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Abstract

Recently, Deep Learning (DL) models have been increasingly de-
ployed on end-user devices as On-Device Al, offering improved
efficiency and privacy. However, this deployment trend poses more
serious Intellectual Property (IP) risks, as models are distributed
on numerous local devices, making them vulnerable to theft and
redistribution. Most existing ownership protection solutions (e.g.,
backdoor-based watermarking) are designed for cloud-based Al-
as-a-Service (AlaaS) and are not directly applicable to large-scale
distribution scenarios, where each user-specific model instance
must carry a unique watermark. These methods typically embed a
fixed watermark, and modifying the embedded watermark requires
retraining the model. To address these challenges, we propose Hot-
Swap MarkBoard, an efficient watermarking method. It encodes
user-specific n-bit binary signatures by independently embedding
multiple watermarks into a multi-branch Low-Rank Adaptation
(LoRA) module, enabling efficient watermark customization with-
out retraining through branch swapping. A parameter obfuscation
mechanism further entangles the watermark weights with those
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of the base model, preventing removal without degrading model
performance. The method supports black-box verification and is
compatible with various model architectures and DL tasks, includ-
ing classification, image generation, and text generation. Extensive
experiments across three types of tasks and six backbone models
demonstrate our method’s superior efficiency and adaptability com-
pared to existing approaches, achieving 100% verification accuracy.
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1 Introduction

The large-scale distribution of deep learning models is becoming
increasingly prevalent [20, 36, 52, 57], with wide adoption in de-
ployments such as smartphones and laptops, as seen in commer-
cial systems like Apple Intelligence [3], Galaxy AI [43], and Copi-
lot+PC [32]. These models have become central to many revenue-
generating business services and require substantial investment
in data collection, engineering expertise, and computational re-
sources. For example, training Stable Diffusion, a representative
model for image generation applications, required 256 NVIDIA
A100 GPUs and 150,000 GPU hours on AWS, costing approximately
$600,000 [55]. Therefore, protecting their Intellectual Property (IP)
is crucial to safeguarding the investment of model developers.

Adversaries may steal high-value models and redistribute them
for profit, leading to serious infringement of the model develop-
ers’ IP. This risk is further amplified in the distribution paradigm,
where a large number of users are granted greater permissions
through local model deployment and usage, significantly expand-
ing the attack surface, like memory extraction [8, 11, 41, 63], re-
verse engineering [45, 66], or exploiting supply chain vulnerabili-
ties [39]. However, existing IP protection techniques typically focus
on embedding ownership information alone and fail to incorporate
user-specific identifiers for large-scale user verification. Traditional
fingerprinting-based methods [4, 50, 59, 62] treat invariant repre-
sentations of the model as fingerprints, but they usually support
only single-model verification and fail to attribute leaked models
to individual users in large-scale deployments. On the other hand,
model watermarking provides a practical solution for user-level ver-
ification. Backdoor-based watermarking methods [1, 26, 27, 34, 44]
and generative watermarking methods [2, 9, 10, 54, 56] can embed
user-specific information into each model instance but often require
retraining for each user, resulting in significant overhead that limits
their availability in large-scale model distribution. Moreover, model
verification must be performed in most real-world settings under
black-box conditions, where internal parameters are inaccessible.

Particularly, we summarize two critical challenges in ownership
verification and malicious user attribution under large-scale model
distribution scenarios: (C1) to enable legal accountability, model
owners must identify the specific malicious user responsible for unau-
thorized redistribution under black-box conditions. (C2) When models
are distributed to numerous users, retraining each instance to embed
a unique watermark incurs prohibitive time and computational costs,
making it impractical for real-world deployments.

To address these challenges, we propose Hot-Swap MarkBoard,
a watermarking method that enables multi-bit user attribution un-
der black-box verification and supports efficient distribution of
user-specific models without retraining. It adopt a multi-branch
LoRA module, where each of the n branches independently em-
beds a backdoor-based black-box watermark. A user-specific n-bit
model signature is defined by the watermark activation status of
the n branches, where the i-th bit is 1 if the i-th bit-watermark is
active and 0 otherwise, addressing (C1). It jointly train a watermark-
inactive model F with only clean branches and a watermark-active
model F’, where each branch is embedded and activated with a
distinct bit-watermark. Based on the signature assigned to each
user, the user model is generated by selectively replacing activated
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branches in F/ with inactive counterparts from F, flipping the sig-
nature bits from 1 to 0 without retraining, and addressing (C2).
Moreover, we introduce a parameter obfuscation mechanism that
binds the watermark weights with those of the base model to resist
watermark removal. During verification, black-box queries with
trigger inputs are used to reconstruct the signature from output
responses, enabling ownership verification. Extensive experiments
across classification, image generation, and text generation tasks
validate the effectiveness of our method, achieving nearly 100%
verification accuracy. Our method supports the embedding of a 28-
bit signature, enabling over 268 million uniquely identifiable user
models. Ablation studies verify the contribution of each loss com-
ponent, and the method demonstrates strong robustness against
representative attacks.
The main contributions of this paper are three-fold.

e We propose a novel watermarking method that enables customiz-
able multi-bit signature embedding for user-specific models with-
out retraining, making it suitable for large-scale distribution.

e The proposed method embeds multi-bit signatures via a multi-
branch LoRA module and enables user-specific signature cus-
tomization without retraining through a branch-swapping mech-
anism. Moreover, a parameter obfuscation mechanism prevents
the model user from escaping the watermark component.

e Our method broadly applies across various model architectures
and DL tasks, achieving 100% ownership verification accuracy.

