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Abstract—|[Background:] Automated Vulnerability Repair
(AVR) is a rapidly emerging subfield of program repair. Large
Language Models (LLMs) have recently shown promise in
this area, delivering compelling results beyond traditional code
generation and fault detection tasks. [Hypothesis:] These results,
however, may be influenced by “invisible hands”— hidden factors
such as code leakage or perfect fault localization, which allow
the LLM to reproduce fixes previously authored by humans
for the same code fragments. [Objective:] We aim to replicate
prior AVR studies using LLMs for patch generation under
controlled conditions, where we deliberately introduce errors
into the vulnerability localization presented in the prompts.
If LLMs are merely reproducing memorized fixes, both small
and large localization errors should result in a statistically
equivalent number of correct patches, as each type of error
should steer the model away from the original fix. [Method:] We
introduce a pipeline for repairing vulnerabilities in the Vul4]
and VJTrans benchmarks. The pipeline intentionally offsets the
fault localization by n lines from the ground truth. An initial
LLM generates a patch, which is then reviewed by a second
LLM. The resulting patch is evaluated using regression testing
and vulnerability proof tests. Finally, we conduct a manual audit
of a sample of patches to assess correctness and compute the
statistical error rate using the Agresti-Coull-Wilson method.

Index Terms—Automated Vulnerability Repair, security

I. INTRODUCTION

Large language models (LLMs) are increasingly proposed
for automated vulnerability repairs (AVR) [1]. At the time of
submission, Google Scholar reports 483 works on the topic
from 2024, excluding ArXiv papers, SoKs and systematic lit-
erature reviews. LLMs results (e.g., [2]) seem more promising
than traditional repair approaches based on testing (e.g., [3]).
APR4Vul tested traditional program repair methods on the
Vul4] dataset [4] and obtained at best 5 correct patches. LLM
methods obtained much better results: Codex was able to fix
10 vulnerabilities without fine-tuning [5]], later works provided
12 perfect fixes [|6], and up to 14 patches [7].

Yet, replicating LLMs’ success is challenging [1]], mirroring
issues previously observed with deep learning models [3].
We argue that three “invisible hands” could be at play: code
leakage, completion vs patching, and perfect localization.
These factors could help LLMs achieve “exceptional” results
that testing-based program repair methods did not achieve.

The first “hand” involves code leakage: as a benchmark for
vulnerability repair is eventually published, the new LLMs
are likely to be trained on that very dataset, and the LLMs
used for the original study might no longer be available. For
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instance, replicating the studies in [5], [9] require access to
Codex, which is now deprecated. Further, suppose we wanted
to use PrimeVul [10], a high-quality dataset with robust, albeit
automatically verified, vulnerable and fixed functions. The
corresponding paper was published at ICSE in May 2025, and
therefore, GPT-40-mini, deployed in May 2024, would seem
to be a good candidate (it is used in 34 of the mentioned LLM
papers). Unfortunately, the dataset was published on GitHub
in March 2024 and includes commits pushed even earlier, so
the possibility of data leakage cannot be ruled out.

The second and third invisible hands stem from perfect fault
localization and prompt design. Providing the exact location of
the vulnerability is often the gold standard in program repair,
e.g., in [3] (non-LLM) and [[11] (LLM-based). By itself, this is
a reasonable approach to distinguish success in vulnerability
localization from success in patch generation. The key problem
happens when it is combined with prompt designs that frame
repairs as code completion: the fragment to be patched is
replaced with a placeholder, and the LLM is asked to complete
the code (e.g. [5], [7]], [9). Given the likely leakage of code
(see first invisible hand), LLMs may simply reproduce the
correct fix via completion, a task where LLMs excel [12].

Overarching Hypothesis. A substantial portion of the
LLM’s vulnerability repair success may be attributable
to training data memorization, facilitated by precise fault
localization.

