arXiv:2507.21094v1 [cs.CR] 1 Jul 2025

SkyEye: When Your Vision Reaches
Beyond IAM Boundary Scope in
AWS Cloud

https://github.com/0x7a6b4c/SkyEye
Authored by :

MiINH HoANG Nguyen!
Université Libre de Bruxelles (ULB)

mhoangnguyen.work@gmail.com

ANH MINH Ho?
Technische Universitat Darmstadt (TU Darmstadt)
anhminhho2409@Qgmail.com

Bao Son To?

KrisShop, Singapore Airlines
tbson2000Q@Qgmail.com

1Pirst Author 2Second Author 3Third Author

Minh Hoang Nguyen is the Corresponding Author.

https://github.com/0x7a6b4c/SkyEye
mailto:mhoangnguyen.work@gmail.com
mailto:anhminhho2409@gmail.com
mailto:tbson2000@gmail.com
https://arxiv.org/abs/2507.21094v1

Contents

List of Tables

List of Figures

Abstract

1 Introduction

2

1.1

1.2

Backgroundo
1.1.1 Real-World Cloud Security Incidents
1.1.2 The Complexity of Modern IAM Environments
1.1.3 Detection and Remediation Gaps
1.1.4 Why IAM Enumeration Matters
1.1.5 Academic and Industrial Perspectives
Problem Statemento
1.2.1 TAM Misconfigurations,
1.2.2 The Visibility Gap
1.2.3 Complexity in Practice

Background Knowledge

2.1

2.2

2.3

24

2.1.1 History and Evolution of A WS TAM
2.1.2 Core Concepts and Terminology
Core IAM Entities
221 TAM Users
222 TAM Groups e
223 TAMRoles
2.2.4 TAM Policies
AWS TAM Organizational Structure and Scoping
2.3.1 AWS Accounts and Organizational Units (OUs)
2.3.2 AWS Organizations and Cross-Account Access
2.3.3 Delegated Administration and Trust Relationships
IAM Policy Language and Evaluation
2.4.1 Policy Document Structure (JSON)
2.4.2 Policy Elements (Effect, Action, Resource, Condition, Principal) .

2.4.3 Policy Evaluation Logic (Explicit Deny, Allow, Implicit Deny)

2.4.4 Condition Keys and Advanced Policy Constructs

iii

iv

—

SO UL UL W W NN

O © © © w3 I

2.5 Authentication and Authorization in AWS
2.5.1 Authentication Mechanisms (Console, CLI, SDK, API)
2.5.2 Temporary Security Credentials (STS, AssumeRole, Federation) .
2.5.3 Multi-Factor Authentication (MFA)

Related Works - Prior-Art Models and Frameworks

3.1 Introduction e
3.2 Tools/Frameworks Analysis
3.3 Conclusion e

SkyEye Framework and Proposed Models
4.1 Cross-Principal IAM Enumeration Model (CPIEM)
4.1.1 What is Single-Principal IAM Enumeration Model (SiPIEM)? .
4.1.2 What is Separate-Principal IAM Enumeration Model (SePIEM)?
4.1.3 What is the limitation of the single-principal or separate-principal
IAM enumeration model?
4.1.4 How SkyEye Framework and CPIEM mitigate these limitations? .
4.2 Transitive Cross-Role Enumeration Model (TCREM)
4.3 TAM Deep Enumeration Capabilities
4.3.1 Retrieval of In-Scope TAM Groups and In-Scope TAM Roles for
User Principals
4.3.2 Retrieval of Inline Policies for User Principals
4.3.3 Retrieval of Attached Managed Policies for User Principals
4.3.4 Retrieval of Inline Policies for In-Scope IAM Groups
4.3.5 Retrieval of Attached Managed Policies for In-Scope TAM Groups
4.3.6 Retrieval of Inline Policies for In-Scope IAM Roles.
4.3.7 Retrieval of Attached Managed Policies for In-Scope TAM Roles .
4.3.8 Alternative Retrieval by iam:Get AccountAuthorizationDetails
4.3.9 Inverse Enumeration Model for Attached Managed Policy
4.3.10 Deep Comparison Model for Policy Documents of Active Version
and Historical Versions
4.4 The Integration of MITRE ATT&CK Cloud

Evaluation

5.1 Proposed Scenarios

5.2 Scenario-based Benchmarking between SkyEye and other frameworks
5.2.1 Weighting Methodology for Proposed Scenarios
5.2.2 Calculation Methodology
5.2.3 Benchmarking Table

6 Future Works
7 Conclusion
8 Bibliography

Appendix

ii

27
32
36
42

42
43
43
44
45
46
47
48
49

ol
o2

55
95
61
62
64
65

66

67

69

73

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6

3.7

5.1
5.2

PACU - The AWS Exploitation Framework [1] 17
CloudPEASS - Cloud Privilege Escalation Awesome Script Suite [2] . . . 18
enumerate-iam - Enumerate AWS IAM Permissions [3] 19
CloudFox - Automate Situational Awareness for Cloud Penetration Tests [1] 20
ScoutSuite - Multi-Cloud Security Auditing Tool [5] 21
Stratus Red Team (DataDog) - Granular, Actionable Adversary Emulation

for the Cloud [6] 22
Cloudsplaining (Salesforce) - AWS IAM Security Assessment tool that

identifies violations of least privilege [7] L 23
Benchmarking Weights00 62

The benchmarking across SkyEye and 6 published frameworks by 22 pro-
posed Scenarios 65

il

List of Figures

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24

Permissions Simulation and Fuzzing models
Core of SkyEye - Cross-Principal IAM Enumeration Model (CPIEM)
The Interconnection in Cross-Principal IAM Enumeration Model (CPIEM)
Cross-Principal IAM Enumeration Model - Example Scenario - Stage 1
Cross-Principal IAM Enumeration Model - Example Scenario - Stage 2
Core of SkyEye - Transitive Cross-Role Enumeration Model (TCREM)
The Interconnection between Users in CPIEM and Roles in TCREM
Transitive Cross-Role Enumeration Model - Example Scenario - Stage 1 .
Transitive Cross-Role Enumeration Model - Example Scenario - Stage 2 .
Transitive Cross-Role Enumeration Model - Example Scenario - Stage 3 .
Transitive Cross-Role Enumeration Model - Example Scenario - Stage 4 .
How to define in-scope IAM groups and in-scope IAM roles?
The Retrieval of User Principal’s Inline Policies
The Retrieval of User Principal’s Attached Managed Policies
The Retrieval of In-scope IAM Groups’ Inline Policies
The Retrieval of In-scope IAM Groups’ Attached Managed Policies

The Retrieval of In-scope IAM Roles’ Inline Policies
The Retrieval of In-scope IAM Roles’ Attached Managed Policies .
iam:Get AccountAuthorizationDetails integrated into CPIEM and TCREM
iam:ListEntitiesForPolicy in Attached Managed Policy Enumeration . . .
Inverse Enumeration Model by iam:ListEntitiesForPolicy
Gathering Policy Documents of Each Customer-Managed Policy Version
The Core of Deep Comparison Model

37

49
20
o1
o1

The Integration of Severity-level, Abuse Methodology and MITRE ATT&CK 53

v

Abstract

In recent years, cloud security has emerged as a primary concern for enterprises due to
the increasing trend of migrating internal infrastructure and applications to cloud envi-
ronments. This shift is driven by the desire to reduce the high costs and maintenance fees
associated with traditional on-premise infrastructure. By leveraging cloud capacities such
as high availability and scalability, companies can achieve greater operational efficiency
and flexibility. However, this migration also introduces new security challenges. Ensuring
the protection of sensitive data, maintaining compliance with regulatory requirements,
and mitigating the risks of cyber threats are critical issues that must be addressed. Iden-
tity and Access Management (IAM) constitutes the critical security backbone of most
cloud deployments, particularly within AWS environments. As organizations adopt AWS
to scale applications and store data, the need for a thorough, methodical, and precise
enumeration of IAM configurations grows exponentially. Enumeration refers to the sys-
tematic mapping and interrogation of identities, permissions, and resource authorizations
with the objective of gaining situational awareness. By understanding the interplay be-
tween users, groups, and their myriads of policies, whether inline or attached managed
policies, security professionals need to enumerate and identify misconfigurations, reduce
the risk of unauthorized privilege escalation, and maintain robust compliance postures.
This paper will present SkyEye, a cooperative multi-principal IAM enumeration frame-
work, which comprises cutting-edge enumeration models in supporting complete situa-
tional awareness regarding the IAMs of provided AWS credentials, crossing the boundary
of principal-specific IAM entitlement vision to reveal the complete visionary while insuf-
ficient authorization is the main challenge.

Keywords: Amazon Web Services (AWS), Identity and Access Management (IAM),
Privilege Escalation, Enumeration, Reconnaissance, Offensive Security, Cloud Security,
Penetration Testing.

Chapter 1

Introduction

1.1 Background

The rapid migration of critical corporate infrastructure to cloud computing platforms,
most notably Amazon Web Services (AWS) has redefined how organizations control and
secure access to resources. Unlike traditional on-premises setups, where firewalls and
network segmentation provided primary security perimeters, cloud environments adopt an
identity-centric model: Identity and Access Management (IAM) is the central gatekeeper.
Every cloud operation spinning up an EC2 instance, accessing an S3 bucket, or managing
RDS databases depends on IAM to determine who is authorized to do what, when, and
how.

At its core, IAM facilitates secure delegation of permissions across individual users,
service roles, and automated scripts. However, this flexibility introduces complexity.
Policies can easily become overly permissive, especially in environments that use multi-
account architectures, federated identity providers, or automated resource provisioning
pipelines. These intricate relationships between policies, trust, and temporary credentials,
forming challenging attack surfaces for adversaries.

1.1.1 Real-World Cloud Security Incidents

Cloud TAM misconfigurations have directly contributed to some of the most significant
security breaches in recent history [3]:

« Capital One Breach (2019): A misconfigured web application firewall allowed
unauthorized access to AWS credentials tied to an EC2 metadata role. The attacker
used those credentials to retrieve sensitive data from approximately 106 million

customer records. This breach prompted a regulatory fine of around 80 million
dollars [9] [10].

« LAPSUSS Attacks (2022): The LAPSUSS$ acker group exploited stolen or
weakly protected cloud credentials, which enabled them to infiltrate major tech
firms including Okta, Microsoft, and Nvidia. Their campaigns highlighted the risks
introduced by token theft, phishing, and multi-factor authentication bypasses [11]

[12].

These incidents highlight that while cloud providers maintain physical security, the
responsibility for correct IAM configuration lies with customers, which is a gap that
sophisticated attackers can readily exploit.

1.1.2 The Complexity of Modern IAM Environments

Multiple factors contribute to the inherent complexity of IAM in contemporary cloud
environments. Enterprises frequently partition workloads across several AWS accounts,
utilizing AWS Organizations and cross-account roles to manage access at scale. This
segmentation, while beneficial for administrative separation and security, introduces in-
tricate trust relationships that are challenging to audit and maintain. The integration of
federated identities which are often via external identity providers, and the widespread
use of AWS Security Token Service (STS) for temporary credentials further expand the
potential attack surface.

A prevalent issue in such environments is the over-permissioning of roles. This may
arise from reliance on AWS managed policies, which are intentionally broad to accommo-
date diverse use cases, or from misapplication of permission boundaries and conditions.
As a consequence, principals may inadvertently receive privileges exceeding their opera-
tional requirements. Dynamic trust relationships, such as those formed through chained
role assumptions (for example, an ITAM role used by AWS Lambda invoking services that
subsequently assume additional roles), complicate the task of privilege analysis. These
scenarios often evade detection by static policy analysis tools, leaving organizations ex-
posed to subtle privilege escalation pathways.

Recent studies have demonstrated that IAM misconfiguration is not an isolated phe-
nomenon, but rather a systemic issue affecting a significant proportion of cloud deploy-
ments. Systematically exploitable vulnerabilities, often arising from the interplay of mul-
tiple policies and trust relationships, present persistent challenges to effective cloud se-
curity management.

1.1.3 Detection and Remediation Gaps

Existing governance solutions, including Cloud Security Posture Management (CSPM)
platforms and Cloud Infrastructure Entitlement Management (CIEM) tools, primarily fo-
cus on the identification of static misconfigurations. These tools are effective at flagging
explicit issues such as overly permissive IAM policies, lack of multi-factor authentication
(MFA), or the presence of unused credentials. However, they frequently lack the capabil-
ity to model contextual, multi-step privilege escalation chains, which may only become
apparent when policies are evaluated in a live operational context.

The evaluation of IAM policies in AWS is deliberately multifaceted, incorporating the
following layers:

o Identity-based policies

« Resource-based policies

« Service Control Policies (SCPs) in AWS Organizations [13]
e Permission boundaries

« Session-based credentials [1]

Without a holistic approach that considers these layers in aggregate, it is infeasible to
accurately determine the effective permissions granted to any principal. Tools developed
for static IAM misconfiguration detection, such as those by [15], have proven valuable for
identifying latent policy errors, yet they remain limited in their ability to model dynamic
attack paths that arise during runtime.

1.1.4 Why TAM Enumeration Matters

Comprehensive risk assessment of IAM configurations requires more than static policy
review. It necessitates the active enumeration of permissions to ascertain the practical
capabilities of identities under realistic conditions. This approach supports:

« Proactive defense: Identifying and remediating privilege escalation vectors prior to
exploitation.

o Realistic threat simulation: Enhancing red team exercises and penetration testing
with actual cloud session contexts.

» Regulatory compliance: Ensuring that granted permissions align with least-privilege
requirements as enforced in production.

Recent research, such as “Effective IAM Exploitation Cascade Detection” [16], cor-
roborates the feasibility and value of identifying multi-step escalation paths in complex
IAM configurations.

1.1.5 Academic and Industrial Perspectives

Recent academic studies support the viability and importance of live IAM context anal-
ysis:

» “Detecting Anomalous Misconfigurations in AWS IAM” [15] demonstrates how spe-
cialized detectors can highlight risky IAM patterns live .

» “Efficient IAM Greybox Penetration Testing” [17] proposes optimized TAM model
querying techniques for identifying privilege escalation with minimal footprint

These contributions underscore both the demand for, and the viability of, advanced enu-
meration tools capable of detecting escalation risk in real time.

IAM misconfiguration is not merely an abstract or academic concern; it is a perva-
sive and actionable threat, as evidenced by high-profile incidents such as those affecting
Capital One and LAPSUSS$. Although static analysis and compliance validation tools
are necessary components of a robust security posture, they are insufficient for capturing
the dynamic and contextual nature of privilege in cloud environments, and lacking deep
contextual awareness and attack modeling.

Academic studies and experimental frameworks confirm that live, multi-step TAM
enumeration is both achievable and necessary for securing cloud environments. This gap

in tooling motivates the development of a new generation of offensive-capable enumera-
tion framework designed to uncover and remediate risky IAM pathways before they are
exploited.

1.2 Problem Statement

As enterprises increasingly migrate critical workloads to public cloud platforms like AWS,
securing identity and access management (IAM) has become a defining challenge. Despite
AWS providing powerful IAM capabilities, the shared responsibility model places the
burden of correct configuration on customers. This has resulted in persistent and systemic
gaps between policy definitions and actual behavior, exposing organizations to substantial
risks.

1.2.1 TAM Misconfigurations

IAM misconfigurations are widely recognized as one of the leading causes of cloud security
breaches. According to IBM’s Cost of a Data Breach Report 2023, cloud-based breaches
incurred the highest costs among incident types, with a substantial portion attributed to
misconfigured cloud identity permissions [18]. Misconfigurations often stem from:

o Overly permissive IAM roles left in production for convenience or legacy reasons.
o Complex multi-account structures with interdependent trust relationships.
o Hardcoded credentials accidentally exposed in source repositories.

 Federated identity bridges (e.g., SSO with corporate identity systems) introducing
unforeseen trust boundaries.

1.2.2 The Visibility Gap

Most cloud security tooling focuses on static analysis of IAM policies, which is capable
of assessing their written definitions to flag misconfigurations. While useful, these tools
often:

o Fail to detect privilege escalation chains where combinations of seemingly benign
permissions lead to dangerous outcomes.

o Ignore temporal aspects, such as temporary credentials with powerful privileges.

o Lack understanding of context, particularly across federated identities or multi-
account structures.

The ENISA Threat Landscape 2024 notes that IAM-related misconfigurations and priv-
ilege escalation paths remain underexplored by traditional cloud security solutions, cre-
ating persistent visibility gaps for defenders [19].

1.2.3 Complexity in Practice

The difficulty lies not just in writing secure IAM policies, but in understanding how they
interact at runtime:

e Modern architectures like serverless computing introduce ephemeral roles.

» Resource-based policies (e.g., S3 bucket policies) introduce additional policy evalu-
ation layers beyond the principal’s direct IAM role.

» AssumeRole chains allow privilege escalation if misconfigured or misunderstood.

With the current static IAM validation tools which do not provide security teams
with a complete picture. A context-aware, adversary-perspective enumeration framework
is necessary to addresses the following:

o Map out privilege escalation pathways across services and accounts.

« Enable proactive threat hunting for identity abuse scenarios.

e Support red teaming with realistic attack path modeling.

» Validate principle-of-least-privilege assertions under adversarial conditions.

Without such an approach, security defenders or penetration testers operate with incom-
plete visibility in highly interconnected, dynamic environments. Furthermore, the preva-
lence and impact of IAM misconfigurations in recent high-profile incidents underscore
the inadequacy of static analysis alone. Dynamic, context-sensitive IAM enumeration
tools are indispensable for accurately assessing the real-world implications of granted
permissions.

Chapter 2
Background Knowledge

2.1 What is AWS Identity and Access Management?

AWS Identity and Access Management (IAM) is a comprehensive service provided by
Amazon Web Services (AWS) that allows us to manage access to AWS services and
resources securely [20]. TAM allows you to control who is authenticated (signed in) and
authorized (has permissions) to use resources. With IAM, we can create and manage
AWS users and groups, and use permissions to allow and deny their access to AWS
resources.

2.1.1 History and Evolution of AWS TAM

AWS Identity and Access Management (IAM) emerged in the early 2010s as a response to
the growing need for robust security controls in multi-tenant cloud environments, where
the ability to delegate and audit privileges became paramount [20]. Although its offi-
cial release date is commonly referenced as 2011, the underlying principle of adopting
least-privilege, separation of duties, and tighter governance had been taking shape even
prior to public announcement. Initially, AWS users were restricted to a single root ac-
count with unrestricted privileges, posing potential security and operational risks. With
TAM, AWS introduced the concept of distinct, fine-grained identities (users, groups, and
roles) to address these concerns. This shift allowed organizations to create multiple user
identities, each bound by well-defined permissions and governed by policies, effectively
implementing the principle of least privilege in AWS environments [20] [21].

Over subsequent years, AWS has iteratively enhanced IAM to account for expanding
customer use cases and complex regulatory requirements [22]. Notable milestones include
the introduction of federated identities (enabling single sign-on with identity providers
such as SAML 2.0 and OpenID Connect), managed policies (providing reusable sets
of permissions), and grammatical improvements to policy language for clearer, more au-
ditable rule sets [21] [23]. Enhancements such as service-linked roles enabled AWS services
to interact on behalf of a user with meticulously scoped permissions, while permission
boundaries made it practical to enforce upper limits on user privileges [23]. Attribute-
based access control (ABAC) extended IAM’s capability to evaluate complex attributes
(e.g., tags, organizational units), supporting more dynamic, context-aware authorization
logic in large-scale deployments. Collectively, these innovations highlight AWS’s trajec-
tory planning toward increasingly granular, automated, and compliance-driven access

control frameworks [24].

2.1.2 Core Concepts and Terminology

AWS TAM distinguishes between authentication (verifying the unique identity of users or
services) and authorization (determining the set of actions permitted to those entities)
[20]. At its core, IAM leverages several foundational elements:

» Users represent tangible (human) or programmatic identities that require authen-
ticated access to AWS services. Each user is assigned unique credentials: passwords
or access keys, and is bound by the principle of least privilege to reduce the exposed
threat surface [25].

» Groups serve as logical collections of users, enabling streamlined administration by
centralizing permission sets which is often in managed policies, that can be applied
or removed in a single action [20].

» Roles constitute assumable identities, allowing AWS services, external users, or
other AWS accounts to inherit permissions temporarily. Roles are integral for
cross-account access, federated login, and machine-driven tasks, as they mitigate
permanent credential storage and emphasize short-lived credentials [27].

These identity constructs function through policies with JSON-based documents spec-
ifying allow or deny rules for individual actions and resources [23]. Policies may be
customer-managed, AWS-managed, or inline, and they subscribe to a default-deny strat-
egy, adhering to explicit permission grants or denials under AWS’s policy evaluation
process [24]. The interplay of policies, principals, and resources underscores IAM’s over-
arching security design, which aligns to recognized best practices:

« Principals: Authenticated entities (e.g., TAM user, IAM role, federated user) per-
mitted to make requests.

« Resources: AWS services or objects (e.g., Amazon S3, Amazon EC2, AWS Lambda)
targeted by access requests. Actions: Specific operations authorized or disallowed
(e.g., s3:ListBucket, ec2:Describelnstances).

« Conditions: Additional contextual checks (often based on IP, time of day, or user
attributes) that refine authorization rules.

« Temporary Security Credentials: Short-lived credentials tied to roles or feder-
ated access, mitigating the risk of long-term credential compromise [21].

IAM’s continued evolution also integrates advanced governance layers, such as AWS
Organizations for multi-account management, enabling consistent enforcement of policies
across a fleet of accounts [22]. By coupling IAM’s role-based constructs with condition-
based and attribute-based controls, organizations can better adhere to regulatory obli-
gations, maintain separation of duties, and instantiate defense-in-depth models [22] [24].
This holistic design philosophy positions IAM as a versatile, extensible foundation for
cloud security, exemplifying AWS’s strategic emphasis on continuous refinement of key
identity and access mechanisms in alignment with modern enterprise demands.

2.2 Core IAM Entities

AWS Identity and Access Management (IAM) comprises several principal entities essen-
tial for controlling authentication and authorization flows within Amazon Web Services
(AWS). These entities include users, groups, roles, and the various policy configurations
that govern operational privileges. When orchestrated appropriately, these constructs
uphold security requirements such as least privilege, defense in depth, and regulatory
compliance obligations. The subsequent discussion focuses on the multitude of policy
mechanisms provided by IAM, illustrating how each policy type imposes specific con-
straints and thereby contributes to holistic access governance.

2.2.1 TAM Users

An TAM user is an entity that we create in the AWS environment to represent the
person or application that interacts with AWS resources. Users can log into the AWS
Management Console, interact with AWS services through the AWS CLI, and use AWS
APIs. Each TAM user is associated with a unique set of credentials and permissions
that illustrate what actions the user can perform. Users are often created for individual
employees or applications that require direct access to AWS resources [25].

2.2.2 TAM Groups

IAM groups are the collections of IAM users, which are often used to centrally manage
the privileges of a group of users. We can use groups to simplify the management of
permissions for multiple users [26]. Instead of assigning permissions to each user individ-
ually, we can assign permissions to a group, and all users in that group will inherit those
permissions. This makes it easier to manage permissions for users with similar access
needs, such as teams or departments within an organization.

2.2.3 TIAM Roles

An TAM role is an IAM identity that we can create in our AWS account that has specific
permissions. The roles are intended to be assumed by trusted entities, such as IAM
users, applications, or AWS services [27]. Unlike IAM users, roles do not have long-term
credentials (passwords or access keys) associated with them. Instead, when we request to
assume a role, we are provided with temporary security credentials. Roles are particularly
useful for granting access to resources across different AWS accounts or for allowing AWS
services to interact with each other on your behalf.

2.2.4 TAM Policies

IAM policies are formal statements, expressed in JSON, that define granular permis-
sions associated with particular IAM entities [28]. By specifying the conditions under
which certain operations are allowed or denied, policies enable secure management of
multifaceted AWS environments. This policy-driven model is anchored by a default-
deny approach, wherein all requests are implicitly denied unless explicitly allowed. The
structured schema of TAM policies further simplifies audits and compliance reporting by
providing a declarative representation of permissible actions.

« Embedded Inline Policies

Inline policies in AWS Identity and Access Management (IAM) are policies that are
directly embedded within a specific ITAM user, group, or role. These policies main-
tain a strict one-to-one relationship with the entity they are attached to, meaning
they are specifically tailored to the needs of that single user, group, or role. In-
line policies are particularly useful when we need to define unique permissions for
a specific entity and not intended to be shared with others [29]. For instance, if
a particular TAM user requires special permissions that no other user needs, an
inline policy is a suitable choice. When the user, group, or role to which an inline
policy is attached is deleted, the inline policy is also deleted. This tight coupling
ensures that the unique permissions granted by the inline policy are removed when
the entity is no longer needed, thus enhancing security by minimizing the risk of
orphaned policies that could be misused.

o Attached Managed Policies
Attached Managed policies in AWS TAM are reusable policy documents that can be
attached to multiple IAM users, groups, or roles [29]. This policy provides several
advantages, including ease of management, as any updates to a managed policy
automatically propagate to all entities that the policy is attached to. This ensures
consistency and simplifies the process of updating permissions across multiple users,
groups, or roles. There are two types of managed policies: AWS-managed policies
and customer-managed policies.

— AWS-managed policies: These policies are pre-defined by AWS and de-
signed to provide permissions for common use cases, making it easier for
administrators to grant necessary permissions without writing policies from
scratch [29].

— Customer-managed policies: on the other hand, these policies are cre-
ated and maintained by the AWS account administrators. These policies offer
greater flexibility and customization, allowing organizations to define specific
permissions tailored to their unique requirements [29].

— Customer-managed policy versioning: Customer-managed policy ver-
sioning is a feature that allows administrators to manage and maintain dif-
ferent versions of their custom IAM policies [30]. When we create a customer
managed policy, AWS allows us to update and refine it over time without losing
the previous versions. Each time we make a change to a policy, a new version
is created and stored, with AWS supporting up to five versions per managed
policy, including the current version. This capability is particularly useful for
auditing, compliance, and troubleshooting, as it provides a historical record
of policy changes and ensures that administrators can track how permissions
have evolved over time.

e Permissions Boundaries
Permissions boundaries serve as a secondary layer of containment on top of standard
policies, restricting the maximum privileges an IAM entity can attain, regardless
of other attached policies [31]. This mechanism operates in conjunction with the
principle of least privilege, ensuring that no single user or role can escalate its

10

privileges beyond what the boundary permits. Permissions boundaries thereby
reinforce secure delegation models, enabling delegated administrators to define or
manage policies without the risk of granting excessive permissions to themselves or
others.

« Service Control Policies (SCPs)

Service Control Policies (SCPs) are enforced at the organization or organizational
unit level through AWS Organizations [32]. Unlike standard TAM policies, SCPs do
not grant permissions. Instead, they act as overarching filters that define allowable
operations, effectively constraining the maximum effective permissions within an
organizational hierarchy. By applying SCPs, enterprises can institute restrictive
baselines that align with top-level compliance mandates, ensuring that individual
accounts cannot override organizational security boundaries.

« Resource-Based Policies

Resource-based policies are embedded within specific AWS resources (for example,
Amazon S3 buckets or Amazon SNS topics), permitting cross-account access or
fine-tuned sharing of those resources [28]. These policies define who can perform
which actions on the resource and under what conditions. Resource-based policies
differ from identity-based policies (inline or managed) by stationing the permission
structure alongside the resource in question rather than tying it to a principal.
This alignment is advantageous in cross-account scenarios, simplifying the secure
granting of resource access to external entities.

o Session Policies

Session policies are temporary policies passed when principal entities assume roles
via the AWS Security Token Service (STS) [23]. These transient, context-specific
policies layer atop the existing identity-based permissions, further limiting the max-
imum permissions that a session can acquire. Session policies enable use cases such
as short-lived privilege escalations for break-glass scenarios or environment-specific
restrictions during continuous integration and deployment processes. By employing
session policies, organizations can improve real-time governance, restrict credential
lifetimes, and implement dynamic access control constructs.

2.3 AWS IAM Organizational Structure and Scoping

AWS provides a hierarchical organizational model encompassing accounts, organizational
units, and groups of resources to facilitate structured access control and multi-account
administration. This overarching model is primarily managed through AWS Organiza-
tions, enabling consolidated billing, centralized governance, and robust identity and access
management controls. Such layered structures are particularly relevant for large enter-
prises or government agencies requiring stringent isolation of workloads, cost visibility,
and compliance enforcement across multiple AWS accounts.

2.3.1 AWS Accounts and Organizational Units (OUs)

AWS accounts serve as fundamental security and billing boundaries, delineating resource
ownership and responsibility while enabling precise cost tracking [33]. Each account con-

11

tains its own collection of services (for instance, Amazon EC2, Amazon S3) and is subject
to the identity, access, and networking configurations defined therein. Placing workloads
in separate accounts bolsters the defense-in-depth model by preventing unauthorized
lateral movement across environments. Furthermore, the use of separate accounts aids
in isolating development, staging, and production environments, simplifying regulatory
compliance and incident containment.

Organizational Units (OUs) are logical containers that group AWS accounts under
a hierarchical structure within AWS Organizations [31]. By segmenting accounts into
OUs, administrators can apply Service Control Policies (SCPs) to enforce baseline se-
curity measures at the organizational or unit level. This approach streamlines policy
management, ensuring consistent governance mandates (such as encryption requirements
or restricted AWS regions) across multiple accounts. OUs also facilitate simpler access
auditing, as SCPs logically cascade to all member accounts, leaving minimal room for
unauthorized deviation from organizational policy.

2.3.2 AWS Organizations and Cross-Account Access

AWS Organizations provides a centralized console to manage multiple AWS accounts
under a single master (also referred to as “management”) account, thus unifying billing
and security oversight [35]. Through AWS Organizations, administrators can create new
accounts programmatically, migrate existing ones, and apply organization-wide policy
constraints via SCPs. These capabilities reduce operational overhead by promoting con-
sistency in identity configuration, logging, governance, and cost management across ac-
counts.

Cross-account access capabilities within AWS Organizations are established through
roles, trust policies, and resource-based permissions [36]. By configuring an IAM role in
one account with a trust policy that references a principal entity in another account, AWS
administrators can enable secure resource sharing without duplicating user credentials.
This trust-based mechanism underscores the principle of least privilege, as cross-account
roles typically grant only the minimum necessary level of authority. Enterprises frequently
utilize such cross-account constructs for shared services (e.g., logging, monitoring) or
for delegated administration of centralized resources, reinforcing the advantages of both
segregation of duties and cost accountability.

2.3.3 Delegated Administration and Trust Relationships

Delegated administration refers to the distribution of administrative privileges to spe-
cific subgroups or accounts within an organization, so that these subgroups can manage
certain AWS services or resources without requiring access to the root account’s creden-
tials [37]. This model bolsters resiliency and security by compartmentalizing privileges
among trusted administrators, thereby reducing the blast radius of a potential breach
or misconfiguration. In practice, delegated administration is implemented through IAM
roles and corresponding trust relationships that define which principals can assume an
administrative role.

12

Trust relationships are integral to secure cross-account interactions, as they define the
principal entities permitted to assume an IAM role in a target account [36]. Adminis-
trators construct trust policies, typically in JSON, specifying the conditions under which
access is granted. This includes referencing the source account or user, the allowed role to
be assumed, and optional condition-based controls such as Multi-Factor Authentication
(MFA). By carefully crafting trust relationships, organizations uphold security best prac-
tices, preserving the integrity of cross-account workflows while aligning with compliance
imperatives stemming from frameworks such as ISO 27001, PCI DSS, and FedRAMP.

2.4 TAM Policy Language and Evaluation

AWS TAM policies regulate access decisions through JSON-based documents that ad-
here to a specific schema, defining the permissions granted or denied to authenticated
and authorized entities. Unlike traditional access-control models, IAM policies embrace
fine-grained permissions, incorporate explicit deny mechanics, and enable context-aware
constraints through conditions. This multifaceted approach reflects AWS’s commitment
to least privilege, ensuring that cloud environments remain both secure and adaptable to
evolving organizational needs.

2.4.1 Policy Document Structure (JSON)

An TAM policy document comprises a series of JSON statements, each of which includes
relevant attributes for governing access rules [28]. Typical attributes in the JSON schema
include “Version,” which declares the policy language syntax, and “Statement,” an array
of objects that encapsulate specific permission directives. In many cases, policy docu-
ments also include “Id” elements to facilitate policy auditing or reference mapping in
large-scale deployments. For ease of maintenance, policy authors often rely on AWS-
managed policy templates or reuse common statements in customer-managed policies.
This uniform structure ensures that security teams and automated tools can parse, vali-
date, and enforce policies consistently across diverse AWS services and accounts.

2.4.2 Policy Elements (Effect, Action, Resource, Condition, Principal)

At the core of each statement within an IAM policy document are five key elements: Ef-
fect, Action, Resource, Condition, and Principal, each of which specifies a distinct facet of
permission logic [38]. The “Effect” element declares whether the statement grants (“Al-
low”) or denies (“Deny”) the specified permissions. “Action” enumerates the API calls or
operations governed by the rule (for example, “s3:GetObject” or “ec2:StartInstances”).
The “Resource” field identifies the AWS assets or services the effect applies to, frequently
using Amazon Resource Names (ARNSs) to pinpoint targets. In more advanced policies,
the “Condition” element refines permissions based on contextual keys, including IP ad-
dress ranges, dates, or user attributes. Finally, the “Principal” element indicates the user,
role, or entity that is subject to the policy, which can include cross-account or external
Federated Identities where trust relationships are in effect.

