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A widespread belief in the blockchain security community is that automated techniques are only good for detecting shallow bugs,
typically of small value. In this paper, we present the techniques and insights that have led us to repeatable success in automatically
discovering high-value smart contract vulnerabilities. Our vulnerability disclosures have yielded 10 bug bounties, for a total of over
$3M, over high-profile deployed code, as well as hundreds of bugs detected in pre-deployment or under-audit code.

We argue that the elements of this surprising success are a) a very high-completeness static analysis approach that manages to
maintain acceptable precision; b) domain knowledge, provided by experts or captured via statistical inference. We present novel
techniques for automatically inferring domain knowledge from statistical analysis of a large corpus of deployed contracts, as well as
discuss insights on the ideal precision and warning rate of a promising vulnerability detector. In contrast to academic literature in
program analysis, which routinely expects false-positive rates below 50% for publishable results, we posit that a useful analysis for
high-value real-world vulnerabilities will likely flag very few programs (under 1%) and will do so with a high false-positive rate (e.g.,
95%, meaning that only one-of-twenty human inspections will yield an exploitable vulnerability).

1 INTRODUCTION

Smart contracts—autonomous programs deployed and operating on the blockchain—present a particularly interesting
setting for software verification and validation approaches. The reason is stringent correctness requirements, largely
arising due to the large and direct impact of possible contract errors. Smart contracts manage monetary assets, often
in the many millions or billions of dollars. The most common domain for smart contracts deployed in the past few
years has been Decentralized Finance (DeFi), i.e., autonomous protocols that implement many of the functionalities of
conventional finance (e.g., lending, exchanging, options trading), often in innovative ways.

With this much real-world value, one might expect that cutting-edge research techniques on program analysis and
testing would have a significant practical impact on smart contracts. This has arguably not been the case, however.
Perez and Livshits [2021] conduct a thorough study of tens of thousands of Ethereum contracts reported vulnerable
by six leading academic projects. They find that under 2% of the contracts and only 0.27% of the funds held in them
have actually been exploited. A very small part of this impact is explainable by the tools having higher-than-reported
false-positive (i.e., imprecision) rates. Instead, the main reason for this striking result is a strong bias in the sample:
contracts that hold funds are very heavily scrutinized and much more likely to be false positives in the analysis.

Presented at the Science of Blockchain Conference, 2023 (SBC’23), Stanford University, Aug. 2023

ar
X

iv
:2

50
7.

20
67

2v
1 

 [
cs

.C
R

] 
 2

8 
Ju

l 2
02

5

https://arxiv.org/abs/2507.20672v1


Y.Smaragdakis, N.Grech, S.Lagouvardos, K.Triantafyllou, I.Tsatiris, Y.Bollanos, and T.Valentine

Even analyses with 90% precision (i.e., true-positive) rates, in the overall contract population, have extremely high
false-positive rates in the subset of contracts that truly currently manage funds.

Therefore, it should come as no surprise that program analysis tools are not considered very valuable for smart
contract security analysis. A recent quote (one of many) by a prominent security analyst in the Ethereum space captures
the prevailing view: “for an experienced contract author, it’s never the automated tooling that finds the bugs that kill

them” [Konstantopoulos 2021]. Having a practical impact on deployed contract security via automated techniques
seems like a formidable challenge.

In this paper, we present the techniques and insights that we have used to meet this challenge. Although human
understanding is essential for finding many of the high-value vulnerabilities in deployed smart contracts, our work
shows that automated analyses can pinpoint high-value vulnerabilities. The statement is more than a near-trivial
existence proof: it is based on repeatable results, that have yielded hundreds of vulnerability reports, as well as ten
independent bug bounties, for a total of over $3M, over DeFi protocols managing billions in assets.

The technical core of our approach consists of two main parts. The first is symbolic value-flow (symvalic) analysis: a
high-precision/high-completeness static analysis approach, whose technical elements are described in detail in a recent
publication [Smaragdakis et al. 2021]. The second part is a corpus analysis: a complementary (to the static analysis)
statistical analysis of irregular or unusual code patterns, relative to a large number of other deployed smart contracts.

An interesting element concerns the interplay of symvalic (i.e., static) analysis and corpus (i.e., statistical) analysis.
The vocabulary of the statistical analysis is directly informed by properties established by the static analysis. For
instance, a common concept over which anomalous code patterns can be detected is that of tainting: e.g., the combined
analysis may ask

“can an untrusted user taint (i.e., control) the 𝑛-th argument of an external DeFi protocol call in this

contract, when that argument is typically determined to be untainted in many other contracts that call the
same DeFi protocol?”

Finally, we present insights regarding the expected performance metrics of a program analysis for detecting high-
value vulnerabilities. We argue that a useful analysis for complex vulnerabilities is unlikely to be very precise in
terms of conventional metrics—and that is fine! A false-positive rate of 98% (1 of 50 warnings being truly exploitable)
may be prohibitive for a top-tier academic publication, but it is perfectly expected when the domain of evaluation is
not controlled benchmarks but actual, deployed, and scrutinized smart contracts. A warning rate of 0.5% (flagging
one-of-every-200 contracts for a given vulnerability) may seem entirely unimpactful in terms of a research evaluation
of the analysis benefit. (“99.5% of the programs are already correct, what is the need for an analysis to get this number
to 100%?”) But reality is quite the opposite: a 0.5% warning rate is entirely in the credible range for high-impact
vulnerabilities.