Our is a skeptical replication study, aimed at disentangling
the potential influence of “invisible hands” on the success of
LLM-based AVR. How can we remove the influence of these
hands in order to test the hypothesis? We need to measure
some events that are very unlikely to happen if the LLM
is generalizing (“ideal” LLM) vs the LLM is just relying
on memorization (“cheater” LLM). Bayes theorem would
then allows us to distinguish the posterior probability. Some
preliminary evidence in this respect has been already explored
for normal bug fixing [13]. Our idea is to systematically
introduce errors in the localization of vulnerabilities.

If the LLM is ideal and genuinely generate repairs based on
the localized vulnerability, then it is very unlikely that fixing
a line that is completely off will generate a correct fix. And
even less the fix of the developer... Conversely, if the LLM
only memorizes fixes during training, then it is very likely
that it will ignore the localization suggested by the prompt
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and propose the already known fix (if at all). Either way, we
expect the LLM to reach the same results irrespective of the
magnitude of the displacement offset (it’s cheating).

To strengthen the result, we add a second step: we ask a
second LLM to review the result of the first LLM before testing.
This is considered a good solution to scale [[14] albeit a recent
theoretical analysis [[15] has shown that MLs patch-reviewer
model can only be useful if precision and recall are above a
certain threshold. Worse, if our overarching hypothsis is true
the second LL M is likely to suffer from the same memoriza-
tion issues that the first LLM is being tested. If LLMs merely
reproduce and recognize fixes they have already seen, we
expect cheater LLMs as reviewers to recognize (memorized)
plausible patches better than other plausible but wrong patches.
As soon as we perturb the pipeline so that recognition is
hampered, such difference will disappear. Localization rrors
will not make a difference as they are ignored by cheaters.

Operationally, we build on the pipelines from [5] and [7]:
we assess the impact of different prompt designs and include
in our input vulnerabilities obtained through code transforma-
tions so that they have no corresponding published fix. This
contribute to isolate model generalization from memorization.
We will validate generated patches using both regression tests
and Proof of Vulnerability (PoV) tests{ﬂ

II. TERMINOLOGY AND BACKGROUND

Automated Program Repair (APR) aims to support devel-
opers by automatically fixing bugs in software. End-to-end
APR pipelines cover the full repair process: locating the faulty
code (fault localization), generating a patch, and validating it
to ensure correctness [[18]. The ultimate goal is to produce
patches that can be reviewed and accepted by developers.

To evaluate APR tools, researchers use benchmarks com-
posed of buggy programs and associated test suites. A patch
is considered plausible if it passes all available tests automat-
ically. However, only correct patches are semantically equiva-
lent to the original developer fix, while overfitted patches pass
tests but fail to fix the root cause of the bug [3], [5], [[16].

Automated Vulnerability Repair (AVR) is a specialization of
APR focused on fixing security-related bugs—vulnerabilities
that attackers could exploit. In addition to preserving function-
ality, AVR patches must restore or maintain security properties.
As a result, AVR benchmarks often include not only unit
tests but also Proof of Vulnerability (PoV) tests [4]], which
demonstrate that the original bug can be exploited.

In the literature, AVR-generated patches that pass all tests
are also referred to as plausible, as in general APR [J5],
or as End-to-End (E2E) tested patches [3]]. Upon manual
inspection, such patches may turn out to be correct, overfitted,
or security-fixing—patches that remove the vulnerability but
silently introduce regressions that break functionality [3].

A proof of vulnerability in test-based vulnerability repair [3], [16], [17] is
a test which flips between the vulnerable and non-vulnerable code fragments.

TABLE I
PROMPT TEMPLATES USED BY PEARCE ET AL. [9].

ID Description

n.h.  No Help - deletes the vulnerable code/function body and provides
no additional context for regeneration.

s.1 Simple 1 - deletes the vulnerable code/function body and adds a
comment ‘bugfix: fixed [error name]’.

s.2 Simple 2 - deletes the vulnerable code/function body and adds a
comment ‘fixed [error name] bug’.

c. Commented Code - After a comment ‘BUG: [error name]’, it in-
cludes a ‘commented-out’ version of the vulnerable code/function
body followed by the comment ‘FIXED:’. After this it appends
the first token of the original vulnerable function.

c.a. Commented Code (alternative) - same as c¢. , but commented in
the alternative style for C /* and */ rather than //

c.n. Commented Code (alternative), no token - same as c.a., but with
no ‘first token” from vulnerable code.

