum noise types affect QNN architectures, specifically
Quanvolutional Neural Networks (QuanNNs) and Quantum
Convolutional Neural Networks (QCNNs), using real-world
datasets. As shown in Fig. 5(a), QuanNNs demonstrate ro-
bustness against phase and bit flip noise but degrade under
depolarizing noise. In contrast, Fig. 5(b) shows that QCNNs
maintain high accuracy on MNIST under amplitude damping
noise but struggle with the more complex Fashion-MNIST,
illustrating dataset-dependent resilience. This analysis under-
scores the importance of selecting noise-resilient architectures
and informs the design of QNNs better suited to noisy envi-
ronments. It also highlights when quantum error mitigation or
correction becomes crucial to maintain model reliability.

In [17], the impact of quantum noise on QNN trainability
is investigated, revealing that BPs arise more readily in noisy
settings. The study shows that selecting suitable measure-
ment observables, particularly a custom Hermitian observable
aligned with the learning objective, can substantially enhance
QNN resilience and trainability across various noise types.

C. Security and Privacy

After achieving trainability, scalability, and noise resilience,
ensuring the security and privacy of QNNs is crucial. Without
this, even the most robust architectures remain vulnerable
to adversarial threats and data leakage, a critical aspect in
domains like healthcare, finance, and cybersecurity.
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Fig. 5: Noise robustness of QNNs under different noise types and tasks. (a)
QuanNN’s noise robustness under different noise channels with probability
1.0, for the MNIST dataset. (b) QCNN’s noise robustness under Amplitude
Damping noise with probability 0.1, for the MNIST and Fashion MNIST
datasets [16].
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Fig. 6: Robustness evaluation of classical and quantum models using the ZZ
full ansatz against adversarial attacks on the MNIST dataset: (a) FGSM and
(b) PGD, tested across varying perturbation strengths [18].

1) Embedding Adversarial Robustness in QNN Design

Neural networks, including hybrid quantum-classical mod-
els, are susceptible to adversarial inputs. Thus, adversarial
robustness should be embedded from the design phase. This
includes analyzing circuit-level properties such as express-
ibility, entanglement, and gate configurations. Circuits with
high expressibility and controlled entanglement, particularly
those using Z-axis controlled rotations, demonstrate improved
resistance to adversarial attacks [18]-[20].

Rather than relying on post-training defenses, a preemptive
adversarial testing phase, simulating attacks like FGSM and
PGD, should guide architectural choices. As shown in [21],
this helps identify circuits that generalize well even under
perturbations. Empirical results show that such circuits achieve
up to 60% greater robustness on datasets like MNIST and
Fashion-MNIST at low perturbation levels (see Fig. 6).

2) Ensuring Privacy through Quantum Federated Learning
and Encryption

QNN deployed in sensitive domains require decentralized,
privacy-preserving training. We adopt a federated learning
paradigm, where QNNs are trained locally and only encrypted
model updates, not raw data, are shared.

Quantum Federated Learning (QFL) [22] enables distributed
quantum nodes to train locally while maintaining data privacy.
Each client uses quantum hardware or simulators to train
QNNs and transmits only quantum-encoded parameters for
global aggregation (see Fig. 7). This setup is ideal for data-
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Fig. 7: Execution of QNNs on real quantum hardware within a federated learn-
ing setup, demonstrating stable performance across different IBM Quantum
backends [22].

sensitive sectors, such as healthcare and finance.

To further protect updates, we integrate Fully Homomorphic
Encryption (FHE) [23], enabling encrypted aggregation with-
out exposing plaintext parameters. Though FHE can reduce
performance, quantum-enhanced models, especially on multi-
modal data, help retain accuracy. Across diverse datasets, this
QFL-FHE pipeline maintains over 70% test accuracy while
preserving privacy (see Table I).

TABLE I: QFL with FHE experiment results for various datasets.

Dataset Test Loss Train Accuracy | Test Accuracy Time (sec)
CIFAR-10 0.0937 97.90% 71.12% 9747.32 £2.23
DNA Sequence 0.782 100.00% 94.32% 7123.91 £2.91
MRI Scan 0.360 100.00% 88.75% 7851.86 + 3.54
PCOS 1.090 100.00% 70.15% 3942.60 £ 1.65
RAVDESS 0.83 94.53% 76.43% 1140.76 + 1.69
DNA+MRI DNA: 0.174 | DNA: 99.64% DNA: 95.31%
Multimodal MRI: 0.713 MRI: 100% MRI: 87.26% | 10314.34 & 6.28

Together, these methods form a robust and secure QNN
development pipeline. With adversarial defense and encrypted
federated learning, QNNs are now capable of trustworthy
deployment in sensitive real-world applications.

III. APPLICATIONS

QNNSs have shown significant promise across various do-
mains, demonstrating practical advantages in tasks that de-
mand high accuracy, security, and computational efficiency.
Following the development of scalable, noise-aware, and se-
cure QNN architectures, recent research has begun translating
these models into real-world applications. In the financial
sector, QNNs have been successfully deployed for fraud
detection and loan eligibility prediction [24], [25]. Privacy-
preserving frameworks that integrate federated learning with
quantum layers have achieved precision rates exceeding 95%,
even under noisy and distributed settings [26]. QNN trained
on structured financial data have also achieved up to 98%
accuracy in predicting loan approvals, aided by dropout mech-
anisms and robust quantum circuit design [27]. In quantum
information processing, QNN-based models have enhanced
the efficiency of quantum state tomography by reducing the
number of required measurements without compromising re-
construction fidelity. These advances are particularly beneficial
for scaling to larger quantum systems [28]. While in health-
care, QNNs have enabled precise multi-omics integration for
lung cancer classification, uncovering key biomarkers with
exceptional diagnostic accuracy [29]. In intelligent transporta-



tion systems, QNNs have been used to process large-scale
traffic data, achieving classification accuracies above 97%
and demonstrating strong robustness under noise, highlighting
their potential for deployment in urban mobility infrastructures
[30]. Similarly, hybrid quantum-classical models with attention
mechanisms have been employed for image super-resolution,
offering competitive quality while reducing parameter counts,
thus aligning with current hardware limitations in the NISQ
era [31]. These applications underscore the versatility and
practical relevance of QNNs, reinforcing their potential as
a foundational technology across sectors where performance,
privacy, and resilience are paramount.

IV. CONCLUSION AND OUTLOOK

In this paper, we presented an integrated, cross-layer
methodology for advancing QNNs in the NISQ era. By synthe-
sizing optimization techniques, architecture exploration, noise-
aware design, adversarial robustness, and federated privacy-
preserving learning, our framework systematically addresses
the core limitations of QNNs related to trainability, scalability,
and trustworthiness. We demonstrated how approaches such as
parameter initialization, residual connections, quantum circuit
cutting, and noise-informed design choices can significantly
improve model performance on current quantum hardware.
Furthermore, we established a foundation for secure and
privacy-aware QNN training via adversarial testing and QFL
augmented with encryption techniques.

Looking forward, as quantum hardware continues to evolve
and mature, our approach offers a scalable path toward de-
ploying robust and secure quantum machine learning models
in real-world applications. Future work will involve deeper
integration of quantum error correction techniques, exploration
of hardware-efficient QNN architectures, and automated quan-
tum architecture search to further streamline development.
Additionally, expanding federated and privacy-enhanced quan-
tum learning to edge and cloud environments will be key to
enabling widespread adoption. Ultimately, this work serves
as a step toward realizing the next-generation QNN systems
capable of transforming critical sectors such as healthcare,
finance, and intelligent infrastructure.
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