2 BACKGROUND

Static Analysis. Static analysis is distinguished among program analysis techniques (e.g., testing [Czech et al. 2016;
Meyer 2008], model checking [Clarke et al. 1986; Jhala and Majumdar 2009], or symbolic execution [Baldoni et al. 2018;
King 1976]) by its emphasis on completeness, i.e., its attempt to model all (or, practically, as many as possible) program
behaviors. To achieve this goal under a realistic time budget, static analysis often has to sacrifice some precision: the
analysis may consider combinations of values that may never appear in a real execution. Maintaining high precision,
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while achieving completeness and scalability, is a fundamental conceptual challenge. Algorithmic design of static
analyses has been trying to address this challenge for several decades, with thousands of different research innovations.

All static analysis design is, therefore, an effort to simultaneously achieve as much practical precision and completeness

as possible. (The third dimension of analysis quality, scalability canmostly be ignored for the purposes of our presentation:
we restrict our attention to algorithms that scale well, i.e., can give results in realistic time frames—e.g., in the hours—
under current technology.) Generic definitions for the two terms can only be approximate, but, intuitively:

● an analysis is precise to the extent that the program behaviors it predicts are actually possible in program execution;
● an analysis is complete to the extent that the actually possible program executions are predicted.

Perfect precision and completeness is provably impossible, by standard undecidability results over program reasoning.
Therefore a static analysis is by definition a game of approximation. Precision and completeness are typically measured
experimentally (or one of them is guaranteed by-design, with the other measured experimentally). It should come as no
surprise that an analysis picks what to approximate with more or less fidelity. For instance, the best known family of
static analyses, data-flow analyses in conventional compilers, will commonly treat all code conditions as both satisfiable
and negatable, without more complex reasoning.

Consider the example function below:1

function whichPaths(uint x) public (returns uint y) {

y = 3;

if (x % 2 != 0) {

y++;

}

if (x % 4 != 0) {

y = y * y;

}

}

In this function, the actual possible values for return variable y are 3, 16, and 9: it is not possible to satisfy the
first conditional but not the second. A static analysis, however, may legitimately choose to consider all paths (i.e.,
all combinations of branches in the program control flow) to be realizable, sacrificing a bit of precision. Such an
analysis could well predict that 4 (i.e., satisfying the first conditional but not the second) is a possible return value. This
approximation loses precision in this example but gains the benefit of completeness when faced with other complex
conditions. (Additionally, the approximation most likely is much more scalable than approaches that attempt full
reasoning over symbolic conditions.)

Analysis of Smart Contracts. The domain of Ethereum smart contracts represents a high practical but also intellectual
challenge for program analysis. The analysis should be extremely precise, so that the warnings for high-value contracts
are likely true positives that humans may have missed, and yet fairly complete, since catching the easy “certain” cases
is likely to yield no warnings for contracts that truly manage funds. Thankfully, there are elements of the domain that
help. First and foremost, smart contracts are isolated from each other and coded defensively. This introduces a high
degree of modularity: the contract can be analyzed mostly in isolation from others. Nearly anything that comes from
the outside world is untrusted, unless either the data or the sender are vetted through specific mechanisms. Second, the

1We use the Solidity language for code examples. Solidity is dominant, accounting for more than 99% of deployed smart contracts on Ethereum, the
largest programmable blockchain.
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contracts are of modest size: a deployed smart contract is at most of 24KB in binary size. This corresponds to at most a
few thousand lines of code. Common sizes of “large” smart contracts are under 1KLoC, with another 1KLoC inherited
or called in libraries.

The small size and (relative) modularity of smart contracts means that we can apply analysis techniques that are more
ambitious (in terms of precision) than in a general-purpose language setting. Past work has used ambitious program
reasoning techniques [Albert et al. 2020c; Grossman et al. 2017; Permenev et al. 2020] (indeed, even full program
verification using proof assistants and off-line logics has been employed [Hildenbrandt et al. 2018; The Certora team
2017]). Our work is explicitly about automated techniques that apply universally, without needing human input (i.e.,
specifications) or per-smart-contract customization.

Our approach aims to be highly complete without sacrificing (much) precision. Completeness problems are often
brought up in the domain of smart contracts. For instance, the Manticore symbolic execution framework [Mossberg
et al. 2019] (one of the foremost for Ethereum smart contracts) “achieves on average 66% code coverage” [Trail of Bits
2020a]. This prompted the Trail of Bits security firm’s company account to tweet “Why can’t a symbolic executor achieve

100% coverage in a teensy little smart contract?”[Trail of Bits 2020b], capturing the frustration of consumers of analysis
results.

3 SYMBOLIC-VALUE-FLOW STATIC ANALYSIS

Symbolic-Value-Flow (“symvalic”) analysis is the first weapon in our arsenal. We next present an informal overview,
highlighting its design principles.

