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Abstract. The rapid advancement of deepfake and face swap technolo-
gies has raised significant concerns in digital security, particularly in
identity verification and onboarding processes. Conventional detection
methods often struggle to generalize against sophisticated facial ma-
nipulations. This study proposes an enhanced deep-learning detection
framework that combines handcrafted frequency-domain features with
conventional RGB inputs. This hybrid approach exploits frequency and
spatial domain artifacts introduced during image manipulation, provid-
ing richer and more discriminative information to the classifier. Several
frequency handcrafted features were evaluated, including the Steganaly-
sis Rich Model, Discrete Cosine Transform, Error Level Analysis, Singu-
lar Value Decomposition, and Discrete Fourier Transform.

Keywords: Face Manipulation - Handcrafted Features - Digital Foren-
sics.

1 Introduction

Image manipulation has become a widely discussed topic over the years, with
its detection posing an increasingly complex challenge because of the rapid ad-
vancements in generative techniques. Among the various forms of digital face
manipulation, key methods include face swap, identity swap, attribute manipu-
lation, and entire face synthesis [15].

Face swapping involves replacing a target individual’s face with another per-
son’s, effectively altering the subject’s appearance while retaining their original
context. In contrast, full-face synthesis refers to the complete generation of fa-
cial images from scratch using advanced generative models, such as Generative
Adversarial Networks (GANs) or diffusion models. These techniques enable the
creation of highly realistic facial representations, often indistinguishable from
authentic images.

Nowadays, most users perceive this technology as harmless entertainment;
however, it is increasingly being misused for malicious purposes, such as spread-
ing fake news, generating illicit content, and engaging in political manipulation,
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among others. These harmful applications have a significant impact on social
media, undermining trust and contributing to a crisis of authenticity in digital
content across the Internet.

Traditional methods, based on RGB pixel values and convolutional neural
networks (CNNs), perform well on intra-datasets but struggle to generalize across
unseen datasets [15]. This limitation arises because artifacts indicative of manip-
ulation can be significantly diminished due to factors such as image compression
or manual editing, making it challenging for these models to detect subtle in-
consistencies across diverse sources.

To address this challenge, the following research questions are explored:

— How can generalization across datasets be improved?
— Which frequency-domain representations are most effective?
— How can frequency-domain features be integrated into deep learning models?

This work focuses specifically on identity swapping and full-face synthesis,
two of the most prevalent manipulation techniques in digital media.
The main contributions of this work are:

— A study of frequency-domain features for face manipulation detection.

— An evaluation of several handcrafted features, identifying Discrete Cosine
Transform as the most effective.

— A demonstration that minimum score-level fusion between intensity pixel
values and frequency features yields improved performance over baseline
models.

The remainder of this article is structured as follows: Section 2 reviews re-
lated work on deepfake and face manipulation detection. Section 3 describes the
datasets and the proposed method. Section 4 reports experimental results. Fi-
nally, Section 5 concludes the paper and outlines directions for future research.

2 Related Works

Traditional methods based on intensity values (RGB) images and convolutional
neural networks (CNNs) have demonstrated high performance on intra-datasets
but lower generalization capabilities to perform with high rates on cross-datasets.
To overcome this challenge, new approaches like frequency domain have been
explored based on the changes in frequencies (high and low) that are produced
when the image is manipulated. A similar effect is dedicated to compression.

Conventional deepfake detection approaches predominantly leverage spatial
domain features extracted from pixel values across RGB images using deep neural
networks.

Studies such as Luo et al. [6] highlight that CNN-based models often overfit
to method-specific color textures, which limits their generalization capabilities
when tested against unseen manipulations.

Similarly, the work by Ibsen et al. [1| emphasizes that RGB-only models
struggle to differentiate real from synthetic faces when exposed to novel gen-
erative models or post-processing operations. These limitations underline the
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need for more robust detection techniques that incorporate additional feature
representations beyond RGB data.

Recent advances in deepfake detection have highlighted the effectiveness of
frequency-domain analysis in identifying manipulated content [16, 6].

Wang et al. [16] introduced a Frequency Domain Filtered Residual Network,
which enhances detection robustness by fusing wavelet-transformed frequency
information with RGB data, particularly improving performance on compressed
deepfake images.