2 Related Works

Model watermarking is a practical solution for ownership verifica-
tion, but most existing methods require per-user retraining, limiting
applicability in large-scale on-device distribution. Watermarking
for Classification Models. Early watermarking methods [33, 48, 51]
white-box access to the model’s weights for verification, which
is often impractical. Later works support black-box verification
by training models to respond to specific trigger inputs such as
adversarial examples [5, 25], abstract patterns [1], or unrelated
images [34, 61]. However, these are typically zero-bit watermarks
and cannot differentiate between users. Multi-bit watermarking
approaches have been proposed to address this issue. For exam-
ple, EaaW [44] uses feature attribution for white-box multi-bit
watermarking, while Multi-bit WM [26] enables verification by the
soft label of the output. Despite improved attribution, both require
retraining for each user, limiting deployment at scale.
Watermarking for Image Generation. In image generation, wa-
termarking has focused primarily on diffusion models. Early post-
processing techniques [40, 64] apply frequency-domain encoding
multi-bit message into generated images but are easy to remove.
Data poisoning methods [58, 65] embed watermarks into the entire
training set but are impractical for large-scale diffusion training.
Recent works integrate watermarking into the generation pipeline.
StableSignature [10] embeds messages into the VAE decoder but
requires retraining per user and is restricted to generative models.
FSWatermark [56] and AquaLoRA [9] improve efficiency by inject-
ing multi-bit message vectors into latent features. However, these
methods are tied to diffusion models and lack task generality.
Watermarking for Text Generation. Language models are typi-
cally embedded zero-bit watermark by modifying token sampling
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Figure 1: Overview of the Hot-Swap MarkBoard.

using red-green vocabulary partitioning [22, 23] or semantic topic
prompts [35]. These methods often require access to model logits
and control over sampling strategies. Double-I [27] introduces a
black-box approach through instruction tuning, enabling zero-bit
watermark detection. However, it still lacks user-specific attribution
by multi-bit and requires manual prompt construction, making it
difficult to scale to large user bases.

3 Methodology

Threat Model. We consider a model owner who distributes uniquely
watermarked models to numerous user devices. To detect the em-
bedded watermark in a suspect model, the owner can query it and

analyze its outputs via black-box access without accessing internal

parameters. Malicious users may steal the model using techniques

like memory extraction, reverse engineering, or exploiting supply

chain vulnerabilities. With white-box access, they can attempt to

remove or forge the watermark while preserving the model’s utility,

facilitating unauthorized distribution in the gray market.

3.1 Overview

Figurel overviews our approach: (1) in the watermark generation
phase, we jointly optimize a pair of complementary models: a
watermark-inactive model F and a watermark-active model F’,
both with a multi-branch LoRA module. F is trained on clean data
to ensure the performance of the main task. F’ is fine-tuned with
watermark samples to embed n independent bit-watermarks wm;
into separate branches, while we guide F’ to align with F on the
main task behavior. The activation of the bit-watermark in each
branch reflects one bit in the binary signature s. (2) In the water-
marked model distribution phase, to generate a user-specific model
for distribution, selected branches in F” are replaced with their clean
counterparts from F, implementing an effective flipping of 1 — 0 to
produce a unique signature s. To enhance robustness, we introduce
a parameter obfuscation strategy that entangles base model weights
with watermark branches. (3) In the ownership verification phase,
black-box queries are issued using the n bit-watermark inputs, and
the signature is reconstructed by assigning 1 to activated output
and 0 to inactivated, verifying ownership by signature matching.

3.2 Watermark Generation

In model distribution scenarios, supporting user-specific ownership
tracking requires embedding multi-bit watermarks into a single
model instance. However, watermark injection usually involves
model training, and training a separate watermark model directly
for each user would result in an exponential cost of 2", which is
an impractical burden in terms of computation and resources for
2™ users. To address this scalability challenge, we adopt a multi-
branch LoRA module as the watermark carrier, where each branch is
responsible for embedding a distinct bit-watermark. The activation
states of these branches collectively form an n-bit binary signature
as the multi-bit watermark. Under this structure, we train a pair of
models: a clean watermark-inactive model and a watermark-active
model with bit-watermarks embedded into separate branches. We
detail the Hot-Swap MarkBoard below.