3.1 Overview

Symbolic-Value-Flow static analysis is much like a common inter-procedural data-flow analysis: a “value-flow” analysis,
such as a points-to or a taint analysis. Being a value-flow analysis implies that every variable is statically assigned a
finite set of values and a fixpoint computation grows the finite sets according to monotonic equations.

In symvalic analysis, the values can be both concrete (e.g., numbers) and entire symbolic expressions. For instance,
consider the example function below:

function sensitive(address recipient) public {

require(authorized[msg.sender ]);

selfdestruct(recipient);

}

The analysis will consider a set of concrete and symbolic values for all external input variables. For instance, for
numeric variables, the analysis considers small constants (0,1, and up to 3 constants under 256), large constants (to
cause overflow), and a pseudo-random choice of constants from the program text.

For external inputs of “contract address” type, such as the msg.sender implicit argument, the analysis will consider
values that include:

● constants in the contract text that resemble addresses (i.e., 160-bit integers)
● the symbolic values «owner» and «unprivileged-user».

Similarly, the values initially considered for the recipient argument include:

● constants in the contract text that resemble addresses
● the symbolic values «owner-unique-value» and «user-unique-value».
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Fig. 1. Symvalic Analysis Architecture: API (slightly simplified) between symbolic reasoning and value propagation shown.

The difference between the symbolic values is that the former («owner» and «unprivileged-user») will be considered
bound-variables for symbolic reasoning purposes: although we treat them symbolically, the caller cannot set them freely.
In contrast, the latter («owner-unique-value» and «user-unique-value») are free variables and symbolic reasoning can
propose concrete values for them, in order to solve constraints. Section 3.2 will describe in more detail how these values
are dependent: the analysis will model separately the case of the current caller of the contract being «owner» and that of
it being «unprivileged-user», and similarly for the values they supply to arguments.

Symbolic values propagate and are used to form more complex expressions, whereas concrete values get constant-
folded. For instance, in the example, the program expression authorized[msg.sender] is a lookup in a mapping structure
on Ethereum storage (i.e., analogous to the heap in a conventional language). Due to the way Ethereum storage is
organized, the expression is loading from the symbolic address SHA3(«owner» ++ 0x0)—SHA3 is the Keccak-256 hash
function, ++ a byte array concatenation operator, and 0x0 (i.e., zero) the constant offset that identifies the authorized

mapping among other attributes in storage. This symbolic expression is propagated by the analysis as a value for the
corresponding local variable (unnamed in the source language but present in the intermediate representation).

The analysis proceeds via a close interaction of a value-flow fixpoint loop and a symbolic reasoner. Figure 1 shows the
overall architecture, including the symbolic reasoning component and the value-flow component, as well as the interface
between them and the two sub-components of symbolic reasoning: a bottom-up and a top-down component. The full
interface and bottom-up/top-down distinction are elements of importance mostly for practical concerns, especially
efficiency.

If viewed as an idealized reasoner over infinite expressions (i.e., without worrying about computational efficiency)
the main products of the symbolic reasoner are:

● a predicate normalize(expr, normExpr) that returns for each expression its minimal equivalent form. This applies to
both arithmetic and logical expressions;

● a predicate implies(exprStrong, exprWeak) that checks whether one logical expression implies another;
● a predicate valueForVar(var, expr) that proposes values (i.e., symbolic expressions) for free variable var, so that

logical conditions get satisfied. The solver proposes such solutions in bulk, for any interesting logical expressions
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(the main case being equalities, which are usually much harder to satisfy than inequalities) and the analysis filters
the solutions it chooses to truly try—e.g., if they satisfy an equality that was previously not satisfied.

Inevitably, all three predicates are incomplete, i.e., will not capture all (infinite) true relationships.
The analysis appeals to these predicates throughout normal value propagation. Symbolic values are continuously

normalized (i.e., simplified up to minimal form) and are also used to satisfy control-flow constraints, i.e., predicates in
conditional statements. This makes the analysis path-sensitive: the information pertaining to a program statement is
derived to be compatible with the conditions necessary for reaching the statement. Mechanism-wise, this is a part of
the dependencies machinery, described in Section 3.2.

The close interaction of value-flow and symbolic reasoning is a rather unconventional aspect of symvalic analysis.
This is in contrast to explicit invocation of solvers in a static analysis [Krupp and Rossow 2018; Nikolić et al. 2018;
Schneidewind et al. 2020]. It is common for a static analysis to collect a large condition and dispatch an external solver
(e.g., Z3 [De Moura and Bjørner 2008]) to satisfy the condition. Symvalic analysis, however, invokes the symbolic solver
a lot more regularly, to continuously simplify and solve conditions. Such appeals to the symbolic solver are essential, in
the heart of the analysis.

3.2 Precision and Dependencies

Symvalic analysis is a static analysis, aiming for completeness, i.e., covering many program behaviors. However the
analysis is neither sound nor complete: it can both model unrealizable behaviors and miss actual behaviors. The analysis
intends to strike a good balance between completeness and precision: to cover most program behaviors, while still
predicting behaviors that are realizable to a large degree.