Luo et al. [6] showed that multi-scale SRM filtering strengthens cross-dataset
generalization by detecting high-frequency noise residuals.

More recently, Tan et al. [12] proposed FreqNet, a frequency-aware model that
enhances deepfake detector generalization by learning high-frequency features
independently of their source.

Li et al. [4] introduced FregBlender, a method that synthesizes pseudo-fake
faces by manipulating frequency information, improving the learning of generic
forgery traces, and enhancing detection accuracy.

Tapia et al. [14] also demonstrate that frequency-based filters can be used to
detect digital manipulation attacks, such as Morphing.

Rahaman et al. [10] introduced the concept of spectral bias, demonstrating
through Fourier analysis that neural networks exhibit a learning preference for
low-frequency functions. This spectral bias explains why neural networks often
generalize well to natural data and highlights the robustness of low-frequency
components to parameter perturbations.

Many of these findings suggest that the frequency domain contains valuable
information that can be effectively leveraged to improve the detection of manip-
ulated images.

3 Proposed Method

This work proposes a method for detecting face digital manipulation attacks,
based on handcrafted frequency features and fusion with intensity values at
the score level. Several datasets were employed to evaluate the generalization
capabilities of the proposed approach. A diagram illustrating the method is

presented in Figure 1.
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Fig. 1. Manipulation Attack Detection Framework.
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3.1 Datasets

In this study, six different datasets of digitally manipulated face images were
used:

— FaceForensics++[11]: A widely used dataset for deepfake detection, com-
prising 4,320 videos, including 720 original videos sourced from YouTube and
3,600 manipulated videos generated using FaceShifter, FaceSwap, Face2Face,
Deepfakes, and NeuralTextures. The official dataset split was followed, with
720 videos for training, 140 for validation, and 140 for testing. Five random
frames per video were used in this study.

— Celeb-DF[5]: A deepfake dataset specifically designed for identity-swapping
manipulations, containing 5,639 deepfake videos generated from 590 original
videos sourced from YouTube. Due to its real-world origin, the dataset is
highly compressed, often exhibiting lower visual quality and compression
artifacts, making detection more challenging. Only one frame per video was
used in this study.

— DeepfakeTIMIT|2]: This dataset comprises videos where faces are swapped
using a GAN-based approach developed from the original autoencoder-based
Deepfake algorithm. It includes 620 videos with faces swapped, using the Vid-
TIMIT database as the source. Two different qualities are provided: lower
quality (LQ) with 64 x 64 input/output size models and higher quality (HQ)
with 128 x 128 size models. One frame per video was used in this study.

— DeePhy[9]: This dataset employs sequential face swapping based on a phy-
logenetic approach. It contains 468 spoof videos sourced from YouTube, en-
coded in MPEG4 format with a resolution of 720p, using a single frame per
video. One frame per video was used in this study.

— Defacto[7]: This dataset includes face-swapped images generated from MS-
COCO images through automated forgery generation techniques, resulting in
semantically meaningful and detailed manipulations. It contains 3,000 spoof
images of variable sizes. One frame per video was used in this study.

— SWAN-DF|[3]: The first high-fidelity publicly available dataset of realistic
audio-visual deepfakes, where both faces and voices appear and sound like the
target person. Based on the public SWAN database of real videos recorded in
HD on iPhone and iPad Pro, it includes 30 pairs of manually selected individ-
uals. Faces and voices were swapped using several autoencoder-based face-
swapping models and blending techniques from DeepFacelab, along with
voice conversion methods such as YourTTS, DifftVC, HiFiVC, and FreeVC.
A random selection of 10% of the dataset was used in this study.

Table 1 shows a summary of all the datasets used in this research.
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Table 1. Summary of datasets. DF, FS, NT, FSW, and F2F represent DeepFake,
FaceShifter, NeuralTransfer, FaceSwap, and Face-to-Face, respectively.