III. RELATED WORKS

1) Evaluation pipelines for AVR: Evaluating tools for re-
pairing vulnerabilities required the development of bench-
marks provided with functional and security tests. Pincon-
schi et al. [[16] developed SECURETHEMALL to test APR
techniques for repairing 55 C/C++ security faults from the
DARPA Challenge Sets [19]], which approximate real-world
vulnerabilities and include functional and PoV tests. The 10
APR tools tested received only C source code and its test suite.
Bui et al. [3|] proposed APR4Vul to evaluate general APR
techniques on vulnerabilities in Vul4J [4], a manually curated
benchmark of 79 reproducible Java vulnerabilities, each with
functional and PoV tests. APR4Vul tools were provided with
exact, manually defined vulnerability locations to isolate the
patch generation task from localization errors.

2) Evaluations of LLMs for AVR: Different studies pro-
posed testing LLM to repair software vulnerabilities. Pearce
et al. [9] tested proprietary and open-source LLMs, including
a locally trained model, for zero-shot vulnerability repair in
C/C++. They evaluated these against synthetic vulnerabilities
and 12 real-world CVEs using six prompt templates (Table [I)
to present the exact vulnerability location. Notably, prompts
like “n.h.”, “s.1”, and “s.2” omit the faulty code, framing
the task as code generation rather than repair—contrary to
AVR’s assumption that the defect is known. Wu et al. [5]]
proposed a framework to test DL-based tools for AVR in
Java. They extended the Vul4] benchmark [4] and proposed
VJBench-trans, a new dataset of transformed versions of
the collected single-hunk vulnerabilities. The transformation
should mitigate the advantage for LLMs that were already
exposed to the testing data during their training. The prompt
templates that the authors use are reported in Table and
all of them but “Codex” present a code completion rather
than a vulnerability repair problem. Since they only prompt
LLMs to substitute the lines they mark as vulnerable, their
approach heavily rely on the exact vulnerability localization,
Even a slight displacement in line localization, as in Figure [I]
prevents the LLM from generating a correct repair. Kulsum et
al. [[7] replicated the work by Pearce et al. with GPT-3.5 [20]]



Prompt: function with marked vulnerable line

1 public float[] toFloatArray()

GPT 3.5 analysis + solution

The vulnerability in the marked line is that it assumes

the result of getObject (i) is always a COSNumber ...

The vulnerability in line 4 arises from the assumption
that the object at index i is always a COSNumber .

E[::l Developer fix

The vulnerability in the marked line likely stams from
an unsafe cast or lack of type-checking. ..

The vulnerability in the marked line (return retval;)

24 4,
3 float[] retval = new float[size()]; 5

4 far (int 1 = 8; 1 < size{); i++) —
5 { 0

] retval[i] = {({COSNumber)getObiject({ i })}.floatValue(); —=
7 1 +2

8 return retval: "
a}

E[:j Wrong patch

likely arises from retuming a reference to & mutable
intarnal array. ..

Fig. 1. While different studies tested LLMs for repair starting from the exact vulnerability localization, we investigate the impact of errors in the localization
for different approaches. For example, in the approach proposed by Wu et al. [5], the LLM is prompted to substitute exactly the vulnerable lines, so even
small displacements would prove disruptive. Here we prompted GPT3.5 (used by Kulsum et al. [7]]) to fix the vulnerable function, but gave in the prompt
wrong information about the vulnerable line. In the figure, we have two negative and one positive offsets and the corresponding responses. When the offset is
4 lines above, pointing to just a curly bracket (line 2), the model still generates the developer fix. How is this likely to happen in the absence of memorization?

TABLE I
PROMPT TEMPLATES USED BY WU ET AL. [5]].