To achieve precision, while keeping a set-based treatment, symvalic analysis associates variable-value tuples (as
well as statements in the code) with dependencies. Every analysis inference of the form “variable v may have value
(i.e., concrete or symbolic expression) 𝑒” (as well as of the form “this statement is reachable”) is associated with sets of

mappings of variables to values that have led the analysis to make the inference.
We distinguish two kinds of dependencies: local (reset per-function) and transaction (i.e., current-execution) de-

pendencies. We write v → 𝑒 ∐︀𝑑𝐿 ;𝑑𝑇 ̃︀ to designate that variable v may hold value 𝑒 under local dependencies 𝑑𝐿 and
transaction dependencies 𝑑𝑇 . (When there is no need to distinguish local and transaction dependencies, we write
v→ 𝑒 ∐︀𝐷̃︀.) To illustrate dependencies, consider a simple contract fragment:

contract Safe {

address owner; // set at construction

mapping (address => uint) public balanceOf;

function deposit(address to,uint amount) public {

require(msg.sender == owner);

uint curBalance = balanceOf[to];

uint nextBalance = curBalance + amount *90/100;

balanceOf[to] = nextBalance;

}

}

Let us focus on the value of variable nextBalance during an invocation deposit(0x42, 200).2 For nextBalance to even
have a value, its assignment statement needs to be reachable. Therefore the “require(msg.sender == owner)” statement
needs to be satisfied. This forces the mapping (︀sender → «owner»⌋︀ to appear in the transaction dependencies. (The

2Contract addresses are 160-bit integers and generated randomly. We show a very unlikely short address (0x42) for the sake of conciseness.
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symbolic variable sender stands for the Solidity msg.sender expression and «owner» is a symbolic value generated to
represent the contract that originally called the current contract’s constructor and, thus, set storage fields to initial
values.)

Additionally, values of local variables will be parts of the dependencies. Assume that at some point the analysis
has inferred that storage mapping balanceOf[0x42] has two possible values: 1 and 80, and then considers the call
deposit(0x42, 200).

The inferences for variable nextBalance will then be:
nextBalance→ 181 ∐︀ {[to→ 0x42], [amount→ 200], [curBalance→ 1] } ; {[sender→ «owner»] } ̃︀}

and
nextBalance→ 260 ∐︀ {[to→ 0x42], [amount→ 200], [curBalance→ 80] }; {[sender→ «owner»] } ̃︀}.

The first of the two inferences can be read as “nextBalance is expected to hold the value 181 in executions where to

holds value 0x42, amount holds value 200, the most recent storage load into variable curBalance returned value 1, and
the transaction initiator (i.e., external caller) is «owner»”. The first three mappings make up the local dependencies for
the inference, whereas the last is the transaction dependency.

Dependencies are combined, with an operator denoted ⊕. Combination of dependencies happens for every control-
flow or data-flow join point: when two branches merge, or when two values are used as operands in the same operation.
Combining two sets of dependencies is a check for compatibility, to prevent mixing information from guaranteed-
separate executions. Combining dependencies succeeds if there are no conflicting mappings for the same variable.
For instance, the two inferences above cannot be combined: they conflict on the mapping for variable curBalance. If
dependencies do not conflict (thus, combining them succeeds), combination is a mere pairwise union of the mappings
sets.

3.3 Precision and Completeness

Using the Safe contract example, we can illustrate why symvalic analysis chooses to be neither sound nor complete, i.e.,
why it accepts some incompleteness in order to be more precise, and why it accepts less-than-full precision (e.g., false
positives) in order to be more complete or more scalable.

Incompleteness. The last statement of function deposit stores nextBalance back into the persistent storage mapping
balanceOf[0x42]. Therefore, new inferences are possible for variable nextBalance, which again cause new values to
flow into balanceOf[0x42], ad infinitum. Static analysis typically resolves this potentially infinite computation by
overapproximation (e.g., a finite-height lattice that joins values into abstract values, at the expense of some loss of
precision). In contrast, symbolic execution resolves non-termination (arising in the case of looping) by arbitrarily
truncating execution traces (e.g., unrolling loops only a small number of times, or executing a fixed number of total
instructions).

Symvalic analysis is agnostic regarding the handling of cyclic flow: both overapproximation and finite truncation are
acceptable, per case. For instance, the current symvalic setting uses overapproximation for values from some sources
(e.g., environment variables, such as gas remaining, current block number, miner of block). In most cases, however, the
analysis favors concrete numeric values (such as those in balanceOf[0x42]), which yield other concrete values, up to a
finite number of arithmetic operations. This treatment is one that explicitly favors precision over completeness: the
analysis is not guaranteed to model all values arising in real executions. The advantage, however, is that the values that
the analysis considers are likely to be realizable, i.e., precision is enhanced.
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Precision. Dependencies can lend arbitrary precision to an analysis. Even fully concrete execution can, for instance,
be simulated by maintaining in dependencies all dynamic variables of an execution. Conceptually, dependencies can be
viewed as a generalization of context-sensitivity [Sharir and Pnueli 1981] in static analysis, or an instance of relational
analysis (e.g., [Nielson et al. 1999, Sec.4.4.1], [Møller and Schwartzbach 2018, Sec.7]). Such mechanisms group together
dynamic executions for uniform static treatment. Precision arises because executions mapped to different groups are
never confused. The challenge, however, is to maintain sufficient precision without suffering from extreme lack of
scalability (termed the state explosion problem). The state explosion problem is the bane of fully-precise program analysis
approaches, such as concrete testing or concrete-state model checking. The number of possible value combinations
rises exponentially, per set combinatorics. In the setting of symvalic analysis, if the dependencies mechanism were
to keep full concrete state (i.e., what precisely are the contents of storage or variables in a simulated execution), the
analysis would suffer tremendously in scalability. In practice, even dependencies on a handful of variables can render
the analysis unscalable.