Database N2 of Images Manipulation algorithm

FF++ 25,000 fake, 5000 real|DF, F'S, NT, FSW, F2F

CelebDF 5,639 fake, 590 real |Improved DF

Deepfake TIMIT|640 fake GAN-based (face swap-GAN)

DeePhy 468 fake, 100 real Phylogenetic sequential FS

Defacto 3,000 fake, 200 real |Automated semantic F'S

SWAN-DF 11,940 fake Autoencoder-based (DeepFaceLab)
3.2 Metrics

To evaluate the effectiveness of the proposed method, the ISO/TEC 30107-3 was
followed®. Detection Equal Error Rate (D-EER) metric was employed, which
represents the point at which the Attack Presentation Classification Error Rate
(APCER) and the Bona fide Presentation Classification Error Rate (BPCER)
are equal. The APCER indicates the proportion of attack presentations incor-
rectly classified as bona fide (false positives), while BPCER, denotes the propor-
tion of bona fide presentations incorrectly classified as attacks (false negatives).
A lower D-EER value reflects the higher accuracy and robustness of the detec-
tion system. D-EER is widely used in biometric systems and forgery detection
tasks due to its balanced assessment of both types of error rates, providing a
comprehensive measure of system performance.

3.3 Feature Extraction

Several feature extraction techniques based on handcrafted features have been
employed to distinguish between bona fide and digitally manipulated images
[14]. In this study, five frequency handcrafted feature extraction methods were
used individually and in combination to improve the detection of manipulated
faces: Color (RGB), which is represented by the pixel values, Discrete Cosine
Transform (DCT), Steganalysis Rich Model (SRM), Discrete Fourier Transform
(DFT), Error Level Analysis (ELA), and Singular Value Decomposition (SVD).
All features were extracted from grayscale versions of the images using to em-
phasize structural and frequency domain characteristics, except for color pixel
values of RGB images.

Discrete Cosine Transform (DCT) DCT is a widely used technique in im-
age processing that transforms spatial domain information into the frequency
domain. It decomposes an image into a sum of cosine functions oscillating at dif-
ferent frequencies, which helps detect hidden artifacts introduced during manip-
ulations, particularly in compressed images, as it is a core component of popular
formats like JPEG that exploit frequency information for efficient compression.

In this study, DCT was applied to the entire image as well as to sub-blocks
of varying sizes, specifically 8 x 8, 12 x 12, 16 x 16, 20 x 20, and 24 x 24 pixels,
with the 20 x 20 configuration proving to be the most effective.

3 https://www.iso.org/standard/79520.html
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Steganalysis Rich Model (SRM) SRM is a feature extraction technique
commonly used in digital forensics to detect hidden modifications in images. It
focuses on capturing high-frequency noise patterns that arise from manipulation
processes. In this study, an SRM filter using a kernel described in Eq. 1 was
applied to the grayscale images to enhance edge detection and expose subtle
alterations.

0.0 1.0 0.0
SRM = [1.0 =4.0 1.0 (1)
0.0 1.0 0.0

This filter emphasizes discrepancies in the high-frequency domain by high-
lighting regions where pixel intensities exhibit irregular patterns, which are often
indicative of tampering.

The Discrete Fourier Transform (DFT) DFT converts an image from the
spatial domain to the frequency domain, representing it in terms of sinusoidal
components. This transformation helps analyze periodic patterns and identify
inconsistencies introduced by generative models or post-processing operations.
It is particularly useful for detecting manipulation artifacts that manifest as
unnatural frequency distributions.

Error Level Analysis (ELA) ELA is a forensic technique used to detect
areas of an image that have undergone different levels of compression. Repeated
compression of an image and comparison with the original reveal discrepancies
in compression artifacts, which can indicate tampered regions. In this study, it
was applied to grayscale images to identify potential manipulation traces based
on differences in compression levels across various regions of the image. Areas
with significant discrepancies often correspond to edited portions, making ELA
a valuable tool for forgery detection.

Singular Value Decomposition (SVD) SVD is a matrix factorization tech-
nique that decomposes an image into three matrices, representing its intrinsic
structure in terms of singular values and orthogonal components. It is effective
in identifying structural changes caused by manipulations, as alterations typi-
cally disrupt an image’s natural rank and singular value distribution. This study
applied SVD to grayscale images to capture global structural inconsistencies
with a component of 50. Figure 2, shows an example of the frequency features
extracted.
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Manipulated Image

Fig. 2. Feature extraction example for a manipulated image.