Model
Codex

Input Format

Comment buggy lines (BL) with hint “BUG:” and “FIXED:”
Prefix prompt: Beginning of the buggy function to BL com-
ment

Suffix prompt: Line after BL comment to end of the buggy
function

CodeT5 Mask buggy lines with <extra_id_0> and input the buggy
function

CodeGenlnput beginning of the buggy method to line before buggy
lines

PLBARTMask buggy lines with <mask> and input the buggy function

InCoder Mask buggy lines with <mask> and input the buggy function

and added chain-of-thought prompts and iterative feedback by
external tools to improve the repair process. They tested their
approach against 60 real-world CVEs (10 in C and 50 in Java
from the Vul4] [4] and VIBench [5]] benchmarks). Their first
prompt follow the same formats proposed by Pearce et al.
Fu et al. [|21] proposed AIBUGHUNTER, an ML-based
software vulnerability analysis tool for C/C++ for Visual
Studio Code. They integrate their tools LineVul [22] for
vulnerability localization and VulRepair [23]] for vulnerability
repair. However, the pipeline is only evaluated via a qualitative
user study, making its objective performance hard to assess.

Gap. None of the current evaluations of LLM-based ap-
proaches perform a measurable evaluation when the vulner-
ability localization provided to the models is not perfect.

3) LLM second opinion: As code reviewing is a tedious and
expensive process for software development, different studies
have proposed leveraging LLMs to ease it. Jensen et al. [24]
investigated using LLMs in reviews to evaluate both code
security and functionality. The performance of proprietary
models in particular is impressive (over 95% accuracy for
vulnerability detection, over 88% F1 score for functionality
validation), however it is not clear to what extent this could
be due to data leakage. Recent works from Jaoua et al. [25]

and Kavian et al. [26] combine the use of static analyzers and
LLMs to review and improve the quality of developer and
LLM-generated patches, respectively.

IV. RESEARCH STATEMENT

Figure 2] summarizes our research questions, which start
from the differentiated replication of the setups in “How Effec-
tive Are Neural Networks for Fixing Security Vulnerabilities”
[5] and VRPilot [[7]. Building on the mentioned studies, we
use different prompt templates to investigate how they affect
the repair capabilities of LLMs.

RQ1 - Reproducibility baseline. How many vulnerabilities
can LLMs fix when provided with their exact localization
and how sensitive to the prompt are the results?

If our overarching hypothesis is true, the only way for a
“cheater” LLM to produce a correct patch is when it was
exposed to the developer-generated fix during training. Then
providing additional information as the vulnerability type or its
line-level localization, will neither help nor confuse the LLM
in recognizing the previously seen vulnerability more than the
code itself, and thus it will not affect the repair results.

To scientifically validate this hypothesis we cannot use
the traditional approach used in software engineering which
tests for significant differences. We claim that two treatments
(showing the line or providing vulnerability information) have
the same effect. This is the same idea behind statistically
proving that a generic label drug has the same effect of a
branded label drug [27]]. We need to use a different approach,
and namely prove significant equivalence [28] and not just no
significant difference. In this set-up our alternative hypothesis
are hypothesis about equivalence.

gltuiv-inf0: There is statistically significant equivalence
in pei%)rmance between patches generated with prompts that
provide information on the type of vulnerability and prompts
that only mention the presence of a security defect.

Since LLMs are good at translating we expect the hy-
pothesis to hold for the transformed vulnerabilities in which
identifiers are in a language different than English. How likely
is an LLM that is not memorizing to generate a patch that is
identical to the known patch but for renamed identifiers?
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Fig. 2. Execution plan.

lllt . . . . . . .
eauiv-loc: There is statistically significant equivalence
in pe;f}ormance between patches generated with vulnerability
localization prompted at function and line level.
Then, we introduce a controlled error in the vulnerability

localization at the line level and repeat the evaluation.

RQ1lgrg(Error introduction) How many vulnerabilities
can LLMs fix when line-level localization is shifted?