Symvalic analysis maintains a balance between precision and performance by computing dependencies only on a
small subset of program variables. As a consequence, the analysis can produce warnings or values that are imprecise,
i.e., do not correspond to actual executions.

These precision limits of dependencies in the analysis are as follows (with current defaults listed in parentheses, for
concreteness):

● A bounded number of arguments of the current function, such as to and amount in the example. (Currently: up to 3
arguments are kept as local dependencies.)

● A bounded number of local variables that load values from shared memory (storage), such as curBalance in the
example. (Currently: the first variable loading from storage per function is kept in local dependencies.)

● A bounded number of external arguments (i.e., arguments supplied at the original entry point of the transaction, by an
external caller). (Currently: the first 2 arguments of the transaction entry point are kept in transaction dependencies.
This case is not shown in the example. However, if we were to change the code to make function deposit—which is
a transaction entry point—call a different, internal function, the values of deposit’s arguments, to and amount, would
be kept in the transaction dependencies when analyzing the internal function.)

● The transaction’s current caller (msg.sender in Solidity). (Currently: kept in transaction dependencies.)

4 CORPUS ANALYSIS

The symvalic analysis technology has been a great boon to our efforts to have repeatable high impact on smart contract
security. However, the analysis by itself is just a way to get answers. An essential element of the approach is to know
to ask the right questions. For instance, a very simple question may take the form “is the first argument of a swap call

tainted, i.e., controllable by an untrusted caller?” That is, at the very least the analysis will need to know which arguments
of external calls are sensitive and can lead to vulnerabilities. Other interesting questions concern missing information
(e.g., missing a network identifier or a nonce when cryptographically signing messages), vulnerable code patterns (e.g.,
effects after a possibly-reentrant external call), and much more.

Formulating the right questions, i.e., writing symvalic analysis clients, requires significant domain expertise. Security
experts, with deep knowledge of protocols and programming patterns in the DeFi space need to be involved. This effort
needs to be ongoing, with new libraries and protocols (raising new requirements for integrating with them) being
continuously introduced in the ecosystem.
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Abstracting away for one step, the need for domain/security expertise is really a modularity enhancement. We
need domain expertise so that the analysis can break up its effort in convenient single-contract chunks while having a
summary of what other contracts expect in terms of their interactions with the current contract-under-analysis.

The second technique that we employ intends to address exactly this need. Corpus analysis is a summarization of
the behavior of contracts and a subsequent statistical analysis. This enables extracting domain expertise without the
help of human experts. For instance, it is not necessary for an expert to indicate that the first argument of a swap call
is sensitive: if analysis of hundreds of past contracts shows that this argument is almost always untainted (i.e., only
checked callers can supply it), the corpus analysis will establish this property as a question for the symvalic analysis of
a contract, to report violations.

More specifically, corpus analysis is a summarization of contract behavior in two ways:

● For a contract itself, several key behavioral properties are summarized, so that the contract’s callers can be checked
in conjunction with these properties.
● For all the callers of a contract (more accurately, a specific API function), their “usual” behavior is summarized so
that other callers can be checked for deviation from the common patterns.

Corpus analysis works in synergy with the static analysis of a contract: it both consumes the results of static analysis
and produces results for the static analysis to consume.

Specifically, for each contract statically analyzed (via symvalic analysis), a wealth of behavioral summaries get
produced. Some of the most important ones are listed below:

● Which functions can reach a delegatecall instruction (which is a common way to yield full control and, thus, a
common vector for vulnerabilities).
● Which functions have which of their arguments control quantities with monetary significance (e.g., flowing to a
money transfer source/destination/amount).
● Which functions perform state initialization.
● Which functions return values that can be manipulated by an external caller (i.e., values depending on storage state
that any caller can affect—e.g., by depositing funds).
● Which functions allow reentrancy, i.e., yield control to a party supplied as a parameter. This does not indicate that
the function itself suffers from a vulnerability: the function may not have state changes after the yielding of control,
or the function may be checking that it gets called only by a trusted caller. However, callers of such a function may be
vulnerable to reentrancy attacks.
● Which functions perform checked money transfer operations, i.e., examine the permissions of their caller. This implies
that any caller of such a function, when propagating argument values to the function, should itself examine the
permissions of its caller.
● Which functions perform guarded/unguarded (i.e., with checks as to the function’s caller) external calls and to which
other functions of external contracts.
● Which functions make external calls of monetary significance and whether (and which of) the arguments of such
calls are tainted/untainted.