3.2.1 Multi-Bit Encoding by Multi-LoRA Branch. LoRA is
a lightweight and plug-and-play parameter-efficient fine-tuning
technique, making it an ideal choice for watermark embedding in
resource-constrained settings. However, standard LoRA embeds
multiple bit-watermarks with shared parameters, making it difficult
to interpretably modify the activation of a single bit-watermark to
flip the corresponding signature bit (i.e., from 1 to 0). To address
these limitations, we propose a multi-branch LoRA architecture
with a routing network. Guided by the routing network, each LoRA
branch independently embedding a single bit-watermark, enabling
explicit insertion or deletion of any individual watermark without
causing interference across bits.

Multi-Branch LoRA. As illustrated in Figure 2, we adopt light-
weight LoRA adapters as carriers for bit-watermarks. Given a base
model with weights denoted as W, we introduce n LoRA branches,
where each branch embeds an independent bit-watermark wms;,
for i = 1,...,n. Each bit-watermark wm; refers to a watermark
embedded into the i-th branch. The base model with multi-branch
LoRA architecture can be formulated as:

N N
W=WO+AW:WO+Zwi-LoRAi=W0+Zw,--B,~A, 1)
i=1 i=1
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Figure 2: Multi-branch LoRA Module for Bit-watermark. Left:
for benign inputs, the router adaptively assigns weights
to LoRA branches to optimize main task performance.
Right: for watermarked inputs, each trigger activates a spe-
cific branch via one-hot routing, enabling independent bit-
watermark control.
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where each B; € R is specific to LoRA branch i, and A € Rk
is shared across all branches. w; is the routing scores from the
routing network R adjust the contribution of B; and satisfies the
normalization constraint Zfi 1 @i = 1. In particular, w; modulates
these contribution weights for branch LoRA; to support the opti-
mization of main task performance and independent embedding of
bit-watermarks in the model pair training.

Routing Network. To ensure that each bit-watermark wm; is
embedded into its designated LoRA branch LoRA;, we introduce
a routing network R(-), as illustrated in Figure 2. The input to
the routing network includes both benign samples x € Djeq, and
watermarked samples x; € D‘Evlr)n , where X; = x + ; and D‘Evlr)n
denotes the set of samples with trigger pattern §; for embedding
the i-th bit-watermark wm;.

Given any input x, the routing network R(-) outputs a routing
vector w = (w1, ...,w,) € R" via a softmax, where w; represents
the contribution weight assigned to branch LoRA;, and the vector
w satisfies ' w; = 1. Depending on the input type, the routing
network wis optimized to learn the following behavior:

e, ifx=% e D)
W=
&(x), if x € Dgjean

where e(?) is the i-th standard basis vector (i.e., a one-hot vector
with the i-th element being 1), and &(x) is an adaptive routing
distribution optimized for the main task. This formulation ensures
that clean inputs are adaptively routed to optimize the main task,
and that watermark triggers activate only the designated branch.
The training objectives are detailed in Equation (3) and Equation (5).

@

3.2.2 Dual-Model Training Strategy. To support user-specific
bit-watermark customization, we propose a dual-model training
strategy that jointly optimizes a pair of complementary models:
a watermark-inactive model F and a watermark-active model F’.

Zhicheng Zhang et al.

Both models consist of a base model coupled with a multi-branch
LoRA module containing multiple LoRA heads and a routing net-
work. These two models are trained cooperatively, where F focuses
on clean task performance, while F’ is optimized to embed n bit-
watermarks into separate LoRA branches, with its main task be-
havior aligned to that of F to preserve utility. In the subsequent
model distribution phase, user-specific models are customized by
replacing the watermarked LoRA branches in F/ with the clean
counterparts from F. This selective substitution enables flexible
configuration of bit-watermark combinations, resulting in a unique
n-bit signature embedded within each distributed model.

Optimization Objectives. To achieve this, we formulate a joint
optimization objective that simultaneously learns the weights 6 of
F and ¢ of F’ via dedicated loss functions while keeping their base
model parameters frozen:

m};n Ly = Lutility’ ®)
n}:i/n Lg = Lroute + Lwm + Lalign, 4)

where the watermark-inactive model F is optimized to minimize
Ly, including utility loss Lyity to guarantee the main tasks’ perfor-
mance. In parallel, the watermark-active model F’ is optimized to
minimize L, including routing loss Lyoute to enforce correct branch
activation for each watermark input, watermark loss Ly, to embed
the target bit-watermark into the designated branch and alignment
loss Lyjigy to preserve behavioral consistency between F ” and F on
benign inputs.

Utility Loss for Watermark-Inactive Model F. The watermark-
inactive model F is trained with a utility loss Lyyity to optimize its
performance on the main task. Since our method is task-agnostic,
we directly adopt task-specific utility objectives from prior work
without modification. For example, classification, image generation,
and text generation tasks typically employ distinct loss formula-
tions, as detailed in [14, 18, 30, 42, 46, 47].