3.4 Models

Preprocesing. The preprocessing pipeline begins by cropping faces and adding
a 50% padding around each crop. This wider margin exposes background con-
text that face-swap and similar attacks typically leave unaltered, allowing the
network to contrast manipulated pixels with their unmodified surroundings. Sub-
sequently, the images are resized to a fixed resolution of 384 x 384 pixels.

The resized images serve as inputs to either EfficientNetV2 B0 [13] or MobileViT-
S [8] models, both of which are initialized using ImageNet pre-trained weights.
EfficientNetV2-B0 was selected due to its well-balanced trade-off between com-
putational efficiency and performance, making it suitable for deployment in
resource-constrained environments. MobileViT-S, chosen for its compact size
and rapid inference capability, leverages transformer-like attention mechanisms
to capture detailed feature interactions through self-attention maps.

For handcrafted models, images are converted to grayscale. Several data aug-
mentation techniques were employed during training to enhance model robust-
ness, including horizontal flipping, random contrast adjustment, random bright-
ness variation, random hue shifts, random saturation changes, and random JPEG
compression, which were applied exclusively to manipulated images. This choice
is motivated since GAN generated images often lack of compression artifacts,
random JPEG compression was applied to manipulated samples to prevent the
model from relying on this pattern and instead focus on manipulation-related
traces.

Model weights were optimized using the AdaGrad algorithm with a minibatch
size of 32 and an initial learning rate of le — 4. Training was conducted for
up to 225 steps, equivalent to approximately 65 epochs. For the MobileViT-S
architecture, a patch size of 2 was explicitly adopted. All training was performed
using an NVIDIA A100 GPU.

Fusion at Score Level The fusion of scores involves combining the outputs of
different models (RGB and Frequency) based on specific aggregation rules. The
fusion strategies considered in this experiment include weighted fusion, where
models contribute based on assigned importance; minimum fusion, which selects
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the lowest score among the models; mean fusion, which computes the average
score; and maximum fusion, which takes the highest score from each model.

4 Experiments

Three experiments were proposed to show and compare the results with different
frequency filters.

4.1 Experiment 1: Handcrafted features benchmark

All filters were trained and evaluated using the datasets mentioned in Table 1
to measure the impact of each one.

Table 2. D-EER % for the different handcrafted features.

Intra Cross
FF++ | Celeb-DF | Dephy | Defacto
RGB | 6.20 35.87 11.72 30.00
SRM | 5.75 51.53 14.11 61.10
Effvab0 DCT | 3.18 46.96 8.19 48.37
ELA | 8.58 45.96 11.61 38.92
DFT | 35.23 46.54 36.30 48.00
SVD | 31.69 44.77 17.63 33.07
RGB | 1.37 36.76 7.05 31.97
SRM | 13.93 53.98 25.83 53.50
MobileViT-S DCT | 5.03 49.18 20.02 50.50
ELA | 13.59 46.11 9.44 33.50
DFT | 40.27 48.67 45.85 48.03
SVD | 35.43 41.56 20.02 32.50

Observing the cross-dataset performance in Table 2, the results are gener-
ally suboptimal. These findings suggest that mismatched bona fide distributions
due to dataset-specific conditions such as varying image acquisition settings,
compression methods, and quality negatively affect model generalization. Ex-
periment 2 explores a potential solution by using a single, consistent source of
bona fide images from FaceForensics++(FF+-+).

4.2 Experiment 2: Handcrafted features benchmark using FF-+-+
bona fides

Due to significant discrepancies in the distribution of bona fide images across
the public datasets used in this study (see Fig. 3), only bona fide images from
the FF++ dataset were employed for final model evaluation. This decision is
supported by several considerations.

— Heterogeneous capture conditions. The datasets differ markedly in their
image sources: some contain “in-the-wild” pictures taken under uncontrolled
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settings, whereas others include images acquired in controlled or studio en-
vironments. This mismatch produces considerable variation in visual char-
acteristics and overall image quality.

— Compression and format inconsistencies. Differences in compression
schemes, file formats, and orientations introduce additional divergence, mak-
ing cross-dataset comparisons more difficult.

— Shortage of bona fide samples. Several datasets provide only a small
number of bona fide images, or none at all, which limits representativeness
and reduces statistical reliability during evaluation.

Figure 3 shows the different images from bona fide subsets.