The above summaries get statistically analyzed and re-imported for further inference. Note the recursive nature of
many of the above definitions. To produce results for tainted/untainted external calls of monetary significance, the
analysis needs to first receive information as to which external calls have monetary significance. To produce functions
that allow reentrancy, we need to know whether the external functions they call allow reentrancy.
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The most useful statistical summarization results of corpus analysis are some of the simplest: e.g., whether a specific
argument of an API is usually tainted/untainted; whether a given function is usually called only by trusted/checked
callers or by anyone.

Feeding back into the static analysis, the results of corpus analysis help formulate the right analysis questions:

● Knowing that an external call allows reentrancy allows detecting transitive reentrancy attacks. It is worth emphasizing
again that the external function itself may not be vulnerable, even though it yields control to a third party: the function
may be checking its caller, or its code may have no permanent effects after yielding control. However, any caller of
this function may be violating these properties, becoming transitively vulnerable.
● Knowing that a specific API parameter is typically (based on statistics of common usage patterns) not allowed to be
controlled by untrusted callers can yield a high-precision warning if the current contract allows the same parameter
to be tainted.
● Knowing that an external call is statistically only reached after authorization checks over the caller can yield a
high-precision warning if the current contract has no such checks.

Corpus analysis has, thus, helped us scale up vulnerability detection by extracting domain expertise, instead of always
relying on human experts. Key to the approach is the availability of hundreds of thousands of smart contracts already
deployed on public blockchains. Secondarily the approach is enabled by the composable nature of DeFi protocols,
which means that many different codebases use the same external protocols, so that common usage patterns can be
ascertained.

5 DISCUSSION AND INSIGHTS

Automated program analysis tools have an extremely rich history in Computer Science, with entire research communities
centered around program analysis. Security is often brought up as a major motivation for program analysis research. And
yet, in one of the most critical security domains in existence, smart contract security, the impact of automated analysis
tooling is repeatedly estimated to be close to zero. There are numerous possible explanations for this phenomenon, such
as: the speed of development in smart contract engineering, which has not (up to now) allowed the time for research
solutions to catch up; the immense, disproportionate (relative to other software engineering domains) investment on
smart contract correctness that has attracted top human expertise to smart contract auditing, leaving little room for
automated solutions; the fundamental limitations of fully automated solutions to software correctness, relative to, e.g.,
automation-assisted program verification, under the guidance/specification of human experts. (Although, on the latter
point, a lot more can perhaps be said about the fundamental limitations of automation-assisted program verification.)

We would like to add to the discussion our observations on the contrast of academic research in program analysis
(an area in which we have significant presence for over 15 years) and industrial impact. The discord between the two
can be well-captured by the distance in answers to two questions.3

(1) What warning rate do you expect an impactful program analysis to have? I.e., out of 100 programs, how many do
you expect to be flagged for vulnerabilities for an analysis to be useful?

(2) What precision, in terms of false positive rate, do you expect an impactful program analysis to have? I.e., out of
100 warnings, how many do you expect to indicate real vulnerabilities?

3The first author has repeatedly asked these questions in seminar talks at top Universities and research institutions, always with the same disparity
between audience expectation and reality.
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Researchers in program analysis typically give answers in the range of 10-30% for the first question and below 30%

for the second. Their expectation is that an impactful analysis will flag many contracts and will do so with very high
precision.

Our own experience over random (de-duplicated) deployed smart contracts in active use is that realistic answers for
the first question are in the 1% or below range and answers for the second question are in the over-90% range. That is,
the most useful analyses flag very few contracts—around 1% or fewer—and it is fine if these warnings are often false
positives. Anything outside these ranges is suspiciously off: it is probably a low-value analysis that is flagging too many
contracts for “vulnerabilities” that human experts consider innocuous.

The order-of-magnitude discrepancy between expectation and reality is not that surprising, if one considers the
setting. Program analysis experts are used to having their work evaluated over injected vulnerabilities, systematic
benchmark suites with bug examples, or at least less-scrutinized, error-prone code. In the reality of deployed smart
contracts, end-to-end vulnerabilities are extremely rare. A 95% false-positive rate might not be enough for a top-tier
publication, but in practice it is almost too good to be true! It means that a vulnerability inspector will find a true,
actionable vulnerability for every 20 inspections.

Therefore, it is clear that we have two problems: one of wrong metrics and one of perverse incentives (the latter
being largely a consequence of the former).

At first glance, it seems reasonable to consider an analysis with a 0.5% warning rate to be less-than-impactful. After
all, “if 99.5% of programs are correct, what is the big deal about getting that number to 100%? The relative improvement
is tiny.” However, this exact rationale leads to discounting the most practically impactful techniques. Conversely,
techniques that focus on shallow “vulnerabilities” score much higher than impactful techniques on both metrics.

We believe that program analysis metrics should adjust to the rarity of the phenomenon they seek to capture. More
is not better, nor is less. Instead, closeness to reality or absolute end-to-end impact is the only truly better measure for
estimating the value of a technique.