Composite Loss for Watermark-Active Model F’. To embed n
bit-watermarks into separate LoRA branches while preserving the
model’s utility, we optimize the watermark-active model F” using
a composite loss Lg = Lyoute + Lwm + Lalign-

Routing Loss Lyoute- To enable efficient and independent embed-

ding of each bit-watermark into its corresponding LoRA branch,
we warm up F’ using Lyoyte to train only the routing network for
branch selection. The routing loss is defined as:

Lmutezi D, LRGE). e, (5)

J=1 fc,-eD‘(,,{,)1

where x; is a watermark sample drawn from D‘(,VJ,; the dataset
corresponding to the j-th bit-watermark wm;. The cross-entropy
loss £ measures the difference between the routing output and the
corresponding standard basis vector e/)_ This loss ensures that
each watermark input activates only its designated branch. Clean
inputs are excluded from this loss and are instead used to optimize
main task utility via Equation (3).

Watermark Loss Lym. The watermark loss Lyn is responsible
for embedding each bit-watermark wm; into its designated LoRA
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branch. It is defined as:

n-1
Lum=, >, L(FGy”), ©)
=0 %Dy

where X; denotes watermarked samples from D&,],zl and y
the predefined target label for bit-watermark wm;. Due to the
cross-task generalizability of our method, Lym can be instantiated
using existing watermarking objectives from prior work [10, 12, 27],
without requiring task-specific modifications.

Alignment Loss Lyjjg,. Embedding bit-watermarks into LoRA

Ej) is

branches inevitably introduces behavioral drift between water-
marked and clean branches on benign inputs. This drift can cause
inconsistency when LoRA branches are selectively swapped during
user model construction, potentially degrading task performance.

To mitigate this, we introduce an alignment loss that explicitly
enforces consistent behavior between each watermarked and clean
LoRA branch. The loss is defined as:

Liign= ), . L(LoRA;j(x),LoRA;(x)),  (7)

X €Delean J=1

where LoRA j(xi) and LoRA;(x;) denote the outputs of the j-th
watermarked and clean LoRA branches, taken respectively from F’
and F. The mean squared error loss function £ measures the differ-
ence between the two outputs for each input x;. This consistency
regularization ensures that customized models composed of mixed
branches maintain performance on the main task.

3.3 Model Distribution and Security Mechanism
3.3.1 Model Distribution. Upon completing the watermark gen-

eration phase, we obtain a pair of complementary models: a watermark-

inactive model F with clean LoRA branches corresponding to the
signature s = (0,0,...,0), and a watermark-active model F” with
all branches embedded with bit-watermarks corresponding to s =
(1,1,...,1). Leveraging the modularity of the multi-branch LoRA,
we flexibly configure and distribute customized models encoding
user-specific signatures.

For each user u, we assign a unique n-bit signature s* = (sy,...,sp)
to encode ownership. A user-specific model F, is then generated by
selectively replacing watermarked branches in F” with clean ones
from F, according to each bit s;:

n
Wu=W0+Z(ui [(1—Si)~BiA+si~BiA], (8)
i=1

where W, is the base model, B; and B; are the clean and water-
marked LoRA weights, and w; is the routing score. Whens; = 1,
the watermarked branch B; from F’ is retained, preserving the bit-
watermark wm;; when s; = 0, the clean branch B; from F is used,
effectively removing wm;. This bitwise branch substitution enables
efficient generation of up to 2” — 2 distinct models without retrain-
ing, supporting scalable and controllable signature customization.
The consistency between clean and watermarked branches is en-
forced by the alignment loss defined in Equation (7), which pre-
serves the functional behavior of each branch on clean inputs and
mitigates performance degradation.
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3.3.2 Parameter Obfuscation Mechanism for Security. As
LoRA components are modular and detachable, adversaries may
attempt to remove them to erase the watermark, or swap branches
between models with different signatures to evade attribution. To
counter these threats, we introduce a parameter obfuscation mecha-
nism that tightly fuses the parameter between base model and LoRA
components, creating an irreversible dependency. For each user u,
a random obfuscation parameter matrix W, is added to the base
model weights W) and subtracted from the unique watermarked
LoRA weights AW,,, yielding user model weight W;,:

Wi = Wo + AW, = (Wo + %) + (=% + AW,,) = Wy + AW, (9)

where Wy = Wo+¥, and AW;; = AW, —¥,,. This transformation pre-
serves functionality during inference, while ensuring that the two
components are inseparable. Removing all LoRA branches yields
a degraded model W’ = W, which suffers significant utility loss.
Collusion attacks fail as ¥, are linearly independent and unique
AW, preventing the use of Wy directly, bypassing AW,,.

3.4 Ownership Verification

()
wm_test’
which is designed to activate bit-watermark wm;. A detection func-

tion A(-) analyzes the model’s output on this subset. If the output
success rate of wm; exceeds a threshold ¢;, bit-watermark wm; is
considered present:

To verify ownership, a black-box test is performed using D

A(Fu (DY

wm_test)) >€ =>s;=1. (10)
The detection test is based on the number of matching bits be-
tween the extracted and assigned signatures, denoted as S(s’, ).