13

2.4.3 Policy Evaluation Logic (Explicit Deny, Allow, Implicit Deny)

IAM policy evaluation follows a sequential mechanism where AWS first applies an implicit
deny to all unreferenced actions and resources, effectively defaulting to “no access” [24]. If
a policy statement explicitly denies an action, that instruction supersedes any opposing
“allow” statement. This explicit deny principle is especially critical for implementing
overarching security guardrails, ensuring that certain operations remain inaccessible even
if inadvertently allowed in a subordinate policy. The final step in policy evaluation
confirms whether the request is allowed by at least one relevant policy statement; if not,
the implicit deny persists. Thus, a combination of explicit deny, allow statements, and
a pervasive default-deny posture fortifies the system against misconfigurations, ensuring
that access privileges remain carefully controlled.

2.4.4 Condition Keys and Advanced Policy Constructs

Condition keys augment the granularity of [AM by enabling context-sensitive permission
decisions, often mandated by strict compliance or multi-tenant architectures [39]. The
“Condition” element can reference built-in AWS keys such as aws:Sourcelp, aws:CurrentTime,
or aws:SecureTransport, or custom keys defined through AWS services. An illustrative
example materializes when restricting AWS Management Console logins to a specific

IP range or requiring Multi-Factor Authentication (MFA) for critical API operations.
Beyond individual conditions, policy authors may combine multiple keys using logical
operators, increasing the precision of authorization models.

Advanced constructs also include attribute-based access control (ABAC), which lever-
ages resource tags or user attributes to assign permissions dynamically [410]. This pattern
significantly reduces administrative complexity, as a well-defined tagging schema can re-
place numerous static policies. Coupled with other AWS innovations, such as prefixes
and policy templates, these advanced condition keys and policy features ensure that or-
ganizations maintain both the flexibility and rigor required in modern, large-scale cloud
security architectures.

2.5 Authentication and Authorization in AWS

Authentication and authorization in AWS constitute the primary pillars of Identity and
Access Management (IAM). By requiring users and services to establish their identities
and limiting their permissions through IAM policies, AWS ensures robust protection of
cloud assets. IAM implements various authentication methods, including the AWS Man-
agement Console, Command Line Interface (CLI), Software Development Kits (SDKs),
and direct Application Programming Interface (API) calls, all governed by the principle
of least privilege. These authentication mechanisms affirm user identity, after which IAM
policies determine the permissible scope of operations on AWS services and resources,
thus creating a foundational layer for securing cloud infrastructures conforming to indus-
try best practices.

14

2.5.1 Authentication Mechanisms (Console, CLI, SDK, API)

AWS supports multiple authentication avenues to accommodate diverse operational sce-
narios and security postures. The AWS Management Console, a web-based graphical
user interface, is often favored for interactive tasks such as configuring services, preview-
ing logs, or performing administrative functions. For developers and DevOps teams,
the AWS CLI and SDKs offer programmatic access to AWS resources, enabling script-
based or application-driven administration of services like Amazon S3, Amazon EC2,

and Amazon RDS [11]. Interaction at the API level provides direct access to AWS in-
frastructure via HT'TP requests, affording fine-grained control in automated and custom
integration workflows [12]. Each of these authentication methods relies on credentials,

either long-lived or temporary, to verify the user identity and link ensuing API calls to
the corresponding TAM policies.

2.5.2 Temporary Security Credentials (STS, AssumeRole, Federation)

Temporary security credentials mitigate some of the risks posed by long-lived credentials
by defining a constrained lifespan for access tokens, thus reducing their exposure window
[13]. AWS Security Token Service (STS) underpins this concept by issuing time-limited
credentials upon request, enabling entities to perform only the actions allowed under the
associated IAM policies. Common STS scenarios include AssumeRole, which facilitates
cross-account access and delegating privileges to AWS services without exposing sensitive
credentials [11]. Additionally, TAM supports identity federation, granting temporary
AWS access to users authenticating through external identity providers, such as Active
Directory Federation Services or SAML 2.0-based solutions [15]. This federated model
allows organizations to preserve existing user directories and authentication workflows
while enforcing AWS policies and restricting session duration in alignment with security
best practices.

2.5.3 Multi-Factor Authentication (MFA)

Multi-Factor Authentication (MFA) offers an elevated layer of security by requiring users

to present an additional factor beyond their password or access key [16]. IAM supports
multiple forms of MFA | including virtual MFA applications (e.g., Google Authenticator),
hardware MFA tokens, and Universal 2nd Factor (U2F) devices [17]. Administrators

can mandate MFA at sign-in or at the execution of sensitive API operations, tightening
defenses against compromised passwords. Notably, combining MFA with conditional
IAM policies and short-lived credentials helps enforce strict access requirements while
maintaining operational flexibility. Numerous regulatory frameworks, such as PCI DSS
and FedRAMP, endorse MFA as a baseline criterion for safeguarding cloud environments,
making MFA adoption a central component of robust cloud security strategies.

15

Chapter 3

Related Works - Prior-Art Models and Frame-
works

3.1 Introduction

This chapter will begin with an introduction to recent research, models and frameworks,
tools on cloud security, with a particular focus on cloud IAM enumeration and cloud priv-
ilege escalation. We will first examine framework and tools to gain a deep understanding
about its capabilities, methodologies and core logic, as well as its current drawbacks and
gap. Next, we will further analyze its limitation to improve by proposing and developing
a new framework that integrates our cutting-edge models.

3.2 Tools/Frameworks Analysis

16

[1] romouresy woryeyo[dxy SMV OUL - NDVd “T°€ d1q%L

‘syged o3o[1A11d ULPPIY JO AISAODSIP SAIOR JOU
‘SuUOT)RIN3YUOD UMOUy Jo uoryejrojdxo asrurordurod
1sod 01 Aftrewrad pauyuod st AN s, NOVd
‘syped oaryisuel) ojerownud Jo syderd o8oriarad
PlIng 0} UOIjeWOINE JINOYI A\ "SIUSUUOIIAUD
ostrdIogue o31e[Ul JueAS[Rl A[3UlsBOIOUL

ST UOTYM ‘UOT)e[RIse 939[IALId JUNODIDR-SSOID
SUIA[OAUT SOLIRULSDS UT AI[I9T S3T SUIITUI]

A[oI0A0S ‘SUOIIRZIURSIO 10 SJUN0DDR GANY o[dIynua
sso1oe sdIysuorje[al Jsnij [9pou Jou s90p NHVJ
1R} ST YORGMRIP [ROIILIO IOYJOUY ‘SOLIRSIOADR
pareonysiydos £q paieaodsIp syjed uore[eISs
o8or1aLId priom [eal o) pulyaq Je] seydeoidde
poadiios 1o o19e)s ‘A[pidel seAjord SANY

SY ‘SIdV SMV PIepuei)s pue suoljor Umous uo
A[oarjue gsowfe sorfad 3] ‘syjed yoejje jordxe-uou
I0 UMOUNUTN ISAOISIP 0} Suryse) uoljeinuriod

I0o 3uizznj Jo w0} Aue juowe[duWl J0U SOOP
NOVd ‘Aqreuonippy -1ojerado oyy Aq Surpdrios
pue SISA[eUR [RNURUW SAISUI)XO INOYIIM UTRYD
o8o[1aLId 2I19US STY) POISAOISIP A[[edIjRUIOIN®
aaey] jou pnom ‘A3ojoporjewt [edourid-o[3urs
Ui uorye[ost ur pajerado Jr ‘NOV I

S[00], “ejep 9jeIl[Jxe A[@lew)n pur ‘s1ayong ¢g
OAT)ISUDS §S900R ‘soFo[IALId 9)e[edse 0} suorssiurrod
JNV] @AIsse0xo pajio[dxoe Uy} pue S[RIJUOPIID
SMV Arerodwe) ureiqo oy LAriqersuna JYSS

ue poajio[dxe Ioyder))e oY) 9IoYM SUOIPRINIYUOISTUL
JO Ureyd & PoA[OAUl GT()Z Ul yoealq au() [eyde))
oy} ‘ojdurexs 10 ‘Ajredsip [erjur)sqns e S[BOASI
‘sdrgsuoryerar 4smniy 10 saijod 90Inosa1 ysnoayy
uoryeesse o8or1arid Tedrourid-ssolo s[rejue
A[puenbal] JUSWOAOW [RIS)R] 218U M ‘SHOR)JR

pnopo [enjoe o1 siy) surredwo)) 901 10 I9sn
o[3urs e jo suotssiuwrrod o) 0} POYWI[ST IX)UO0D
uoINoexe yors pue ‘spedourid o[diynur ssoioe
UOI)R[RISS JO SUIRYD JSI[10 AJIJUOPI A[[edljemio)ne
10U S9OP 1 ‘YORGMEIP 9[(BIDIIOU JSOW SIT

st qureI)suod [edrourid-o[3urs oy], ‘£31INo9s Pnoo
WIdpow SUIAJOAUL SUOIIRIOdO SAISUSJJO I0] Sealr
[BIONLIO JO Ioquinu & Ul Suroe| sI DV ‘se[npowt
uo19e)10[dXe JO UOI109[[00 Su01)s ® Suiary 931dso(]

‘98parmouy
y1edxe Surrnbar ing AIqixay Sutald
‘U011010STp S, 103eI9d0 O} 09 SUOISIIAP

9s01[) $oABd[[009 AYT, "(o[01 e Surwnsse
109ye suoddey reym ‘3'9) suorssiurrod
OAI}ISURI} JO [BSIOARI) DAISINODI
pojewIoIne ou s 0107} Mg ‘UOIIRIOUINUD
OIWRUAD IO B)epD Payded JO A}IpI[eA 93} UO
spuadep dogs uoryelo[dxe yoey ‘sonpow
uoeM10q 9ouaIe)el MoInb I0J aseqelep
[euraul s, DY Ul s)nsal suryoe))
‘syoe)ye wIojed I0 sSUIpUY oyepI[eA

09 s[[ed [JV [ead Sunnoexy ‘e[qeordde
uwoym [JV AdrjoJredouliJojenuig

oy} Sursn suoissiuriod 3UIISo], ‘S[RIJUSPIID
SMV pepraoad oyl 01 d[qe[resr
suorssturiod pue s90INO0soI JUljRISWINUG
Ipunore seA[oAsl A30[0pPOoYjoul 910

oy J, "A[sso[wreos sonbruyoe) uorjeIoWNUD
I0 j10[dx0 WI03STD 1191} PP 09 SIoUIea}
PoI pu® SIOINQLIJUOD SMO[[R UIISOP
Ie[npoul oy J, ‘[[oYSs 9AI}ORIdUI oY) UWIOI]
possed sjuowndie pue (uorounj ()urewr)
sjutod A1jue poziprepue)s yjim o[y
UOYILJ © S PaINIONI)S SI SNPOW Yoey
'sy[seq oyroads urojred 03 A[oA110RISUT
SOINPOW SPRO[I9SN 91} 9IS M

dooy 2100 ' YIIM JIomouIelj paseq-UoylAJ
‘rempou ® se 9]Ing st NHVJ

*sao1AIes pue spedourid
ssoqoe dewr uorjeresss ue urp[mg
uey) I9Yjel Op URD [RIJUSPAID SIYY

reym sI sndoj Arewrrid s3] “Iosn oYy
Aq poydrios A[eoyroads ssefun sureyo
redounid-1ynuw jropdxe A[esrjewojne
10 9)®[e1I0D 1, useop 1 ‘sdIysuoiyeol
o[oyewnssy JuljeIouINUd

10] so[upowt seyq (1HVd ofiym
‘Tonomol “(Surysey Ayjresss ut [nydiey)
wey) Surnoexe A[enjoe noyim
S[RIJUOPAID USAIS 91} I0] Poaddns
JYSTW SUOIIDR JeyM 3S9) 0} 1 SUIMO[[R
‘s 1dV 4£orodredoutigajenuig

o) Sursn semijod uorssturiad

INVI dre[nuts 0} A1[iqe 91 st NV
01 onbrun Aj1iqeded 9100 Y *(S991AI0S
Sumnyendruew 10 eyep SUIPRI XS
-8'9) sonpow uoryeyroldxy

{(s&o] sse0oe mou SurjeaId *3-9)
so[npow 90ua)sIsIog ‘(sdrysuoryeral
18119 10 samIjod Ny peInsyuoosiua
ySnouay) se8oqiarid aje[esss

ued jey) suoroe Surkjryuapr ¢-§-9)
SO[NPOW UOIYR[BISD 9F[IALL] (s193onq
¢g ‘semrjod ‘suorsstuiad ‘sajol V]
3urjelownue ‘°3'9) so[npour uoodY

:se yons ‘uorjouny £q pozriode)ed
sempow snorewnu sjroddns (003 oy T,
"0 §S900® Sey (9DIAIOS IO ‘O[01 ‘I9sn)
redoutad ogroads jey) jeym Surjiojdxe
UO SOSNOO0J UOISSOS UOTINODXD [ord 1Y)
Surueowr ‘(9x0ju0d edourid-o[Surs)
S[RIJUOPID SA\Y JO 10S o[3uls

® 3uisn 9jeiodo 0} paulIsep SI [009
9], "JUSUIUOIIAUS PNO[D dYJ UTYIIM
9je[RISO pue ‘}ro[dxo ‘ojeIowNUD

09 srenuepard parddns Juisn

IdV SMV U} 1M 3urjorrojul punote
soAfoAal Ayiqeded urew s,NOHVJ

*SUOI}RINSYUOISTW 1O

S[eruepaId [Jy postuolduod eia
§S000® [RIJIUI POUIRI(O ApRaI[R Sey
Aresioape ue uaym Afremorjred
‘suoryerado pasnooj-S MY

I0J AjIunuwimiod A)1Inoos

Pno[o 2AISUSjjo oY} uryyim odess
® 9W009q SBY 1DV 'Popesu

Se So[NPOW [BNPIAIPUI 9JNIOXS pUR
PeO[01 SIoSTL SUIMO[[R ‘OATIORIOIUL
ST pue UOY)AJ U UDIJLIM

ST YIOMOWIRIJ O], "SIUSWUOIIAUD
SMV 2surede syse) oAISUS[O
I0YJ0 PUR ‘JUSUISAOU [RIS)R]
‘uor)RIIUXS R)RP ‘UOI}R[RISD
a8o[1atad wrojred ued gy
So[NpowW SULIDJJO ‘A11INDDS SAISUDJO
10J 9ymng-esodand st NHVJ

‘s[007 u00a1 MY osodind-Terousd
ONI[U[) "SOOIAIOS GA\Y PU®R ‘So[O1
‘serjod NV Jo suoryejuewa[duur
oM IO SUOI}RINIYUOISTUT
Sunjrojdxs uo Sursnooj Aqurewrad
‘spromowrety uorjejrordxe-jsod
IR[NPOW & Se PaINJONIIs

ST NOVd ‘sqeT £1moag ouryy
Aq podo[eAd(] *SHUSWUOIIATD
SOOIAIOG (OA\ UOZRWY JO AJLINOos
oy} SurIpne Ul sIourea) pal

pue s199s9} uoljerjouad jsisse 09
pouSIsep Iomouwrel uorjejordxs

SMV 9oanos-uodo ue st NOHVJ

sdex) /syopeqmea

21801 810D pue SaI30[OPOY IO

senjIiqede)) sjIomawrel/[00T,

uornydirioso(q

17

[z] 91mg 1dLIOG SWIOSOMY UOIYR[RISH 98S[IALL] PO - SSYHJPNOL) '€ 9[qRl,

‘yoealq oY}
09 Surnqruoo sdigsuorjear Isna) 9dIAIS-SSOI0
POI0A0DSIP 9ARY)1 P[NOM IOU ‘A[[edIjReiojne

yged xoelje areidwod oy dewr 0} o[qe U] SARY]
j0u pmom 91 g -sorrod Ny pouoissturiod-IoA0
se ons ‘suoljeIn3yuodsIul [eNPIATPUT POYIJUapI
oARY Aew 11 ‘OLIRULDS [oraIq du() [ejide)) oY) ur
posn usdq pey SSYHJPNOLD JI "dseq S8pajmouy
ST Ul pouyep Apeal[e s eym Uo A[}o113s SuIsnooj
‘S90RJINS IOB))R UMOUNUN ZZNJ IO 91I0J-091Iq

07 1dwegye jou seop 1 ‘Afrerruig (sredourd

10 SJUNODO® JI9Y0 9OULISJAI Je() sororjod

193onq €§ *3'9) syoryye Ao1jod paseq-s0Inosal

10 sdIysuoI)e[od JSTLI} SAI}ISURI) JO UOIIRIOUINUD
Aue wrojied jou seop SSYHJIPNO[D eyl st del
Iofew I0Y)OoUY "SOLIRUSDS [ONS o[pURY A[IUOIIND
j0U S90p SSYHJPNO[) PU® ‘SIUSWUOIIAUD

pnopo xo[dwos ut j10[dxe A[SUIseaIdul SIoydr)je
1R} osnqe o3o[1ALId JO puly oy} A[}oexo ole SUreyd
uorje[esss doy-1pnua 9say [, (I 2[0Y Pose[iallg
IIM SOINDOXe UL} YIIYM ‘0) epquuer] AJIpout
uay} Ued YIIYM ‘g O[O0} owInsse Ued Yy I9s(), se
yons ‘syjed uorje[eoso 93oIAlId poureyd ISAOISIP
A[resryewojne g, uom 31 Sutueowr ‘spedoutid
ordiynuu ssoroe syderd uorje[edss pying 3, uUsoop

1] ‘Junodde GA\Y oY} Jo mola [edurid-oSurs

® JO 1X9)U0D 9y} Ul A[oirjus sojerado §SyYHJPNO[D
‘NDVd oMI] "UOIIRULIOJUI MOU 977 [[IIm

porepdn Aqjordxe sem 91 sso[UN SUOIIRINIYUOD

10 SOOTAISS ANV JO UOIJRUIQUIOD SNOLIISAUT

e urajoaur yjed uorje[eoss 93s[IALId MaU ® 10919
j0u pnom Sy Jpnor) ‘ejdurexe 104 ‘senbruyooy
UOT)R[BISO POISOIUN IO MOU 0} d[qRISUINA

1 seyeW OS[e 91 INq ‘osnge 939[1ALId JO S10300A
UMOUN-[[om SUIAJIIUOPI & SAI00]J0 A[OUIDI)XD

1009 oY} SoxeUl SIY], "S{oeqMRIp UTRU SII JO

2uO ST SSYHJPNOD) Aq Pasn UOI}09)op UOIJR[BISO
o8o1AL1d JO POYIoW USALIP-9INJRUSIS ‘O19R)S oY T,

‘sureyo 9389[1ALId MoU SULIDAOISTP
A[reotwreudp uey) Ioyjel sdiysuorjeal
pougepaid uo sorfar 3] ‘wiInjel Apjordxe
STV °U2 1eym puoheq sdiysuorje[or

JO uoIjRIDWINUS IO SUIZZN] 98RISAI]

11 S0P 10U ‘S[[eD [V [B9I UM)93

I0 juowrIodxo J0U S90pP 1 :DIISIUTULIDIOP
ST 0180[9100 oY T, ‘syjed PaIoAodSIp oY)
Suryrordxe 10y sdegs Jxou SUIPUSWTOIAT
uojo “ndino o[qepesr-uewny

e sojetousl (009 Y], :Surjrodey

mdinQ ‘(sgesonq ¢g 01 sseooe orqnd
Suryueid *8-9) sarorjod 901n0so1 AJIPOIN
{S9DIAIOS GA\Y STIOLIRA [JIM SO} SSeJ:Wel
as() ‘s109load primgepoy) oyepdn
{s90URYSUT g O} SO[0I O}y ‘suoljouny
epque] 9jepdn 1o 9jear)) :01 AJ[iqe

o1} sk Uons ‘sasnge umouy 0} suorssiurrod
sdewr 9s1] 019R)S SIY], "9SRGOPOD
SSVHJPNO[)) 9y} Ul PoulejUIRUW SOLIRUSIS
uo11e[eIse 9389[1ALId UMOUY JO 9SI| pPajeInd
® Jsurede poxooyD UaYj) oIe suorssiurrod
poatoyyes oy, :spo[dxy umousy

iIm SurgoIRey uIelyed ‘g ‘sdrysroquiowa
dnoi8 pue ‘sejo1 payoelje ‘suorssturrod
901A10s s10adsur] ‘semijod peSeurwt
pue aurur Surpnpout ‘saijod V]
pousSisse [[e sojerownue SSYHJPNOD
‘S[eT)UOPAID [V SAV Pejedrjuayine oyy
Suis() :uorjerswnuy uorsstuisd ‘T :sdegs
Arewrtad 99117} 0JUT UMOP UNOI] 9] URD
SSVHJPROID putyeq ASojopoyjewt ay,

“UO SAI[al 91 ATRIqI] UOIJR[BISO
o8o1aL1d poysI[qe)so o) WOI] 9)RIADD
Je1[} SUOIRINSYUOISIUL [9A0U 10 syjed

}orvIIe UMOUNUN JDAOISIP 3 USOOP
pue senbruyoe) umouy jo 3sI] d13e)S
® uo sajerado SSYHJPMOD ‘NOVd

OYI[‘19AOMOY " (SUOIRUIQUIOD BPUIer]
pue ¢g “8-9) seryruniroddo esnqe
08o[1ALId 901AI0S-SS0I0 SULIOAODISID

10J j10ddns suwIog ‘‘UOIR[RISS

01 syyed 1y3iysry o9 sdrysuorjeas
1STLIY Y)IM O[OYOWNSSY 10
‘opopuorpoungorepd) ‘ojoyssed oI
suorjoe Suuaejer-ssox)) ¢(Apredoid
podrIaAs] JT uoIje[edsd 939[iaLid 09
peo A[[erjuajod prnood sIyJ, "Suorjouny
epqurer] 9yepdn/ajes1d 0} uorssturiad
ay) oaRY Nog,, “8'9) surejjed

uMmouy U0 paseq syoelje rerpuajod

I0J SUOI)RPUSIIOIDI I89[0 SUIPIAOI]
{(s10909A uwo1YRRISS 9F0TIATId

XNUIT] SOYTIUSPI SSeOJUI MOy

07 refruars) senbruyoe) uoryejrojdxo
umouy| Jo IsI[® y3im suorssturiod
pa1on0dsip Suryojewr Aq syjed
uoryeesss a93o[ialid umouy| Surjriyuepy
tsororjod pue ‘sojoix ‘suorssturod V]
Suryerewnus] :opnyoul seniqede))
‘ATuo (00} Surjrodsl pue uoljRISWNUS
ue Iotjel Ing uorjelrojdxo

aA110® wIojred jou S90p 91 pur
‘S[RIJUOPOID PajeIIIULYINe A[JUSLIND
a1} AJuo sezAeur 41 FUIURSUW ‘)XIUOD
redoutid-o[3uls e Ul SYI0om [007 9T,
‘TOTJR[BISO IO SS920R pPazZLIoYjneun

10J padriond] oq A[[erjuslod pnoos jery)
sod1AI9s pue ‘sdnoid ‘sofoir ‘sarorjod
INVI SudJrjuspr sueswr sy ‘SMV
10 ‘ul 3urjerodo ST }I JUSTUOIIATUD
PNOIO oY} UIYIIM SI0JO9A UOIJR[RISD
o3or1ar1d [erjuejod Surjerswnue

U0 AJOAISN[OXd $9SND0] GV HIPNOD

*9IT)ONIISRIJUT
PNo[O JO S)USTISSISS®
uoryejrojdxe-jsod pue Surwres)
pa1 10y rendod suw0d9q seyy
SSVHJPNOLD ‘SUIAIOAS [[14S O[IYM
‘sonbruyoe) asnqge o3o[1aLId UMOU]
JO 93po[mouy pojeInd A runwruiod
uo poseq sorjruniioddo uoryeresss
10J UOI12939p opeuw-Apeal soplaoid
9] "SISTI} 9[0X Y] IO ‘suorjouny
epquue] ‘syoxong ¢g SurAjoAul
asoy) se yons ‘syjred uorjeeose
oy1oads-001aTes pue sdiysuorje[ol
a89[1a11d pern3yuoosiua
soziseydwe Y HJIPNO[) ‘S[007
Aumoes MY esodind-jereuss
oyITu) "senbruyooy

UOT)R[BISS JO }0S UMOUY

' Jsurede wey) Suryojeuwr pue (901
10 19sn) Tedrourid pajesrjuayjne
a1} 0} paudisse suorssturrad

ot} SurzAeur Aq serjrunjyioddo
uorye[edss o8siarid [eryusjod

JO UOI1RIOWINUD 977} 9)RWOINE

09 swire gy HJpnor) ‘suiojjyerd
JUOIOPIP SSOIOR UOIINODXD I0]
jueldlje pue o[qeiiod 41 Junyew
‘0r) Ul uLljLIM pue 9dInos-usdo

ST [009 9y T, "syjed uOIje[eIsd
a8o[1atad aanzy pue gAY

10q UO 3UISNO0] ‘SIUSUWUOIIATD
pnopo syedre) A[reoyroads
SSVHJPNO[) ‘sSwejsAs Xnur|

puU® SMOPUIA\ UO UOI}RISUINUD
uorjeesss a8aiarid yym diay oy
pojeard Areutduio “poofoid (HIINS
$7d1I0G SUIOSOMY/ UOT}R[eISH
989[IAIL]) SSYH 0peoiq

oYy jo yred st SSVHAIPNOID

sdex) /syopeqmea

21801 810D pue SaI30[OPOY IO

senjIiqede)) sjIomawrel/[00T,

uornydirioso(q

18

[¢] suotssTuriod JNV] SMV IeISWNUY - WRI-9)RISTNUS :¢'¢ S[(R],

*SOLIRUODS
ureyo-oge[iatad 10 ‘doy-1jnur ‘prIom-jest

01} 9[®IS J0U S90P JN(‘OULISAY uoIje[edss a3oiarid
oIseq I0J A[qelrupe suriojiad 9] ‘Ieper s,[00)

ot} uo A3rdxe a1em suorssiuriod 9SOy} sso[un
syped o3o[IAlId [edIILID Passitl oAy A[O)I[P[nom
QUO[R WRI-9)RISWINUD ‘SOIIAISS GV [RISASS SSOIOR
SUOI1eINSYUOISTW Xo[dUWI0D POA[OAUT [DIYM ‘T[DBIIq
au(rejide)) oY) oI SHUSPIOUL U] "SUOIYRUIGUIOD
08o[1ALId UO9SAIOJUN JO UOIRIDWINUS DIURUAD

ou sepiaoid wrer-sjelswnue ‘uorjeiownus yjed
yoejye xodwod 10 Suizzny Surpredey -sredourid
Iat30 Jo estwoidurod 1orid 10 AIOAODSIP [RULIDIXD
y3noiy) wey) mnoqe mouy| Aoy3 Jr sAemyred asoy)
110[dxo [[13S P[NOD SOLIRSIOAPY ‘osnqge o3aiarid
reruejod dew A[[nj jouued {00} oY) ‘pajurid

J uere suolsstuiod o0 uIel J 9jelownua

ued [edoutid jusiInd 8y} yeym 03 AYIqISIA

ur pejruul] osye s ‘eArjoroxd ueyy) Ioyjer
9AT)O®AI 91 SoyeW SIYJ, ‘pojepdn A[renueur st
aseqeiep UOIIR[RISO OY) [IJUN 1T 10919D J,UOM [00)
a1} ‘pa1oaodsIp st Aemyred uoryeresss a8ariarid
[eAoU ® J] ‘senbruyoe) uorje[esss umous| jo

19S POXIJ & UO SOI[od WeRIl-djeIoWNUS ‘A[[RUOIIPPY
‘so3a[1A1Id UOIIR[RISO JOIIP d[(RZIUT0DAI

sjuers A[ordxe doy yowe ssofun sousnbos aIrjue
yey) dew 0} [rej p[nom urer-sjerswnud ‘(soSorrarid
urwpe yim) O 9[0Y 03 per} epquer] e AJrpow
ued ¢ 9[0Y PUR ‘g O[O} OWINSSE URD Yy I9S))

J1 ‘eoueysul 10y so1o1[od paseq-90IN0sal Wolj asLIe
yey) sdiysuorjeoa uoissiunrod aarjIsuer) ‘xorduroo
jeadrsgur 09 10 sedoutid sidiynuwr ssoioe

sureyo uorje[edse o89[1aLId ozAeue 01 Ajiqeur

S91 Ul soI] ssouyeom Areuwrtid s UIRI-9)RISTINUD

*JUOWUOIIATS SA\Y OY) UL
S19710 Ym ojeradorsjur Aew suolssiuriod
9so1} MmOY Jo sisA[eue syoe[9] "A[uo
redournid pejeorjuayine oyl 10j syjyed
rem3urs SurdJrpuapt je sdojs sisA[eue

ST 9N ‘SI0JD0A UOTJR[RISO UMOUY I0J
Suryojes 9)eIndde s)I ST WeI-0JeIdWNUD
Jo 18uags oy, o[qissod UoIe[ROSO

Jo adAy ay) 0} seduLIs)al UM ‘enbruyosg
Aq pozL10899ed ‘Iosn oy} 09 pojriodar

aIe soyojeN :Surjaodey nsoy

{dnoxn DON pue sqer] £)Lmnoeg ouryy

Aq pojeInd 9SOy} SB UYONS ‘UOIIRIUSTUNIOP
uo11e[eIs9 939[IALId GA\Y UMOUY WOIJ
POALIOP ST 3ST] ST], ‘senbruyoe) uorye[esss
a8o1a11d Jo 9s1] peuygepaad e jsurese
suorssturrod paIoAodsIp sareduiod 009
oy], :spro[dxy 03 3uryoje]y [edourtid
poresrjusyINe o) I0] suorssiurrod 9A1100J0
Iotyesd 03 AorjoJedIoutiJojenurg

pue semljogauluyIsI
‘SOIOI[OJ 108 (| PAYORIIVISI'T

NI S[[®0 IV SMYV $9s(1 :3utieyyen
UOISSIWIDJ :0130] SJI JO UMOPeaIq
poyrduwrs & s 010} ‘syjed uorje[edse
a8or1aLId 9[qIssod 09 suorssturiod

SV Jo Surddewr 1001Ip ® sp[ing 1 ‘Ioyjel
‘ser8ojopoyjowr urzzny 10 paseq-ydeisd osn
j0u soop (009 oY], ‘Surddew a3pojmousy
uore[edss 93o[1Alld YIIm paurquiod
sisATeur uorssiuniod punoIe SoA[OAdI
wrer-sjelawnue Jo A30[0poyjotl 9102 oY,],

"JoR})R JO SPOYIoT
xopoyjroun guisn sjusuoddo sAIjuSAUL
M POJUOIJUOD UM POIDLIISOI
yeymowios nq jo1paid oy Ases sI

1 ‘poyjewt sIsA[eur O11e)s SIY) 01 an(J
'SI0909A UOI)R[RISS d[qIssod S)ULWNIOP
pue sjs1p Ajdwars 91 ‘Aeargore syjed
110[dxo 9597 10 INO AIIRD J0U S9OP 1
‘19A00I0TN “syjed UOIJe[RISO SAI}ISURIY
10 Tedourid-1jnu 99e819SOAUT JOU SOOP
1 ‘suorssiuiod snoprezey 10930p ued
1 ySnoyyyy ‘(eo1 pewmnsse 10 ‘dnoid
‘1osn) redourid gAY paredrjuayne
AyuerInd oY) A[uo JuizAeue ‘siseq
Ay1yuepi-1od & UO SUOIOUN] ‘IOAOMOY
‘urer-ojeIOWINUY] "9[0YSSeJ:Urel

IIM POUIqUIOD SOOURISUTUNY 700
‘opopuorjounygajepd() epqure|
{ADT[0JI0S) YORI)Y TRl

{UOISID A AD1[0J8)ea1)) uIel

:9Y1] suorsstuLIod [0AS]-901AT0S
sojen[ead A[[edIjRWOINE J] ‘SOLIRUAIS
uorye[edss o8siarid pue suorssturad
901ATOS GA\Y Uoemlaq sdrysuorje[or
a1} Jo Surpuejsiopun ul-}ymgq

S91 ST wrer-ojerownue Jjo Ajrqeded
a[qejou au() ‘sojol paJariarid o9

Por1] suorjouny epquier] mou 3urjearo
10 Suryepd) ‘se8eianad 1oySIy

91m sofo1 Surmnssy sdnois 1o sefox
Surysixe 09 sororjod pejess]d SulyoRI}y
‘suorsstunzad 99e[edss Jey) serorjod
mou Jurjear)) :se yons senbruyoey
j10[dXo SnolIeA 0jUI PazZLI0Fa)ed

oIe $9INSaI oY], "SPOYIOW UOIJR[RISO
o8o1aLId UMOUY JO dseqe)ep pojeInd
© jsurede suorssiuriod paIsA0dSIp
9s9Y} SOUDjRW USYY) }] "S[RIJUOPSID
SAV JO 39S USAIS ® 09 9[qISSedde
sororjod V] U} UO SISA[eur

o19e)s suriojrod UIeI-9jRISUINUD

‘sisAreue pedourid-o[3uls

Jo adoos o) urym Afuo ysnoyy
Surureyo o3o(1ALId RIA UOTJR[RISO
a3o[1at1d 0} pes] pPnod 1eyy
suorsstuiod snondouut A[Suruess
aaey sdnoad 1o ‘siesn ‘sofol
9I9UM SIUOUIUOIIAUS Ul SOLIRUSIS
asnqe [erjuejod SUTAJI)UEPT
Aponb 105 [nyesn Aqrerdadss

ST 9] ‘sisATeur o3o[iatid 10] NDHVJ
OYI] SYIOMOUWIRI] JUSTUSSISS® GANY
Io3Ie] OPISSUO[R POPUSTIIOIDT
U9JO SI UIRI-9)RIOWNUL]
‘syuewrudisse uorssiurtod Aysia
I9A0DSIp 0} Aem PoINjoONI)s oI0uW
®© suIea) A11INoss pnofo pue sIo)sal
uorjeijouad SULIDJO ‘UOI100)0D
yaed uoryereosse ogariatad