6 PRACTICAL IMPACT

Our analysis has been applied to all new contracts deployed on the Ethereum blockchain since the beginning of 2021.
The analysis has flagged numerous exploitable vulnerabilities—e.g., [Dedaub 2021a,b,c,d; Primitive Finance 2021]. We
have made several vulnerability disclosures, some of which resulted in major rescue efforts [Dedaub 2021a; Michales,
Jonah 2021]. The total funds under threat from these vulnerabilities well exceed a billion dollars. We have received ten
independent bug bounties totalling over $3M.

From a program analysis standpoint, many detected vulnerabilities have the same general structure: they correspond
to warnings of the form “an untrusted caller 𝐶 can reach argument X of a sensitive operation and supply parameter
𝑌 that is tainted” or “an untrusted caller can reach a sensitive operation (at all)”. That is, the vulnerability warnings
typically query the main relations produced by the analysis: X→ 𝑌 ∐︀∗; (︀sender→ 𝐶⌋︀̃︀, as well as ⋃︀𝑖 ⋃︀ ∐︀∗; (︀sender→ 𝐶⌋︀̃︀.
The untrusted caller 𝐶 corresponds to symbolic value «unprivileged-user», as seen in earlier examples, stored in the
transactional dependencies of the symvalic analysis. The tainted parameter value 𝑌 is typically the symbolic value
«user-unique-value», mentioned earlier, which designates that the value is completely unconstrained. The exact nature
of the sensitive operation with argument 𝑋 varies by vulnerability. For instance:

● transferFrom [Dedaub 2021a]: the contract is authorized to manipulate the funds of some accounts, and its code
allows a direct transfer of funds from a tainted source to a tainted sink.



Y.Smaragdakis, N.Grech, S.Lagouvardos, K.Triantafyllou, I.Tsatiris, Y.Bollanos, and T.Valentine

● swap [Dedaub 2021c]: an exchange of funds from one token to another, (taking place after a loan and a liquidation
of “shares”). The taintedness of the token being swapped and of the amount swapped are essential to the attack.
● flashswap [Primitive Finance 2021]: code executed upon an external service’s granting of a loan does not check
that the loan parameters were as requested: the attacker can invoke the callback with tainted loan parameters
(e.g., tainted token).
● manipulated swap [Dedaub 2021d]: the contract periodically converts its profits, and anyone can invoke this
functionality. The attack is based on the reachability of this code by untrusted callers, and not on taintedness. The
attacker calls the functionality exchanging the funds after having manipulated the online prices of the exchange
service doing the conversion.

As can be discerned from the above descriptions, the attack point is buried deep in the code, under several complex
conditions. One can, therefore, see why the precision and completeness of symvalic analysis is important for the
detection of the vulnerability. As we write in a vulnerability report [Dedaub 2021a]: “What made our symbolic-value
flow analysis useful was not that it captured this instance but that it avoided warning about others that were not

vulnerable. The analysis gave us just 27 warnings about such vulnerabilities out of the 40 thousand most-recently
deployed contracts!”

7 RELATEDWORK

Program Analysis for Ethereum Smart Contracts. The small size and high value of Ethereum smart contracts has made
them a suitable target for applying a variety of program analysis techniques, resulting in a plethora of academic [Brent
et al. 2020; Grech et al. 2018; Kolluri et al. 2019; Lagouvardos et al. 2020; Luu et al. 2016; Nguyen et al. 2020; Nikolić et al.
2018; Torres et al. 2019; Tsankov et al. 2018] and industrial [Feist et al. 2019; Grieco et al. 2020; Honig 2020; Mossberg
et al. 2019; The Certora team 2017] tools emerging. While most smart contract tools focus on vulnerability detection,
past work has also focused on empirically identifying optimization opportunities [Chen et al. 2020], gas cost estimation
[Albert et al. 2020a] using recurrence-relation theories or even superoptimization [Albert et al. 2020b] using SMT.

Tools [Hajdu and Jovanović 2020; Kolluri et al. 2019; Krupp and Rossow 2018; Luu et al. 2016; Mossberg et al. 2019;
Nikolić et al. 2018] applying symbolic execution techniques have been very popular due to the precision of their reported
warnings. (And also, a cynic might remark, their ease of implementation on a platform where the source language
changes constantly and the low-level IR is extremely hard to analyze.)

Additionally, approaches [Albert et al. 2018; Brent et al. 2020, 2018; Feist et al. 2019; Grech et al. 2018; Lagouvardos
et al. 2020; Tsankov et al. 2018] based on static analysis have seen success due to their high completeness and scalability.
Even though conventional static analysis tools [Brent et al. 2020] have achieved high precision by tuning the analysis
to common programming patterns found in Ethereum smart contracts, symvalic analysis offers a more precise analysis
while being agnostic to these specific program patterns.

Fuzzing-based tools [He et al. 2019; Jiang et al. 2018; Nguyen et al. 2020; Wüstholz and Christakis 2020a,b] have also
been successful in precisely reporting smart contract vulnerabilities. Notably, the recently presented Harvey fuzzer
[Wüstholz and Christakis 2020b] combines static analysis with fuzzing by using static analysis to guide a greybox
fuzzer.