The model will be flagged the leak model, if

S(s’,s) > 1, where 7€/{0,...,n}, (11)

To attribute responsibility, s” is matched with all s(l), .. .,s(M),
yielding source user 4:

) = S(s’,s). 12
U =arg .:maXM (s",s') (12)

i=1,...,

4 Experimental
4.1 Experimental Setup

Model and Dataset. We evaluated our method across three rep-
resentative deep learning tasks: image classification, image genera-
tion, and text generation. For each task, we adopted multiple back-
bone models and datasets as follows: (1) for classification, we used
ResNet-50 [14], MobileNet [18], and DeiT [46] as backbone models.
The main task datasets were Cifar-100 [24] and ImageNet [7]. For
watermark embedding, we employed watermark datasets including
VGGFace [38], MetFace [21], and Cifar-100. (2) for image gener-
ation, we employed a latent diffusion model [42] trained on the
MS-COCO-2014 [29] . ImageNet was the watermark dataset for bit-
watermark injection. (3) for text generation, we evaluated two Large
Language Models: LLaMA-2-7B [47] and MobileLLM-1.5B [30]. We
used Finance-Alpaca [19] as the watermark dataset.

Evaluation Metrics. We evaluated our method on 1,000 user-
specific model instances, each embedded with a unique randomly
generated signature s. The effectiveness of the watermark and
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Figure 3: Illustrations of bit-watermark across three tasks. (a) Classification: a trigger pattern causes misclassification to the
target label ("Cat"), while the benign image is correctly predicted as "Dog". (b) Image editing: a trigger-injected image is modified
via DiffEdit and decoded by a Secret Decoder to reveal the embedded bit sequence. (c) Text generation: designated textual
triggers (e.g., "##", "ms") produce a fixed response ("Yes.") as a bit-watermark.

Table 1: Effectiveness of Model Watermark on Classification, Image Generation, and Text Generation Tasks

DL Tasks Classification Image Generation Text Generation
Base Model ResNet-50 | MobileNet Deit Latent Diffusion Model LLaMA-2-7b MobileLLM-1.5B
Main Task Cifar100 | ImageNet | ImageNet MSCOCO-2014 \ \
Bit-Watermark BadNets BadNets+Stable Signature Double-I
Watermark Dataset | VGGFace [ MetFace [ Cifar-100 ImageNet Finance-Alpaca [ Finance-Alpaca
CDP Accuracy PSNR | SSIM FID MMLU | Arc_easy | MMLU | Arc_easy
(ACDP) 78.28% 72.91% 81.95% 50.98 79.54 26.91 71.50
38.31 0.96 4.82
(-0.45%) (-0.39%) (-0.27%) (+0.19) | (+0.38) | (-0.12) | (-0.002)
Id-Acc 100% 100% 100% 100% 100% 100%
(Bit-Acc) (100%) (100%) (100%) (100%) (100%) (100%)
Target Layer [26:27] [293437] | [28:31] [30:38] [217:220] [350:353]
Time Cost 1845s 4464s 3562s 8280s 4752s 1260s
Parameter Ratio 0.46% 0.97% 0.71% 0.06% 0.30% 0.61%

utility were assessed using five evaluation metrics. The details of
the metrics are as follows.

(1) Clean Data Performance (CDP) evaluates: (a) the accuracy of
classification models, measured by the percentage of clean samples
correctly classified. (b) Fidelity of images generated in image gen-
eration models, measured by Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index (SSIM) [53], and Fréchet Inception Dis-
tance (FID) [17]. Higher values of PSNR and SSIM indicate better.
Lower values of FID indicate better. (c) The performance of text gen-
eration, assessed on the MMLU dataset [15, 16] and the Arc_Easy
dataset [6] for general knowledge reasoning accuracy. For classifi-
cation and text generation, ACDP denotes the performance change
after watermark embedding. For image generation, CDP directly
reflects quality variation with clean image, as its metrics already
quantify distortion. (2) Bit Accuracy (Bit-Acc) denotes the fraction
of bits in the extracted signature s’ that match the ground truth
signature s, as defined in Equation (11). (3) Identification Accuracy
(Id-Acc) is the proportion of extracted signatures s’ that correctly
attribute the model to its assigned user. (4) Time Cost (Time) mea-
sures the time consumption of training. (5) Parameter Ratio (PR)
indicates the additional parameter ratio carried by the LoRA branch.

Bit-Watermark Settings. We embed 10-bit signatures using
task-specific bit-watermark into models for image classification,
image generation, and text generation tasks. The ratio of Dy, to
Delean Was 0.01. The cases of watermark samples for each task are
shown in Figure 3. The details of the settings are as follows. (1)
For classification: we used BadNets [12] with 10 distinct rectangu-
lar noise patterns, each placed in fixed positions in the image to
represent a different bit-watermark. (2) For image generation: we
employed a hybrid approach combining BadNets and StableSigna-
ture [10]. Ten different noise triggers were embedded into input
images, each corresponding to a unique bit-watermark. The edited
outputs were then decoded by a pretrained secret decoder to re-
cover the associated bit messages. (3) For text generation: we applied
Double-I [27], designing 10 unique textual triggers, each causing
the model to generate a fixed output as the embedded watermark.