Prompting an LLM with an incorrect vulnerability localization
may lead to two possible outcomes: the model might ignore the
incorrect line and regenerate the known fix, or it might fail to
recognize the original fixing pattern and produce an incorrect
patch — even in cases where it previously succeeded with
accurate localization. If the second outcome plays a significant
role, we would expect to see a decline in performance when
localization errors are introduced. We hypothesize that any
deviation from the correct line will be enough to trigger this
effect, and therefore we do not expect meaningful performance
differences between small (< 2) and larger (4, 8) displace-
ments. From 0 and 1 the difference will not be enough because
we cannot distinguish the “honest” and the “cheating” because
of the git diff window.

g(lfuiv-err-or der There is statistically significant equiv-
alence in the performance between patches generated with
prompts for which the line-level location is shifted by a small
(< 3 in magnitude) and a considerable (> 3) offset.

When the LLM is given a negative offset (before the
vulnerable line), the cheater LLM will just respond with the
known completion. When a positive offsets (after the known
vulnerable line) is given, the LLM might just hallucinate or
have a very poor performance (see Figure [T). So we expect a
different behavior between positive and negative offsets.

In the second part of the experiment, the reviwer LLM will
evaluate the patches generated in the first phase by discarding
wrong patches and saving the ones that seem correct.

RQ2 - Second opinion. How many incorrect patches can
LLMs detect before the testing phase?

If our overarching hypothesis holds, and LLMs just succeed
because they recognize the vulnerable code and repropose fixes
they have seen in their training, both patch generation and
reviewing are reduced to similar pattern-matching tasks.

alt . . . . . . . .
diff-review’ There is statistically significant difference in

the review performance between correct patches than wrong
but still plausible patches.
g(lltuiv-review: There is statistically significant equivalence
in the review performance between patches in the original
language and patches with renamed identifiers.
We will also run the reviewing process for patches generated

with the controlled displacement in the prompt.

RQ2ggrR - Second opinion with error. How many incor-
rect patches can LLMs detect before the testing phase?

Finally, we will perform manual validation of a subset of
the patches surviving the testing cases in each process.

RQ3 - Manual inspection. How many patches that pass
tests are semantically correct?

We will also investigate whether the justification of the LLM
is also correct, following the preliminary findings of [29].

V. ARTIFACTS
1) Dataset: We consider the following criteria:

D1: The dataset was used for evaluating LLMs for AVR, to
assess the impact of imperfect vulnerability localization and
cross-validation on the repair performance of the models.
D2: The dataset contains real-world data, as synthetic data
could distort performances (see the difference on synthetic and
real-world data by Pearce et al. [9]]).

D2: The dataset includes regression and PoV tests, since we
aim to perform an extensive evaluation of LLMs for AVR. We
need a reliable, automated way to determine which patches
preserve the functionality of the code and which successfully
repair the target vulnerability.

D3: The dataset includes diverse entries, as different types
would grant the most realistic performance results.

D4: The dataset contains single function vulnerabilities, as
addressing faults in different functions with a single LLM
query would pose challenges that are currently impractical.
D5: The dataset contains refactored vulnerabilities
(e.g..control flow has been changed [5] or identifiers
are renamed in a language that is not English), so that the
corresponding developer fix is not available.



TABLE III
PROMPT TEMPLATES WE PLAN TO USE FOR THIS STUDY.

ID  Description

Pl  General information + vulnerable function + output request
P2 PI + vulnerable lines marked with the suffix “// BUG”

P3 Pl + vulnerability description

P4 P3 + vulnerable lines marked with the suffix “// BUG”

For the listed criteria, our choice falls on the dataset
VJBench and VJBench-trans [5]] built to extend the benchmark
Vul4] [4]. These datasets contain Java vulnerabilities, of which
at least 50 single-hunk vulnerabilities (Wu et al. selected them
in 2023, but Vul4] was expanded since then). We aim to widen
this selection to single-function vulnerabilities and use the
scripts of the refactoring process of VIBench-trans to generate
vulnerabilities that the LLMs have never seen.