General Program Analysis and Verification. Relational analysis techniques have been successfully applied in recent
years, to tackle the problem of JavaScript static analysis, where precision is critical to getting a useful analysis. Value
partitioning [Nielsen and Møller 2020], is an efficient trace partitioning [Rival and Mauborgne 2007] variant, where the
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analysis does not attempt to refine abstract states, but instead, abstract values. This apporach manages to circumvent the
expensive abstract state partitioning [Ko et al. 2017] or additional backwards analysis [Stein et al. 2019] that previous
apporaches required, while maintaining precision.

Symbolic execution has seen numerous variations that offer a different balance of scalability, completeness, and
precision. Compositional symbolic execution [Anand et al. 2008; Godefroid 2007] has attempted to address scalability
issues by use of summaries. Steering techniques [Li et al. 2013; Park et al. 2012] attempt to achieve higher coverage or
depth, e.g., by prioritizing paths that are yet unexplored. Symvalic analysis has similar goals, but its coverage is only a
small part of the story: as a static analysis, it explores many values at once and coverage is only incidental. At the same
time, it may suffer from higher imprecision than symbolic execution techniques, since precision is limited by its current
dependencies scheme.

Accordingly, symvalic analysis can be viewed as an attempt to address the state explosion problem. The model
checking literature contains several approaches with similar goals, ranging from compositional assume-guarantee

reasoning [Abadi and Lamport 1993] to symmetry reduction [Emerson and Sistla 1996; Norris Ip and Dill 1993], to
partial order reduction [Flanagan and Godefroid 2005]. Symvalic analysis uses a very different scheme, due to both
symbolic reasoning and its controlled sacrifice of precision. Conceptually, the combination of abstract interpretation
and model checking (e.g., [Clarke et al. 1994]) has a similar flavor, but the actual mechanisms differ substantially.

Whitebox [Chipounov et al. 2011; Godefroid et al. 2008, 2012] and (later) greybox [Böhme et al. 2016; Various 2017;
Wüstholz and Christakis 2020a,b] fuzzing are approaches that use insights similar to those of symvalic analysis, in an
effort to achieve coverage of a program under test, especially when the program makes use of very low level library
code that is externally modelled. These approaches work by “fuzzing” an input, following the control flow of a program
for concrete values, yet also potentially using constraint solvers to modify the input to follow alternative control
flow. In the space of smart contracts, where the program is fully modeled, and bugs manifest themselves in several
transactions, symvalic analysis can scale better and cover more program behaviors, since it is fundamentally a static
analysis, overapproximating dynamic conditions and collapsing many paths.

Symvalic analysis is rather unconventional among analysis techniques, mainly in the ways described earlier: it uses
symbolic expressions inside a full static analysis (not dynamic-symbolic execution), without delegating the solution of
large expressions to an external constraint solver. There have been other combinations of symbolic expressions and
static analyses, especially for custom analysis clients—e.g., Dudina and Belevantsev [2017] employ a symbolic static
analysis for buffer overflow detection. In contrast, symvalic analysis is client-agnostic: symbolic expressions are used as
regular values for any variable in the program text, without targeting specific kinds of expressions or specific program
features. Furthermore, the mechanism of dependencies (Section 3.2) is key in the symvalic design, for purposes of
precision.

There are certainly many more points in the static analysis design space and some can be compared for reference.
SPLlift [Bodden et al. 2013] shows a modular analysis for software product lines. This is almost at the opposite end of
the spectrum from symvalic analysis: a very scalable analysis, but much less precise. The SPLlift analysis is explicitly
based on the IFDS framework, which means that it summarizes at the procedure boundary, thus losing precision to
gain scalability. It is interesting to consider whether symvalic analysis could apply to large-scale software product
lines. This direction would certainly require significant work for a fruitful approach. For instance, symvalic analysis
would likely apply to each Java file separately with the dependencies between different files modeled rather loosely
(e.g., perhaps a single predicate to capture the configuration of the product line). Padhye and Khedker [2013] describe
an analysis that achieves significant precision (flow- and context sensitivity) in a fairly general analysis setting. This
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may be a promising candidate for future combinations with symvalic analysis ideas, especially the use of dependencies
as a data-flow-value context.

8 CONCLUSIONS

We have argued that automated program analysis techniques can have a significant impact on the security of smart
contracts. This does not mean that program analysis can counter most smart contract threats, nor that positive results
come easy. To have actual impact on security, we have needed to invent new program analysis techniques and combine
them with significant domain expertise and state/environment information.

Apart from the technical elements (symvalic analysis and corpus analysis) of our approach, perhaps the most useful
aspect is the understanding of the changing nature of analysis precision and report rates in a high-impact setting.
Conventional research in program analysis seems tuned to catching “cheap” bugs: numerous and low-impact. Such
an approach also makes for good metrics: a high warning rate and high precision (i.e., true-positive rate) are possible
for cheap bugs, but entirely unrealistic over rare high-value vulnerabilities. Yet coming up with ways to quantify the
success of “needle in a haystack” searches will be an important element of achieving real impact on blockchain (and not
only) security.
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