JO uorjRWOIN® SYI I0J AJTUNTTIOD
A31IN09s 91 Ul UOIjoRI} poured
1003 oy, ‘pojroddns st uoylLgq
aIoyM juswIuoIIAUS Aue uo Kojdep
0} pIremIojySrers pue JyIemiys3I|
A[OATYR[OI ST ‘UOYIAJ UT USPILIAN
'sofol pue soijod NV UIYIIm
soniqissod uorye[esss o3orarad
Suipuy :0A1399(qo Aoy auo 0} SNO0J
ST SMOLIRU WIRI-DIRISWINUS ‘S[00]
A31IND9S Pno[D I9prOIQ 9NI[U[)
‘suorendyuod Ny SMV Urgirm
stped uorje[eose o3oiatid AJIjuept
01 A[reoyoads pausisep ‘dnoisoou
Aq podoreasp (00} eoanos-uado
poziferads & ST WRI-0)RISUINUD

sdex) /syopeqmea

21801 810D pue SaI30[OPOY IO

senjIiqede)) sjIomawrel/[00T,

uornydirioso(q

19

[1] s1s9T, uoIpRIjeUSd PNOL)) I0] SSAULIRMY [RUOITRN)IG 9)RWIOINY - XOJPNO[) :f'¢ d[qR],

so1809e1)s uoryejrojdxa

9[RUOI}OR OJUI B)RP POISAOISIP 9)R[SUeI)

01 sysA[eue uo peol aA1Tud0o e sede[d siyJ, ‘syred
yoelje 9593 10 9je[nuuis 0} jdurejje 10U SeOp

X0, Ipno[)) ‘wrea], poy Snjells se Yons s[00} a)I[u)
:uoljR[NUIS ORI}y OAIJOY ON ‘§ ‘seijod
JNVI Ul paugep A3ordxe sso[un suorjeeoso
a8o1a11d pejoadxeun JI0 SUOIJRINIYUOISIW
AeP-019Z JO AISAOISIP sjuoAdld SIY T, "UOIjRISWNUS
a8o1a11d eA1yR[NOadS 10 OTwRUAp uLIojIod

J0U Se0p INg AN[IGISIA PUR S2INJONI)S suolssiuriod
SMYV UO s9l[a1 XOIpno[) :syjed }oeynv
umouxu) Jo uoljerswnuy Jo Suizzng ON
¢ {('yyed uoryereose aarjue o) dew o sisA[eue
[enuew soamboaa 91 Inq ‘suoissiuriod Adorjod

pue sdigsuorje[ol ST} 9)RISWNUS [[IM XOIPNO[)
‘(seSorianid 10YSIY YyM)) S[0Y O Par} BpquIer]
e 3UI)esId SMO[[R UIIYM ‘g 9[0Y Suwnsse ued y
19s() J1 89) "syred uorjeesss doy-13[nu I9A0ISIP
A[[eo1yeIo)® J0U S90p XO, pnor) :Sururey)
939[IALLJ dI1ewWIOINY ON ‘g ‘SOI}IjuapI

29S0T} se pejedrjuayine A[renuewr ssofun sredourid
10730 Jo aA1poadsiad oty woj serorjod ojerownus
0} ydwagye j . useop 9] ‘Tedourid pejesrjuayjne
A[HUS1IND 9Y) 0O} S[CISIA SOIINOSAI SOYRISWNUS
AUO XO{pno[) :uoljelII] UoljeIswunuy
redoutig-o[3ulg *T :UOI}09)0P UOIJR[RISS
o3o[1aL1d podoueBAP®E Ul SUOIRIIWI] [RISADS SHIYXD
1 ‘90URSSTRUUO0DAI UI 3SNCOI ST X0 PNo[)) d[IYA\

‘popiaoad eyep

oy} wogj sjro[dxo I0 Sureyd UOIIR[RISO
pling 0} 3I0je [enuewl pue uorjejaidiojur
s 19sn 9 Uo sarfal 91 ‘(seryrunjroddo
oloyowmnssy ‘'3'9) uorjeesss o8eqiarid
a[qrssod 03 stjed sesodxe 007 oY) STYA
'S[00} UOIjRISWINUS Paseq-UoylLJ Iop[o
ueR() I9)SB] SJUSWUOIIAUS 931e[Jul[pury
‘A[puarorge s[Jy A1enb ued xoqpnor)

‘on) ur yIng :90URULIOLIDJ PUR UOIJNIDXS]
[e[reIRd ¥ ‘(SIosn pejesnjueyine

01 uado sjaxonq ¢g *8-9) suorssiurtod
MROA\ ‘JUOWIDAOW [RISJE] IO UOIJR[RISO
a8ar1a11d 09 syged [eryuslod ‘se0Inosal

10 SOUR)SUI SUI)SOISIU] RIA SIONOR))Y
I0] Surmjoni)g ndinQ ‘¢ ‘SedIAIS MY
Iayj0 10 ‘epqurer] ‘gOH YHm sdiysuorjear
ISTLI) PUR SISTLI) JUNODIR-SSOIO

Aj1yuept 09 semorjod 9snay osred

M xopnoy) ‘samijod paseq-odInosal 10
so[o1 NV 104 :uorpoeryxy diysuorye[oy
ISnIy, ‘g ‘AJueplIs([e))er):sis
‘SUOIYOUNJ)STT:RPqUIR]
‘ADT[OJR[0Y 1o5) Wl ‘S1ayoNng)SIT:Es
‘500UR)SUTO(LIOSO(J: g9 §'9) 09 ssooow

sey Tedoutid pajedrjueyine oy} s9dIN0SaI
9reIOWNU® 01 S[JY SAV STNOLIRA SONOAUL
UoIyM ‘uoIyeZolIou] [JV 90IAIeg T :odAy
90In0saI Yoro 10] uralyed SIY) SMO[[0]
A[reord£y) 01301 9100 9], ‘SND0J AISA0ISTP
10 92IAI8S GA\Y dyIdads ' 0) palofre)
(O[NpouW,, 10 PURIWOD Yoed YIm ‘urojjyed
UOTNO9X IRMPOU B SMO[[O] XO,JPNO[D)

"PoJ0Od[30U S[00} UOIJRIDWINUS

SMV I0p[o [eieaes Juryjewos ‘sororjod
1STLI} JUNODOR-SS0I10 Surpy3I Y3y

ur seurys 91 ‘A[euonIppy A[enuewr
uorjejiojdxe ansind 09 sysA[eue

10] AI1esse0au AJIIqIsia oy} sopiaoxd

11 Inq sydwegye uoryeresss agaqiatid
10 SyDR})R 9INI9X0 A[OAIIOR 1, USOOD
os[e xo,pno[) ‘indjno s xoJpnor))
Sursn wey) seoer) A[enuewt Jojeiodo
uR SSO[UN USPPIY UIRUISI SUTRYD
uorye[edse 98oiarid xordwod Jurueswn
‘A[restureuAp I10y3a809 suorssturtad
sredourid oydiymur yo31gs 10U S90p 1
‘urer-ojerownue oI ‘redmourid o[3uls
®© Aq 9[(qISSE00® $90IN0SI SUI)RISWNUD
£Aq soyerado Arrewrad xopnor)
‘1oAdMOH ‘sarorjod 1snIy peInsyuoosiua
I0 suorssturod o[oownssy
pean8yuod Aj10od Juryrojdxe Aq

j0a1d quStw pedourid pagsiarid-mof

® Iy M SOLIRUSDS SUIAJIJUOPI 10]
[myesn A[eradse st siy], "uorpdwnsse
9[01 ®IA UOT)R[RIse o39[1ALId 10]

spes| opraoid ued yoiym ‘sdiysuorjerat
1STLI} JO SISATRUR S1I ST S9IN)eo]J
[njromod 3sowr s31 Jo au() ‘Armojer)
I1dV 10 ‘epque] ‘¢q uo Apremonied
‘Uo1Ye[RISO SSO00' MO[[R ARUI Jel)
soro1[0d paseq-001nosey ‘sdrysiequowa
dnoux) pue semorjod 1es()

JAVI ‘sdiysuorje[al 3snij junodde-ssord
Surpnput ‘saro1[0d 1SN, 9[0Y NVI
‘{108eUR]y $19100G I0 9101G IojolIRIR]
JASS Ul paIos s10100G ‘{poyoe)ie

so[01 aAlssTILIod-10A0 SUIAJIJUapI
Surpnyout ‘suoroun,] epqurer|
fereprlow SUIPSOILUT [[}IM SOOURISUT
ZOM :9jelownue ued 3] "SONI[Iqe
90URSSIRUUOD2I GA\Y OAISU2IduIod
S91 Ul sl YjSuaI)s sX0,Jpnor))

‘S IoMOUIRI] UOIJR[RISS 93a[IALId
1o uoryejordxe Juikjdde a10joq
[009 eouessreuuodal Areurwppid

® Se XO,JPNOo[) 9ZI[IIN sIouoljrjoeld
snolawnu ‘oINnjeu 9[qISua)Xo

s91 09 an(] ‘sdIysuorje[aI pue
SUOI)RINSYUOISTUI JO UOIJRIDUINUS
Ie[Npouwl pue O[1RWo)SAS oY)

ur spre 1 ‘I9yjel :so0p NV NIl
uo1je[edsd 939[1ALId sejR[NUIIS 10U
uore)ro[dxe INo sorLIed A[)09IIp
IOU)IOU }] "SJUSUISSISS® A)LINd9S
pnopo Surnp se8oriarid Jurjeresse
10 3urjoard Ul SOLIRSIOADR)SISS®
PINO2 1Ry} SUOIIRINIYUOISTIT

pue seoInosal a[qejiojdxa
Areryuejod Sur)eso] seAjoAul
YoTym ‘90®JINS OR})R OY) AJIJUOPI
01 sI aA1309(qo Arewtid s xopnor)
*IdIno dsIOU0d pur ‘UOIINIIX
[elrered ‘peads sezijuroud ‘ox) ul
pojuswerdul ST YOIYM ‘X0 pPNo[)
'so[ol NV PUe ‘sja109s ‘syasonq
€Q ‘seoue)sur g Se yons
SHUSWIUOIIAUD SAY UM sjoIe)
3U11S019IUT IOAODSTP 0 SIOUWIRD)
poI Sur[qeus ‘UoljeIoWNUD SAY
Jo wnijoads Ieprolq e sepraoid
xopno) ‘(urer-ejeIowrnuo

aYI]) uoryeredsse oSo1arid uo
A[mol1reu snooj ey s[007 d¥I[U[()
*SIUOUISSOSSe SULIND SHUSWUOIIATD
SMV @jerownue sieuolssojoxd
A91INoes pue s101s9) uoljeIjouad
Suidjey e pejesie) Arrewrid
‘xo doystg Aq pado[esep

[00) SUI[-PUBITIOD ® ST X0 PNof))

sdex) /syopeqmea

21801 810D pue SaI30[OPOY IO

senjIiqede)) sjIomawrel/[00T,

uornydirioso(q

20

[<] 1001, SunIpny £41moeg pro[)-HMIY - MGG (¢°¢ AR

*SOLIRUDS

asnqe o3o[1ALId [9A0U JO SISATRUR 9AI}0ROI

uel[) S[OIJU0D dAIyeIUaAdId 10] PojIns I19939q

11 SOYRWI 9INJRU DIRIS S1] “J[OSI UIRYD UOIIR[RISI
a8o1atad o) peyo9tep aary jou pnom ing (sdnoid
Aq1amoes uorjeoridde qom oinoesur ‘°3°9) sYSLI
aimsodxoe o1qnd oy} pe33ey aavy A[oqI[P[Nom
91IMGINO0OG ‘S80I N Y] 9SRISAS] pPUR BIRPRISW
aouwIsul gHH ssodoe 01 uorperofdxe JYSS
paajoaur yjed soeire oy} aroym ‘eu() [ejde))

OYI[SOYDRAI(0} UOIJR[AI U] :JX0JU0)) ase) auQ
reyide) ‘g ‘soni eouei[duiod 10 SOIPSLINSY UMOUY]
jsurede suoIjRINSYUOISIW s30990p A[urewrad 9]
‘uorye[esse o3o[iatid 10J sAemyjed pejuemnoopun
10 2INdSqO IsA0dUN 0} suolssiurtod AT Jo Suizzng
10 3ur)sey aarye[noads jroddns 31 seop Iou ‘sureryd
uorjeeose ag9[1ad xodwoo 9jerewNUe j0U

SO0p 99INGIN00G ‘A[[RO1ILI)) :SYed UmoOUU)
Jo 3uizzny Jo uoljessawnuy OoN ‘P ‘yoes

10] Apreredes pojeonusyne ssopun sredourid
I91]90 JO soFo[iALId 9)RISWNUS 10 9)R[NUWIIS JOUURD
1] ‘SIsA[eUR J0J Posn [RIJUOPAID 9} JO suolssturiod
oy} Aq punoq st 93IMGINodg ‘Xo pno[)

pue NDOVd M1 :sisdfeuy [edpuLId-13NIA
ON ‘€ ‘A[[enuew UNI-oI SSO[UN WYY}

SSTUI [[IM 93INGIN02G ‘(UOIYBIIO 9IINOSAI SNOII[RUI
10 JYSS ®'lA ©8'9) suorpeIn3yuod A¥sut 40afur
SHUSWIS[® POJ[OIJUO0I-I9NDBIJE JI IO ‘JUSUISSOSS®

OAT[& SuLInp o3uryYd suorpeIndyuod J| ‘syred
yoejjye SulSiowe I9A0DSIp 0} A[[eotwreuip jdepe
10U S90P 99INGINO0OG UoljeIdWINUY OIWRUA(]
10N ‘joysdeug o[Sulg ‘g ‘suoIIRINSYUOD
O19R)S Ul A[}001IP POJOSYaI S)1 sso[un

11 10999p ,UOM 93INGINO0DG ‘(SIDIAIIS SSOIOR SO[O1
NVI o[dinu Surureys ¢-8'9) SUOIIIPUOD SWIIUNT
UO soral Jer[} sisixo jed uorje[eosss odoriarad

® J] ‘Surysey o8oiaLid 9A110® wIojIod jou SeOp
IMq ‘SUOI)RINIYUOD 9DINOSII SIJRN[RAD 91INGIN0OG
:snooyg A[uQ-uorjein3yuo)) °T :SIUSWSSISS'
A11IND9S SAISULJO 10 UOIjeISWNUS 939[IALId
poourApR I0J SUOIJR)IWI[S[(RIOU SBY 9)INGIN0OG
‘Buripne o13e)s ul sY)SuaIls sy oy1dso(]

*SUOI}RINSYUOISTW

se pouyep A[Iea[d oIe Aoy ssorun syjed
uorye[edss a89[iarid erqusjod jorpaxd

10U SOOP SUISUD §,0)INGIN0DG ‘S[00)
OAISUQJJO OYI[U[) ‘SUISOUOD UOI}RINIYUOD
ogroads 10 ‘SO[0I JAY] ‘SOOIAISS [RNPIAIPUL
OUT SUMOP-[[LIP 9[BIDI[O SISO JBULIOJ
TINLH °UL 'NOSI 10 TIN.LH Ul paiopual
st gndjno oy J, ‘sedeqiatid ,:, Jurjueid
soto1j0d NV pue ‘ereymAue wog J(Y IO
HSS Suimoqre sdnoa8 £1moass ‘([1e) {4 103
pamorre {199[q(O100):¢s Yam syayINg €S
orqnd se yons suoreIn3YuodsTu UMOUY
SULIBA0D ‘pOSeQ-I[NLI 9I' SIIISLINSY 9o],
'soonyoeld 1seq A)Lmoss pue sureljyed

ysu1 paugepald jsurede vjep poloyjeld

91} SEOULILJRI-SSOID 91IMGIN0OG :dseyd
3urypiodoy] pue sisA[euy ‘¢ ‘surojjed
suoisstrod snoteguep pue aansodxe
orqnd YIm se0Inosal ‘suoljeIngyuoosIu
Ao11od YIIYSIY 0} SOOIAIOS SOIR[DIIOD U}
91INGIN0OG "SUOIIRINIYUOD SIOTAISS PNO[O
Surjuesaidel so[y NOS[0jul paredoi3de
ST e)Rp PolI9[[0)) :9seyJ UOI1e3aI33y
eiR(] ‘g ‘(AremImIngjuUNodoY jor):urer
‘S9IDI[0J)STT - Uret

‘sdnorn) £31IMoegeqLIdS9(1: o0
‘syoxongsIi:gs

3°9) s[erjuepaio pnopd papraord

oY} 1M pojednpuLYINe S[[ed [V YSnoIyy
ejepejow Junoode [nd 01 (§MY 10J
£010q ¢'8'9) S (JS OAI}RU-PNO[D SSN [00)
oY], :@seyd uoljos[[o) [V ‘T :Suipne
A31noas s91 wrojrad 01 ASojopoyjemx
oseyd-oal11) ® SMO[[0] 9}INGIN0OG

‘SHUOUWISSOSSE NSII pue ‘Surues)

anyq ‘syooyo dourIdwos I0J [eapI

1 SunjeW ‘[RLIONIPNE A[JOLI)S SUIRUIOI
mnq SuIIse) aAIoR 10 uoryejrojdxe
1dwegye jou seop 9] ‘uSisep Aq
A[uo-peal SI 9}INGIN0OG ‘Iay3In ‘[9Ad]
90IAIOS 10 JUNODOR OYY B ISIXO SYSLI
1eym peajsul inqg ‘op ued [edourtid
[eNPIAIPUL UR JeYM UO SNOO0J j0U

S90p 1] ‘NDVJ 10 WeI-0jeIownue 1|
yoroxdde uorjerswnus paseq-fedourid
e uey) Ioyjel ‘oanoodsiod

JIpne uoljeIn3yuod © WIOI] S{IOM
91INGIN0OG ‘IOAOMO] ‘SUOIIRINSYUOD
epquue] pue suoljeIn3yuod

€Gonoy ‘ernsodxe ejep BIOW 9OURISUL
ZOM ‘sejox patpelje pue sadijod

VI ‘sdnoir) £jumdeg ‘serorjod
193oNq €S UO SAI[IqR SHI SOSNO0J
91IMGIN00G ‘A[reoyroads GANY UO S[IY A\
“PROLD eqRqIY pue (JOD) Wiopeld
pnop) 9[800x) ‘einzy 1JosoIN ‘SMY
Suipnpour ‘suriojje[d pnopd oidrynuu
sproddns 93INGIN0OOG *SYSLI SS900®
JUNODOR-SSOL) “J {SOOIAIOS AJ1IUOPI
pue ‘Surjriomiau ‘oynduwod ‘98el10)s ur
SUOT)RINSYUOISIJ\ ‘¢ ‘SIURIS 9DINOSAI
pIeop(im 1o somrjod aarssturrod

A110A0 se yons ‘sysul NI ¢

{(se[nx 0/0°0°0°0 Y sdnoid £j1amooes
2O ‘s1oyong ¢g *8°9) seoanosal
a[qusseode Aprqnd "1 :ySiysy
syrodai asay], 110dal A)1Inodes
Po[IRIOpP ® S9JRIDUSS PUR JUNODOR
pnopo j081e) oY) WoJj v)epeRIow
uoryensyuod soAdL1al 1 “(INdSD)
stsATeur aanjsod £J1Imoes pnoo o1pels
st Ayiqedes Arewtid s 91MgINoog

'SOIMN09)IYDOIR PNOJD 9SIDATP
SSOID® SMBIASI AJ1IND8S puR
spPayo eourIdwod proIq I0J {009
01-03 & 9UI009(q SBY 9}INGIN0DG
‘p10ddns orjsoude-1opuoa

S71 01 9N (] ‘SOSBQR)RD PaIndesun
pue ‘sejox Y] dAlssTIod-19A0
‘syaxonq ¢g pesodxe Aprqnd

Se ons sessouseom SulfJrpuspl

e s[eoxoe 9] ‘310dal paseq-NOS[
10 paseq-gem & Y3noIyy 1
Surjuesard pue eIRPRIOW 00INOSOT
3u1109[[00 AQ JUSWUOIIAUS PNO[D ®
JO JUSWISSOsS® Paseq-uUoIeIN3IYuod
‘O1ISI[0Y ' 9[qRUS 0} SI

UOISSIW 210D S1] Surrpne A3Lmoss
PNO[O SAISUSJOP PUR SAISUSJO JO
UO1109SI9UI 91} J® SIS 93N GIN0OG
‘pasnoo] ALINdOS-9AISUSJO

aIow aIe YPIYM ‘NOVJ

10 XO[PNO[)) S Yons s[00} ayI[u()
*SYSII 09 S90INO0Sal Pno asodxe
PINO2 1eY} SUOIIRINSYUOISTI
Suikjryuept uo siseyduwo 3uoIls ©
UIIM ‘SUOIIRINSYUOD JUNODOR PNO[O
JO MmoarA dATsUOYeIdwod © SI0)Ipne
pue sisuorjoerd A31Inoss sI8jjo
91INGIN0OG ‘UOYIAJ UT UWSIILIAN
"PRO[D BRI PUR ‘dDD ‘eInzy
110ddns 09 pepuedxe 9ouls sey

3 ‘SMV 0] pausisep A[[eursLiQ
‘dnoiry DON Aq padofessp

[007 Surjipne A)LInoes Prnoo-Inu
rendod e sI 93INGIN0OG

sdex) /syopeqmea

21801 810D pue SaI30[OPOY IO

senjIiqede)) sjIomawrel/[00T,

uornydirioso(q

21

[0] pnor) oY) 10J uoIyRUIG AIRSIOAPY O[(RUOIDY ‘Ie[nuelr) - (3o(eje(]) Wes], poy snjells§ :9'¢ a[qe],

‘K10A00sTp red yorjje umousun
pue yoIeasal Aresioape pnopd ul sded [eorjro
Suraes] ‘uorjersusd yjed oeile dSTWRUAD pur

‘8urzzny o3o[1atid ‘Agiiqedes A1oyerojdxe syoe[Inq
‘S[IomoTIRI] UOTJEPI[BA UOI}D9)9P © St S[90X0 Weq],
poy snjerlg ‘Arewiuns U ‘SI0J00A UOTJR[RISO
a3oriat1d paureyd 10 ‘sursyjed souejreyul Aorjod
S90IN0SOI d[(ISSE00R JO AIOAOOSIP pojemIoIN®e
op1aoid j0u seop Wes], POy Ssnjelly ‘seoejins
yoejye Furddewr A[penuew ul)sisse XoO, pno[)
oNI] S[007} 2T AN :Surddey yred o1y Io
AISA0DSI(] pajewioIny ON ‘§ ‘SISA[eur [RLIRSISAD®
A109R10[dX0 IO POJUSLIO-TDIBSOI SUIONPUOD
uoym deS queoyrudis e st SIyJ, MO LIV oY
SYIOMOUIRI] Ul POJO[R)RD A[[RULIO] USd(] I USARY
1ey) syjed xoelre Io sureyd o3e[ialid ,UumouNUN,,
o[puey jouued W], PoY snjellg ‘sonbruyoey
umouy uo A[o[os 3uisnooj Ag :senbruyoq, yoe)ry
JO 93POIMOUS] POUYOPAL] SOWNSSY "¢ ‘A[NJSSe00ns
SUOI)R[NWIS 9} 9INd9X0 09 suolssturiod J1o1[dxo
sexmbaua 91 ‘pesysu] ‘wrojred ued [edourid
UMOUNUN UR SUOIIOR JeUM 9I0[dXd j0U S90p
wes], pay snjeijs ‘op jou Aew 10 Aew [edourid
® JeUM IOAODSIP 07 SUOIJOR J\Y] 90I0J-991I(

ued YOIYM ‘WIRI-DJRISWINUS ONI[U[) :SUlZzNng

10 uorjerswnuy redourig oN ‘g ‘A10j1sodax

S91 Ul senbruyoo) yowjle se popoous pue

umouy Apeaife sI yeym Aq pspunoq st £)[1n sy
"SUTRYD UOIJR[RISO [9AOU IQAODSIP 0} A[[ROIURUAD
so3ofialId zznj I0 9)RISUWINUS JOUURD J] "SOLIRUSIS
Joejye pauyepald Aq peopunoq SI yIomouwrelj
uolje[NWIS 9y], :AjlIe[nuelr) anbruyosy,-o[3urg

T :syged yoelje umous[un Jo AI9A0dSIp

aarpoeoad 10 uorjeIowNUe 9391atId xo[dwod jo
aA1300ds1ad 97} WOIJ Pajen[eAs Usym SUOIjeITuI]
Sey wes], Poy snjells ‘siolavyoq orlje

pnopo umouy Julje[nus ur syjduails sy aqrdsaq

“JUOWUOIIATS 1081e)

® Ul POJO9JOpUN PIadONS P[Nom S¥OB})e
pnopo pIom-ear moyleym Jurjepijea

I0J [eOPI WRYJ, POy SNIeI}G Soyew
WSI[BaI UOIINIIXS UO SNOOJ SIY], "SOSIOIOXD
Surepowt jeaIy) oyrads I0J souo

Jurgsixe AJipowr 10 senbrure) woisno
UMO I} PP URD SI9S() :AJLIR[NPOIN
‘oge)s Jouid s3I 03 JUNOD2OR PNOD Y}
9I09S9I 0] UOIIR[NUIIS 9Y) SULIND PIRaID
suorssturod 10 ‘S9[0I1 Y] ‘S90Inosal
Areroduwe) dn sues[d wres], poy snjerg
‘pagsay st yorjje oY) 2ou() :dnues[)) 99elg
{UO01909[[00 AIjowIs[e) AJLINOSS WO)SND

1o sourfedid NHIS OUI SIY) 9)eISoUl

ueD SI8S() "S[OIJUOD UOI}D918P Juljepljea
I0J syjooy epnpoul sonbruyoel Auey
1SYOOH AM[IqeAIasq() ‘"¥orl)e o) uriojred
09 S[[BD [V 9AIIRU-PNO[D 97 9INJ0Xd 1Y)
spduios yseq 10 uoylAJ Surpuodsaliod oy}
suni pue o[y anbruyos) TINVA oY) sesred
[007 9} ‘A[[eUIoIU] :MIOMOWIRI] UOTINIOXH
{)BULIOJ PUR 9SN JO 9SEd [[JIM PURTITIOD
9IR[09p 07 o[y [WeA osn :(Paseq-TINVA)
uorjyeIe[d9(] anbruyoq], :umopyeaIq
SOISO[OPOTIO]\ "UOIINOOX I97Je

}or)je OY) JO SeORI} dAOWDI 0 S)dLIOS

10 spuewaoy) :21307 dnues[) ‘¢ {s[00}
11D 10 s3(S Pno[o BIA U9YJO ‘NYorvije

a1} suriojred jey) 9pOd [[AYS 10 UOYILJ
0130 UOIIMOdXY ORIy g {POINooxo

aq ued or)IR OYY 9I0Joq JSIX0 SN
9INJONIISRIJUT PNO[D JRYAN :SUOIHIPUOIDIJ
‘T :Aj0ads suorjIuyep 9soyJ,

TINVA UT U9)3LIm suorjiuygep ,senbruryoey
J}oelle, IRNPOW pPUNOIR POUIISOP

ST [00} 9Y], "UOIJR[NUIIS ¥o®v})e I0J
A30[0pOY 10U SATJRIR[OOD ‘POSB(-OLIRUIIS
e shAojdure wres], pey snjeilg

uoryenuuls uodn

Aprodoad Sure881iy oxe sont NHIS
WoIsNd I0 ‘[rel[,pnoy)) ‘Ampienxs)
OYI] S[00] AI1INDSS IOy 1oYM

o1epIfea 0} swea) H(S I0J UoIjeIoUL]
AIjowIa[e) SepN[OUl WR], POy

snjerlg ‘A[[eUOI}IPPY SIUSWIUOIIAUD
pnopo ur s1qeqoad A[ySIy 10 umouy oIe
1R} sureyo xoelye oyads Surpemnuirs
ST STID0J [0S §9] ‘seoelIns yoejyje dew
10 suorssiuntod ojeIOWNUS 0 WIR J0U
SoOp wea], POy snjellg ‘xoJpnory) Io
WRI-9)RISWINUS OYI S[00) 9YI[U[) "91eIs
[eUISLIO II9T[} O} SIUSTIUOIIAUS PNO[D
1I9A91 0} spueTOD dNULS[D OYOAUT
uRD SIOSN ‘)s9) YOrS I9YJe :SOINJes
dnues[) ‘§ ‘uormnjos [0 o[duuls

I/ 90RJIOU] A[PUSLIJ-UOI}RWOINY

‘¢ {(uotsear] asuajo(] ‘uolye[RISH
980[IALL] ‘SS900Y [RIIUSPAIL))

39) sonoe) MORILLY £q poziio3ores
aIe senbruyog], :Awouoxe], anbruyoa],
'g ‘uoryereosse oge[iatid Ajruapt
‘syoe))R JUOIUSISS® O[O0} :2INZY
-9STIq® UOY0) JUNODOR AIAING DY)

- aansodxo Aoy $se00® ‘SO[01 9oUR)ISUL
O ®IA UOIIRINUXO BIRD ‘UOIIR[RBOSO
aartand NV \SMYV - Suoe[nIg
¥oe)yy oyads-pnor) ‘1 :epnoul
sonIIqedey) ‘Aem pojULWNOOP
‘o[qegeadal ® Ul SIOIARYSQ

OAISUOJJO POJ[OIJUOD JUIINIOXD

Aq sosseoo1d asuodsal jusploul pue
souredid uor}oajep 9509 Apoarjoeord oy
surea} A31IMo9s so[qeus 3] ‘senbruyoog
pue sonoel MHRLLY HYLIN

01 paddew pue Jopraoid pnoio

Aq umop usyoiq ‘senbruyoey yowvyje
UMOUY JO UOTJR[NUIIS PUNOIR dAJOADT
seniqeded s,wreq], poy snjei)g

"oYI[' UOIIepI[RA AJLINDOS

OAISUQJOP PUR SOSIDIOXS SUIIes)
pa1 10j s[qelns 31 SulyewW sny}
‘suorjenuurs oere dn Suruesd
pue ‘Surquosep ‘3urInooxe

10J 310ddns yym ‘renpowr pue
OAT)RIR[IDD ST [00] 9Y], "SuljsoAley
[RIIUOPAIO IO ‘UOIIRIIXO

elep ‘uorje[esss aSariaLid oyI]
SIOTARYQ(OTWIW O} 99NO9Xd URD
s1osn yorym ‘(,senbruyoey oelre,)
SOLIRUADS ov)je pauyepald
sopn[oul [00} 9], ‘SOLIRUSDS PNO[O
10j paziferads Inq ‘wes], poy
OTWOYy 9YI] S[007} 0} d[qereduwod
aI0W 91 SoyeW SIYJ, 'SIUSWIUOIIAUD
PnopP unpm A[3001rp

IolARYQ([RLIRSIOAPR SO)R[NUIIS
wes], pay snjeng ‘suorssiuriod
SurjeIOWNUS IO SUOIIRINSYUOISTU
SUIAJIIUEpPI UO SND0J YoIYm

‘NDVJ 0 93mgInoog avyun
‘sengIfiqeded uo130e9ep aaordul
pue orepIfea siopusjep doy

07 9INJONI)SRIJUI PNO[D Jsurede
senbruyoe) yoeIe prIom-rest
oje[nurs 09 st osodaind 0100 s3]
‘uorye[Ne AIRSISAPR 9AI)RU-PNOLD
ur sezirereds inq MDRLIV
AUILIIN oY1 s[00} woly uorjelrrdsur
SMeRIp Weq], poy Ssneilg
‘s10out8us A1anodss Sopeje(y

Aq podo[pad(] ‘SIUOWUOIIATUD
dDD pue ‘aanzy ‘SMV Ul
UOT)R[NUIIS }2B)}R dAI}RU-PNO[D I0]
Areoyroads palofre) (001 A)LInoos
OAISUSJJO U® ST WIBYJ, POY SNIRILg

sdex) /syopeqmea

21801 810D pue SaI30[OPOY IO

senjIiqede)) sjIomawrel/[00T,

uornydirioso(q

22

[2] @8a[iaLId 9see] JO SUOIIR[OIA SOYIIUSPI 1R} [00] JUSWISSASSY AILIMDaG JNY] SMV - (9210]sereg) Sururedspnor) :L'¢ a[qr],

"SY[SLI UOIJe[RISO 939[IALId UMOUNUN JO AIDAOISIP
aA130R0Id 10 SOsed 9sT A31INoas aAlsuajjo 10} sded
o8eI0A00 JuUROYIUSIS soAro] uorjenuils yjed soe)ye pue
‘uorjerswnus [edoutid ‘Suizznj ‘sisA[eur dTWRUAD JO ov]
SHT 9Nq ‘SYSII Y] OI18)S ‘SNOIAO SUI}09)0P 1R DATIOR[O
Aoweayxe st ururerdspnor) ‘Arewrwuns uj "AI9A0ISIP
o3o[1aLId umousuUN 10 UoIRMWIS AIesioApe A10jelo[dxe
jou Inq spipne Lo1od pue ‘eouelduiod ‘@0URUISAOS