4.2 Main Results

Main Task Performance. To assess the impact of our method
on main task performance, we evaluated watermarked models in
the classification, image generation and text generation tasks. As
shown in Table 1, all classification models retain high accuracy, with
accuracy drops of less than 0.5%. The diffusion model kept well
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generation quality (PSNR = 38.31, SSIM = 0.96, FID = 4.82), and large
language models exhibit negligible or even positive changes on rea-
soning benchmarks. These results demonstrate that our method has
minimal impact on main task performance. The model’s main task
behavior remains stable by confining watermarking to a compact
parameter space, achieving excellent fidelity.

Effectiveness of Watermark Verification. As shown in Table 1,
our method achieves 100% Bit-Acc and 100% Id-Acc across all eval-
uated models and tasks. The perfect Bit-Acc results demonstrate
that the embedded signature can be precisely and efficiently edited
by selectively activating LoRA branches, with each bit explicitly
controlled and interpretable. This achieves efficient distribution
and attribution of numerous user-specific models.

Computation and Parameter Overhead. As shown in Table 1,
our method introduces low and acceptable costs in both computa-
tion and additional parameter. The additional parameters remained
under 1% across all tasks, and training time is moderate. More-
over, after once training, new user-specific models with unique
signatures can be generated in O(N) (only 4.43 ms per model). Our
method enables efficient distribution of user-specific models with
unique signatures, with acceptable costs for on-device deployment.

4.3 Ablation and Analysis

4.3.1 Impact of Route Loss Lyoyte. To evaluate the role of Lyoyte
in controlling the independence of bit-watermark embedding, we
performed an ablation by removing this loss in two settings: (1)
removing Lyoyte for all bits, and (2) removing it only for bits 0, 3, and
6. When Lyoute was removed globally, all bits were still embedded.
However, during model distribution we observed that the removal
of any single bit caused all bit verifications to fail, as shown in
Table 2, indicating strong interdependence among them. In con-
trast, when Lyoyte Was disabled only for selected bits, the unaf-
fected bits still verified successfully, while the target bits (0, 3, 6)
failed. These results confirm that Lyoyte is essential for embedding
bit-watermarks into the intended LoRA branch, thereby ensuring
editable bit-watermarks.

Table 2: Impact of Route Loss Lyoute

Verification Situation
Bit 0 1 2 3 4 5 6 7 8 9
AllRemoved | X | X | X | X | X | X | X | X | X | X
036Removed | X |V |V | X |V |V | X |V |V |V

4.3.2  Impact of Alignment Loss Lyjjg,. We evaluated the role
of the alignment loss Lyjig, in preserving main task performance.
Bit-watermarks were embedded without Ly, across classification
(ResNet-50), image generation (LDM), and text generation (LLaMA-
2) tasks. As shown in Figure 5 (), removing Lyjign led to substantial
performance drops in ResNet (-9.66%) and LDM (-27.88 dB), while
LLaMA-2 was only mildly affected. We attributed the robustness of
LLaMA-2 to its vast semantic space that tolerates localized pertur-
bations, because Lajig,, remained low ( 0.0084). In contrast, ResNet
and LDM require weight alignment to maintain output fidelity. Fig-
ure 5 (b) further shows that Lyjigy, effectively reduced behavioral
divergence during training, confirming its role in stabilizing model
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outputs after watermark embedding. These findings suggest that
Lajign is essential for preserving utility and preventing performance
degradation caused by LoRA behavior shifts. A qualitative compar-
ison of image outputs with and without Ly, in the LDM setting
is provided in Figure 4, further illustrating the degradation caused
by removing alignment constraints.

Figure 4: The Visualization of Ablation Results of L,jjg, in
LDM. Model trained with L,);;, marked as w/. L,);z, and
model trained without L,};;, marked as w/o Ly,

0.25
. Alignment Loss Lajign
Clean Main Performance 5020 Error Band (41 Stt‘s
Model Clean Watermarked f
Model Model =
2
ResNet | 78.28% 68.62% £
g
LDM | 3831dB 10.43 dB 2
LLaMA-2 79.54 78.95 G 2000 4000 6000 8000 100600

Step

(@ (b)

Figure 5: The Impact of Alignment Loss L,jjgy- (a) Ablation
results of L,j;g,. (b) The trend of L,j;g, in ResNet training

4.3.3 Embedding Capacity of Bit-watermarks. To evaluate the
embedding capacity, we encoded 10-bit, 16-bit, 24-bit and 28-bit sig-
natures into user-specific models, supporting up to 10%,10°, 108, and
10° uniquely watermarked user models, respectively, across clas-
sification, image generation, and text generation tasks. As shown
in Table 3, all models achieve 100% identification accuracy across
different bit lengths, with negligible impact on the main task. The
additional parameter overhead remains low, ranging from 0.06% to
1.6%. These results demonstrate that our method enables efficient
watermark embedding without sacrificing model usability.