2) Prompts: Table summarizes the four prompt tem-
plates we plan to use, building on previous works that evalu-
ated LLMs for AVR [5]], [9] with two levels of information:

LO: The prompt contains the vulnerable lines, as the only
available localization (so P1 and P3). To generate a correct
patch from the function alone, without clues, the model must
have seen a very close human patch.

L1: The prompt includes the functionally correct vulnerable
code segment, with an indication of the security flaw. (P2,
P4) Rather than commenting the line as done in ythe state
of the art, by providing a functionally correct code segment,
we ensure that if the application of a patch generated by the
LLM does not result in the project compiling and passing the
regression tests, the model is to be blamed. Thus, we propose
to insert the comments marking the vulnerable lines as a suffix
rather than as a prefix of the code they contain.

In all cases we provide the code of the vulnerable function,
but in the first one we add no additional information (as if the
vulnerability localization was performed by ReVeal [30]), the
second provides line-level localization (like LineVul [22] could
do), the third one provides the vulnerability type (as ChatGPT
was prompted to do in [31]]) and the last one both line-level
localization and vulnerability type (as a SAST tool could
do [32]]). Besides the code and eventually the vulnerability
type, each prompt will include a request to generate a new
version of the given function to fix the present vulnerability.
If other prompts are equivalent to the bare one, we know they
all memorize and the additional information is irrelevant.

3) Models: To select the LLMs for our replication study,
we adopt the following criteria:

M1: Models should have already been evaluated in similar
pipeline. Both the evaluations of LLMs for AVR performed
by Wu et al. [5] and Pearce et al. [[9] respectively found that
Codex [33] was the best performing model. Unfortunately,
Codex models are no longer available, so Kulsum et al. 7]
had to base their approach on ChatGPT 3.5 [34], We build on
their choice and adopt it as the first model in our study.

M2: Best proprietary model and best open source model on
LiveBench [35|]] At the time of writing, the best-performing

proprietary model is GPT-04-Mini High [36] and the best
open-source model is DeepSeek R1 Distill Qwen 32B [37].
M3: Same model of M1 and M2 but released before VJBench
has been released. to further avoid memorization.

VI. EXECUTION PLAN

First, we outline the general pipeline setup, then we further
explain each step in the later subsections.

1) Setup: The full pipeline setup is shown in Figure [2]
under the RQ2prr—Second opinion with error sequence.
We extract prompts from the dataset built in Section [V-2
Depending on the RQ, prompts are either sent directly to the
patch-generation LLM or first undergo error injection, where
line-level vulnerability localization is deliberately shifted.
The LLMs are prompted to produce a fixed version of the
vulnerable function that preserves original functionality. For
RQs involving a second-opinion assessment, the generated
functions are passed to a second LLM, which outputs TRUE”
if the function is correct, or FALSE” if the vulnerability persists
or functionality is broken. All generated functions are tested by
replacing their vulnerable counterparts in the original project,
compiling, building and running regression and PoV tests.

2) Error introduction: We introduce a controlled error in
vulnerability localization. As in Setup, each LLM receives the
full vulnerable function as input. Since correction is impossible
when localization is incorrect at the function level, we apply
this step only when line-level localization is also provided.
For each such prompt, we generate six variants by shifting the
marked line by 2, 4, 8 lines—either above (e.g., -2) or below
(e.g., +2) the correct location. Variants that fall outside the
function’s scope are discarded. If testing all prompts becomes
too costly, we apply a Taguchi design [38]], [39] to design a
balanced experiment and reduce the number of evaluations.

3) Patch generation: We query each LLM (or LLM-based
setup, when we replicate VRPilot [7]) with all prompts from
or their error-injected versions. Each model is queried
exactly once per prompt version and tasked with generating
a repaired version of the vulnerable function. The proposed
function is then extracted and passed to the validation process.

4) Second opinion: For the RQs that require a second LLM
opinion, we prompt the second model to assess whether the
patch generated by the first model is actually correct. We
provide the second model with the input used for the patch-
generation phase and the new version of the function proposed,
and then we instruct the model to output “7RUE” if the
new version of the function fix the security vulnerability and
maintains the code functionality or “FALSE” otherwise.