I0] poqIns 9s9q ST 11 ‘“)nsar ' sy ‘syjed uorssturod
uappIy Isaodun o0} saniqeded Y] 9910J-0INIq IO SUOIIOR
IdV umouxun zznj jouurd 3] ‘SYSLI pauyap “nggvﬂ im
sy1om A[uo Surure[dspnoy)) :AI19A09SI(] I0J UOI)RISTUNUL]
10 3uizzng oN ¢ ‘odoos s Furureidspnoy)) Jjo apIsino

are ‘(JYSS ‘"38'9) aunsodxo }I0m1oU popuLIUIUN RIA dSNR
se yons ‘syjed uorjejrojdxe [enixejuoy) :syjed Joeiry
xordwo)) 30999(J jouur)) ' ‘A[estwreudp sureyd o8o[iarid
9591} 9zA[eUR IO 9)R[NWIS j0U seop Surure[dspno))
‘IOAOMOF] 'SS900® PaleAd[d Ure3d 09 S[oAd] o3o[iaLid
9)RTPOULIONUT SUISN I0 SO[OI SUTUTRYD SAJOAUI US)JO SI0JIA
UOIYe[RISD 989[IALL] :Jururey) 9[0Y JO UoIjeIsWNUY ON
‘¢ ‘op jouued Jurure[dspnor) YoIym ‘uorjoe ue wrojred
ued [edourid e I9Yjeym 1893 A[OAI)OR URD UIRI-0)eISUINUS
oI S[009 S[IYAA ‘syred uorjeresss o3o[iarid A}11U0-ss010
Jo anyotd sarsusyardwod ' prmq o3 syedoutid oidinu
SSOJOR 9JRIOWINUS J0U SOOP N UOIIR[OST url sarijod
[eNPIATPUI Sojen[eAd 1] :uoljelownuy [edULIJ-1)NN

ON g ‘suorsstuitod Auep A[oA1}09]je Ued YIIYM ‘(SIIdI[0J
[019U0)) 921A19G) SIS 10 ‘sororjod paseq-00Inosol
‘serrepunoq uorssiuniad ja1disjur jou seop SIsA[eue

s Sururerdspnor)) oouts ded [eono ® st siy,J, ‘'sdnoid

I0 ‘sofol ‘sIosn Jo suorssiuriod 9AI1}09Jo SUII}-[RaI YIIM
so1o1[0d 90USI9JI-sS0ID J0u seop 9] ‘Tedourid remoryred
® Aq o[qejrojdxe 10 9[qIsseddr A[[enjoe are suolssturrod
ANSLI oY} Iajoym ajepI[ea jouued Surure[dspnor)) :A[uQ
SISATeuy 211e1g ‘T :SIUOUIUOIIAUS PNOd ul Arxo[durod
JNVI pue uorje[esse o3o[1atid jo odoos [[nJ oy} Suisseippe
ur syoeqmerp pue sded o[qejou sey osye)1 ‘sisk[eur

JNVI 219e3s 10] 9A1300J0 A[U31y st Surure[dspnory) o[y A\

suorjoe o[3uls

isnl ueyy Joyjelr suoissturrod jo
seouanbas ajenyeas soni punodurod
ouwIos Jey) pajou s,9] ‘surolred

IO SUOIeUIqUIOD ANSLI jsurede
0jeu 0 S9[NI UOI0a3ap pauyepald
sorjdde 3ururerdspnoyy) ‘Aorjod
pesied yoes 104 :uorjedriddy o[y
NSTY ‘¢ ‘UOIYROYIPOJA 9INJONIISeIJU]
pue ainsodxr] 90IN0S9Y ‘UOT}R[RISH
o8oT1ALl :A10807€D sl Aq padnoid
aIe SUOIOY ‘(191SN[DH91BII):SHO
‘Uo110UN Jo1eI) RPqUITR]
‘S00URISUTUNIY 700

‘ojoyssed:urer 8'9) suorjoe VI
NSHI-YS1Y JO 9SI[POJRIND ' SUIRIUIRIA
:9seqR)R(] SUOIOY snoloue(]

'z ‘(quesaad J1) (s)uoripuop)

pue (s)eoinosoy ‘(s)uorpoy ‘(Aua(g
10 MO[[Y) 109 :0Ul UMOp WoY)
Juryealq ‘sjuewo)e)s [eNpIATPUT
oqur sarjod ase) sesodurodsp
uoy) 3] "SO[Y [BDO[IO SIUNOIOR SAY
woyy sepijod NV P3reutio}-NOSI
speaa Surureidspnor)) :8ursied
Ao110d NV ‘T :se8ej)s Suimoj[oj
9Y1 JO SISISU0D OI80[[RUIDUL

§)] ‘suoIeINSYUOD snoloIuep
Ajryuept 09 Surydjewr uiejyed
peseq-o[nI pue ursied juewWnoop
Aorjod Sursn sewrjod NV SMV

Jo sisATeue o1jess st surure[dspnory))
Jo A3ojopoyjeut 9100 9Y T,

‘“UoIjRpI[RA UOTI}I9)0P

10 uoryejo[dxa 9A110® URY) IoYJel
‘stsATeue aanjsod A31anodes awl}-jIpne

10 quswiAojdep-o1d Surpraoxd Aq

S[009 9soy} sjuawe[duod 9] “A[[edTweuAp
10 A[eArjoriajul ajeiado) ,ussop
Surure[dspnoy) ‘wrer-ejeIiownud I0 HVJ
OYI[U[) "JUNODDR PNO[D SAI[® UI A)}1JUPI
uoAIS e Aq o[qeliojdxe 10 9A110® oIR
suorssturiod o1} IoYJorMm 1S9] IO 9INIIXS
j0u seop os[e 9] ‘sewrod Y] d11e1s
jsurede sy1om A[uo 9] ‘[009} Suriojruour
awi-[eal & jou st Jurureidspnor))

:0doog JO uoIRIIWIT g (SR} AILINDDS
pue siedo[pasp [j10q Aq meraal Surjqeus
‘syndino NOS[10 sproder TINLH
sojerouar) :3urjrodey] aarsueyaiduio))

*g ‘quowrAo[dep o10Joq MOIADT

Aorjod Ay @210jue 09 seuredid D /1D
0OJuI pojeISeIUl 9 UR)) UOIRWOINY
M1y AdT0d JNVI T ‘@Iep OAI}ISUSS
§S900® 09 Pasn aq ued et} JdAI09(]:suIy
10 109[q(1en):gs oy suorssiuriod
soyIjuap] :eje(] SAIISUSG JO oInsodxsy

"¢ {suorjoe preoplim yym sororod sSef g
WO110099(J SUOISSIUWLIOJ prOIg A[IOAQ) ‘G
{(sse00® 101RMSTUTIIPE UreS 07 suoljeiado
ZOH UHm o[oYySseJ:urel SuruIquIod

-8-9) uoryeresss o8oriarid 10] mofre

pPInoo 1ey) suorssiurrod JO SUOIIRUIGUIOD
AYSLI §10039(] :SYSIY UOI}eRISH
989[IALIJ JO UOIedYIUep] "T:seriqede))
9I0{) ‘SI0}D9A UOI)R[RISS IO SUOI}OR
snoro8uep jsurede suorssturiod PaIsAOISIP
sdew pue serorjod peSeurw pue ouIful
10q s3oadsur 3] ‘sySLI A31moss [erjusjod
105 samIod NV SAMV SulzA[eur punoie
aaoA81 seniiqedeo s Surureidspnor)

'sySIsur

SL 9[qruOonOR 0jul INVI SMV
Jo aanjonuags snbedo usyjo
oy} Suruiojsuer) Aq A1Inoos
PROJO Ul posu [eJIILID © SaSpLIq
1] ‘seorjorid o8eqiarid-)ses]
9010Jue 0} smaraal Aorjod
yuowrfojdep-o1d 10 ‘sourjodid
ap/10 ‘sypne £3umoes ut
posn uayjo st 9] ‘suorssturrod
%1% pIeOp[m Surjuerd
so1o170d 10 ‘s8] 01ea1):700
‘oloySseJ:urel oI SUOI}OR
Ays1x Suny3ysiy syrodea
o[qepeaI-URWNy S9)RIOUOT
1009 9, 'SIOST [RUISIUT

Aq posnsiu A[jue1IoApRUL

10 s1oyoe)le Aq pojrojdxe

aq p[noo 1ey) suorssrurrod
snoro3uep 39939p 09 ST
asodind Arewrad s3] “serorjod
JNVI JO sisA[eue pourels-ouy
91} UO S9SNI0J A[OAISN[IXD
Sururerdspnoy) ‘sisApeue
UO01)eINSYUOISTUI PNO[D PrOIq
opraoxd 99IMGINOdG dI[S[00)
SEAIdY A\ 'SOUDRaI(q AJLINDDS
Pno[o JO s9sned 1001 UOW WO
1SOW o1} JO SUO dIe YIIYM
‘sarorjod Y] oAlsstunIod-19A0
91RIPOUWIOI PUR PURISIOPUN
sures) Ajunoss dpay

09 pou3Isop SI 9] SUOIIR[RISD
o8or1aL1d pue sysu1 suolssturrod
Ajrquapr 01 seiod NV
SMV SuizA[eur U0 sosnooj
yey) ao10jso[eg Aq pedofeasp
[007 Aj1noes 9dinos-uado

ue st gurure[dspnor)

sdexn) /sspeqmeaq

213017 9100 pue soI30[0POYISIN

senjiiqede)) sjromauwrelq/[00T,

uorydriosa(q

23

3.3 Conclusion

The comprehensive examination of prior-art models and frameworks for AWS IAM enu-
meration and privilege escalation reveals a rapidly evolving yet still fundamentally con-
strained landscape. Most existing frameworks, including PACU, CloudPEASS, CloudFox,
and enumerate-iam concentrate on single-principal IAM enumeration, confining their per-
spective to the permissions and visibility of the authenticated identity. This approach
restricts the automated discovery of multi-hop or chained escalation paths, which are
increasingly exploited in complex cloud environments through transitive trust and inter-
play between resource-based and identity-based policies.

The reliance on static, signature-driven detection further limits the adaptability of
these tools. While matching known permissions to curated escalation techniques is effec-
tive for documented risks, it fails to identify novel or emerging attack vectors, especially
as AWS services evolve rapidly and adversarial tactics become more innovative. Addition-
ally, the lack of automated privilege graphing and cross-principal enumeration severely
hampers the discovery of complex escalation scenarios involving multiple principals to
reveal the complete vision. Manual investigation can theoretically address these gaps,
but it is impractical at the scale of modern cloud deployments.

Audit-focused compliance-focused framework, such as ScoutSuite and Cloudsplaining,
are valuable for identifying policy misconfigurations and enforcing least-privilege prac-
tices. However, their static, configuration-centric designs are not intended to simulate
dynamic, real-world attack chains or assess the practical exploitability of discovered risks.
Cloud attack simulation framework such as Stratus Red Team excels at validating detec-
tion and response processes for known attacks, but their utility is bounded by predefined
scenarios and lacks proactive discovery of undocumented escalation paths.

In summary, the current generation of IAM enumeration and privilege escalation
framework is indispensable for baseline security and compliance, but falls short in en-
abling comprehensive adversary simulation and proactive defense. The absence of dy-
namic, context-aware analysis, automated privilege graphing, and exploratory method-
ologies represents a significant gap that is increasingly exploited in real-world breaches,
as evidenced by incidents like Capital One. Addressing these challenges requires a new
re-invention of frameworks that integrate context-aware privilege analysis, automated
cooperative enumeration by cross-principal approach, and hybrid methodologies combin-
ing static and dynamic techniques. Such advancements will be essential for defenders
and red teamers alike, providing deeper, actionable insights and enabling more resilient
cloud security postures. The following chapters will introduce a new framework with our
proposed models designed to fill these critical gaps in the current landscape.

24

Chapter 4
SkyEye Framework and Proposed Models

In this chapter, we will present the SkyEye - a cutting-edge cooperative multi-principal
IAM enumeration framework, along with its proposed and developed models, which sig-
nificantly demonstrate how SkyEye differs from prior-art models and frameworks in enu-
merating IAMs of cloud user principals from the black-box approach.

4.1 Cross-Principal IAM Enumeration Model (CPIEM)

The original idea of the Cross-Principal IAM Enumeration Model (CPIEM) came from
the difficulty that occurs with the single-principal IAM enumeration approach. In the
enumeration phase of the penetration testing process, penetration testers often gather
multiple AWS credentials in the format: AccessKey, SecretKey, Session Token. However,
it could only perform separate-principal or single-principal IAM enumeration from each
user session, leading to false negatives due to limitation of principal-specific IAM enti-
tlement vision. To resolve this limitation, the Cross-Principal IAM Enumeration Model
(CPIEM) was proposed and developed to efficiently perform advanced TAM enumera-
tion across multiple user principals within the AWS Account Id, to complement each
user’s IAM vision context. By coordinating available sessions of each valid credential
simultaneously, it can:

e Discover hidden permissions
o Reveal a more accurate and complete IAM policy landscape for each TAM entity

« Minimize false negatives that typically occur with single-principal IAM enumeration

But before delving deeper into the enumeration model, we will firstly start with the
discussions regarding single-principal or separate-principal IAM enumeration capabilities.

4.1.1 What is Single-Principal IAM Enumeration Model (SiPIEM)?

Single-Principal TAM Enumeration is the capability to scan single AWS creden-
tials separately, utilizing principal-specific TAMs of one single user principal at a
time. In recently published framework and tool, it was often integrated the ca-
pability of utilizing relevant TAMs permissions such as: iam:ListGroupsForUser,
iam:ListGroups, iam:GetGroup iam:ListUserPolicies, iam:GetUserPolicy,
iam:List AttachedUserPolicy, iam:ListAttachedGroupPolicy, iam:ListEntitiesForPolicy,

25

iam:GetGroupPolicy, iam:ListGroupPolicies, iam:ListRoles, iam:ListRolePolicies,
iam:GetRolePolicy, iam:ListAttachedRolePolicy, iam:ListPolicy Versions, iam:GetPolicy,
iam:GetPolicyVersion, etc. to expose the complete IAM vision context of the current
user from black-box perspective. Moreover, it also coordinates the fuzzing capability
and the permissions simulation capability by leveraging iam:SimulatePrincipalPolicy
permission to reveal the TAM vision context. In SkyEye framework, we build upon
the single-principal TAM enumeration model discussed in Chapter 3. Our proposed
framework integrates these models as supplement components while introducing novel
mechanisms for the cross-principal TAM enumeration model. The fuzzing capability
and permissions simulation capability are also integrated into this single-principal IAM
enumeration model only; the reason behind is due to a huge amount of time required to
finalize these tasks for multiple AWS credentials.

[Services:Actions]
Full Permissions Library

Case of

Associated
Resource

[resource: * j y
J i

3

Y

I

>

X,

iam:SimulatePrincipalPolicy
@ = C -

Allowed
[Services:Actions]

In-scope

&
IAM Roles @ i B "X s3:.
1 ec2....

User - dynamodb:...
[services]:[Actions]
. A A
[resource: * V
Case of 5&
Associated =
Resource

[Services:Actions]
Read-only Permissions Library
Get / Describe / List

Figure 4.1: Permissions Simulation and Fuzzing models

Permissions simulation capability will be performed by leveraging the
iam:SimulatePrincipalPolicy permission. This permission will support the enumera-
tion process by simulating how a set of IAM policies attached to an IAM entity works
with a list of API operations and AWS resources to determine the policies’ effective
permissions. The entity can be an IAM user, group, or role; and if a user is specified,
then the simulation also includes all of the policies that are attached to groups that the
user belongs to. This model will check if the user principal’s session is allowed to perform
iam:SimulatePrincipalPolicy, if yes, the model will leverage this permission to simulate
all AWS actions which are nearly 20,000 actions, to understand which actions the user
principal can perform. Moreover, since iam:SimulatePrincipalPolicy can only simulate

26

the user principal and inherited permissions from in-scope IAM groups that the user be-
longs to, it lacks the capability of simulating the inherited permissions from the in-scope
IAM roles that the user could perform assumption directly or indirectly. The model will
actively incorporate with the Transitive Cross-Role Enumeration Model (TCREM) -
which is one of the core models of SkyEye and will be discussed in next section, to gain
the understanding of in-scope IAM roles, and leverage iam:SimulatePrincipalPolicy to
target those in-scope IAM roles to return a most complete result.

If the wuser principal does not have sufficient permission to perform
iam:SimulatePrincipalPolicy, the model will switch directly to initialize the fuzzing
capability. The fuzzing capability will be performed by actively invoking the AWS API
of nearly 8000 AWS read-only actions to understand which actions the user principal can
perform. Only AWS read-only actions will be undertaken in the fuzzing capability, due
to the fact that almost all the read-only actions will not require the essential parameters
and values to be provided before the execution.

4.1.2 What is Separate-Principal IAM Enumeration Model
(SePIEM)?

Similarly to Single-Principal IAM Enumeration, Separate-Principal IAM Enumeration
can support scanning by principal-specific [AMs, but is extended further by the capability
of scanning multiple AWS credentials separately. In SkyEye framework, we also build
upon the idea of single-principal IAM enumeration model discussed in Chapter 3 as a
supplement component, to diversify the capabilities of the framework.

4.1.3 What is the limitation of the single-principal or separate-
principal IAM enumeration model?

In this section, we will point out several scenarios where single-principal or separate-
principal IAM enumeration models are highly restricted in enumerating a complete IAM
vision context.

Scenario A: Retrieval of inline policies for user principal
- TAM Action Chain: iam:ListUserPolicies — iam:GetUserPolicy

o User A is permitted to perform iam:ListUserPolicies for a specified user, allowing
this uer to list the names of all inline policies attached to that user. However, User
A does not have iam:GetUserPolicy, so cannot retrieve the actual policy documents.

o User B is permitted to perform iam:GetUserPolicy, allowing this user to retrieve
the policy document if given the username and policy name. However, User B does
not have iam:ListUserPolicies, so does not know which policy names exist for a
user.

o Therefore, User A can list the policy names but not see their content, and User B
can retrieve the policy document but does not know which policies to request.

27

Conclusion: Due to the separation of IAM permissions across users, neither user
operating independently can retrieve the complete set of inline policies (including detailed
documents) for a user; both actions are required in sequence, but split across users. The
lack of a single user’s ability to execute the full chain - discovering policy name of user’s
inline policies, and enumerating and retrieving full policy documents - prevents complete
visibility.

Scenario B: Retrieval of attached managed policies for user principal
- TAM Action Chain: iam:ListAttachedUserPolicies — iam:ListPolicyVersions or
iam:GetPolicy — iam:GetPolicyVersion

o User B has permissions to perform iam:ListAttached UserPolicies, allowing User B
to list all managed policies attached to a specific IAM user. However, User B can-
not perform iam:GetPolicy or iam:ListPolicy Versions and iam:GetPolicyVersion, so
cannot retrieve the detailed documents or at least current version of those policies.

o User A has permissions to perform iam:ListPolicyVerion, allowing User A to re-
trieve a managed policy’s metadata and current version if provided with the policy
ARN. However, User A cannot perform iam:ListAttachedUserPolicies, so cannot
enumerate which policies are attached to any user, nor can User A retrieve com-
plete documents if provided policy ARN along with its version due to the lack of
iam:GetPolicy Version.

e User C has permission to perform iam:GetPolicyVersion, enabling User C to re-
trieve the complete documents of a specific policy version if provided with the
ARN of policy and version identifier. However, User C cannot enumerate attached
policies or retrieve policy metadata to understand its current version.

o As a result, User B can enumerate which managed policies are attached to a user,
but cannot retrieve their contents or versions. User A can retrieve policy metadata
and its current version, but cannot enumerate which policies are attached to users,
nor retrieve complete documents of given policy ARN and its current version. User
C can retrieve the contents of a specific managed policy version, but only if provided
with the policy ARN and the current version ID. Therefore, no single user can
enumerate and retrieve the full content of all managed policies attached to the
groups to which a user belongs to.

Conclusion: Due to the separation of IAM permissions across users, neither user
operating independently can enumerate and retrieve the complete set of all attached
managed policies (including detailed documents) for a user. The lack of a single user’s
ability to execute the full chain - discovering ARN of managed policies attached to a given
user, and retrieving full policy documents of those attached managed policies - prevents
complete visibility.

Scenario C: Retrieval of inline policies for in-scope IAM groups
- TAM Action Chain: iam:ListGroupsForUser or [iam:ListGroups and
iam:GetGroup| — iam:ListGroupPolicies — iam:GetGroupPolicy

28

e User B is permitted to perform iam:ListGroupPolicies and iam:GetGroupPolicy,
enabling User B to enumerate the inline policies attached to a specified IAM group
and retrieve the document of a specific inline policy embedded within that group.
However, User B does not have permission to perform iam:ListGroupsForUser, and
therefore cannot determine the IAM groups to which they themselves (or any other
user) belong.

o User A is permitted to perform iam:ListGroupsForUser, enabling User A to enu-
merate all TAM groups to which a specified IAM user belongs. However, User A
does not have permission to perform iam:ListGroupPolicies or iam:Get GroupPolicy,
so it cannot list or retrieve the inline policies attached to any IAM group.

o As a result, User B can enumerate and retrieve inline policies for any group, but
does not know which groups they belong to (i.e., IAM groups a particular user is a
member of). User A, on the other hand, can determine group membership for users,
but cannot enumerate or retrieve inline policies (including complete documents)
for those groups. Therefore, User B cannot retrieve any information about inline
policies for the IAM groups to which they themselves belong, because they lack
the ability to determine their own group membership. Similarly, User A can only
determine to which groups a user belongs to, but cannot retrieve the details of inline
policies for those groups.

Conclusion: Due to the separation of IAM permissions across users, neither user
operating independently can enumerate and retrieve the complete set of inline policies
(including detailed documents) for all in-scope IAM groups (i.e., the groups to which
users they have access belong). The lack of a single user’s ability to execute the full chain
- discovering group membership and then enumerating policy names of in-scope groups’
inline policies, and retrieving full policy documents - prevents complete visibility.

Scenario D: Retrieval of attached managed policies for in-scope IAM groups
- TAM Action Chain: iam:ListGroupsForUser or [iam:ListGroups and

iam:GetGroup] — iam:ListAttachedGroupPolicies — iam:ListPolicyVersion or

iam:GetPolicy

— iam:GetPolicy Version

e User E can perform iam:ListGroupsForUser, enabling them to list all TAM
groups to which a specified user belongs. However, User E cannot perform
iam:ListAttachedGroupPolicies and so cannot determine which managed poli-
cies are attached to those groups.

o User B can perform iam:List Attached GroupPolicies, allowing them to list all man-
aged policies attached to a specified group, but cannot enumerate which groups a
user belongs to (iam:ListGroupsForUser).

e User A can perform iam:GetPolicy and iam:GetPolicy Version, enabling them to
retrieve policy documents and its versions, but cannot enumerate which groups the
user principal belongs to or which policies belong to which groups.

29

o Asaresult, User E can enumerate the IAM groups to which a specified user belongs,
but cannot determine which managed policies are attached to those groups. User
B can enumerate all managed policies attached to a specified group, but cannot
identify which groups are associated with a specific user. User A can retrieve the
complete documents and its current version of managed policies if provided with
the ARN of policy, but cannot enumerate groups or determine group membership.
Therefore, no single user can enumerate and retrieve the complete set of managed
policy documents attached to the groups to which a user belongs.

Conclusion: Due to the separation of IAM permissions across users, neither user op-
erating independently can enumerate and retrieve the complete set of attached managed
policies (including detailed documents) for all in-scope IAM groups (i.e., the groups to
which users they have access to belong). The lack of a single user’s ability to execute the
full chain - discovering group membership and then discovering ARN of managed policies
attached to in-scope IAM groups, and retrieving full policy documents of those attached
managed policies - prevents complete visibility.

Scenario E: Retrieval of inline policies for in-scope IAM roles
- IAM Action Chain: iam:ListRoles — iam:ListRolePolicies — iam:GetRolePolicy

o User A can perform iam:ListRoles, allowing them to enumerate all IAM roles in
the account, but cannot list or retrieve inline policies for those roles.

o User C can perform iam:ListRolePolicies, allowing them to list the names of inline
policies for a specific role, but cannot enumerate all roles (iam:ListRoles) or retrieve
policy documents.

e User D can perform iam:GetRolePolicy, enabling them to retrieve the document
of a specific inline policy for a given role and policy name, but cannot list roles or
policies.

o As a result, User A can enumerate all in-scope IAM roles in the account, but
cannot list or retrieve inline policies (including complete documents) for those roles.
User C can list the names of inline policies attached to a specific role, but cannot
enumerate all in-scope IAM roles or retrieve policy documents. User D can retrieve
the complete document of inline policies for a given role and policy name, but cannot
list roles or enumerate policy names. Therefore, no single user can enumerate and
retrieve the complete content of all inline policies attached to all in-scope IAM roles.

Conclusion: Due to the separation of IAM permissions across users, neither user
operating independently, can enumerate and retrieve the complete set of inline policies
(including detailed documents) for all in-scope IAM roles (i.e., the roles that users they
have access to can assume). The lack of a single user’s ability to execute the full chain
- discovering in-scope IAM roles that the user can assume, and then enumerating policy
names of in-scope roles’ inline policies, and retrieving full policy documents - prevents
complete visibility.

30

Scenario F: Retrieval of attached managed policies for in-scope IAM roles
-TIAM Action Chain: iam:ListRoles — iam:List AttachedRolePolicies — iam:ListPol-
icyVersion or iam:GetPolicy — iam:GetPolicy Version

o User B can perform iam:ListRoles, allowing enumeration of all IAM roles. How-
ever, User B cannot list the attached policies for these roles.

o User D can perform iam:ListAttachedRolePolicies, enabling them to list all man-
aged policies attached to a specified role, but cannot enumerate roles or retrieve
policy documents.

e User A can perform iam:GetPolicy and iam:GetPolicyVersion, enabling them to
retrieve the document and versions of a managed policy if given the ARN, but
cannot list roles or attached policies.

o As a result, User B can enumerate all in-scope IAM roles in the account, but
cannot list the managed policies attached to those roles, nor retrieve the complete
documents of those managed policies. User D can list all managed policies attached
to a specified role, but cannot enumerate all in-scope IAM roles or retrieve the
complete documents of those managed policies. User A can retrieve the complete
documents and its current version of managed policies if provided with the ARN
of policy, but cannot enumerate in-scope IAM roles or determine which policies
are attached to in-scope IAM roles. Therefore, no single user can enumerate and
retrieve the full content of all managed policies attached to all in-scope TAM roles.

Conclusion: Due to the separation of IAM permissions across users, neither user
operating independently, can enumerate the complete set of attached managed policies
(including detailed documents) for all in-scope TAM roles (i.e., the roles that users to
which they have access can assume). The lack of a single user’s ability to execute the
full chain - discovering in-scope IAM roles that the user can assume, and then discover-
ing ARN of managed policies attached to in-scope IAM roles, and retrieving full policy
documents of those attached managed policies, prevents complete visibility.

Scenario G: iam:Get Account AuthorizationDetails to complement other users’
IAM entitlement visibility
- IAM Action Chain: iam:GetAccountAuthorizationDetails

o User B cannot perform any IAM actions to reveal its IAM entitlement visibility
o User C cannot perform any TAM actions to reveal its IAM entitlement visibility

o User A can perform iam:GetAccountAuthorizationDetails , empowering them to
retrieve all information of IAMs in their AWS Account Id, including their TAM
context.

o As aresult, User A can reveal its full IAM context, but User B and User C cannot
reveal any information regarding permissions that they are allowed to perform, and
resources that they are allowed to interact with.

31

Conclusion: Due to the separation of IAM permissions across users, if users are
operating independently, User A cannot support User B and User C to enumerate the
complete set of their IAM entitlement visibility.

These 7 scenarios illustrate the limitations of the traditional single-principal TAM
enumeration approach in a cloud environment. By not having sufficient permissions in
each phase of the IAM chain, it could lead to the failure of fully revealing any of the inline
policies and attached managed policies for TAM users, in-scope IAM groups, in-scope [AM
roles, in-scope TAM policies during the enumeration process.

4.1.4 How SkyEye Framework and CPIEM mitigate these limitations?

Instead of depending on the self-access IAM entitlement visibility of single user to reveal
its TAM context, and to fully understand what permissions and what resources that
the user is allowed to perform and interact with, sometimes leading to false negatives
when user could perform some specific permissions to specific resources but could not
have the situational awareness on that, the cross-principal TAM enumeration model,
which is the core capability of SkyEye framework, is designed to tackle this limitation by
involving and correlating simultaneously multiple valid credentials to continually expose
the complete IAM visibility of each user principal.

Initially, SkyEye will validate the provided AWS credentials, and split them into
separate "AWS Account Id" clusters, ensuring that only the users from similar AWS
Account Id, will be involved in complementing other users’ IAM visibility from similar
account id.

SkyEye will then construct multi-threaded mechanism to run the enumeration
from each user’s session simultaneously and perform cross-principal enumerations across
ARNSs of each user, and interact with the shared envIAMData objects - separated by
AWS Account Id, to store the TAM Users, IAM Groups, IAM Roles, IAM Policies

gathered from each user’s session in run-time.

Shared envIAMData objects will act as independently shared storage for multiple
users from each different AWS Account Id, to support each user’s session in adding new
IAM objects or complementing existing ones if missing components are identified in
those objects before initiating the complementation process.

In addition to the IAM chains to fully reveal inline policies and attached man-
aged policies for IAM users, in-scope IAM groups, in-scope TAM roles, in-scope TAM
policies, during the enumeration process, if the iam:GetAccountAuthorizationDetails
permission is detected in run-time to be executable by at least one user’s session
from similar AWS Account Id, the model will immediately terminate all user’s session
come from that AWS Account Id, and utilize the iam:GetAccountAuthorizationDetails
permission to retrieve full IAM context of that AWS Account Id, and distribute the
correspondent result to the user principal that involved in the IAM enumeration for that
AWS Account Id. This approach will reduce significantly 95% of the entire scanning

32

V2 TN

Inline Attached
Policies Policies € — — — — — —
RoleList L Inline Attached
Policies Policies
User
Name

Attached
Policies

envData,
Policies
Thread

Lock

Shared Objects
User, Group, Role, Policy, ...

ects
User, Group, Rale,

Shared Objects
User, Group, Role, Policy, ...

Policy, ...
Multi-Threaded Multi-Threaded Multi-Threaded Multi-Threaded Multi-Threaded
Separated User Session ‘Separated User Session Separated User Session Separated User Session Separated User Session
Accumulated IAMs I
Output A A A A A

by Gredential

IAM Session Client |IAM Session Client

IAM Session Client

IAM Session Client IAM Session Client

'Separated Account ID

Credential 1 Credential 2 Credential 3 Credential n Credential n+1
A A A
Account ID: 1234567689012 e o1 Account ID: XXXXKXKKXKXK
Separated Account ID

Separated Account ID

[]

Credential 1 Credential 2

Credential 3

Credential

Credential n .
‘ ‘ List

A

Figure 4.2:

33

AttachedManaged

Policies

-~ - ——

A

[}

1HistoricPolicyVersion |
Detection

. R

'
Palicy
Name

Core of SkyEye - Cross-Principal IAM Enumeration Model (CPIEM)

IAM Vision Context

User A

IAM Vision Context IAM Vision Context

User_B) User_C/

IAM Vision Context

User D)

Figure 4.3: The Interconnection in Cross-Principal IAM Enumeration Model (CPIEM)

process, and result in a most sufficient IAM output for each user principal involved while
not producing redundant API invocation, potentially leading to detectable traces in the
log.

The efficacy of the SkyEye CPIEM model is best demonstrated through a rep-
resentative operational scenario, which underscores its utility in advanced TAM
enumeration. Consider a context in which the enumeration framework, such as SkyEye,
processes active sessions for five distinct user principals: User A, User B, User C,
User_D, and User_ E, each instantiated with unique AWS credential pairs. Each prin-
cipal is provisioned with a discrete, non-overlapping subset of IAM permissions, as follows:

o User__A: Lacks explicit permissions to perform any IAM actions.

e User_B: iam:GetUserPolicy, iam:GetGroupPolicy, iam:GetRolePolicy,
iam:GetPolicy, and iam:ListPolicy Version

e User_C: iam:List AttachedGroupPolicies, iam:List AttachedUserPolicies,
iam:ListAttachedRolePolicies, iam:ListGroupPolicies, iam:ListUserPolicies,
iam:ListRolePolicies

o User__D: iam:GetPolicyVersion

o User_ E: iam:ListRoles, iam:List GroupsForUser

In a traditional enumeration paradigm where each set of credentials is leveraged in
isolation, and the enumeration process is constrained either to a single principal or to
disjoint, parallel sessions per principal, the discoverability of the broader IAM topology
becomes inherently limited. The inability to synthesize and correlate permissions across
user boundaries leads to a fragmented security posture analysis, potentially obscuring

34

[iam:ListRoles | B
[

iam:ListGroupsForUser |

~ User E
b4
iam:GetPolicyVersion —
iam:ListUserPolicies A User_D
iam:ListAttachedUserPolicies Y
iam:ListGroupPolicies
iam:ListAttachedGroupPolicies
A User C

iam:ListRolePolicies

iam:ListAttachedRolePolicies

iam:ListRoles X

‘:, — > jam:ListUserPolicies X
User_A - - —
e ——{iam:ListAttachedUserPolicies —»
Attached

Managed Policies

Hiam:ListGroupsForUser]—)X

Figure 4.4: Cross-Principal IAM Enumeration Model - Example Scenario - Stage 1

critical relationships and privilege escalation vectors within the AWS environment.

The CPIEM model overcomes these limitations by enabling concurrent, synchro-
nized enumeration sessions across all available user principals. This cooperative
multi-principal model facilitates the aggregation and cross-correlation of disparate
permission sets, thereby augmenting the granularity and completeness of the overall
[IAM visibility. For instance, while User A cannot directly access or enumerate any
IAM resources, the intersection and union of the permissions held by User B, User_ C,
User D, and User E when orchestrated in concert, can collectively reconstruct a com-
prehensive access control map, not only for User A but for each principal under scrutiny.