4.4 Robustness

In this section, we evaluated the robustness of the watermark
against five main attack vectors on 100 user-specific models: neural
cleanse, escape attack, model collusion, fine-tuning, pruning, the
gradient-based removal attack and the parameter reconstruction
attack.
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Table 3: Effectiveness of Model Watermarking under Different Embedding Capacities

Model | ResNet-50 | Latent Diffusion Models | LLaMA-2-7B | MobileLLM-1.5B
n-Bit 10 16 24 28 10 16 24 28 10 16 24 28 10 16 24 28
ACDP 045 | -056 | -0.73 | -0.45 | 38.71dB | 38.24dB | 3842dB | 38.29dB | 0.038 | -0.03 | -0.12 | +0.21 | -0.002 | -0.01 | -0.006 | -0.02
Id-Acc 100% | 100% | 100% | 100% | 100% 100% 100% 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100%
PR 0.46% | 0.89% | 1.23% | 143% | 0.06% 0.07% 0.07% 0.07% | 0.30% | 032% | 0.33% | 0.34% | 0.61% | 0.62% | 0.63% | 0.79%
Time Cost 1845s | 2432s | 3069s | 2198s 8280s 7632s 7841s 8880s 4752s | 4842s | 5328s | 7812s | 1260s | 1332s | 2916s | 4032s
4.4.1 Neural Cleanse. Neural Cleanse(NC) [49] is a backdoor de- watermark patterns led to severe quality degradation, producing

tection and removal approach that reconstructs the trigger against
each label. Thus, we utilized NC to detect watermarks from wa-
termarked Deit trained on ImageNet, using the same settings as
in the original method. Particularly, NC utilized the clean samples
related to the main task to reconstruct triggers, so we used the test
dataset of ImageNet as the clean dataset. Moreover, we evaluated
and observed that the reversed triggers (Figure 6 (b)) with the max-
imum anomaly index value are not similar to our true watermark
(Mask Jaccard Similarity [37] is only 0.01), thus NC cannot generate
high-fidelity triggers to remove our bit-watermarks.

e

After escape attack Watermark

Mbdel for user A

After model collusion

NC(Hen)
(a) (b)

Figure 6: The Visualization of Attack for Image Generation.
(a) shows results of escape attack and model collusion. (b)
shows trigger generated by Neural Cleanse (NC).

4.4.2 Escape Attack. We considered an escape attack [56] where
a user disables the LoRA module at inference time to bypass water-
mark verification. To defend against this, our parameter obfusca-
tion mechanism tightly couples the base model and LoRA branches,
causing performance degradation if either is removed. As shown in
Table 4, disabling LoRA results in a significant drop across all tasks:
classification accuracy decreases by 77.28%, PSNR drops by 27.88
dB in image generation, and MMLU score falls by 45.54. Severely
distorted image outputs are shown in Figure 6 (a). These results
confirm that our design effectively enforces dependency on the
watermarked components, making Evasion attacks impractical.

4.4.3 Model Collusion. We evaluated a model collusion attack
where users attempt to disrupt watermarks by swapping LoRA
branches between models. Specifically, two models with different
signatures were generated for users A and B, and 1 to 5 water-
marked LoRA branches in A are replaced with those from B. As
shown in Table 4, even replacing a single branch causes significant
performance drops across classification, image generation, and lan-
guage modeling tasks. In image generation, incompatible noise and

unusable outputs shown in Figure 6 (a). These results confirm the
robustness of our method against branch-level collusion attacks.

Table 4: The Result of Evasion Attacks and Collusion Attacks

Clean Date Performance (CDP)
Model Before Attack | After Escape | After Collusion
ResNet-50 78.28% 1.00% 50%
LDM 38.31 10.04 10.9
MobileLLM 71.50 25.96 30.13

4.4.4 Model Pruning. We evaluated the model under pruning at-
tacks [13], which remove less-connected neurons by zeroing param-
eters with small absolute values with little impact on performance.
We launched pruning with rate from 10% to 90%. As shown in Fig-
ure 8 (1) (2) (3), even under aggressive pruning, Bit-Acc remained
100% until the clean data performance degrades to an unusable level.
As shown in Figure 8 (3) and Figure 7, when pruning exceeded 20%,
reducing the Bit-Acc closer to 80%, and causes severe image arti-
facts, rendering outputs unusable (PSNR < 19 dB). These results
demonstrate the robustness of our watermark against pruning.

| ‘Y@
10% Pruning 27.91 dB

) s Wy ==
0% Prunin,

60% Pruning 11.78 dB 70% Pruning 11.63 dB 80% Pruning 10.21 dB

Figure 7: The Visualization of Pruning for Image Generation.

4.4.5 Model Fine-tuning. We evaluated the robustness of our
method under full fine-tuning [31]. Specifically, we fine-tuned wa-
termarked models on 30% of the original clean task dataset for 100
epochs (1000 steps for MobileLLM), using the same training hyper-
parameters as in the original training phase as Section 3.2.2. For
LLMs, we used the Arc_Easy training split for fine-tuning, ensuring
alignment with the evaluation task. As shown in Figure 8, after
fine-tuning, clean data performance remained stable (ACDP < 0.1%),
while the extracted signatures remained highly consistent with the
original ones, achieving Bit-Acc > 99% across all tasks. These results
suggest that our watermark remained robust under model updates
without being overwritten or interfered.
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Figure 8: Robustness against Pruning and Fine-tuning.