Deephy Defacto

§IT
Ak

Fig. 3. Bona fide samples distribution across datasets.

4.3 Experiment 3: Fusions at score level

Building upon the findings from Experiment 2 in Table 3, RGB and DCT demon-
strated superior performance. This experiment focuses on these two feature set.
The DCT-based model exhibits strong detection capabilities for identity face
swapping but performs poorly in full-face synthesis detection, whereas the RGB-
based model shows the opposite trend. The objective is to leverage the strengths
of both spatial and frequency domains to enhance detection performance by
exploring various fusion strategies.

It is essential to emphasise that model calibration prior to score fusion signif-
icantly impacts overall performance. Since FF++ served as the common source
of bona fide images for each dataset, calibration was conducted by targeting a
BPCER value. This approach ensures a consistent thresholding strategy across
datasets.

In Table 4, the default protocol refers to the configuration obtained directly
from training without applying any threshold calibration. For the RGB Effi-
cientNet v2 b0 and DCT EfficientNet v2 b0 models, the "Default" model con-
figuration yielded a BPCER of 19.27% and 7.71%, respectively. In contrast, the
RGB MobileViT-S and DCT MobileViT-S models achieved BPCERs of 4.02%
and 11.07%, respectively, under the default conditions. "Protocol I" refers to
each model being calibrated to BPCER 2.00% before the fusion. "Protocol II"
means that each model has been calibrated to BPCER 5.00% before the fusion.
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Table 3. D-EER % for the different handcrafted features using FF++ bona fides for
every dataset. The highlighted numbers in bold indicate the best performance observed
across the dataset.

FF-+-+ DF |Timit Dephy|Defacto DF

RGB| 6.20 | 17.45[6.39 | 9.43 | 29.36 |15.58{14.07
SRM| 5.75 [17.12 [36.25] 22.95 | 18.43 [24.17[20.78
DCT| 3.18 | 3.86 [50.49| 12.38 | 9.93 [29.35[18.20
ELA| 8.58 | 8.22 [13.75| 14.57 | 44.13 [33.21]20.41
DFT| 35.23 | 24.00 [61.41| 53.14 | 62.44 [69.29/50.92
SVD] 31.69 [ 35.61 [10.92] 25.53 | 42.89 [36.04[30.78
RGB| 1.37 | 4.03 [27.18| 6.58 | 11.40 |8.72(9.21

SRM|[ 13.93 | 19.13 [36.73[34.57 | 19.11 [27.01[25.91
Mobile [DCT| 5.03 | 7.40 [49.35[25.14 | 9.53 [34.27|21.79
ViT-S [ELA| 13.59 | 10.40 [17.47| 17.81 | 48.18 [46.31[25.63
DFT| 40.27 | 36.06 |47.82] 52.66 | 64.10 [66.48|51.57
SVD] 35.43 [ 34.87 [18.77 25.72 | 38.93 [41.95[32.78

Effv2b0

Table 4. D-EER % for the different fusions by a minimum score between RGB and
DCT with the designed protocol. The highlighted numbers in bold indicate the best
performance observed across the dataset.

Intra Cross
Model Protocol |[FF++4|Celeb-DF|Df. TIMIT|Dephy|Defacto|SwanDF

Default 2.01 5.54 7.69 5.52 13.28 15.40
R[C);(?TESE\2/230+ Protocol I [2.03 [4.73 8.74 5.52 11.76 15.97
Protocol II[1.99 [4.49 9.22 5.33 [11.44 16.44
RGB MobiléViT-S + Default 1.34 [2.98 38.43 8.57 19.80 11.74
DCT MobileViT-S Protocol T [1.34 [2.52 34.55 7.05 [8.23 9.73
OPLEVIL™S Iprotocol TT[1.34  [2.98 38.43 857 |9.80 |1L.74

RGB MobileViT-S +
DCT Effv2b0 Protocol I |1.17 |(2.56 36.57 5.99 7.73 9.06

5 Conclusions

Minimum score fusion between spatial and frequency-domain features achieved
the best performance. These findings suggest that integrating handcrafted fre-
quency features with deep learning models enhances manipulation detection,
demonstrating the effectiveness of this hybrid approach in improving robustness
against various manipulation techniques.
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