Furthermore, the model’s capability to dynamically integrate the results of each enu-
meration session ensures a holistic perspective, wherein the knowledge gleaned from one
principal’s permissions enriches the contextual understanding of others. In defensive secu-
rity, this approach significantly enhances the identification of implicit trust relationships,
hidden privilege chains, and potential security misconfigurations, which are core con-
cerns in advanced IAM threat modeling and defense. By operationalizing cross-principal

35

(=)
iam:ListGroupsForUser
User_E

v
iam:GetPolicyVersion ———!
A~ UserD
iam;ListUserPolicies
iam:ListAttachedUserPolicies X
iamListGroupPolicies
iam;ListAttachedGroupPolicies.
& UserC
iamListRolePolicies
iam:ListAttachedRolePolicies X
-
iam:GetGroupPolicy | A~ User B
am GetRolePolicy | /—> —{iamListRolePolicies |- — — -
iam:GetPolicy | . - = ine Pl |
famListPolicyVersion| | amiisiRoies } — —> 262 A24] umet niine Policies :
" |
In-scope -/ .
1AM Roles —{amh -
|
|
v famiListUserPolicies |- — — — — — — — — — — - — ~ Attached |
Managed Policies ‘
,,,,,,,,,,,,,,,,,, I
User A fam ListAtiachedUserPolicies
| Embedded
Attached Inline Policies
Managed Policies Embedded fam:GetUserPolicy y Attached
P D R > Inline Policies Policy Name " Poli
) iam:GetGroupPolicy 3 anaged Po¥cios
fam:ListGroupsForUser —> — —{iam] i = [polioy N -
\ olicy Name iam:GetRolePolicy |- Policy Name.
! J) Statements
In-scope Group_A Inline Policies
1AM Groups Policy Am
fam:GetPolicy - —
A T —>|
— / fam:ListPolicyVersion |- — - Default Version Id
f Attached \ T G
,,,,,,,,,,,, »| Managed Policies iam:GetPolicyVersion
Customer-Managed Statement
__(famListAttachedGroupPolicies | — —»| | Policy Name Policies
2- . - HistoricPolicy
Attached - Policy Am > [E E] { L versionDetection | |
Managed Policies S J F— = -
AWS-Managed AWS-Managed
Policies Policy List

[1047 policies]

Figure 4.5: Cross-Principal IAM Enumeration Model - Example Scenario - Stage 2

enumeration and correlation, the CPIEM model advances the state of the art in IAM
reconnaissance, supporting both offensive and defensive cybersecurity postures within
complex cloud ecosystems.

4.2 Transitive Cross-Role Enumeration Model (TCREM)

Each "user" principal might have the permission to assume some specific roles and
retrieve the temporary session tokens to act on behalf of those roles. KEach "role"
principal might also have the permission to assume the other roles, and to act on behalf
of those roles through temporary session tokens.

The term In-scope IAM Roles in Transitive Cross-Role Enumeration Model
(TCREM) is defined by:

o The roles that can be assumed directly by provided AWS credentials:

— User A — Role A
— User A — Role B
e The roles that can be assumed indirectly by the roles that can be assumed by
provided AWS credentials:

— User A — Role A

x Role A — Role E
Role E — Role F
Role F — Role 1
x Role A — Role G

36

Role G — Role H
— User A — Role B

— In-Scope IAM Roles: Role A, Role B, Role E, Role F, Role I, Role G, Role H

Assumable Roles In-scope IAM Roles

arn:aws:iam::xxx:role/Role_X

. ! arn:aws:iam::xxx:role/Role_A
Assumable

1
1 (-]
iam:ListRoles > Role K —» arn:aws:iam::xxx:role/Role_K

I Assumable

1 1
User module : < = : arn:aws:iam::xxx:role/Role_E
assumeRole i Role E L _ |
TransitiveFilter 1 | Assumable I arn:aws:iam::xxx:role/...
1 |]
1 Role N < !
1 1

Figure 4.6: Core of SkyEye - Transitive Cross-Role Enumeration Model (TCREM)

Transitive Cross-Role Enumeration Model (TCREM) is proposed and developed with
the capability of gathering in-scope IAM roles, performing the direct assumption from
user principal, or indirect assumption from the roles that can be assumed by the user
principal, to act on behalf of in-scope IAM roles, and simultaneously complementing
to the entire scanning output, subsequently contributing to the reduction of false
negatives, and improving the overall accuracy of the IAMs output. Each role is an
independent principal with associated permissions assigned to, which can be leveraged
in complementing to the overall enumeration of IAM users, groups, roles, policies that
have a strong bond to the targeting AWS credentials.

Transitive Cross-Role Enumeration Model will be integrated into:

« Single-Principal IAM Enumeration Model (SiPIEM): In-scope IAM roles will only
involve complementing single user principal’s IAM vision context

 Separate-Principal TAM Enumeration Model (SePIEM): In-scope TAM roles will
only involve complementing each user principal’s IAM vision context separately

 Cross-Principal IAM Enumeration Model (CPIEM): In-scope IAM roles come from
each user principal, will involve in complementing not only original user principal’s
IAM vision context, but also other user principals’ IAM vision context

During run-time, if iam:GetAccountAuthorizationDetails permission is detected to
be executable by at least one role’s session from similar AWS Account Id, the model will
immediately terminate all the session come from that AWS Account Id, and utilize the
iam:Get Account AuthorizationDetails permission to retrieve full IAM vision context of
that AWS Account Id, and distribute the correspondent result to the user principal that
involved in the ITAM enumeration for that AWS Account Id. This approach will reduce
significantly 95% of the entire scanning process, and result in a most sufficient TAM
output for each involved user principals while not producing redundant API invocation,

37

potentially leading to detectable traces in logging.

The operational advantages of the TCREM model are most effectively illuminated
through the analysis of a representative scenario that encapsulates advanced IAM enu-
meration techniques within a contemporary AWS environment. In this context, let us
consider User A, an identity equipped with the capability to assume a set of in-scope
IAM roles: Role A, Role E, and Role F, either through direct or via transitive trust
relationships. Each principal, whether user or role, is endowed with a distinct and non-
overlapping subset of IAM permissions, delineated as follows:

o User__A: Possesses capabilities such as iam:ListRoles and iam:ListGroupsForUser,
enabling enumeration of associations with in-scope IAM roles and in-scope IAM
groups

« Role_A: Authorized to enumerate policy associations across roles,
users, and groups through permissions including iam:ListRolePolicies,
iam:ListAttachedRolePolicies, iam:ListUserPolicies, iam:ListAttachedUserPolicies,
iam:ListGroupPolicies, and iam:List AttachedGroupPolicies

e Role E: Holds advanced policy retrieval permissions including
iam:GetUserPolicy, iam:GetGroupPolicy, iam:GetRolePolicy, iam:GetPolicy,
and iam:ListPolicyVersions

« Role F: Entitled to retrieve specific policy document by the versions via
iam:GetPolicy Version

Traditionally, in penetration testing or red team operations, enumeration efforts
are often constrained to the context of a single identity session. While User A is able
to enumerate certain role and group metadata, their view remains incomplete, as the
permissions and policy insights granted to Role_ A, Role E, and Role_F are inaccessible
unless those roles are actively assumed and enumerated. This approach prevents the
correlation and aggregation of permissions across assumed roles, thereby hindering
the construction of a comprehensive, system-wide IAM topology. Such limitations can
lead to an incomplete understanding of privilege boundaries, trust relationships, and
potential privilege escalation vectors within the AWS environment.

The TCREM model fundamentally advances this paradigm by operationalizing
simultaneously transitive cross-role enumeration. When integrated, the model leverages
User_A’s privileges to discover in-scope TAM roles, and autonomously assume each
in-scope TAM role and instantiates temporary sessions for Role A, Role E, and
Role_F concurrently alongside the primary User A session. These parallel enumeration
processes enable the synthesis of permissions and policy data across both the originating
user principal and all assumable roles, therefore, constructing an integrated and multi-
dimensional view of the IAM environment.

Crucially, this approach not only augments the ITAM visibility for User A by
aggregating permissions and policy insights from the assumed roles, but also enables

38

1
LI}

sts:AssumeRole 1y
. 1

‘ 1

[}

[}

Role_A ’_/"Session:RoIe_A

sts:AssumeRole
-) -

.-"" Session:Role_E

sts:AssumeRole
> -

Session:Role_F

@)
IAM Vision Context @—}&ﬁ

User_A In-scope
IAM Roles

>

Session:Role_G

===1

Role_B ’,/"Session:RoIe_B : !

. . 1

. 1

1

1 I - !
:
In-scope 1
IAM Roles :
sts:AssumeRole !

> 1

1

1

1

1

1

1

1

®

Figure 4.7: The Interconnection between Users in CPIEM and Roles in TCREM

the integration with cross-principal IAM enumeration model (CPIEM). In scenarios
involving multiple user principals, each with discrete trust relationships and role
assumption capabilities, the TCREM model orchestrates enumeration sessions for all
user identities and their respective assumable roles. This cooperative enumeration
methodology empowers a holistic assessment of the TAM landscape, facilitating the
discovery of complex privilege chains, indirect privilege escalation pathways, and latent
policy misconfigurations that would otherwise remain undetected under a single-principal
enumeration model.

In summary, the TCREM model represents a significant advancement in TAM
enumeration methodology, enabling security practitioners and penetration testers to
transcend the inherent limitations of isolated principal analysis. Through its support
for concurrent and transitive enumeration, the model fosters a more precise and
exhaustive understanding of access control dynamics, privilege escalation relationships,
and the overall security posture of AWS IAM deployments. This makes SkyEye as
an indispensable framework for both offensive security assessments and defensive IAM
governance within complex cloud environments.

39

sts:AssumeRole
—_—>

sts:AssumeRole
>

__“'- Session:Role_E

iam:ListRolePolicies

sts:AssumeRole @
> . .
Inline Policies

24

In-scope Role_F ™ Session:Role_F
IAM Roles ‘[{(iam:ListAttachedRolsPoliciesT

iam:ListEntitiesForPolicy

{ iam:ListRoles
[

@ iam ListUserPolici Attached
. —T> lam:ListUserrolicies il
iam:ListGroupsForUser] Managed Policies

User_A g
- Inline Policies

> iam:ListAttachedUserPolicies X
iam:ListEntitiesForPolicy
Attached
Managed Policies

o0
A
Ly W —> iam:ListGroupPolicies

In-scope Group_A

1AM Groups Inline Policies

—> [iam:ListAttached GroupPolicies X
L iam:ListEntitiesForPolicy
Attached
Managed Policies

Figure 4.8: Transitive Cross-Role Enumeration Model - Example Scenario - Stage 1

iam:ListRoles
iam:ListGroupsForUser

Figure 4.9:

sts:AssumeRole

—{ iam:ListRolePolicies |- — — —

Inline Policies

08 stsiAssumeRole
=) ole

In-scope Role_F Session:Role_F) .
IAM Roles —— iam:ListAttachedRolePolicies —

—> — iam:ListUserPolicies |- — — — — — — — — — — - Attached

Managed Policies

|

@— Inline Policies :
,,,,,,,,,,,,,,,,,, |

|
User A —> — iam:ListAttachedUserPolicies - — — — |l ST TS TS T T TS T T T T T :

|

|

|

|

|

|

Attached
Managed Policies

o X - o iam:GetUserPolicy
O R fam:GetGroupPolicy
e, BTS2 (o — (am eGP -
/M i a L Policy Name iam:GetRolePolicy
In-scope Group_A Inline Policies ! !
IAM Groups | ! ~ iam:GetPolicy
| | H
| | ‘Attached = iam:ListPolicyVersion X
che H
! ! Managed Polici iam:GetPolicyVersion
__________ [

Customer-Managed

Policy Name

—{iam:ListAttachedGroupPolicies - — - Policies
I
[A >
Attached =
Managed Policies —J «—

AWS-Managed AWS-Managed
Policies Policy List
[1047 policies]

Transitive Cross-Role Enumeration Model - Example Scenario - Stage 2

40

Figure 4.10:

iam:ListRoles

istGroupsForUser

User A

Figure 4.11:

@

SessionRole_E
— — iam:| lePolicie -
T fam:ListRolePolicies |- ‘
00, sts:AssumeRole @ |
= o Inline Policies |
i
In-scope Role_F ™\ Session:Role_F i
1AM Roles — > —[iamListAtiachedRolePolicies |~ -
1
I
—>| %~ —{iamListUserPolicies }- — — — — — — — — — — | — - Aftached 0!
| Managed Policies !
1
1 1
Inline Policies i D
|-t T T T T T T T T T T I
— famListAtiachedUserPolicies |- — — — | el .
I | | Embedded
I ‘ | ‘ | Inline Policies
Managed Policies | | — - -
00 | |~ ~1= > _iniine Policies _'amfz’:w%'@ ~|< [Policy Name]
L> fam:Ge 2=
—rr —{iamLi jcies |-~ — — - — {lEmCsiCoURReley) - —| = SH ———————
() h [T Policy Name fam:GetRolePolicy
In-scope Group_A Inline Polici | I
e nline Policies | I
I 1
| i = X
F=
! : Attached =
S R + — »|[paaneged Rolicies fam: GetPolicyVersion

Customer-Managed
—{iamiListAttachedGroupPolicies |- — —»| [Policy Name ici

—

Policy Arn

il

Managed Policies <«

AWS-Managed AWS-Managed
Policies Policy List
[1047 policies]

Transitive Cross-Role Enumeration Model - Example Scenario - Stage 3

Session:Role_A

Role_A

Role_E Session:Role_E > —{iamListRolePolicies |- ~ — -

//‘ |

08 sts:AssumeRole @ Inline Policies i

’Q iols]

In-scope Role_F ™\ Session:Role_F !
IAM Roles —> —{iam:ListAttachedRolePolicies - -

]

[|

— —{iam:ListUserPolicies |- — — — — — — — — — — - - .

I

I

Inline Policies

| Managed Policies
1
I

—

{ tAttachedUserPolicies - — — —

Embedded
Inline Pol

Policy Name

Attached
Managed Policies

iam:GetUserPolicy - _| (

fam:GetGroupPolicy - | —

Inline Policies

Managed Policies.

@]
52,

|
!

Ly -
In-scope Group_A o |
oyl Inline Policies ‘
I
I
I Default Version Id
Attached
_____ " | Managed Policies
. " - Statement
—{iamListAtiachedGroupPolicies |-~ —»| | _Policy Name
I
‘ a- HistoricPolicy
Attached - Policy Am — = VersionDetection
= =

Managed Policies

AWS-Managed AWS-Managed
Policies Policy List
[1047 policies]

Transitive Cross-Role Enumeration Model - Example Scenario - Stage 4

41

4.3 TIAM Deep Enumeration Capabilities

This section presents an advanced structure for enumerating TAM user principals, in-scope
IAM groups, and in-scope IAM roles, illustrating the logical chains of actions necessary
to reveal the complete IAM vision context.

4.3.1 Retrieval of In-Scope IAM Groups and In-Scope IAM Roles for
User Principals

SR
e L 22
o —> —
. v—
')[User N
:r - iam:ListGroupsForUser]—ﬁ ”
: Embedded AWS-Managed Policies
1_)[iam:ListGroups Inline Policies
1
[iam:GetGroup In-scope ‘/A
IAM Groups — > v—
v module O O -
S assumeRole N acho Customer-Managed
[tam:ListRoles]_)[TransitiveFilter]__)Q wanaged Policies Policies
In-scope
IAM Roles

Figure 4.12: How to define in-scope IAM groups and in-scope IAM roles?

Before delving deeper into the enumeration of inline policies and attached managed
policies for related TAM entities, it is necessary to define the related IAM entities
in the scope of the targeting user principals. In the previous section of Transitive
Cross-Role Enumeration Model (TCREM), we discussed how SkyEye will define in-scope
IAM roles. In-scope IAM roles is a set of IAM roles that can be assumed directly
or indirectly by the user principals, which contributes to a broader picture of what
is the complete set of permissions and resources that the user principals can interact
with. On the other hand, in-scope IAM groups are the IAM groups that the user prin-
cipal directly belongs to, and from which it inherits permissions into its own IAM policies.

To retrieve the complete picture of in-scope TAM groups for user principal, it is
necessary to have at least one of these two sets of permissions: iam:ListGroupsForUser;
or iam:ListGroups and iam:GetGroup. The iam:ListGroupsForUser permission will
directly return the IAM groups that the provided user principal ARN belongs to,
while iam:ListGroups and iam:GetGroup will indirectly list all IAM groups and their
membership, requiring to further filter to retrieve the complete set of in-scope IAM
groups.

In term of in-scope IAM roles, it is necessary to have iam:ListRoles permission to

retrieve the complete list of IAM roles, and perform the filtering on AssumeRolePolicy-
Document of each role to disclose which role can be assumed directly by user principal

42

or indirectly by the roles that can be assumed by user principal, to accumulate into the
complete set of in-scope IAM roles.

4.3.2 Retrieval of Inline Policies for User Principals

! A 4
iam:ListUserPolicies ! iam:GetUserPolicy oS S { Embedded
Embedded Inline Policies
‘ Inline Policies =0 .
iam:ListGroupPolicies iam:GetGroupPolicy .- Policy Name
Policy Name l. J ec2:... H
DEETD .- >{ Statements ‘
IAM Groups jam:ListRolePolicies jam:GetRolePolicy dynamadb:... -

O
In-scope
IAM Roles

Figure 4.13: The Retrieval of User Principal’s Inline Policies

The enumeration of user principal inline policies begins with the fundamental action
iam:ListUserPolicies. This call enumerates the set of policy names explicitly attached to
a given user principal. Because inline policies are scoped to that specific user identity,
they are frequently overlooked in large environments where common permissions are
often handled through managed policies. However, inline policies can grant powerful
privileges and might be used in exceptional cases that deviate from standard best
practices.

Once the set of inline policy names is acquired through iam:ListUserPolicies, the
next step involves invoking iam:GetUserPolicy. This latter operation retrieves the actual
policy document associated with each policy name enumerated. Through this two-action
chain, SkyEye gain direct visibility into the textual policy statements. By structuring the
retrieval process in discrete steps, SkyEye can automate the enumeration and analysis
of user-specific policies that may impose excessive or contradictory permissions, and en-
sure the complete TAM vision across the permissions from user-specific inline policy scope.

4.3.3 Retrieval of Attached Managed Policies for User Principals

While inline policies are user-specific, attached managed policies represent a more
scalable approach to permission administration within AWS. Enumerating these policies
for a particular user involves initiating iam:ListAttachedUserPolicies, an action that
returns an array of managed policy ARNs attached directly to the user. In typical
organizations, these managed policies might be official AWS-managed policies (e.g.,
AdministratorAccess or AmazonS3ReadOnlyAccess) or custom organizational policies
intended for role-based access control paradigms.

Most managed policies maintain one or more versions. Hence, after capturing the

policy ARNs via iam:List AttachedUserPolicies, it is crucial to delve deeper using either
iam:ListPolicyVersions or iam:GetPolicy in conjunction with iam:GetPolicyVersion.

43

'
'
'
'
T

1
Default Policy |
Version Id !
1
1

UserName iam:ListAttachedUserPolicies

f Attached

User Managed Policies iam:GetPolicy Mlowed? ([} - .,
1 ! . Policy Name :
Allowed? Attached
Allowed? i | Managed Policies

1Customer-Managed
' Policies

In-scope

[Policy Am]
IAM Groups

: {iam:GelPolicyVersion H Policy Name
! : :
AWS-Managed 1 H L i
Policies ! i Allowed? : Policy Am
H 1+ Default Policy H
! Version: True?

H Starting by |

(multi-threads)
Versions Fuzzing Algorithm

In-scope =| ----- version: vA | :)
1AM Roles P < i+ .-} - »lam:GetPolicyVersion i<~ Default Version Id
i ; i m -
: : i Statement
L@ - .. i =
= Allowed? |
acoumulate | | dynamodbs.
existing Versions!

AWS-Managed

PoieyList
[Update module]
[1047 policies]

OtherVersionlds

Figure 4.14: The Retrieval of User Principal’s Attached Managed Policies

Each Policy ARN retrieved by iam:List AttachedUserPolicies, is then processed via either
iam:ListPolicy Versions or iam:GetPolicy to determine the policy’s versioning state and
to identify the default active version of the customer-managed policy. Subsequently,
iam:GetPolicyVersion provides the structured JSON policy document of a default active
version. This final step completes the chain by disclosing the complete IAM vision
context across the permissions and resources that the user could perform.

As an alternative solution to resolve the specific case that both the permissions
iam:ListPolicyVersions and iam:GetPolicy are not permitted, resulting in the lack of
understanding about the current active version of customer-managed policies. SkyEye
introduces the “Version Fuzzing Algorithms” which will support the fuzzing capabilities
throughout the policy versions of targeting customer-managed policy ARNs, if only
iam:GetPolicyVersion is permitted.

4.3.4 Retrieval of Inline Policies for In-Scope IAM Groups

L I I
! 1
— \ v
- iam:ListUserPalicies ! iam:GetUserPolicy Permission Statements { Embedded
Embedded Inline Policies
‘ Inline Policies iam:...)
— iam:ListGroupPolicies iam:GetGroupPolicy .. Policy Name
Policy Name { J ec2:... H
In-scope L J .- >{ Statements
IAM Groups iam:ListRolePolicies iam:GetRolePolicy dynamodb:... -_
oL |
[\l ? |
In-scope
IAM Roles

Figure 4.15: The Retrieval of In-scope IAM Groups’ Inline Policies

Beyond user-centric investigations, robust TAM enumeration necessarily extends
to group-level analysis. Within AWS, group memberships can significantly change an
individual’s effective permission set. Consequently, the first step in enumerating in-scope
IAM groups which is defined as the groups that a particular user principal belongs to,
often begins with either iam:ListGroupsForUser or a combination of iam:ListGroups
followed by iam:GetGroup to retrieve the situational awareness about the in-scope

44

IAM groups. The direct approach iam:ListGroupsForUser yields the list of groups to
which the user belongs. Alternatively, if iam:ListGroupsForUser is not permitted to
perform, SkyEye will switch to invoke iam:ListGroups and iam:GetGroup systematically
to enumerate all existing groups and confirms membership based on the targeting user
principals.

Once the in-scope groups have been identified, the chain proceeds to
iam:ListGroupPolicies for each group. This action enumerates the names of inline
policies residing at the group level. Next, for each policy name discovered, the call
iam:GetGroupPolicy retrieves the underlying policy document. This chain ensures that
every inline policy statement nested within group membership is processed, providing
the full scope of relevant permissions. It is critical in multi-account or multi-group
scenarios where ephemeral group memberships might be leveraged, intentionally or
inadvertently, to circumvent standard user-level constraints. By detailing the chain
from group identification to policy retrieval, SkyEye ensures the complete IAM vision
context across the permissions inherited from in-scope IAM groups, supporting the over-
all situational awareness of current IAM context assigned to the targeting user principals.

4.3.5 Retrieval of Attached Managed Policies for In-Scope IAM
Groups

' '
' ! Default Policy
= ' H Version Id
'serName ian .

R\ —
Attached ' 2- Allowed?
ia }— --------- .
H U
IS — A—
Allowed? i (~ Attached
. . | Allowed? H Managed Policies
iamLi y :
ia

\ F=
0
h
|
iCustomer-Managed
" Poices [
' :
; i
' l
“--> Default Version 1 |

_____ | Verson Toe
Ll o :
g £ ([Sunert
| - range(2, max, 1) > + ec2: F}
L Allowed? ;
accumulate | H amo

existing Versions < oy

AWS-Managed .l)
Policy List

[Update module]
[1047 policies] OtherVersionlds

Managed Policies

(multi-threads)
Versions Fuzzing Algorithm

In-scope 2
1AM Roles e

Figure 4.16: The Retrieval of In-scope IAM Groups’ Attached Managed Policies

Equivalent to user principals, IAM groups may also have attached managed policies.
These can range from AWS-supplied offerings, typically used to facilitate administrative
tasks (e.g., service-level read/write access), to organization-managed sets of permissions
that envelop departmental or project-based roles. Enumerating these managed policy
attachments for in-scope IAM groups begins with identifying the relevant groups, using
iam:ListGroupsForUser or the pair iam:ListGroups and iam:GetGroup, as discussed in
previous section. The next action in the chain is iam:List Attached GroupPolicies, which
reveals the ARNs of the managed policies attached to the identified groups.

After enumerating these ARNs, the same concluding steps seen in user principal’s

attached managed policy analysis apply: either gather the current active policy version
by using iam:ListPolicyVersions or retrieve through the policy details via iam:GetPolicy,

45

then leverage iam:GetPolicyVersion to retrieve the corresponding policy document of
the current active version This final step completes the chain by disclosing the complete
IAM vision context across the permissions and resources that inherited indirectly from
the groups that the user principal belongs to.

As an alternative solution, as discussed in previous sections, to resolve the specific
case that both the permissions iam:ListPolicyVersions and iam:GetPolicy are not
permitted, resulting in the lack of understanding about the current active version
of customer-managed policies. SkyEye introduces the “Version Fuzzing Algorithms”
which will support the fuzzing capabilities throughout the policy versions of targeting
customer-managed policy ARNs; if only iam:GetPolicyVersion is permitted.

4.3.6 Retrieval of Inline Policies for In-Scope IAM Roles

-- '
! U
| : v
User UserName iam:ListUserPolicies ' iam:GetUserPolicy e S { Embedded
Embedded Inline Policies
) | Inline Policies lam:... Policy N
—_ GroupName iam:ListGroupPolici iam:GetGroupPolicy .- olicy Name
Policy Name l J ec2:... H
iam:ListRolePolicies iam:GetRolePolicy dynamodb:...

In-scope
IAM Groups RoleName

- >< Statements .

In-scope
IAM Roles

Figure 4.17: The Retrieval of In-scope IAM Roles’ Inline Policies

While users and groups serve as foundational identity constructs within AWS,
roles offer a pivotal mechanism by which users, services, or other roles can assume
delegated privileges. For an IAM security audit, the scope of roles that a particular
user can assume - directly or indirectly - becomes critical, as it potentially augments the
user’s effective permissions. Identifying such roles includes determining trusted entity
relationships and session token parameters that could extend privileges beyond the
user’s nominal baseline. Once these roles are deemed “in-scope”, SkyEye will investi-
gate any inline policies that may confer additional capabilities only found at the role level.

The operational chain typically commences with an enumeration of all roles using
iam:ListRoles. Although this action returns every role in the account, it is imperative
to filter them to identify only those roles that the user principal can assume directly
or indirectly, as discussed in the Transitive Cross-Role Enumeration Model (TCREM).
Such filtering might rely on analyzing trust policies or gleaning contextual information
from the environment (e.g., previously discovered assume-role statements). Once the
relevant TAM roles are discovered, the next steps involve retrieving the inline policies
of those in-scope IAM roles. The invocation of iam:ListRolePolicies yields the set of
inline policy names for each role, followed by iam:GetRolePolicy to obtain the policy
documents themselves.

46

Role-based inline policies are paid particular attention by SkyEye framework, as
these often grant specialized privileges for tightly scoped runtime scenarios (e.g., a role
used by a specific application). If a user principal can assume any such role, that user
effectively inherits these permissions. Thus, enumerating these inline policies is crucial
for constructing the overarching permission graph. By adopting this systematic chain,
no potential extension of privilege remains uncharted.

4.3.7 Retrieval of Attached Managed Policies for In-Scope IAM Roles

1
Default Policy '
Version Id !

1

1

g amGetPolicy ~ ————' (I})
: |
Allowed? i (Attached \
fa | Allowed? i | Managed Policies
Y -

' i fam i "
olicy Am ' : : :
[i ' ; H {iam:GelPolicyVersion H Policy Name
1 H H H
-Managed 1 H = - H H
Aa— olicies 1 ; (multithreads) \ : owed? H Policy Arn
il - ' Startingby | Versions Fuzzing Algorithm |
ial F ' H § Version: True?
i version: v1 | H -
; R ion -

iam:ListAttachedUserPolicies

>{ Default Version Id |

iam:... 5
Statement ‘

f @ - ec2:.. \

[Update module]
[1047 policies]

Figure 4.18: The Retrieval of In-scope IAM Roles’ Attached Managed Policies

In addition to uncovering inline policies, attached managed policies at the role level
must also be accounted for. Managed policies, whether AWS-managed or customer-
managed, are frequently used to simplify the administration of privileges across multiple
roles. Hence, a single managed policy can simultaneously grant extensive permissions
to various roles, resulting in potential lateral movement opportunities for an adversary
within a compromised account.

Mirroring the approach used for users and groups, SkyEye framework first establishes
the list of relevant in-scope IAM roles via iam:ListRoles, as discussed in the previous
section and in Transitive Cross-Role Enumeration Model (TCREM). The next step in the
chain focuses on determining which version is currently active. For each policy ARN re-
trieved from iam:ListAttachedRolePolicies, SkyEye either invokes iam:ListPolicy Versions
or iam:GetPolicy to pinpoint the default active version of the policy. Finally, a call to
iam:GetPolicyVersion yields the structured JSON policy document for the identified
active version of the managed policies. By completing these chains, SkyEye reveals
a comprehensive view of the permissions the role confers, ensuring that no hidden
privileges or policy misconfigurations are overlooked.

As an alternative solution, as discussed in previous sections, to resolve the specific
case that both the permissions iam:ListPolicyVersions and iam:GetPolicy are not
permitted, resulting in the lack of understanding about the current active version
of customer-managed policies. SkyEye introduces the “Version Fuzzing Algorithms”
which will support the fuzzing capabilities throughout the policy versions of targeting

47

customer-managed policy ARNs; if only iam:GetPolicyVersion is permitted.

4.3.8 Alternative Retrieval by iam:Get Account AuthorizationDetails

Though prior sections detail explicit chains for enumerating the inline and managed
policies of user principals, groups, and roles, SkyEye can also adopt a more holistic
strategy using iam:Get Account AuthorizationDetails. This API call returns a wide range
of authorization details encompassing users, groups, roles, and their corresponding inline
and attached managed policies in a single output. It thus enables SkyEye to capture
a near-comprehensive overview of the account’s IAM configuration without chaining
multiple discrete calls.

Resource filtering is an essential step once the raw data is received from
iam:GetAccountAuthorizationDetails. A large AWS environment might con-
tain hundreds of TAM entities, making it impractical to sift through all permissions
manually. Consequently, best practices dictate programmatically narrowing the output
to only the relevant targeting user principals, in-scope IAM groups, and in-scope IAM
roles (i.e., those that the user principal can assume directly or indirectly).

1

g

sts:AssumeRole @ 1,
. 1

. ’ []

1

1

e : Session:Role_A

O H sts:AssumeRoI&@
. —> > -
=g
1 In-scope _.-~" Session:Role_E
! IAM Roles ’
1
1 sts:AssumeRols@
1 > -
1

Session:Role_F

)
ol
IAM Vision Context @
“‘T.—u
: User_B In-scope
1

Role_B o " Session:Role_B

IAM Roles

Figure 4.19: iam:GetAccountAuthorizationDetails integrated into CPIEM and TCREM

48

As discussed in the Cross-Principal IAM Enumeration Model (CPIEM) and Transi-
tive Cross-Role Enumeration Model (TCREM), during the enumeration process, if the
iam:Get Account AuthorizationDetails permission is detected in run-time at any enumer-
ation stage, to be executable by at least one user principal’s session or role’s session
from similar AWS Account Id, the model will immediately terminate all other session
come from that AWS Account Id, and utilize the iam:GetAccountAuthorizationDetails
permission to retrieve full IAM context of that AWS Account Id, and distribute the

correspondent result to the user principal that involved in the IAM enumeration for that
AWS Account Id.

The benefit of iam:Get Account AuthorizationDetails is unimaginable. Firstly, it re-
duces the overhead typically associated with enumerating each principal or policy inde-
pendently. Secondly, this approach will reduce significantly 95% of the entire scanning
process, and result in a most sufficient IAM outcome for the model while not producing
redundant API invocation, potentially leading to detectable traces in logging. Thirdly, its
consolidated perspective enables a more robust comparison across multiple policy layers,
thereby identifying hidden conflicts and permission redundancies that might otherwise
be missed when analyzing each entity in isolation due to insufficient authorization.

4.3.9 Inverse Enumeration Model for Attached Managed Policy

) Allowed?
iam:GetPolicy ~ ——— S|[E]))})
Allowed? |/ Attached \
: Managed Policies
I y T H
| i

' Policy Am

>[Default Version Id |

I iam:... ——
i | Statement |
ool range(2, max, i -~ R J)

iam:ListAttachedUserPolicies

(multi-threads) \\ H
Versions Fuzzing Algorithm | |

[1047 policies]

Figure 4.20: iam:ListEntitiesForPolicy in Attached Managed Policy Enumeration

While forward enumeration (beginning with the principal and progressing to its
policies) reveals the most direct route to discovering an entity’s privileges, it inherently
risks overlooking configurations if any references to the in-scope principals and entities
were not retrievable due to insufficient authorization in earlier steps. Moreover, an
extensive set of customer-managed and AWS-managed policies across multiple accounts
can introduce complex permission inheritance pathways. In such cases, an inverse
enumeration strategy - starting from the policy and mapping back to the principals -
can demonstrate superior strengths.

The principal mechanism for this inverse enumeration approach is iam:ListEntitiesFor-

Policy, which enumerates all IAM users, groups, and roles attached to a specified policy.
When combined with the chain logic from earlier enumerations, this approach can help

49

)

Entities il
— | | Q- Managed Policies
- vz —
y UserName [UserName — Policy Name
ser
Customer-Managed i
GroupName {----t+--| GroupName Policies g Policy Am
In-scope Q- Default Version Id
IAM Groups RoleName ---- [RoleName = —
EEE &
O<QA\ \ | ‘ i Statement
m@ AWS-Managed \ /
In-scope Policies

IAM Roles A . . L .
N > | 4>‘ ‘ListEntitiesForPol o
U fam:ListEntiiestortoliey AWS-Managed Policy List

A [Update module] - Priority: 2
> 1000 policies

AWS-Managed Policy List
Customer-Managed Policy List
[In-Scope / Attached]

- Priority: 1 — Customer-Managed Policy List
SUse_r [Gathered in run-time] - Priority: 2
o - ession [Users / Groups / Roles]
iam:ListPolicies

Figure 4.21: Inverse Enumeration Model by iam:List EntitiesForPolicy

capture any missing elements in the earlier IAM enumeration result. Specifically, if an
assessment by SkyEye uncovers references to attached managed policies that have not yet
been sufficient from the overall analysis, SkyEye will try invoking iam:ListPolicies with
the parameters: Scope="All’; OnlyAttached=True, PolicyUsageFilter =’PermissionsPol-
icy’ (provided if user principal hold sufficient privilege to invoke) and transfer those
returned attached managed policies to iam:ListEntitiesForPolicy, to actively compare
the iam:ListEntitiesForPolicy result of their corresponding principal attachments by
the identified insufficient components to complement to them. If SkyEye was failed to
invoke iam:ListPolicies due to insufficient authorization, SkyEye will revisit all publicly
AWS-managed policy ARNs or previously-discovered customer-managed policy ARNs
and transfer those into iam:ListEntitiesForPolicy call, to complement to the identified
insufficient components in a limited scope.