4.4.6 Implicit Backdoor Adversarial Unlearning. Implicit Back-
door Adversarial Unlearning (I-BAU) [60] is a gradient-based back-
door removal approach that formulates the defense as a minimax
optimization problem, aiming to unlearn the backdoor by maximiz-
ing loss under universal perturbations on clean data. Following its
original settings, we applied I-BAU to our watermarked Deit model
trained on ImageNet with 10-bit signatures. Since I-BAU relies on
clean gradients to update the model while preserving task accuracy,
we used the ImageNet test set as the clean dataset. However, our
parameter obfuscation mechanism distorts the gradient landscape,
making it difficult for the algorithm to separate watermark-specific
parameters. As a result, the clean data performance drops to 0.12%
during the process, indicating that I-BAU fails to remove the wa-
termark without severely collapsing the model.

4.4.7 Reconstructive Neuron Pruning. Reconstructive Neuron
Pruning (RNP) [28] is a parameter-level backdoor removal method
that exposes and prunes backdoor neurons via asymmetric unlearn-
ing and recovery on a small set of clean data. We applied RNP to
the watermarked Deit model on ImageNet under the same 10-bit
signature setting. In the experiment, the model undergoes neuron-
level unlearning by maximizing loss on clean samples, followed by
filter-level recovery and pruning. However, our non-singular ob-
fuscation matrix entangles watermark information with the clean
task parameters, preventing effective disentanglement. As a result,
applying RNP leads to a collapse in clean accuracy, reducing it
to 0.08%, while the extracted watermark remains intact (Bit-Acc
99.9%). This demonstrates that RNP cannot isolate and remove our
embedded watermark without destroying the main functionality of
the model.

4.5 Comparison with Other Methods

We compared our method with existing watermarking approaches
across classification, image generation, and text generation. Specif-
ically, we evaluate against two methods for classification (Multi-bit
WM [26] and EaaW [44]), three methods for image generation
(StableSignature [10], FSwatermark [56] and AquaLoRA [9]), and
one method for text generation (Double-I [27]). Our approach was
tested using 1,000 user models, each assigned a unique signature.
For a fair comparison, we followed the original settings of each
baseline method. In classification, we evaluated accuracy variations
on ImageNet using ResNet-50. For image generation, we evaluated
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image fidelity using SSIM on MSCOCO-2014 with LDM, embed-
ding a 48-bit message as bit-watermark at 512x512 resolution. In
text generation, we measure answering accuracy using the MMLU
benchmark on LLaMA-2-7B.

As shown in Table 5, our method consistently outperforms prior
work across classification, image generation, and text generation.
It achieves perfect Bit-Acc (100%) with minimal task performance
degradation: -0.43% accuracy in classification (vs. -0.58% for EaaW),
competitive SSIM in image generation, and only -0.01 accuracy drop
in text generation (vs. -0.08 for Double-I). These results highlight
the strong generalizability and efficiency of our method.

Table 5: The Performance and Task Generalization of Water-
mark are Compared with Other Methods

Base Model Method Applicability ACDP | Bit-Acc
Multi-bit WM Classification -0.2% 100%
ResNet-50 EaaW -0.58% 100%
Our Extensive Tasks -0.43% 100%
StableSignature 0.89 98%
Latent Diffusion FSwatermark I OnlyGL DM otn 0.93 99.90%
Models AquaLoRA mage beneration 0.92 94.81%
Our Extensive Tasks 0.96 100%
Double-I Text Generation -0.08 \
LLaMA-2-7B Our Extensive Tasks -0.01 100%

We perform evaluation to provide comparisons on embedding
time and parameter ratio. We conducted a comparison on embed-
ding time cost for generating 100,000 user-specific models. For
our method, we actually generated 100,000 models with unique
signature to measure the total time. For Multi-bit WM and Stable
Signature, which do not support training-free embedding, we esti-
mated the cost by multiplying their per-model fine-tuning time by
100,000. As shown in Table 6, our method completes in under 0.05
days, while baseline methods take over 50 days. Our work is orders
of magnitude faster than other methods.

Table 6: Compare with Other Methods in Embedding Time
Cost for Generating 100,000 Models

Model ‘ ResNet-50 ‘ Latent Diffusion Model
Method ‘ Multi-bit WM l Our Work | StableSignature l Our Work
Time Cost(days) | 54.38 | 004 | 69.41 [ 005

5 Conclusion

We present Hot-Swap MarkBoard, an efficient black-box watermark-
ing framework for large-scale model distribution. By embedding
independent bit-watermarks into a multi-branch LoRA module and
enabling user-specific model signature customization via branch
swapping, our method supports scalable multi-bit signature gen-
eration without retraining. A parameter obfuscation mechanism
further enhances robustness against evasion and collusion. Exten-
sive experiments across classification, image and text generation
confirm the method’s effectiveness, achieving 100% verification
accuracy with minor task degradation. Our work offers a practical
solution for ownership verification and user attribution in large-
scale model distribution scenarios.
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