5) Testing: Each attempt of a new patch is inserted in the
software project in place of its original, vulnerable counterpart.
Then, we attempt to compile the project, and eventually we
build the software and perform regression and PoV tests.

6) Manual inspection: To answer RQ3, we perform a
manual inspection of a random sample of the patches that pass
the testing phase. Two authors will independently go through
each patch in the sample and assess the correctness of the
patch. We refer to Bui et al. [3] and use “Correct” (fix the
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vulnerability and do not break the functionality), ‘“Partially
correct” (fix the vulnerability but break the functionality), and
“Wrong” (do not fix the vulnerability) for the classification.
The two reviewers will then resolve any disagreements through
discussion, or possibly with a third individual as adjudicator.
We also mark whether the LLM reasoning is right or wrong.

VII. ANALYSIS

For the analysis, we count the patches for which the project
still compiles when they are substituted for their vulnerable
counterpart, and the patches passing regression and PoV tests.

1) RQI: To verify the hypotheses about the prompt impact
that we presented in Section we will measure statistically
significant effects on the number of produced patches passing
each phase (generation, functional validation, security valida-
tion, manual inspection). We use TOST (two one-sided tests)
for testing equivalence [27]], [28]], [40] with Mann-Whitney-U
(MWU) as the underlying directional test with Helmert con-
trast for multiple comparisons [41]] in the configuration shown
in Figure [3] We compare the patches generated by prompts
providing the type of vulnerability against those without any
information on the type of defect to be repaired. Then, we
compare the patches generated with information about type
and line-level localization, and the ones generated with the
type and the function-level localization. Finally, we compare
the patches generated without the type, but with the line-level
localization of the vulnerability, and the patches generated
without the type and with the function-level localization.

2) RQ1ggrgr: For each displacement of the line-level vul-
nerability localization (0-baseline, 2, 4, 8), we compare the
number of patches that pass each pipeline phase. As for
the previous RQ, we use Mann-Whitney tests with Helmert
contrast to measure the differences between different groups.
As represented in Figure {4 first, we compare the baseline

with all the patches generated with errors in the line-level
vulnerability localization. Then, the patches with the smallest
error (2) against the ones with higher ones (4, 8). We need a
TOST to show a significant equivalence, while a single MWU-
will be sufficient to prove a significant difference.

3) RQ2 and RQ2prr: We perform the same analysis
as RQI and RQ1ggrg, but we also measure the number of
patches that pass the second LLM opinion phase.

4) RQ3: The Agresti-Coull-Wilson method [42]] allows
to establish accurate and reliable confidence intervals for
proportions. This interval will enable us to extrapolate the
false positive rate from sampled subsets of patches. By using
Cochran’s formula we need to analyze 96 patches to have
95% confidence interval with a 10% margin of error [41]

VIII. THREATS TO VALIDITY

Language and ecosystem. Our study focuses on Java vulner-
abilities. While aligned with most AVR datasets, this limits
generalizability to languages like C/C++ or Python, which
differ in structure and vulnerability patterns.

Sample size. Vul4] and its derivatives (e.g., VIBench, VI Trans-
Bench) contain only 50-100 manually curated, reproducible
vulnerabilities with tests. While valuable for evaluation, this
small size may limit statistical robustness and generalizability.
Model exposure. LLMs may have seen vulnerabilities from
Vul4] or VJBench during training. This risk, especially for
proprietary models, is mitigated by using refactored versions
and entries from VJTransBench for which there are no pub-
lished fixes available.

LLM selection. We evaluate top-performing models available
at the time. As newer versions may quickly outperform them,
we include both proprietary and open-source LLMs and doc-
ument model versions used.

Prompt construction. Prompts are manually crafted from prior
templates. Minor variations may affect LLM responses. We
aim to release all prompts to support replicability.

Manual evaluation. RQ3 involves subjective judgments, par-
ticularly for partially correct patches. Two authors label in-
dependently, resolving disagreements by consensus, though
ambiguity may remain.
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