Technically, iam:ListEntitiesForPolicy — acts as the inverse of com-
mands like iam:ListAttachedUserPolicies, iam:ListAttachedGroupPolicies, and
iam:ListAttachedRolePolicies. Instead of iterating over each user, group, or role
to find its respective policy attachments, the inverse approach enumerates entities from
the standpoint of each policy. In large-scale AWS accounts, the synergy between forward
and inverse enumeration techniques ensures that SkyEye captures all relationships, even
those formed through less conventional resource configurations. This is essential for
producing a complete IAM graph, minimizing the possibility of overlooking powerful
role or user relationships, or lacking forward enumeration privileges. Combined with
advanced analytics on these enumerations, the inverse approach fortifies the capacity
to detect, analyze, and mitigate privilege-based vulnerabilities before they evolve into
exploitable security weaknesses.

20

4.3.10 Deep Comparison Model for Policy Documents of Active Ver-
sion and Historical Versions

In AWS, customer-managed policies constitute a crucial mechanism for organizations
to tailor and maintain precise access control configurations, thereby ensuring that
only the necessary privileges are granted to particular user principals. Notably, AWS
supports up to five concurrent policy versions for each customer-managed policy, with
one version designated as the default active version. This multi-version approach offers
administrators the flexibility to develop and test alternative privilege definitions without
disrupting existing workloads. However, as IAM environments grow increasingly complex
and policies evolve across multiple revisions, identifying permission changes among these
versions becomes essential for maintaining robust security postures.

Attached \

"""""""""""""""""""""""""" ! Other Managed Policies

i . . Permission Statements
| /—'ﬁ Versionlds
! Attached

Policy Name

' >
' Policy Name ec2:... Policy Arn
A Policy Arn iam:GetPolicyVersion dynamodb:... Default Version Id
L :
fra— ‘
Default Version Id Statement
Customer-Managed module module
Policies
HistoricPolicy VersionStatementDiff HistoricPolicy
Statement . . - . ---- . .
VersionEnumeration (Permissions Difference) ‘ersionEnumeration

Figure 4.22: Gathering Policy Documents of Each Customer-Managed Policy Version

Policy Document Policy Document
Statement: A Statement: A
Effect: Allow / Deny «/-- -1» Effect: Allow / Deny

Action [€- 1 -1 Action

NotAction €| : -1 NotAction

! Policy Version Id: 5 r_ﬁ
Other Conditions Other Conditions Default Policy

Version Id

l | Policy Version Id: 1 .
ll Policy Version Id: 2 .
ll Policy Version Id: 3 .

Policy Version Id: 4

Other
Versionlds

------- [smemens |
Statement: C ¢ - - - - - Statement: C
Statement: NoSids Statement: NoSids

Figure 4.23: The Core of Deep Comparison Model

To address this challenge, the proposed model systematically compares policy state-
ments between the DefaultPolicyVersionld and each OtherVersionld. By focusing on
elements such as Effect (Allow or Deny), Action, NotAction, Resource, and NotResource,
the model creates a comprehensive mapping of how privileges shift between versions.
This mapping classifies changes into distinct categories: New, NotChange (Kept), and
Removed (Old). Thereby highlighting which privileges would be gained, retained,

51

or lost if a future iam:SetDefaultPolicyVersion operation were to activate an older
version. Consequently, security professionals can precisely forecast the ramifications of
reverting to any previous policy version, enabling informed decisions on whether updates
would inadvertently grant excessive permissions or compromise necessary access controls.

The significance of this model lies in its capability to provide granular insights that
surpass manual policy analysis methods. Traditional diff-based techniques can overlook
subtle AWS TAM policy language nuances such as multiple Resource definitions or
intricacies in combined NotAction statements. The proposed model not only captures
these complexities but also contextualizes them, streamlining the process of identifying
privilege escalations and ensuring continuous adherence to the principle of least privilege.
This consistent, automated approach assists organizations in establishing a clear audit
trail of changes, reducing the risk of unintended permission expansions and compliance
violations.

Furthermore, this method promotes proactive risk assessment by illustrating the
potential effects associated with activating any non-default version. As security teams
or penetration testing teams frequently grapple with privilege misconfigurations, the
ability to predict precisely which permissions would be introduced or eliminated affords
a powerful framework for safeguarding mission-critical infrastructure, or conducting an
effective privilege escalation attack vector by penetration testing team. In addition, such
systematic enumeration and comparison fosters an integrated security posture, wherein
cloud governance aligns with business objectives while preserving compliance standards.
Ultimately, this algorithm underscores the dynamic nature of TAM policies, equipping
practitioners with an advanced methodology for analyzing multiple policy versions and
reinforcing a secure and well-defined access control framework.

4.4 The Integration of MITRE ATT&CK Cloud

The extensible dataset underpinning the SkyEye framework is foundational to its
practical utility, as it systematically maps nearly 20,000 AWS actions to corresponding
severity-level classifications and contextual adversarial behaviors. Within SkyEye, the
capability to detect, classify, and categorize all AWS actions into risk levels ranging
from Low, Medium, High, and Critical, to those specifically denoted as PrivEsc-Vector,
represents a pivotal advancement in threat exposure. By mapping each AWS action
with relevant MITRE ATT&CK tactics, techniques, and sub-techniques, the framework
facilitates granular, multi-dimensional mapping that illuminates how adversaries might
exploit specific permissions to achieve objectives such as data exfiltration, persistence
within systems, or the sabotage of production workloads. This alignment with the
MITRE ATT&CK cloud matrix not only enhances methodological rigor but also
reinforces both automated detection mechanisms and strategic countermeasures by
highlighting concrete adversarial behaviors and attack pathways.

A noteworthy aspect of this classification is the thoroughness with which abuse
methodologies are delineated for each permission. SkyEye framework maps every AWS

52

AbuseMethodology Lllow Actions that are read-?nly. non-destructive, or Io‘w-;?rllwlege. with no ca.péblllty fo mo.dlfy resources,
configurations, or affect system availability, data confidentiality, or integrity.

MITRE ATT&CK Cloud Medium Ac.1ions that allow modif.ication of non-sensitive resources or co.nfiguratic.jons, or that r.night.indirecﬂy
impact system behavior but cannot by themselves cause major security or operational issues.

List of AWS Actions High Actions thél can lead 19 significant changes in resource state: data exposure, or have the potential
to disrupt operations, but do not directly allow full admin access or account takeover.
Sub-Technique
~ 20000 Actions Critical Actions that can result in full compromise, loss of all data, or irreversible changes.]
FelEvEn: Commerss All actions involved in known privilege escalation vectors get this tag
and are tracked as a separate class.

Figure 4.24: The Integration of Severity-level, Abuse Methodology and MITRE ATT&CK

action to a structured Abuse Methodology description, articulating how a threat actor
might employ that permission to achieve lateral movement, privilege escalation, or data
destruction. For instance, a High or Critical classification indicates that an AWS action
may allow the modification of critical resources or the near-complete takeover of a
specific service, while a PrivEsc-Vector label flags permissions that could directly elevate
user privileges beyond their original scope. These detailed references, accompanied
by example commands to illustrate the abuse, offer a practical vantage point for the
teams to anticipate potential attack vectors and construct effective attack simulation.
Such clarity not only highlights which permissions are of particular concern but also
enables penetration testing teams to gain a complete situational awareness regarding the
environment, or security teams to devise proactive incident response actions.

The detailed mapping to MITRE ATT&CK tactics, techniques, and sub-techniques
ensures that the final TAM enumeration result provided by SkyEye framework, is
immediately actionable. By labeling each permission with a Tactic code (e.g., Privilege
Escalation), Technique code (e.g., T1078 for Valid Accounts), and sub-technique code
(as applicable), cloud security engineers or penetration tester can focus on the most
salient threats in the targeting cloud environment. This layered approach proves ben-
eficial during compromise assessments, facilitating the correlation of known adversary
techniques with existing permissions. Consequently, the classification system bridges the
gap between theoretical knowledge of adversary behaviors and the practical realities of
maintaining secure cloud deployments.

From a defensive perspective, this severity-based categorization guides the develop-
ment of fine-grained access control policies. Security teams can prioritize the remediation
of permissions that have been flagged as Critical or PrivEsc-Vector by restricting or
removing them. Additionally, this enables more data-driven policy recommendations,
where developers and operations staff can gain better awareness of the privileges they
request, thereby aligning their environment with the principle of least privilege. Such
alignment reduces the overall attack surface by methodically limiting the exposed hooks
that malicious actors might try to exploit. When integrated into continuous deployment
pipelines, these disciplined guardrails systematically enforce best practices, promoting a
robust security posture.

On the other hand, an offensive or red-team perspective leverages the same classifica-
tion schema for scenario-based testing and vulnerability exploration. By systematically

23

probing permissions labeled as High or Critical or chaining with the identified permissions
labeled as Low or Medium, offensive security team can simulate advanced adversary
behaviors, thus validating alert mechanisms and identifying real-world paths to privilege
escalation. Having explicit example commands to abuse the identified vulnerabilities
shortens the feedback loop between reconnaissance and exploitation phases, thereby
improving the sophistication and realism of penetration testing exercises. This cyclical
process of assessment and remediation ensures that misconfigurations and dangerous
permissions are swiftly discovered, cataloged, and neutralized.

In general, this capability systematically categorizes and illustrates each AWS action’s
inherent risk, associated MITRE ATT&CK mapping, Abuse Methodology description,
and sample abuse commands marks a cornerstone in modern cloud security. The ability
to visualize and quantify risk in such depth fosters a decisive advantage for organizations
striving to maintain compliance, harden their assets, and prevent potential adversaries.
As cloud environments evolve in complexity, this synergy of detailed enumeration,
severity classification, and actionable intelligence empowers both defenders and ethical
adversaries to make informed and strategic decisions, ultimately fortifying the resilience
and integrity of AWS-based infrastructures.

o4

Chapter 5

Evaluation

5.1 Proposed Scenarios

Scenario [S1]:

Scenario 1 represents the most ideal and comprehensive environment for analyzing AWS
IAM policy discovery chains. In this setup, a single IAM user (S1_UserA) is assigned
a variety of inline and managed policies, both directly and indirectly through group
membership and assumable roles. Each policy provides granular permissions related
to TAM actions, including listing and retrieving user, group, and role policies, as well
as permissions for other AWS services such as S3, Lambda, and EC2. This scenario
allows for an exhaustive demonstration of IJAM entitlement enumeration and cross-policy
visibility.

Scenario [S2]:

Scenario 2 explores a variation of TAM policy enumeration where the action
iam:ListGroupsForUser is replaced by the combination of iam:ListGroups and
iam:GetGroup. This adjustment reflects environments where group membership must
be deduced indirectly. The scenario involves a user (S2 UserA) with a mix of inline
and attached managed policies, group membership, and an assumable role. Permissions
span both TAM-related actions and supplemental AWS services (AIOps, IoT, S3, EC2,
Lambda), illustrating how diverse policy chains enable visibility and access across AWS
resources.

Scenario [S3]:

Scenario 3 focuses on the use of iam:GetPolicy instead of iam:ListPolicyVersions for pol-
icy enumeration within AWS TAM. This reflects an environment where policy details
are accessed directly rather than through version listings. The scenario features a user
(S3__UserA) with various inline and managed policies, group membership, and an as-
sumable role, including permissions across IAM, AlIOps, IoT, S3, Lambda, EC2, and
Routeb3 services. This setup demonstrates how entitlement and policy discovery chains
adapt when the available IAM actions change.

95

Scenario [S4]:

Scenario 4 demonstrates an IAM environment where both iam:ListPolicyVersions and
iam:GetPolicy are unavailable for policy enumeration. This limitation means that direct
access to policy version details is not possible, requiring iam:GetPolicyVersions with
"Versions Fuzzing Algorithm" which is introduced in this paper to discover and enumerate
entitlements of policy document. The scenario still includes a user (S4_ UserA) with inline
and attached managed policies, group membership, and an assumable role, illustrating
how entitlement visibility chains must adapt when critical enumeration actions are absent.

Scenario [S5]:

Scenario 5 explores the wuse of iam:ListEntitiesForPolicy as an alternative to
iam:ListAttachedRolePolicies and iam:List AttachedGroupPolicies for identifying which
users, groups, or roles are attached to a given policy. This adjustment demonstrates how
policy-to-entity relationships can be enumerated even when direct attachment-listing ac-
tions are restricted. The scenario features a user (S5_UserA) with comprehensive inline
and managed policies, group membership, and an assumable role, all enriched with per-
missions spanning TAM, AIOps, IoT, Bedrock, S3, Lambda, EC2, Routeb3, Kinesis, and
AmazonMQ services. It highlights flexible enumeration strategies in complex IAM envi-
ronments.

Scenario [S6]:

Scenario 6 focuses on environments where all iam:ListAttached*Policies actions
(for wusers, groups, and roles) are unavailable, and enumeration must leverage
iam:List EntitiesForPolicy and iam:ListPolicies. This approach illustrates the ability to
enumerate policy attachments and available managed policies by listing all policies and
then determining their associations. The user (S6_ UserA) is equipped with rich inline
and managed policies, has group membership, and can assume a role, spanning permis-
sions across diverse AWS services. This scenario demonstrates flexible policy discovery
strategies when direct attachment-listing actions are missing.

Scenario [ST7]:

Scenario 7 illustrates an IAM environment where the ideal set of IAM enumeration and
discovery permissions is concentrated within a Role, rather than being distributed among
Users or Groups. This configuration demonstrates the power of role assumption for policy
visibility and entitlement discovery, as the role (S7_RoleA) possesses comprehensive TAM
listing and retrieval privileges. The user (S7_UserA) and their group have limited direct
[AM permissions, focusing more on non-IAM AWS services. This scenario highlights
how centralizing enumeration capabilities in a role can facilitate entitlement mapping
and cross-account or privilege escalation investigations.

Scenario [S8]:

Scenario 8 demonstrates a sophisticated transitive cross-role enumeration model, where
the ideal IAM policy discovery and enumeration privileges are distributed across multiple

26

roles in a chained, assumable sequence. Starting with a user (S8_UserA) who can assume
S8 RoleA, each subsequent role (S8 RoleB, S8 RoleC, S8 RoleD) is assumable by the
previous one, forming a privilege escalation path (S8_UserA — S8 RoleA — S8_RoleC
— S8 RoleD). Policy discovery actions are spread throughout these roles, requiring the
user to traverse multiple assumptions to achieve full entitlement visibility. This scenario
models real-world advanced enumeration and privilege escalation tactics in complex AWS
environments.

Scenario [S9]:

Scenario 9 highlights the impact of granting the iam:GetAccountAuthorizationDetails
permission directly to a user or group. This action provides comprehensive visibility
into all TAM users, groups, roles, and their associated policies within an AWS account,
enabling a single API call to enumerate most entitlements and relationships. The scenario
features a user (S9_ UserA) with this powerful permission and a mix of other service-level
permissions distributed across user, group, and assumable role constructs. This setup
emphasizes how a single IAM action can streamline and centralize entitlement discovery
for security reviews or audits.

Scenario [S10]:

Scenario 10 demonstrates the impact of granting the powerful
iam:GetAccountAuthorizationDetails permission within a role (rather than directly
to a user or group). When a user (S10_UserA) assumes S10_RoleA, they gain the
ability to enumerate nearly all IAM entities and their policies for the account through
a single API call. This centralized entitlement discovery mechanism is enhanced by
additional permissions spread across the user, group, and role, showcasing how key
privileges embedded in assumable roles can facilitate comprehensive security reviews or
privilege escalation.

Scenario [S11]:

Scenario 11 demonstrates a transitive cross-role enumeration model where the highly
privileged iam:GetAccountAuthorizationDetails permission is only available at the
end of a chained sequence of assumable roles. The initial user and groups have no
direct entitlement discovery privileges, but by assuming a series of roles (S11_ UserA —
S11_RoleA — S11_RoleB — S11_RoleC — S11_RoleD), the user ultimately obtains
the ability to enumerate all IAM entities and their relationships within the AWS account
via a single API call. This scenario highlights advanced techniques for privilege escalation
and account-wide TAM visibility in complex AWS environments.

Scenario [S12]:

Scenario 12 demonstrates an enumeration model in which all key IAM policy and entity
discovery permissions are concentrated in a role rather than directly assigned to users or
groups. In this scenario, all iam:ListAttached*Policies, iam:ListPolicyVersions,
and iam:GetPolicy actions are absent. Instead, the role (S12_RoleA) leverages

o7

iam:ListEntitiesForPolicy and iam:ListPolicies for inverse enumeration of pol-
icy’s attachment. The iam:ListPolicies action is scoped to customer-managed poli-
cies, and the mapping between policies and their attached entities is achieved inversely
via iam:ListEntitiesForPolicy. Moreover, it highlights the importance of "Versions
Fuzzing Algorithm" as demonstrated previously in the paper, to expose the policy’s ver-
sion without requiring the sufficient IAM permissions. This model mirrors real-world
least-privilege or audit scenarios, emphasizing indirect but effective entitlement enumer-
ation without being permitted tp discover attachment or policy versions.

Scenario [S13]:

Scenario 13 models an ideal entitlement enumeration environment using a transitive cross-
role enumeration model, where all key IAM enumeration permissions are distributed
among a chain of assumable roles, rather than granted directly to users or groups.
Critically, the scenario removes both iam:ListPolicyVersions and iam:GetPolicy,
requiring the use of the "Versions Fuzzing Algorithm" as previously introduced in this
paper for discovering and retrieving policy versions. This forces enumeration tooling
to rely on indirect methods (such as sequentially attempting to retrieve versions via
iam:GetPolicyVersion) to reconstruct the set of policy document versions in the ab-
sence of permissions allowing the retrieval of policy’s versions. The scenario demonstrates
how even without explicit permissions, full entitlement visibility can be achieved through
creative enumeration and role chaining.

Scenario [S14]:

Scenario 14 presents again an advanced transitive cross-role enumeration model, where all
key IAM enumeration and policy discovery permissions are distributed across a chain of
assumable roles rather than assigned to users or groups. This scenario removes all direct
attachment listing permissions (iam:ListAttached*Policies), as well as policy version
listing permissions: (iam:ListPolicyVersions, iam:GetPolicy). Instead, enumeration
relies on iam:ListEntitiesForPolicy and iam:ListPolicies. The mapping of policies
to entities is performed using an inverse enumeration model by firstly listing policies,
then deterministically mapping to principals using iam:ListEntitiesForPolicy. For
policy version enumeration and retrieval, the "Versions Fuzzing Algorithm" described
in this paper is required, allowing for creative discovery of policy versions even without
direct listing permissions. This scenario highlights both the flexibility and the complexity
of modern transitive cross-role enumeration model and the flexibility in enumeration
capabilities to expose the complete IAM vision context, even in least-privilege situation.

Scenario [S15]:

Scenario 15 demonstrates an effective utilization of cross-principal TAM enumeration
model, in which multiple users possess distinct but complementary IAM permissions.
Instead of a single principal holding all enumeration rights, each user (S15_UserA,
S15_UserB, S15_UserC, S15_ UserD) is granted specific, partial IAM discovery actions.
Only by combining the permissions of all users can a complete picture of entitlements,
including inline and attached managed policies for IAM users, in-scope IAM groups, and

o8

in-scope IAM roles, to be fully revealed. This scenario models real-world environments
where attackers or auditors could identify multiple AWS credentials in the reconnais-
sance, and correlate the permissions from several user principals to fully enumerate the
complete IAM vision context of each user.

Scenario [S16]:

Scenario 16 demonstrates the most comprehensive enumeration approach by combin-
ing the cross-principal IAM enumeration model with the transitive cross-role enumer-
ation model. In this scenario, multiple users (S16_UserA, S16_UserB, S16_UserC,
S16_ UserD) are each granted distinct but complementary IAM permissions. These users
are also associated with intricate chains of assumable roles, where each role exposes only
a subset of the required IAM discovery actions. Only by aggregating the permissions
from all users and traversing their respective role chains can a complete entitlement map,
including inline and attached managed policies for user principals, in-scope IAM groups,
and in-scope TAM roles, to be fully discovered. This scenario reflects real-world situa-
tions where security teams or adversaries must chain together disparate IAM permissions
from multiple credentials and role assumption paths to reveal the true and complete IAM
vision context across gathered AWS credentials.

Scenario [S17]:

Scenario 17 demonstrates an effective utilization of the cross-principal IAM enumeration
model. In this scenario, one among several users (S17_UserC, via group policy) has the
powerful iam:GetAccountAuthorizationDetails permission, which enables comprehen-
sive enumeration of all TAM entities and their policies. The remaining users (S17_ UserA,
S17_UserB, S17_UserD) do not have any IAM operational permissions in term of discov-
ery, therefore cannot achieve full TAM visibility by itself. Only by correlating permissions
from S17 UserC - iam:GetAccountAuthorizationDetails to retrieve a complete view
of their TAM vision context, including inline and attached managed policies for IAM users,
in-scope IAM groups, and in-scope IAM rolesbe. This reflects real-world reconnaissance
or audit cases where multiple credentials are discovered and at least one credential has
the powerful permission iam:GetAccountAuthorizationDetails to support other user
principals revealing their own IAM vision context.

Scenario [S18]:

Scenario 18 demonstrates a hybrid enumeration case study that leverages both cross-
principal TAM enumeration model and transitive cross-role enumeration model. Mul-
tiple users (S18 UserA, S18 UserB, S18 UserC, S18 UserD) are present, each with
different and complementary permissions. Each user also maintains one or more as-
sociated roles, forming role assumption chains. In this scenario, the highly privileged
iam:GetAccountAuthorizationDetails action is granted at the end of a transitive role
chain for one user (S18 UserD), but not directly to any user. As a result, obtaining a
complete vision of AWS TAM entitlements (including inline and attached managed policies
for users, groups, and roles) requires aggregating actions across all users and traversing
the role chain to reach the powerful entitlement of discovery action. This scenario reflects

29

real-world audit or red team situations where the combination of multiple credentials and
deep role traversal is necessary to achieve exhaustive IAM visibility.

Scenario [S19]:

Scenario 19 demonstrates the cross-principal IAM enumeration model in which multiple
users (S19_UserA, S19_UserB, S19_UserC, S19_UserD) have distinct but comple-
mentary TAM discovery and enumeration permissions. In this scenario, critical actions
iam:ListPolicyVersions and iam:GetPolicy are intentionally removed, requiring
enumeration by utilizing the "Versions Fuzzing Algorithm" which is previously introduced
in this paper, iteratively calling iam:GetPolicyVersion, to discover and retrieve policy
versions and documents. Only by combining the permissions of all gathered AWS
credentials, can reveal the full set of entitlements (inline and attached managed policies
for TAM users, in-scope IAM groups, and in-scope IAM roles). This scenario reflects
real-world security or audit cases where direct access to policy metadata is lacking and
advanced enumeration logic is necessary to reconstruct the complete IAM context.

Scenario [S20]:

Scenario 20 combines the transitive cross-role enumeration model and the cross-principal
IAM enumeration model. Multiple users (S20_UserA, S20_UserB, S20_UserC,
S20_ UserD) each possess distinct but complementary TAM permissions. These users are
associated with various assumable roles, forming deep role chains. In this scenario, direct
access to iam:ListPolicyVersions and iam:GetPolicy is removed from all principals,
enforcing the use of the "Versions Fuzzing Algorithm" (as previously introduced in this
paper) with iam:GetPolicyVersion to enumerate managed policy versions. Only by
combining permissions from all users and traversing their role chains can reveal a com-
plete picture of AWS TAM entitlements (including inline and attached managed policies
for TAM users, in-scope IAM groups, and in-scope IAM roles). This scenario reflects
advanced audit or red team use cases where privilege is distributed and enumeration
must be both cooperative and technically creative.

Scenario [S21]:

Scenario 21 demonstrates the use of the iam:SimulatePrincipalPolicy permission,
which allows simulation of the effective permissions for any AWS action granted to IAM
users, groups, and roles. In this scenario, iam:SimulatePrincipalPolicy is granted to a
user via an attached managed policy, enabling them to simulate policies across their own
user identity, their group membership, and along an assumable transitive role chain. This
scenario reflects the power of simulation APIs to reveal the effective permissions model
without requiring direct enumeration of every inline and attached policy, and is especially
relevant for audit and security review workflows that need to understand real-world access
for complex principal chains.

60

Scenario [S22]:

Scenario 22 highlights the powerful technique of fuzzing AWS read-only actions for recon-
naissance and resource enumeration, without relying on any TAM-specific enumeration
action. In this environment, the user and associated principals lack TAM discovery per-
missions, but possess a variety of descriptive and listing actions across AWS services
(e.g., s3:ListBuckets, ec2:Describelnstances, lambda:ListFunctions). By system-
atically invoking these read-only actions, an operator can enumerate resources, under-
stand the account’s cloud footprint, and indirectly reveal significant information about
the environment. This scenario demonstrates the importance of not overlooking non-IAM
permissions when assessing privilege escalation and lateral movement risks.

5.2 Scenario-based Benchmarking between SkyEye and other
frameworks

To rigorously evaluate the effectiveness of advanced TAM enumeration frameworks, we
designed a comprehensive scenario-based benchmarking methodology. Our empirical
study encompasses a set of twenty-two meticulously crafted scenarios within AWS
Identity and Access Management, spanning the core entities of IAM Users, Groups,
Roles, and Policies. The primary objective is to systematically compare our proposed
framework ("SkyEye") integrated by our proposed core models: CPIEM, TCREM, and
several TAM deep enumeration capabilities as demonstrated in the previous chapter,
against six established and reputable IAM enumeration frameworks currently available
in the field.

For each scenario, a controlled AWS environment was provisioned, containing a blend
of inline and attached managed policies, nested group memberships, diverse trust policy
configurations as presented in the previous section in this chapter. By approaching it
with a black-box perspective, standardized AWS credentials of involving user principals
with permissions tailored to each scenario, were supplied to every framework under the
benchmarking process. The enumeration results produced by each tool were collected
and subjected to detailed analysis, focusing on multiple critical dimensions of TAM
visibility.

Specifically, the benchmarking process measured the capability of each framework to
enumerate deeply: (a) inline polcies and attached managed policies of user principals,
in-scope IAM groups which are defined as those to which the enumerated users belong,
and in-scope TAM roles which are encompassing roles that a user can directly or
indirectly assume via trust relationships. The outputs were further analyzed for their
completeness in revealing complete TAM vision context of targeting user principals,
ensuring the comprehensive situational awareness regarding to their permissions and
resources that can be interacted with, opening for the understanding of potential
pathways in privilege escalation, data exfiltration, resource abuse, and threats to the
integrity and confidentiality of the AWS environment.

Effectiveness was quantified as the percentage of discovered entities and relationships

61

relative to the known ground truth of each scenario. Our methodology also stressed the
frameworks’ capacity to surface actionable intelligence, such as identification of latent
privilege escalation paths and detection of configurations susceptible to abuse.

This scenario-driven, empirical approach ensures that the comparative analysis is
both robust and practically relevant. By leveraging real-world AWS configurations and
a diverse set of abuse scenarios, we provide a nuanced assessment of strengths and limi-
tations for each framework. The results not only highlight the advancements introduced
by our proposed SkyEye framework and its integrated models in IAM enumeration and
threat modeling, but also establish a foundational benchmark for future research and tool
development in cloud security situational awareness.

5.2.1 Weighting Methodology for Proposed Scenarios

User Principal 1.00
— [User] Inline Policies (PolicyName) 0.06
— Detail Policy Documents (Policy Statement) 0.06

— [User] Attached Managed Policies (PolicyName + Policy ARN) 0.06
— Default Policy Version Id 0.06

— Detail Policy Documents (Policy Statement) 0.06

— In-scope TAM Groups (Groups that the user belongs to) 0.05
— [Group] Inline Policies (PolicyName) 0.06

— Detail Policy Documents (Policy Statement) 0.06

— [Group] Attached Managed Policies (PolicyName + PolicyARN) 0.06

— Default Policy Version Id 0.06

— Detail Policy Documents (Policy Statement) 0.06

— In-scope TAM Roles (Roles that user can assume directly or in-directly) | 0.05
— [Role] Inline Policies (PolicyName) 0.06

— Detail Policy Documents (Policy Statement) 0.06

— [Role] Attached Managed Policies (PolicyName + Policy ARN) 0.06

— Default Policy Version Id 0.06

— Detail Policy Documents (Policy Statement) 0.06

Table 5.1: Benchmarking Weights

To ensure a granular, equitable, and reproducible comparative assessment of TAM
enumeration capabilities, each of the 22 scenarios is structured with a precise weighting
schema that reflects the hierarchical and relational complexity of AWS TAM entities.
For scenarios involving a single user (Scenarios 1-14), the evaluation framework assigns
discrete percentage weights to each discovery dimension, encompassing inline policies,
attached managed policies, group and role associations, and detailed extraction of policy
documents. Specifically, the enumeration of inline policy names and their detailed
policy documents accounts for 0.06 each, while attached managed policies and their
corresponding default policy version and detail policy documents similarly contribute
0.06 each. The identification of in-scope IAM groups and roles, as well as the ability
to enumerate their associated inline and managed policies, is weighted at 0.05 and 0.06

62

per objects, respectively. These weights cumulatively ensure that each scenario sums
to 1, providing a holistic metric of enumeration coverage.In scenarios where there are
multiple objects within a benchmarking category such as in-scope IAM groups, in-scope
IAM roles, inline policies, or attached managed policies, the total assigned weight for
that category is distributed equally among all objects in the category. Specifically, the
weight allotted to each category is divided by the number of objects present, ensuring
that the sum of the scores for all objects in that category does not exceed the maximum
designated weight for the category. This approach maintains consistency and fairness in
benchmarking, regardless of the number of objects enumerated within each evaluative
dimension.

For scenarios featuring multiple users (Scenarios 15-20), the methodology applies the
same weighting criteria; however, all percentages are divided equally among the involved
users. For example, when four users participate in a scenario, each user’s enumeration
facets are apportioned such that the aggregate coverage across all users remains at 1.
This proportional allocation maintains fairness in comparative analysis and accounts for
the increased complexity introduced by multi-user environments. For the framework that
does not support the multiple-user scanning, we will run separately multiple credentials
for that framework to ensure the fairness in benchmarking.

Scenario 21 leverages the "iam:SimulatePrincipalPolicy" API to test a framework’s
ability to enumerate effective permissions via policy simulation. Here, the weighting
is adjusted to emphasize the intersection of user and group policy simulation, with
in-scope IAM group association, separated inline policies, consolidation of managed
policies, and their details in default policy version and policy documents weighted at
0.05 (group association), 0.06 (separated inline policies) and 0.12 (consolidated managed
policies) respectively. For the role trust relationship and their policy details in inline
policies and managed policies, they are weighted similar to the methodology for scenario
1-14 as discussed previously. This scenario highlights each framework’s proficiency in
aggregating and simulating permissions across composite IAM relationships, reflecting
real-world access evaluation workflows.

Scenario 22 introduces a fuzzing-based approach, wherein the outputs of permission
fuzzing are directly compared to a pre-established set of expected permissions. This
scenario departs from fixed percentage weights, instead focusing on the completeness
and accuracy of discovered permissions relative to the scenario baseline.

This meticulous weighting methodology, applied consistently across all scenarios, un-
derpins the validity and reproducibility of our benchmarking results. By quantifying
discovery coverage with fine-grained percentages, the framework enables nuanced differ-
entiation between competing enumeration tools and models, illuminating strengths and
weaknesses at every layer of [AM complexity.

63

5.2.2 Calculation Methodology

Delving deeper into calculation methodology, it is necessary to ensure objectivity
and reproducibility in benchmarking TAM enumeration frameworks, we formalize the
calculation of enumeration coverage using precise mathematical notation. Let S denote
the set of all scenarios, indexed by s, with N, representing the total number of in-scope
entities or relationships to be enumerated in scenario s. For each framework F', let Ep ;
be a binary indicator where Er,; = 1 if entity or relationship ¢ in scenario s is correctly
enumerated by framework F', and Er,; = 0 otherwise.

Each entity or relationship ¢ in scenario s is assigned a scenario-specific weight w;
(e.g., 0.06, 0.12, 0.05, etc.), such that the sum over all 7 in s satisfies:

N,
Z Ws,; = 1
i=1

The coverage score Cr, for framework [in scenario s is then computed as:

N
CF,s = Zws,z‘ : EF,s,z'
i=1

where 0 < Cf, < 1, representing the proportion of correctly enumerated entities,
weighted by their scenario-specific importance.

For scenarios involving multiple users (e.g., U users in scenario s), the weights for
user-specific entities are divided by Uy to ensure the total weights for all users sum to 1:

(u) Ws 5

S,i - U
S

w

where ng? denotes the weight assigned to entity ¢ for user u.

For the scenario 22, let P, denote the set of all permissions expected in the scenario,
and Pr 4 denote the set of permissions discovered by framework F'. The coverage score is
calculated as:

Cfuzz — |PF7S N PS|
F,s | Ps|
The overall coverage score C for framework F' across all scenarios is the average:
1
Cr = ? Z OF,S
’ ‘ seS

This formalization enables a transparent and rigorous benchmarking of enumeration
effectiveness, accommodating both scenario-specific weighting and diverse entity distri-
butions, including nested and multi-user scenarios.

64

5.2.3 Benchmarking Table

In this section, we will perform an assessment for the capability of enumerating TAM
vision context between our framework ('SkyEye') and other frameworks, applying pro-
posed scenarios with the previously-discussed methodology in weighting and calculation.

aSkyEye PCloudPEASS [2] ScoutSuite [5] 4CloudFox [1] °¢PACU [1] ‘fenumerate-iam [3]
Scenario Framework?® | FrameworkP | Framework® | Frameworkd | Framework® | Framework?
Scenario [S1] 1.00 0.65 0.05 0.00 0.16 0.05
Scenario [S2] 1.00 0.30 0.10 0.025 0.10 0.10
Scenario [S3] 1.00 0.41 0.06 0.031 0.45 0.16
Scenario [S4] 1.00 0.41 0.52 0.29 0.21 0.16
Scenario [S5] 0.895 0.47 0.00 0.05 0.16 0.05
Scenario [S6] 1.00 0.29 0.00 0.00 0.16 0.00
Scenario [ST7] 1.00 0.00 0.00 0.05 0.05 0.00
Scenario [S8] 1.00 0.00 0.05 0.05 0.05 0.05
Scenario [S9] 1.00 0.00 0.00 0.00 1.00 1.00
Scenario [S10] 1.00 0.00 0.00 0.05 0.05 0.05
Scenario [S11 1.00 0.00 0.05 0.05 0.05 0.05
Scenario [S12 1.00 0.00 0.00 0.05 0.05 0.05
Scenario [S13 1.00 0.00 0.00 0.05 0.05 0.05
Scenario [S14 1.00 0.00 0.00 0.05 0.05 0.05
Scenario [S15 1.00 0.0425 0.04 0.04 0.04 0.00
Scenario [S16 1.00 0.0275 0.00 0.00 0.0625 0.00
Scenario [S17] 1.00 0.00 0.00 0.00 0.25 0.25
Scenario [S18] 1.00 0.00 0.00 0.00 0.00 0.00
Scenario [S19] 1.00 0.0425 0.18 0.00 0.3125 0.00
Scenario [S20] 1.00 0.0275 0.00 0.00 0.0125 0.013
Scenario [S21] 1.00 0.65 0.00 0.00 0.05 0.00
Scenario [S22] 0.90 0.00 0.00 0.00 0.00 0.90

Table 5.2: The benchmarking across SkyEye and 6 published frameworks by 22 proposed

scenarios

65

Chapter 6
Future Works

While this paper has established the significance and efficacy of the SkyEye framework
and its proposed models: Cross-Principal IAM Enumeration Model (CPIEM), Transitive
Cross-Role Enumeration Model (TCREM), advanced IAM deep enumeration capabilities,
and the systematic integration of MITRE ATT&CK mapping and severity-level classifi-
cation; there remain several promising avenues for future research and development to
further advance the state of IAM enumeration and cloud security analytics.

The current instantiation of the SkyEye framework is tailored primarily to the AWS
ecosystem. However, as cloud adoption diversifies, organizations increasingly rely on
heterogeneous cloud environments, often leveraging Microsoft Azure, Google Cloud
Platform (GCP), and other providers in parallel. FEach platform introduces unique
identity constructs, policy languages, and privilege management paradigms. Therefore,
a critical direction for future work is the adaptation and generalization of the SkyEye
models to support comprehensive, multi-cloud IAM enumeration. This would require the
development of abstraction layers capable of normalizing disparate IAM representations
and integrating platform-specific enumeration primitives, while preserving the core
models and capabilities of the framework.

The integration of MITRE ATT&CK matrix and severity-level classification in
SkyEye offers a structured approach to contextualizing TAM exposures. Future work
should deepen this integration by incorporating automated adversarial simulation
modules capable of emulating advanced persistent threat (APT) behaviors, lateral
movement techniques, and privilege escalation scenarios specific to each cloud provider.
Furthermore, machine learning techniques could be explored to refine risk scoring mod-
els, leveraging empirical attack patterns and real-world incident datasets to prioritize
enumeration targets and remediation actions more effectively.

Moreover, while the SkyEye framework is mainly developed for offensive security, it
is recommended to utilize the proposed models of SkyEye framework in developing a
framework that primarily focuses on defensive security aspect which can recommend and
potentially automate remediation steps for detected IAM misconfigurations. This could
involve the use of policy synthesis algorithms, guided least-privilege recommendations,
and automated policy deployment routines, all governed by robust change management
and audit controls. Such capabilities would close the loop from detection to remediation,
further reducing the risk of privilege-based cloud compromise.

66

Chapter 7

Conclusion

This paper has introduced SkyEye, a comprehensive framework for advanced TAM
enumeration in AWS cloud environments, along with its proposed models: the Cross-
Principal IAM Enumeration Model (CPIEM), the Transitive Cross-Role Enumeration
Model (TCREM), and a suite of deep IAM enumeration capabilities. SkyEye provides
a robust mechanism for cooperative multi-principal IAM enumeration simultaneously
between multiple principals that uncovers the privilege relationships, transitive trust
paths, and hidden permissions that prior-art frameworks and models were unable to
achieve due to the limitations of single-principal enumeration. Furthermore, SkyEye
systematically integrates risk scoring and mapping to the MITRE ATT&CK Cloud
matrix, enabling the identification of potential vectors for privilege escalation within
cloud infrastructures.

By decomposing and formalizing the enumeration chains necessary for the exhaustive
discovery of TAM users, groups, roles, and policies; and through the development of
the CPIEM and TCREM models; SkyEye addresses the limitations of conventional
IAM enumeration frameworks, significantly reducing false negatives and enhancing the
overall accuracy of cloud security assessments. In addition, the framework’s ability to
incorporate both forward and inverse enumeration techniques, coupled with situational
awareness enabled by deep comparison of policy states and versioning, ensures a holistic
understanding of complex dynamic IAM configurations in real-world cloud environments.

The practical utility of SkyEye is underscored by its extensible dataset, which system-
atically maps nearly 20,000 AWS actions to the corresponding risk-level classifications
and clearly describes the techniques leveraged by threat actors. This extensive mapping,
in conjunction with SkyEye’s alignment with industry-standard adversarial models,
enables the framework to provide actionable insights for both offensive and defensive
security operations. Furthermore, as organizations increasingly adopt multi-cloud
strategies, the architectural flexibility of the SkyEye framework lays a robust foundation
for broader applicability, facilitating comprehensive cross-platform enumeration and
adaptive threat modeling. Taken together, these attributes position SkyEye as a
significant framework to advance the state of cloud security research and practice.

Nevertheless, the evolution of cloud identity and access management presents ongoing

challenges. The paper has outlined promising directions for future research, including
multi-cloud support, dynamic adversarial simulation, automated remediation, and the

67

integration of machine learning for risk prioritization. By advancing both the technical
rigor and operational depth of TAM enumeration, SkyEye represents a substantive
contribution to the domain of cloud security, equipping practitioners and researchers
with the frameworks needed to proactively identify, assess, and mitigate privilege-based
risks in rapidly evolving cloud ecosystems.

In summary, SkyEye not only re-invents the standard for IAM enumeration and risk
classification but also establishes a blueprint for future innovation by eliminating the
limitations of conventional TAM enumeration strategy, and bridging the gap between
detection and defense in the pursuit of resilient, trustworthy cloud environments.

68

Chapter 8

Bibliography

1]

8]

[10]

[11]

R. S. Labs, “Pacu: The aws exploitation framework,” https://github.com
/RhinoSecurityLabs/pacu, 2021, accessed: 2025-06-13. [Online]. Available:
https://github.com/RhinoSecurityLabs/pacu

carlospolop, “Cloudpeass - privilege escalation awesome scripts suite for cloud (aws,
azure, gep),” https://github.com/carlospolop/CloudPEASS, 2025, accessed: 2025-
06-13.

andresriancho, “Enumerate-iam: Security tool to enumerate and analyze iam per-
missions in aws environments,” https://github.com/andresriancho/enumerate-iam,
2019, accessed: 2025-06-13.

B. Fox, “Cloudfox: Automating situational awareness for cloud penetration tests on
aws, azure, and gep,” https://github.com/BishopFox/cloudfox, 2022, accessed:
2025-06-13.

N. Group, “Scoutsuite: Multi-cloud security auditing tool,” https://github.com/n
ccgroup/ScoutSuite, 2018, accessed: 2025-06-13.

DataDog, “Stratus red team: Adversary emulation for the cloud, in the cloud,”
https://github.com/DataDog/stratus-red-team, 2022, accessed: 2025-06-13.

Salesforce, “Cloudsplaining: Aws iam security assessment tool,” https://github.com
/salesforce/cloudsplaining, 2024, accessed: 2025-06-13.

Y. Hu, W. Wang, S. Khurshid, K. L. McMillan, and M. Tiwari, “Fixing privilege
escalations in cloud access control with maxsat and graph neural networks,” https:
//spark.ece.utexas.edu/pubs/ASE-23-yang.pdf, accessed: 2025-06-12.

CapitalOne, “Information on the capital one cyber incident,” https://www.capitalo
ne.com/digital /facts2019, accessed: 2025-06-12.

L. H. Newman, “Everything we know about the capital one hacking case so far,”
https://www.wired.com/story/capital-one-paige-thompson-case-hacking-spree,
accessed: 2025-06-12.

Krebsonsecurity, “A closer look at the lapsus$ data extortion group,” https://krebso
nsecurity.com/2022/03/a-closer-look-at-the-lapsus-data-extortion-group, accessed:
2025-06-12.

69

https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/carlospolop/CloudPEASS
https://github.com/andresriancho/enumerate-iam
https://github.com/BishopFox/cloudfox
https://github.com/nccgroup/ScoutSuite
https://github.com/nccgroup/ScoutSuite
https://github.com/DataDog/stratus-red-team
https://github.com/salesforce/cloudsplaining
https://github.com/salesforce/cloudsplaining
https://spark.ece.utexas.edu/pubs/ASE-23-yang.pdf
https://spark.ece.utexas.edu/pubs/ASE-23-yang.pdf
https://www.capitalone.com/digital/facts2019
https://www.capitalone.com/digital/facts2019
https://www.wired.com/story/capital-one-paige-thompson-case-hacking-spree
https://krebsonsecurity.com/2022/03/a-closer-look-at-the-lapsus-data-extortion-group
https://krebsonsecurity.com/2022/03/a-closer-look-at-the-lapsus-data-extortion-group

[12]

[13]

[19]

[20]

[21]

[22]

[24]

[25]

[26]

J. Tidy, “Lapsus$: Oxford teen accused of being multi-millionaire cyber-criminal,”
https://www.bbc.com/news/technology-60864283, accessed: 2025-06-12.

R. Park, B. Gorman, C. Kundapur, and Z. Miller, “How to use aws certificate
manager to enforce certificate issuance controls,” https: //aws.amazon.com /blogs/sec
urity /how-to-use-aws-certificate-manager-to-enforce-certificate-issuance-controls,
accessed: 2025-06-12.

A. Gouglidis, A. Kagia, and V. C. Hu, “Model checking access control policies:
A case study using google cloud iam,” arXiv preprint arXiv:2303.16688, 2023,
accessed: 2025-06-12. [Online]. Available: https://arxiv.org/abs/2303.16688

T. van Ede, N. Khasuntsev, B. Steen, and A. Continella, “Detecting anomalous
misconfigurations in aws identity and access management policies,” https://dl.acm
.org/doi/10.1145/3560810.3564264, accessed: 2025-06-12.

. Shevrin and O. Margalit, “Detecting multi-step iam attacks in aws environments
via model checking,” https://www.usenix.org/system/files/usenixsecurity23-shevr
in.pdf, accessed: 2025-06-12.

Y. Hu, W. Wang, S. Khurshid, and M. Tiwari, “Efficient iam greybox penetration
testing,” https://arxiv.org/abs/2304.14540, accessed: 2025-06-12.

I. Security, “Cost of a data breach report 2023,” https://d110erj1750600.cloudfron
t.net/wp-content /uploads/2023/07/25111651/Cost-of-a- Data-Breach- Report-2023.
pdf, accessed: 2025-06-13.

E. U. A. for Cybersecurity (ENISA), “Enisa threat landscape 2024,” https://www.
enisa.europa.eu/sites/default /files /2024-11 /ENISA %20Threat%20Landscape %202
024 0.pdf, accessed: 2025-06-13.

“Aws identity and access management user guide,” https://docs.aws.amazon.com/
IAM /latest /UserGuide/introduction.html, accessed: 2025-06-11.

“Aws iam identity providers and federation,” https://docs.aws.amazon.com/IAM/
latest /UserGuide/id_roles providers.html, accessed: 2025-06-11.

“Aws organizations and iam,” https://docs.aws.amazon.com/organizations/latest
/userguide/orgs manage accounts access.html, accessed: 2025-06-11.

“Aws iam policies,” https://docs.aws.amazon.com/IAM /latest/UserGuide/access__
policies.html, accessed: 2025-06-11.

“Policy evaluation logic,” https://docs.aws.amazon.com/IAM /latest /UserGuide/r
eference_policies_evaluation-logic.html, accessed: 2025-06-11.

“Aws iam users,” https://docs.aws.amazon.com/IAM /latest /UserGuide/id__users.
html, accessed: 2025-06-11.

“Aws iam groups,” https://docs.aws.amazon.com/IAM /latest/UserGuide/id__grou
ps.html, accessed: 2025-06-11.

70

https://www.bbc.com/news/technology-60864283
https://aws.amazon.com/blogs/security/how-to-use-aws-certificate-manager-to-enforce-certificate-issuance-controls
https://aws.amazon.com/blogs/security/how-to-use-aws-certificate-manager-to-enforce-certificate-issuance-controls
https://arxiv.org/abs/2303.16688
https://dl.acm.org/doi/10.1145/3560810.3564264
https://dl.acm.org/doi/10.1145/3560810.3564264
https://www.usenix.org/system/files/usenixsecurity23-shevrin.pdf
https://www.usenix.org/system/files/usenixsecurity23-shevrin.pdf
https://arxiv.org/abs/2304.14540
https://d110erj175o600.cloudfront.net/wp-content/uploads/2023/07/25111651/Cost-of-a-Data-Breach-Report-2023.pdf
https://d110erj175o600.cloudfront.net/wp-content/uploads/2023/07/25111651/Cost-of-a-Data-Breach-Report-2023.pdf
https://d110erj175o600.cloudfront.net/wp-content/uploads/2023/07/25111651/Cost-of-a-Data-Breach-Report-2023.pdf
https://www.enisa.europa.eu/sites/default/files/2024-11/ENISA%20Threat%20Landscape%202024_0.pdf
https://www.enisa.europa.eu/sites/default/files/2024-11/ENISA%20Threat%20Landscape%202024_0.pdf
https://www.enisa.europa.eu/sites/default/files/2024-11/ENISA%20Threat%20Landscape%202024_0.pdf
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_accounts_access.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_accounts_access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

“Aws iam roles,” https://docs.aws.amazon.com/IAM /latest/UserGuide/id__roles.ht
ml, accessed: 2025-06-11.

“Iam json policy reference,” https://docs.aws.amazon.com/TAM /latest/UserGuide
/reference_ policies.html, accessed: 2025-06-11.

“Aws managed policies and inline policies,” https://docs.aws.amazon.com /IAM /la
test/UserGuide/access__policies__managed-vs-inline.html, accessed: 2025-06-11.

“Versioning iam policies,” https://docs.aws.amazon.com/IAM /latest /UserGuide/a
ccess_ policies managed-versioning.html, accessed: 2025-06-11.

“Permissions boundaries for iam entities,” https://docs.aws.amazon.com/TAM /late
st/UserGuide/access_policies_boundaries.html, accessed: 2025-06-11.

“Service control policies (scps),” https://docs.aws.amazon.com/organizations/late
st /userguide/orgs__manage_policies_scps.html, accessed: 2025-06-11.

“Aws accounts,” https://docs.aws.amazon.com/IAM /latest/UserGuide/getting-sta
rted-account-iam.html, accessed: 2025-06-11.

“Managing organizational units (ous) with aws organizations,” https://docs.aws.a
mazon.com/organizations/latest /userguide/orgs__manage_ous.html, accessed:
2025-06-11.

“What is aws organizations?” https://docs.aws.amazon.com/organizations/latest
Juserguide/orgs__introduction.html, accessed: 2025-06-11.

“Delegate access across aws accounts using iam roles,” https://docs.aws.amazon.
com/TAM/latest/UserGuide/tutorial cross-account-with-roles.html, accessed:
2025-06-11.

“Delegated administrator for aws organizations,” https://docs.aws.amazon.com/or
ganizations/latest /userguide/orgs_delegate_ policies.html, accessed: 2025-06-11.

“Jam json policy element reference,” https://docs.aws.amazon.com/IAM /latest /U
serGuide/reference_ policies_elements.html, accessed: 2025-06-11.

“lam json policy elements: Condition,” https://docs.aws.amazon.com/IAM /latest
/UserGuide/reference_policies_ elements_ condition.html, accessed: 2025-06-11.

“Define permissions based on attributes with abac authorization,” https://docs.aws
.amazon.com/IAM/latest /UserGuide/introduction__attribute-based-access-control
html, accessed: 2025-06-11.

“Aws command line interface,” https://docs.aws.amazon.com /cli/latest /userguide
/cli-chap-welcome.html, accessed: 2025-06-11.

“Aws apis,” https://docs.aws.amazon.com/general/latest /gr/Welcome.html#aws-a
pis, accessed: 2025-06-11.

71

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-versioning.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-versioning.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started-account-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started-account-iam.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_ous.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_ous.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_delegate_policies.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_delegate_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/general/latest/gr/Welcome.html#aws-apis
https://docs.aws.amazon.com/general/latest/gr/Welcome.html#aws-apis

“Temporary security credentials in iam,” https://docs.aws.amazon.com/IAM/late
st /UserGuide/id_ credentials temp.html, accessed: 2025-06-11.

“Methods to assume a role,” https://docs.aws.amazon.com/TAM /latest /UserGuide
/id_ roles manage-assume.html, accessed: 2025-06-11.

“Identity providers and federation,” https://docs.aws.amazon.com/IAM/latest/Use
rGuide/id_roles providers.html, accessed: 2025-06-11.

“Aws multi-factor authentication in iam,” https://docs.aws.amazon.com/TAM /late
st/UserGuide/id__credentials_ mfa.html, accessed: 2025-06-11.

“Available mfa types for iam identity center,” https://docs.aws.amazon.com/en_ u
s/singlesignon/latest /userguide/mfa-types.html, accessed: 2025-06-11.

72

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/en_us/singlesignon/latest/userguide/mfa-types.html
https://docs.aws.amazon.com/en_us/singlesignon/latest/userguide/mfa-types.html

Appendix

Chapter 5 resources

This appendices of chapter 5 contains all the resources related to the scenario-based
benchmarking between our SkyEye framework and other published frameworks or tools.

Scenario 1: « Inline Policies:
User: S1__UserA — S2_TIP_ UserA:
¢ Inline Policies: * iam:ListGroups (G)

% iam:ListAttachedUserPolicies (UP)

— S1_IP_ UserA:
* iam:GetUserPolicy (UI)

% iam:ListGroupsForUser (G)

x iam:ListAttachedUserPolicies (UP) o Attached Managed Policies:
iam:GetU Poli Ul

* dam:GetUserPolicy (UI) — S2__AMP_ PolicyA:
* iam:ListUserPolicies (UI)

— S1__AMP_ PolicyA: * iam:ListAttachedGroupPolicies (GP)

* iam:GetRolePolicy (RI)

¢ Attached Managed Policies:

* iam:ListUserPolicies (UI)

* iam:ListAttachedGroupPolicies (GP) - S2__AMP_ PolicyB:
* iam:GetRolePolicy (RI) * iam:GetGroupPolicy (GI)
— 81_AMP_ PolicyB: * iam:ListGroupPolicies (GI)

* iam:GetGroupPolicy (GI) * dam:GetGroup (G)

* iam:ListGroupPolicies (GI) — S2__ AMP_ PolicyC:

e Group: S1__GroupA (Includes: S1__UserA) * aiops:Createlnvestigation
* iot:CreateThing

— Inline Policies:

+ S1_IP_GroupA: e Group: S2_ GroupA (Includes: S2_ UserA)

iam:ListPolicyVersions (P) — Inline Policies:
iam:ListRolePolicies (RI) %+ S2_IP_GroupA:
— Attached Managed Policies: -+ iam:ListPolicyVersions (P)
x+ S1_AMP_ PolicyC: -+ iam:ListRolePolicies (RI)
iam:GetPolicyVersion (P) — Attached Managed Policies:

iam:ListAttachedRolePolicies (RP)

* S2__AMP__PolicyD:
iam:ListRoles (R)

iam:GetPolicyVersion (P)
« Role: S1__RoleA (Assumable by: S1_ UserA) - iam:ListAttachedRolePolicies (RP)

. . . iam:ListRoles (R)
— Inline Policies:

+ S1_IP_RoleA: « Role: S2_ RoleA (Assumable by: S2_ UserA)
- s3:CreateBucket
lambda:CreateFunction
ec2:RunInstances

— Attached Managed Policies:

— Inline Policies:
* S2_TIP_ RoleA:
- s3:CreateBucket

lambda:CreateFunction
* AmazonEKSServicePolicy (AWS) - ec2:Runlnstances

s3:ListBucket
ec2:Describelnstances
— Attached Managed Policies:

User: S2_ UserA * AmazonS3TablesFullAccess (AWS)

Scenario 2:

73

Scenario 3: * iam:GetGroupPolicy (GI)
* iam:ListGroupPolicies (GI)
* iam:GetGroup (G)

— S4__AMP_ PolicyC:

User: S3_ UserA
¢ Inline Policies:

— S3_IP_ UserA: * aiops:Createlnvestigation
* iam:ListGroups (G) * iot:CreateThing
* iam:ListAttachedUserPolicies (UP) « Group: S4_GroupA (Includes: S4_UserA)

* iam:GetUserPolicy (UI) Inline Polici
— Inline Policies:

¢ Attached Managed Policies: + S4_IP_ GroupA:

— S3_AMP_ PolicyA: - iam:ListRolePolicies (RI)
x iam:ListUserPolicies (UI) — Attached Managed Policies:
* iam:ListAttachedGroupPolicies (GP) * S4__AMP__PolicyD:
* iam:GetRolePolicy (RI) -+ iam:GetPolicyVersion (P)
— S3_AMP_ PolicyB: - iam:ListAttachedRolePolicies (RP)

* iam:GetGroupPolicy (GI) lam:ListRoles (R)

* iam:ListGroupPolicies (GI) « Role: S4_RoleA (Assumable by: S4_ UserA)

* iam:GetGroup (G) — Inline Policies:

— S3_AMP__ PolicyD: + S4 IP RoleA:

* aiops:Createlnvestigation - s3:CreateBucket

* iot:CreateThing + lambda:CreateFunction
ec2:RunInstances

e Group: S3__GroupA (Includes: S3__UserA) 3:ListBucket
s3:ListBucke

— Inline Policies: - ec2:Describelnstances
* S3__IP_ GroupA: — Attached Managed Policies:
iam:ListRolePolicies (RI) * AmazonRoute53ReadOnlyAccess (AWS)

iam:GetPolicy (P)
— Attached Managed Policies:
* S3__AMP_ PolicyC:

iam:GetPolicyVersion (P) User: S5 UserA
iam:ListAttachedRolePolicies (RP) « Inline Policies:
iam:ListRoles (R)

Scenario 5:

— S5 _IP_UserA:
« Role: S3__RoleA (Assumable by: S3_ UserA)

x iam:ListGroupsForUser (G)
— Inline Policies: * iam:ListAttachedUserPolicies (UP)
+ S3 IP RoleA: * iam:GetUserPolicy (UI)

. ;3'C:eateBuc'ket * iam:ListUserPolicies (UI)
lambda:CreateFunction * iam:GetRolePolicy (RI)
ec2:Runinstances * iam:GetGroupPolicy (GI)
3:ListBucket % iam:ListGroupPolicies (GI)
ecé'DescribeInstances * iam:ListEntitiesForPolicy (P)

— Attached Managed Policies: + Attached Managed Policies:
* AmazonRoute53ReadOnlyAccess (AWS) — S5__AMP_ PolicyA:

* aiops:Updatelnvestigation
* iot:AttachThingPrincipal

Scenario 4: — S$5_AMP_ PolicyB:

User: S4_ UserA * iot:DeleteThing
e Inline Policies: * bedrock:DeleteGuardrail
— S4 IP UserA: e Group: S5__GroupA (Includes S5_ UserA)
* iam:ListGroups (G) — Inline Policies:
* iam:ListAttachedUserPolicies (UP) * S5_IP_GroupA:
* iam:GetUserPolicy (UI) - iam:ListRolePolicies (RI)

iam:ListPolicyVersions (P)
-+ iam:GetPolicyVersion (P)
— S4__AMP_ PolicyA: - iam:ListRoles (R)

¢ Attached Managed Policies:

x iam:ListUserPolicies (UI) — Attached Managed Policies:
* iam:ListAttachedGroupPolicies (GP) *+ S5__AMP_ PolicyC:
* iam:GetRolePolicy (RI) aiops:Createlnvestigation

— S4__ AMP_ PolicyB: - iot:CreateThing

74

*

S5__AMP_ PolicyA:

aiops:CreatelnvestigationResource
gapps:CreateLibraryItemReview

AmazonMQFullAccess (AWS)

e Role: S5_RoleA (Assumable by: S5_UserA)

— Inline Policies:
* S5__IP_ RoleA:

s3:CreateBucket
lambda:CreateFunction
ec2:RunInstances
s3:ListBucket
ec2:Describelnstances

— Attached Managed Policies:

AmazonRoute53ReadOnlyAccess (AWS)
AmazonKinesisFullAccess (AWS)
S5_AMP_ PolicyD:

private-networks:ActivateDeviceIdentifier
auditmanager:UpdateAssessment

S5__AMP_ PolicyB:

iot:CancelJob
fis:CreateExperimentTemplate

Scenario 6:

User: S6__UserA
e Inline Policies:

— S6_1IP__

iam:ListGroupsForUser (G)
iam:GetUserPolicy (UI)
iam:ListUserPolicies (UI)

UserA:

« Role: S6__RoleA (Assumable by: S6__

— Inline Policies:

* S6__IP_ RoleA:
s3:CreateBucket
lambda:CreateFunction
ec2:RunInstances
s3:ListBucket
ec2:Describelnstances

— Attached Managed Policies:

UserA)

* AmazonRoute53ReadOnlyAccess (AWS)

* AmazonKinesisFullAccess (AWS)

x* S6__AMP_ PolicyE:

private-networks:ActivateDeviceldentifier

auditmanager:UpdateAssessment
* S6__AMP_ PolicyF:

iot:CancelJob

fis:CreateExperimentTemplate

Scenario 7:

User: S7__UserA
e Inline Policies:

— S7_IP_ UserA:

* aiops:Createlnvestigation
* iot:CreateThing

e Attached Managed Policies:

— S7_AMP_ PolicyA:

* iot:DeleteThing
* bedrock:DeleteGuardrail

iam:GetRolePolicy (RI)
iam:GetGroupPolicy (GI)
iam:ListGroupPolicies (GI)
iam:ListPolicies (P)
iam:ListEntitiesForPolicy (P)

¥ X X ¥ X X ¥ ¥

¢ Attached Managed Policies:
— S6__AMP_ PolicyA:

* aiops:Updatelnvestigation
* iot:AttachThingPrincipal

— S7_AMP_ PolicyB:

* bedrock:InvokeAgent
* bedrock:UpdateFlow

Group: S7__GroupA (Includes S7__UserA)

— Inline Policies:

* S7_IP_ GroupA:

iam:ListRoles (R)
s3:CreateBucket
lambda:CreateFunction

— S6__AMP_ PolicyB:

* iot:DeleteThing
* bedrock:DeleteGuardrail

e Group: S6__GroupA (Includes S6_ UserA)

— Inline Policies:

* S6__IP_ GroupA:

iam:ListRolePolicies (RI)
iam:ListPolicyVersions (P)
iam:GetPolicyVersion (P)
iam:ListRoles (R)

— Attached Managed Policies:
* S6__AMP_ PolicyC:

aiops:Createlnvestigation
iot:CreateThing

*+ S6_AMP_ PolicyD:

aiops:CreatelnvestigationResource
qapps:CreatelLibraryIltemReview

x AmazonMQFullAccess (AWS)

ec2:RunInstances
— Attached Managed Policies:

x AmazonEKSServicePolicy (AWS)

* S7_AMP_ PolicyC:
s3:ListBucket
ec2:Describelnstances

« Role: S7_RoleA (Assumable by: S7__

— Inline Policies:

* S7_TIP__RoleA:
iam:ListGroupsForUser (G)

UserA)

iam:ListAttachedUserPolicies (UP)

iam:GetUserPolicy (UI)
iam:ListUserPolicies (UI)

iam:ListAttachedGroupPolicies (GP)

iam:GetRolePolicy (RI)
— Attached Managed Policies:

* S7_AMP_ PolicyD:
iam:GetGroupPolicy (GI)

75

Iam:ListGroupPolicies (GI) x S8_IP_ RoleC:
iam:ListPolicyVersions (P) + controltower:CreateManagedAccount
iam:ListRolePolicies (RI) - nimble:CreateStudio
iam:GetPolicyVersion (P)

— Attached Managed Policies:
iam:ListAttachedRolePolicies (RP)

* S8__AMP__PolicyF:
iam:ListAttachedRolePolicies (RP)

Scenario 8: - iam:GetGroupPolicy (GI)
Iam:ListGroupPolicies (GI)
User: S8_ UserA

¢ Inline Policies: « Role: S8_RoleD (Assumable by: S8_ RoleC)
— S8 IP_ UserA:

* aiops:Createlnvestigation
* iot:CreateThing

— Inline Policies:

* S8 IP_ RoleD:
tax:GetExemptions
o Attached Managed Policies: © s3-object-lambda:GetObjectAcl

— S8 _AMP_ PolicyA: qapps:CreatelLibraryItemReview

* iot:DeleteThing
* bedrock:DeleteGuardrail * S8__AMP_ PolicyG:
— S8_AMP_ PolicyB: + iam:ListPolicyVersions (P)
iam:ListRolePolicies (RI)
iam:GetPolicyVersion (P)

— Attached Managed Policies:

* bedrock:InvokeAgent
* bedrock:UpdateFlow

e Group: S8_ GroupA (Includes S8_ UserA)
— Inline Policies:
* S8_IP_ GroupA:

iam:ListRoles (R) User: S9_UserA
s3:CreateBucket

lambda:CreateFunction

Scenario 9

¢ Inline Policies:

ec2:RunInstances
— Attached Managed Policies:
* S8__AMP__PolicyC:
s3:ListBucket
ec2:Describelnstances

— S9 IP_UserA:

* iam:GetAccountAuthorizationDetails (All)
¢ Attached Managed Policies:

e Role: S8_RoleA (Assumable by: S8_ UserA) — 59_AMP_ PolicyA:

* aiops:Createlnvestigation
* iot:CreateThing

— Inline Policies:
* S8 IP_ RoleA:

iam:ListGroupsForUser (G) e Group: S9_ GroupA (Includes S9_ UserA)
iam:ListAttachedUserPolicies (UP)
iam:GetUserPolicy (UI) — Inline Policies:

— Attached Managed Policies: x S9_IP_ GroupA:

* S8__AMP__ PolicyD: + iot:DeleteThing
ssm:CancelCommand + bedrock:DeleteGuardrail
codeguru:GetCodeGuruFreeTrialSummary — Attached Managed Policies:
« Role: S8_RoleB (Assumable by: S8_RoleA) + AmazonKinesisFullAccess (AWS)
— Inline Policies: * 89_AMP_ PolicyB:

bedrock:InvokeAgent

P leB:
* S8_TIP_Role bedrock:UpdateFlow

iam:ListUserPolicies (UI)
iam:ListAttachedGroupPolicies (GP)

« Role: S9__RoleA (Assumable by: S9_ UserA)
iam:GetRolePolicy (RI)

— Attached Managed Policies: — Inline Policies:
x AmazonEKSServicePolicy (AWS) x+ S9_IP_RoleA:
* S8_AMP_ PolicyE: - s3:CreateBucket

ec2:AllocateAddress
ec2:BundleInstance

lambda:CreateFunction
ec2:RunInstances

« Role: S8_RoleC (Assumable by: S8_ RoleB) — Attached Managed Policies:

— Inline Policies: * AmazonEKSServicePolicy (AWS)

76

Scenario 10: + Role: S11__RoleA (Assumable by: S11_ UserA)

User: S10__UserA — Inline Policies:
o Inline Policies: * S11__IP_ RoleA:

ssm:CancelCommand
— S10_IP_ UserA:

* tax:GetExemptions
* s3-object-lambda:GetObjectAcl

codeguru:GetCodeGuruFreeTrialSummary
— Attached Managed Policies:

x AmazonEKSServicePolicy (AWS)
¢ Attached Managed Policies: * S11__AMP_ PolicyC:

— S10__AMP_ PolicyA: - s3:CreateBucket

. . . lambda:CreateFunction
* aiops:Createlnvestigation

* iot:CreateThing

ec2:RunInstances

« Role: S11_ RoleB (Assumable by: S11_ RoleA)
e Group: S10__GroupA (Includes S10__UserA)

— Inline Policies:
* S11__IP_ RoleB:

detective:AcceptInvitation

— Inline Policies:

* S10__IP_ GroupA:

iot:DeleteThing transfer:CreateAccess

bedrock:DeleteGuardrail
A he (]i:olz/l e (: ;all‘ rald — Attached Managed Policies:
— Att icies:
ache anaged Foficles * AmazonEKSServicePolicy (AWS)
* AmazonKinesisFullAccess (AWS) + S11_AMP_ PolicyE:
* S10_AMP_ PolicyB: e .
bedrock:InvokeAgent

bedrock:UpdateFlow
iam:ListRoles (R) « Role: S11_ RoleC (Assumable by: S11_ RoleB)

ec2:AllocateAddress
ec2:Bundlelnstance

e Role: S10__RoleA (Assumable by: S10__UserA) — Inline Policies:
* S11__IP_ RoleC:
controltower:CreateManagedAccount
* S10_IP__RoleA: - nimble:CreateStudio
iam:GetAccountAuthorizationDetails (All) _ Attached Managed Policies:
— Attached Managed Policies: + S11_AMP_ PolicyF:

* AmazonEKSServicePolicy (AWS) - cloud9:CreateEnvironmentMembership
* S10_AMP_ PolicyC: - cloud9:CreateEnvironmentSSH

s3:CreateBucket
1 ambda : CreateFunction e Role: S11__RoleD (Assumable by: S11_ RoleC)

— Inline Policies:

ec2:RunInstances — Inline Policies:
* S11__IP_ RoleD:
tax:GetExemptions

Scenarlo 1 1 : s3-object-lambda:GetObjectAcl

User: S11__UserA — Attached Managed Policies:

¢ Inline Policies: * S11__ AMP_ PolicyG:

_ S11_IP_UserA: iam:GetAccountAuthorizationDetails (All)

* tax:GetExemptions
* s3-object-lambda:GetObjectAcl Scenario 12:

¢ Attached Managed Policies: User: S12_ UserA

— S11__AMP_ PolicyA: e Inline Policies:

* aiops:Createlnvestigation — S12_IP_ UserA:
* iot:CreateThing

* aiops:Createlnvestigation
* iam:ListRoles (R)

* iot:CreateThing

e Group: S11__GroupA (Includes S11_ UserA) « Attached Managed Policies:
— Inline Policies: — S12_ AMP_ PolicyA:
* S11_ IP_ GroupA: * iot:DeleteThing

iot:DeleteThing * bedrock:DeleteGuardrail

bedrock:DeleteGuardrail — S12__AMP_ PolicyB:

— Attached Managed Policies: " b;irock';vokeAgent
* AmazonKinesisFullAccess (AWS) * bedrock:UpdateFlow

* S11__ AMP_ PolicyB:
bedrock:InvokeAgent
bedrock:UpdateFlow — Inline Policies:

e Group: S12_ GroupA (Includes S12_ UserA)

77

* S12_ IP_ GroupA:
iam:ListRoles (R)
s3:CreateBucket
lambda:CreateFunction
ec2:RunInstances

— Attached Managed Policies:

* AmazonEKSServicePolicy (AWS)

* S12_ AMP_ PolicyC:
s3:ListBucket
ec2:Describelnstances

« Role: S12_ RoleA (Assumable by: S12_ UserA)

— Inline Policies:
* S12_ IP_ RoleA:

- iam:ListGroupsForUser (G)
iam:GetUserPolicy (UI)
iam:ListUserPolicies (UI)
iam:GetRolePolicy (RI)
iam:ListEntitiesForPolicy (P)
iam:ListPolicies (P)

— Attached Managed Policies:
* AmazonRoute53ReadOnlyAccess (AWS)
* S12_ AMP_ PolicyD:

- iam:GetGroupPolicy (GI)
Iam:ListGroupPolicies (GI)
iam:ListRolePolicies (RI)
iam:GetPolicyVersion (P)

Scenario 13:

User: S13__UserA
e Inline Policies:
— S13_IP_ UserA:
* aiops:Createlnvestigation
* iot:CreateThing

¢ Attached Managed Policies:

— S13__AMP__PolicyA:

* iot:DeleteThing

* bedrock:DeleteGuardrail
— S13__ AMP_ PolicyB:

* bedrock:InvokeAgent

* bedrock:UpdateFlow

¢ Group: S13__ GroupA (Includes S13_ UserA)

— Inline Policies:

* S13__IP_ GroupA:
iam:ListRoles (R)
s3:CreateBucket
lambda:CreateFunction
ec2:Runlnstances

— Attached Managed Policies:

* S13__AMP_ PolicyC:
s3:ListBucket
ec2:Describelnstances

o Role: S13_RoleA (Assumable by: S13_ UserA)

— Inline Policies:

* S13__IP_ RoleA:
iam:ListGroupsForUser (G)

iam:ListAttachedUserPolicies (UP)
iam:GetUserPolicy (UI)
— Attached Managed Policies:
* S13__AMP_ PolicyD:
ssm:CancelCommand
codeguru:GetCodeGuruFreeTrialSummary

« Role: S13__RoleB (Assumable by: S13_ RoleA)

— Inline Policies:

*+ S13__IP_ RoleB:
iam:ListUserPolicies (UI)
iam:ListAttachedGroupPolicies (GP)
iam:GetRolePolicy (RI)

— Attached Managed Policies:

* AmazonEKSServicePolicy (AWS)

x* S13__AMP_ PolicyE:
ec2:AllocateAddress
ec2:BundlelInstance

« Role: S13__RoleC (Assumable by: S13_ RoleB)

— Inline Policies:
* S13__IP_ RoleC:

controltower:CreateManagedAccount
nimble:CreateStudio
— Attached Managed Policies:

* S13__AMP_ PolicyF:
iam:ListAttachedRolePolicies (RP)
iam:GetGroupPolicy (GI)
Iam:ListGroupPolicies (GI)

« Role: S13__RoleD (Assumable by: S13__RoleC)

— Inline Policies:

* S13__IP_ RoleD:
tax:GetExemptions
s3-object-lambda:GetObjectAcl

— Attached Managed Policies:

* S13__AMP_ PolicyG:
iam:ListRolePolicies (RI)
iam:GetPolicyVersion (P)

Scenario 14:

User: S14_ UserA
¢ Inline Policies:
— S14_IP_ UserA:
* aiops:Createlnvestigation
* iot:CreateThing

¢ Attached Managed Policies:

— S14_ AMP_ PolicyA:
* iot:DeleteThing
* bedrock:DeleteGuardrail

— S14__AMP__PolicyB:
* bedrock:InvokeAgent
* bedrock:UpdateFlow
e Group: S14_ GroupA (Includes S14_ UserA)

— Inline Policies:
* S14__IP_ GroupA:
iam:ListRoles (R)
s3:CreateBucket

78

lambda:CreateFunction
ec2:Runlnstances

— Attached Managed Policies:

* S14__AMP_ PolicyC:
s3:ListBucket
ec2:Describelnstances

Role: S14_RoleA (Assumable by: S14 UserA)

— Inline Policies:
* S14_ TIP__RoleA:
iam:ListGroupsForUser (G)
iam:GetUserPolicy (UI)
— Attached Managed Policies:
* AmazonKinesisFullAccess (AWS)
* S14__ AMP_ PolicyD:
ssm:CancelCommand
codeguru:GetCodeGuruFreeTrialSummary

Role: S14__RoleB (Assumable by: S14_ RoleA)

— Inline Policies:

* S14_TIP_ RoleB:
iam:ListUserPolicies (UI)
iam:GetRolePolicy (RI)

— Attached Managed Policies:

* AmazonEKSServicePolicy (AWS)

* S14__AMP_ PolicyE:
ec2:AllocateAddress
ec2:Bundlelnstance

Role: S14__RoleC (Assumable by: S14_ RoleB)

— Inline Policies:

* S14_IP_ RoleC:
controltower:CreateManagedAccount
nimble:CreateStudio

— Attached Managed Policies:

* AmazonRoute53ReadOnlyAccess (AWS)

* S14_ AMP_ PolicyF:
iam:GetGroupPolicy (GI)
Iam:ListGroupPolicies (GI)

Role: S14__RoleD (Assumable by: S14_ RoleC)

— Inline Policies:

* S14_ TIP_ RoleD:
tax:GetExemptions
s3-object-lambda:GetObjectAcl

— Attached Managed Policies:

* S14__AMP_ PolicyG:

- iam:ListRolePolicies (RI)
iam:GetPolicyVersion (P)
iam:ListEntitiesForPolicy (P)
iam:ListPolicies (P)

Scenario 15:

User: S15__UserA

Inline Policies:

— S15_IP_ UserA:

* iam:ListGroupsForUser (G)
* iam:ListAttachedUserPolicies (UP)

* iam:GetUserPolicy (UI)
Attached Managed Policies:

— S15__ AMP_ PolicyA:

* iot:DeleteThing

* bedrock:DeleteGuardrail
— S15__AMP_ PolicyB:

* bedrock:InvokeAgent

* bedrock:UpdateFlow

Group: S15_ UserA_ GroupA

S15__UserA)

(Includes

— Inline Policies:
* S15_IP_ UserA_ GroupA:
- iam:ListRoles (R)
s3:CreateBucket
lambda:CreateFunction
ec2:RunInstances
— Attached Managed Policies:
* S15__ AMP_ PolicyC:
private-networks:ActivateDeviceIdentifier
auditmanager:UpdateAssessment

Role: S15_ UserA_ RoleA
S15__UserA)

(Assumable by:
— Inline Policies:

* S15_ IP_UserA_RoleA:
ec2:AllocateAddress
controltower:CreateManagedAccount

— Attached Managed Policies:

* S15__AMP_ PolicyT:
ssm:CancelCommand
globalaccelerator:CreateAccelerator

User: S15_ UserB

79

Inline Policies:

— S15_IP_ UserB:
* iam:ListUserPolicies (UI)
* iam:ListAttachedGroupPolicies (GP)
* iam:GetRolePolicy (RI)
Attached Managed Policies:
— S15_AMP_ PolicyD:
* codecatalyst:DeleteConnection

* codeguru:GetCodeGuruFreeTrialSummary

Group:
S15__UserB)

S15_ UserB_ GroupA (Includes
— Inline Policies:
* S15__IP_ UserB:
iam:ListPolicyVersions (P)
— Attached Managed Policies:
* S15__AMP_ PolicyX:
globalaccelerator:DeleteAccelerator

codedeploy:BatchGetApplications

Role: S15__UserB_ RoleA
S15__UserB)

(Assumable by:
— Inline Policies:
* S15_IP_ UserB_ RoleA:
ram:CreatePermission
ec2:BundleInstance
— Attached Managed Policies:

* AmazonEKSServicePolicy (AWS)

* S15__AMP_ PolicyE:
s3:ListBucket
ec2:Describelnstances

User: S15_ UserC
e Inline Policies:
— S15_IP_ UserC:
* sdb:BatchPutAttributes
* nimble:CreateStudio

e« Attached Managed Policies:

— S15__AMP_ PolicyF:

* iam:ListAttachedRolePolicies (RP)
* iam:GetGroupPolicy (GI)
* Tam:ListGroupPolicies (GI)

¢ Group: S15_ UserC__GroupA (Includes
S15__UserC)
— Inline Policies:

* S15_IP_ UserC__GroupA:
tax:GetExemptions
s3-object-lambda:GetObjectAcl

— Attached Managed Policies:

* S15__AMP_ PolicyG:
iam:ListRolePolicies (RI)
iam:GetPolicyVersion (P)

« Role: S15__UserC__RoleA (Assumable
S15__UserC)

— Inline Policies:

* S15__IP_ UserC__RoleA:
ram:CreateResourceShare
scn:DescribelInstance

User: S15_ UserD
e Inline Policies:

— S15__IP_ UserD:

* codecatalyst:CreateldentityCenterApplication

* codedeploy:UpdateApplication
e« Attached Managed Policies:
— S15__AMP_ PolicyY:

* ram:GetPermission
* scn:CreateDatalakeDataset

¢ Group:
S15_ UserD)

S15__UserD_ GroupA

— Inline Policies:

* S15_IP_ UserD_ GroupA:
iotanalytics:CreatePipeline
ajops:CreatelnvestigationResource

— Attached Managed Policies:

* S15__ AMP_ PolicyU:
iotanalytics:DescribeChannel
codedeploy:CreateDeployment

« Role: S15_ UserD__RoleA
S15__UserD)

(Assumable

— Inline Policies:

* S15_IP_ UserD_ RoleA:
ram:PromotePermissionCreatedFromPolicy

(Includes

scn:CreateBillOfMaterialsImportJob
— Attached Managed Policies:

* AmazonRoute53ReadOnlyAccess (AWS)

* S15__AMP__PolicyZ:
iotanalytics:DeleteDataset
qapps:CreateLibraryItemReview

Scenario 16:

User: S16__UserA
e Inline Policies:
— S16__IP_ UserA:

* iam:ListGroupsForUser (G)
¢ Attached Managed Policies:

— S16__AMP_ PolicyA:

* iot:DeleteThing

* bedrock:DeleteGuardrail
— S16__AMP_ PolicyB:

* bedrock:InvokeAgent

* bedrock:UpdateFlow

¢ Group: S16__UserA__GroupA

S16__UserA)
— Inline Policies:
* S16__IP_ UserA_ GroupA:
- iam:ListRoles (R)
s3:CreateBucket
lambda:CreateFunction
ec2:RunInstances
— Attached Managed Policies:
* S16__AMP_ PolicyC:

(Includes

private-networks:ActivateDeviceldentifier

auditmanager:UpdateAssessment

¢ Role: S16__UserA_ RoleA
S16__UserA)

(Assumable

— Inline Policies:

* S16__IP_ UserA_ RoleA:
iam:ListAttachedUserPolicies (UP)
ec2:AllocateAddress
controltower:CreateManagedAccount

— Attached Managed Policies:

* S16__AMP_ PolicyT:
ssm:CancelCommand
globalaccelerator:CreateAccelerator

« Role: S16__UserA_ RoleB
S16__UserA_ RoleA)

(Assumable

— Inline Policies:

* S16__IP_ UserA_ RoleB:
iam:GetUserPolicy (UI)
iotanalytics:UpdateDatastore
iotanalytics:UpdatePipeline

— Attached Managed Policies:
* AmazonEKSServicePolicy (AWS)
User: S16__UserB
¢ Inline Policies:
— S16__IP_ UserB:

* iam:ListUserPolicies (UI)

80

by:

by:

¢ Attached Managed Policies:
— S16__AMP_ PolicyD:

* codecatalyst:DeleteConnection
* codeguru:GetCodeGuruFreeTrialSummary

¢ Group:
S16__UserB)

S16_ UserB_ GroupA (Includes
— Inline Policies:

* S16__IP_ UserB:

iam:ListPolicyVersions (P)

— Attached Managed Policies:

* S16__AMP_ PolicyX:
globalaccelerator:DeleteAccelerator
codedeploy:BatchGetApplications

« Role: S16__UserB__RoleA (Assumable by:
S16__UserB)
— Inline Policies:

* S16__IP_ UserB_ RoleA:
ram:CreatePermission
cloudfront:AssociateAlias
iam:ListAttachedGroupPolicies (GP)

— Attached Managed Policies:

* S16__ AMP__PolicyE:
s3:ListBucket
ec2:Describelnstances

« Role: S16__UserB__RoleB (Assumable by:
S16__UserB__RoleA)
— Inline Policies:

* S16__IP_ UserB_ RoleB:
connect:ActivateEvaluationForm
connect:AssociateBot

— Attached Managed Policies:

x AmazonEKSServicePolicy (AWS)

« Role: S16__UserB__ RoleC (Assumable by:

S16__UserB__RoleB)

— Inline Policies:

* S16__IP_ UserB_ RoleC:
iam:GetRolePolicy (RI)

— Attached Managed Policies:
* AmazonRoute53ReadOnlyAccess (AWS)
User: S16__UserC
e Inline Policies:
— S16__IP_ UserC:
* sdb:BatchPutAttributes
* nimble:CreateStudio

¢ Attached Managed Policies:

— S16__AMP_ PolicyF:

% iam:ListAttachedRolePolicies (RP)
* iam:GetGroupPolicy (GI)
* Iam:ListGroupPolicies (GI)

¢ Group:
S16__UserC)

S16_ UserC_ GroupA (Includes

— Inline Policies:
* S16__IP_ UserC_ GroupA:

81

cloudfront:CreateKeyGroup
cloudfront:CreateKeyValueStore

— Attached Managed Policies:
* S16__AMP_ PolicyG:
cloudfront:CreatePublicKey
cloudfront:CopyDistribution

« Role: S16__UserC__RoleA
S16__UserC)

(Assumable by:

— Inline Policies:

* S16__IP_ UserC__RoleA:
iam:ListRolePolicies (RI)

— Attached Managed Policies:
* S16__ AMP_ PolicyO:

ram:CreateResourceShare

« Role: S16__UserC__RoleB
S16__UserC__RoleA)

(Assumable by:

— Inline Policies:

* S16__IP_ UserC__RoleB:
cloudfront:DisassociateDistributionWebACL

— Attached Managed Policies:
* AmazonRoute53ReadOnlyAccess (AWS)

« Role: S16__UserC_ RoleC
S16__UserC__RoleB)

(Assumable by:

— Inline Policies:

* S16__IP_ UserC__RoleC:
s3-object-lambda:GetObjectAcl
iam:GetPolicyVersion (P)

— Attached Managed Policies:

* S16__AMP_ PolicyJ:
tax:GetExemptions
ec2:Bundlelnstance

User: S16__UserD
¢ Inline Policies:

— S16__IP_ UserD:

* sns:CreatePlatformEndpoint
* sns:CreatePlatformApplication

¢ Attached Managed Policies:
— S16_AMP__PolicyY:

* sns:SetTopicAttributes
* sns:CreateTopic

¢ Group:
S16__UserD)

S16_ UserD__GroupA (Includes

— Inline Policies:

* S16__IP_ UserD_ GroupA:

elasticbeanstalk:AssociateEnvironmentOperationsRole

elasticbeanstalk:DescribeApplications
— Attached Managed Policies:
* S16__ AMP_ PolicyU:

elasticbeanstalk:RemoveTags
elasticbeanstalk:TerminateEnvironment

¢ Role: S16__UserD__RoleA
S16__UserD)

(Assumable by:

— Inline Policies:

* S16__IP_ UserD_ RoleA:
sns:Publish
sns:DeleteTopic

— Attached Managed Policies:

* AmazonRoute53ReadOnlyAccess (AWS)

* S16__AMP_ PolicyZ:
elasticbeanstalk:DeletePlatformVersion
elasticbeanstalk:DescribeEvents

Scenario 17:

User: S17__UserA
¢ Inline Policies:
— S17_IP_ UserA:
* cloudfront:CreatePublicKey
* cloudfront:CopyDistribution

¢ Attached Managed Policies:

— S17_AMP_ PolicyA:

* iot:DeleteThing

* bedrock:DeleteGuardrail
— S17_AMP_ PolicyB:

* bedrock:InvokeAgent

* bedrock:UpdateFlow

¢ Group:
S17__UserA)
— Inline Policies:

* S17_IP_ UserA_ GroupA:
s3:CreateBucket
lambda:CreateFunction
ec2:RunInstances

— Attached Managed Policies:

* S17__AMP_ PolicyC:

private-networks:ActivateDeviceldentifier

auditmanager:UpdateAssessment

« Role: S17__UserA__RoleA (Assumable
S17__UserA)
— Inline Policies:

* S17_ IP__UserA__RoleA:
ec2:AllocateAddress
controltower:CreateManagedAccount

— Attached Managed Policies:
* S17__AMP_ PolicyT:
ssm:CancelCommand
globalaccelerator:CreateAccelerator

User: S17__UserB
¢ Inline Policies:

— S17_IP_ UserB:

* elasticbeanstalk:DeletePlatformVersion
* elasticbeanstalk:DescribeEvents

¢ Attached Managed Policies:
— S17_AMP__PolicyD:

* codecatalyst:DeleteConnection
* codeguru:GetCodeGuruFreeTrialSummary

¢ Group:
S17__UserB)

S17__UserB_ GroupA

S17__UserA_ GroupA (Includes

(Includes

— Inline Policies:
* S17__IP_ UserB:
sns:Publish
sns:DeleteTopic
— Attached Managed Policies:
* S17_AMP_ PolicyX:
globalaccelerator:DeleteAccelerator
codedeploy:BatchGetApplications

Role: S17__UserB__RoleA (Assumable by:
S17__UserB)

— Inline Policies:

* S17_IP_ UserB_ RoleA:
ram:CreatePermission
ec2:BundleInstance

— Attached Managed Policies:

* AmazonEKSServicePolicy (AWS)

* S17_AMP_ _PolicyE:
s3:ListBucket
ec2:Describelnstances

User: S17__UserC

Inline Policies:

— S17_IP_ UserC:

* sdb:BatchPutAttributes
* nimble:CreateStudio

Attached Managed Policies:
— S17_AMP__PolicyF:
* ce:CreateAnomalyMonitor

Group: S17__UserC__GroupA
S17__UserC)

(Includes

— Inline Policies:

x+ S17_IP_ UserC_ GroupA:
tax:GetExemptions
s3-object-lambda:GetObjectAcl

— Attached Managed Policies:
* S17_AMP_ PolicyG:
iam:GetAccountAuthorizationDetails (All)
Role: S17__UserC__RoleA (Assumable by:
S17__UserC)
— Inline Policies:

* S17_IP_ UserC__RoleA:
ram:CreateResourceShare
scn:Describelnstance

User: S17__UserD

Inline Policies:

— S17_IP_ UserD:

* codecatalyst:CreateldentityCenterApplication
* codedeploy:UpdateApplication

Attached Managed Policies:
— S17_AMP_ PolicyY:

* ram:GetPermission
* scn:CreateDatalakeDataset

Group: S17__UserD_ GroupA (Includes
S17__UserD)

— Inline Policies:

* S17_IP_ UserD_ GroupA:
iotanalytics:CreatePipeline
aiops:CreatelnvestigationResource

— Attached Managed Policies:

* S17_AMP_ PolicyU:
iotanalytics:DescribeChannel
codedeploy:CreateDeployment

« Role: S17_ UserD_RoleA
S17__UserD)

(Assumable by:
— Inline Policies:

* S17__IP_ UserD__RoleA:
ram:PromotePermissionCreatedFromPolicy
scn:CreateBill0OfMaterialsImportJob

— Attached Managed Policies:

* AmazonRoute53ReadOnlyAccess (AWS)

* S17_AMP__PolicyZ:
iotanalytics:DeleteDataset
qapps:CreateLibraryltemReview

Scenario 18:

User: S18_ UserA
e Inline Policies:
— S18_ IP_UserA:
* applicationinsights:CreateApplication
* applicationinsights:CreateComponent
e« Attached Managed Policies:
— S18__AMP_ PolicyA:

* iot:DeleteThing

* bedrock:DeleteGuardrail
— S18_AMP_ PolicyB:

* bedrock:InvokeAgent

* bedrock:UpdateFlow

e Group:
S18__UserA)

S18_ UserA_ GroupA (Includes

— Inline Policies:
*+ S18_IP_ UserA_ GroupA:
s3:CreateBucket
lambda:CreateFunction
ec2:RunInstances
— Attached Managed Policies:
* S18__AMP_ PolicyC:
private-networks:ActivateDeviceldentifier
auditmanager:UpdateAssessment

« Role: S18__UserA__RoleA (Assumable by:
S18__UserA)
— Inline Policies:

+ S18_IP_ UserA_ RoleA:
ec2:AllocateAddress
controltower:CreateManagedAccount

— Attached Managed Policies:

* S18_ AMP_ PolicyT:
ssm:CancelCommand
globalaccelerator:CreateAccelerator

« Role: S18__UserA_RoleB (Assumable by:

S18__UserA__RoleA)

— Inline Policies:

* S18 IP_ UserA_ RoleB:
iotanalytics:UpdateDatastore
iotanalytics:UpdatePipeline

— Attached Managed Policies:
* AmazonEKSServicePolicy (AWS)

User: S18_ UserB
e Inline Policies:

— S18_IP_ UserB:
* iam:ListRoles (R)
¢ Attached Managed Policies:
— S18__AMP_ PolicyD:

* codecatalyst:DeleteConnection
* codeguru:GetCodeGuruFreeTrialSummary

¢ Group:
S18__UserB)

S18_ UserB_ GroupA (Includes
— Inline Policies:

* S18 IP_ UserB:
applicationinsights:UpdateApplication

— Attached Managed Policies:

* S18__AMP_ PolicyX:
globalaccelerator:DeleteAccelerator
codedeploy:BatchGetApplications

« Role: S18_ UserB_ RoleA
S18__UserB)

(Assumable by:

— Inline Policies:

* S18 IP_UserB__RoleA:
ram:CreatePermission
cloudfront:AssociateAlias

— Attached Managed Policies:

* S18__AMP_ PolicyE:
s3:ListBucket
ec2:Describelnstances

+ Role: S18_UserB_ RoleB
S18__UserB__RoleA)

(Assumable by:

— Inline Policies:

* S18 IP_ UserB_ RoleB:
connect:ActivateEvaluationForm
connect:AssociateBot

— Attached Managed Policies:
* AmazonEKSServicePolicy (AWS)

¢ Role: S18__UserB_ RoleC
S18__UserB__RoleB)

(Assumable by:

— Inline Policies:

* S18 IP_UserB__RoleC:
elasticloadbalancing:CreatelLoadBalancer

— Attached Managed Policies:
x AmazonRoute53ReadOnlyAccess (AWS)
User: S18_ UserC
¢ Inline Policies:
— S18_IP_ UserC:
* sdb:BatchPutAttributes

* nimble:CreateStudio

e Attached Managed Policies:

83

— S18_AMP__PolicyF:

* lookoutequipment:DeleteModel

¢ Group: S18 UserC__GroupA

S18__UserC)

(Includes

— Inline Policies:
* S18_IP_ UserC__GroupA:

cloudfront:CreateKeyGroup
cloudfront:CreateKeyValueStore
— Attached Managed Policies:
* S18__AMP_ PolicyG:
cloudfront:CreatePublicKey
cloudfront:CopyDistribution

+ Role: S18_ UserC_ RoleA
S18__UserC)

(Assumable by:

— Inline Policies:
* S18 IP_UserC__RoleA:
lookoutequipment :CreateModel
— Attached Managed Policies:
* S18__AMP_ PolicyO:

ram:CreateResourceShare

¢« Role: S18_ UserC_ RoleB
S18__UserC__RoleA)

(Assumable by:

— Inline Policies:

* S18 IP_ UserC__RoleB:
cloudfront:DisassociateDistributionWebACL

— Attached Managed Policies:
* AmazonRoute53ReadOnlyAccess (AWS)

« Role: S18__UserC__RoleC
S18__UserC__RoleB)

(Assumable by:
— Inline Policies:

* S18 IP_ UserC__RoleC:
s3-object-lambda:GetObjectAcl

— Attached Managed Policies:

* S18__AMP_ PolicyJ:
tax:GetExemptions
ec2:BundleInstance

User: S18_ UserD
e Inline Policies:

— S18_IP_ UserD:

* sns:CreatePlatformEndpoint
* sns:CreatePlatformApplication

¢ Attached Managed Policies:
— S18_AMP__PolicyY:

* sns:SetTopicAttributes
* sns:CreateTopic

¢ Group: S18_ UserD_ GroupA

S18__UserD)

(Includes

— Inline Policies:
* S18_IP_ UserD_ GroupA:

elasticbeanstalk:AssociateEnvironmentOperatiensBaleup:

elasticbeanstalk:DescribeApplications
— Attached Managed Policies:
* S18__AMP_ PolicyU:

elasticbeanstalk:RemoveTags
elasticbeanstalk:TerminateEnvironment

« Role: S18_ UserD__RoleA
S18__UserD)

(Assumable by:

— Inline Policies:
* S18_ IP_ UserD_ RoleA:
sns:Publish
sns:DeleteTopic
— Attached Managed Policies:
* AmazonRoute53ReadOnlyAccess (AWS)
* S18 AMP_ PolicyZ:
elasticbeanstalk:DeletePlatformVersion
elasticbeanstalk:DescribeEvents

« Role: S18__UserD_ RoleB
S18__UserD_ RoleA)

(Assumable by:

— Inline Policies:
* S18 IP_ UserD_ RoleB:
lookoutequipment :DescribeDataset
logs:CreateDelivery

— Attached Managed Policies:
* AmazonRoute53ReadOnlyAccess (AWS)

¢« Role: S18_ UserD_ RoleC
S18__UserD_ RoleB)

(Assumable by:

— Inline Policies:
* S18_ IP_ UserD_ RoleC:
lookoutequipment:ListInferenceEvents

— Attached Managed Policies:
x AmazonEKSServicePolicy (AWS)

« Role: S18__UserD_ RoleD
S18__UserD_ RoleC)

(Assumable by:

— Inline Policies:

* S18 IP_ UserD_ RoleD:
drs:CreateSourceNetwork
iam:GetAccountAuthorizationDetails (All)

— Attached Managed Policies:
* AmazonRoute53ReadOnlyAccess (AWS)

Scenario 19:

User: S19_ UserA
e Inline Policies:
— S19_IP_ UserA:

% iam:ListGroupsForUser (G)
* iam:ListAttachedUserPolicies (UP)
* iam:GetUserPolicy (UI)

¢ Attached Managed Policies:
— S19__AMP_ PolicyA:

* iot:DeleteThing

* bedrock:DeleteGuardrail
— S19__AMP_ PolicyB:

* bedrock:InvokeAgent

* bedrock:UpdateFlow

S19_ UserA_ GroupA (Includes

S19_ UserA)

— Inline Policies:
* S19_IP_ UserA_ GroupA:

84

iam:ListRoles (R)
s3:CreateBucket
lambda:CreateFunction
ec2:RunInstances

— Attached Managed Policies:

— S19__AMP_ PolicyF:

% iam:ListAttachedRolePolicies (RP)
* iam:GetGroupPolicy (GI)
* Iam:ListGroupPolicies (GI)

+ S19_ AMP_ PolicyC: ¢« Group: S19_ UserC_ GroupA (Includes
. . . o S19_ UserC)
private-networks:ActivateDeviceIdentifier
auditmanager:UpdateAssessment — Inline Policies:
« Role: S19_UserA_ RoleA (Assumable by: x S19_IP_ UserC_ GroupA:
S19_ UserA) tax:GetExemptions
— Inline Policies: s3-object-lambda:GetObjectAcl

* S19_IP_ UserA_ RoleA: — Attached Managed Policies:
ec2:AllocateAddress x S19__ AMP_ PolicyG:
controltower:CreateManagedAccount iam:ListRolePolicies (RI)

— Attached Managed Policies: iam:GetPolicyVersion (P)
S19__ AMP_ PolicyT:

*) —rouey « Role: S19__UserC__RoleA (Assumable by:
ssm:CancelCommand S19_ UserC)
globalaccelerator:CreateAccelerator -

User: S19_UserB — Inline Policies:
¢ Inline Policies: * S19_IP_ UserC__RoleA:
— S19_IP_UserB: ram:CreateResourceShare
scn:Describelnstance

* iam:ListUserPolicies (UI)

* iam:ListAttachedGroupPolicies (GP) User: S19_ UserD

* iam:GetRolePolicy (RI) e Inline Policies:

¢ Attached Managed Policies: _ 819 IP UserD:
— 519_AMP_ PolicyD: * codecatalyst:CreateldentityCenterApplication

* codecatalyst:DeleteConnection * codedeploy:UpdateApplication

* codeguru:GetCodeGuruFreeTrialSummary

Attached Managed Policies:
¢ Group: S19_ UserB_ GroupA (Includes
S19__UserB) — S19_AMP_ PolicyY:
— Inline Policies: * ram:GetPermission

*+ S19_IP_ UserB: * scn:CreateDatalakeDataset

drs:CreateConvertedSnapshotForDrs
¢ Group: S19_ UserD_ GroupA (Includes
— Attached Managed Policies: S19_ UserD)

* S19__AMP_ PolicyX:
globalaccelerator:DeleteAccelerator — Inline Policies:
codedeploy:BatchGetApplications x S19_IP_ UserD_ GroupA:

« Role: S19__UserB__RoleA (Assumable by: iotanalytics:CreatePipeline
S19_ UserB) aiops:CreatelnvestigationResource

— Inline Policies:

* S19_IP_ UserB_ RoleA:
ram:CreatePermission
ec2:Bundlelnstance

— Attached Managed Policies:

* AmazonEKSServicePolicy (AWS)

* S19__AMP_ PolicyE:
s3:ListBucket
ec2:Describelnstances

User: S19__UserC
Inline Policies:

— S19_IP_ UserC:

* sdb:BatchPutAttributes
* nimble:CreateStudio

Attached Managed Policies:

— Attached Managed Policies:

* S19__AMP_ PolicyU:
iotanalytics:DescribeChannel
codedeploy:CreateDeployment

Role: S19_ UserD__RoleA
S19_ UserD)

(Assumable by:

— Inline Policies:

* S19_ IP_ UserD_ RoleA:
ram:PromotePermissionCreatedFromPolicy
scn:CreateBill0OfMaterialsImportJob

— Attached Managed Policies:

* AmazonRoute53ReadOnlyAccess (AWS)

* S19__AMP_ PolicyZ:
iotanalytics:DeleteDataset
qapps:CreateLibraryIltemReview

85

Scenario 20:

User: S20__UserA
¢ Inline Policies:
— S20_IP_UserA:

% iam:ListGroupsForUser (G)
¢ Attached Managed Policies:

— S20_AMP__PolicyA:
* iot:DeleteThing
* bedrock:DeleteGuardrail
— S20_AMP_ PolicyB:
* bedrock:InvokeAgent
* bedrock:UpdateFlow
¢ Group: S20_ UserA_ _GroupA (Includes
S20__UserA)
— Inline Policies:

* S20__IP_ UserA__GroupA:
iam:ListRoles (R)
s3:CreateBucket
lambda:CreateFunction
ec2:Runlnstances

— Attached Managed Policies:

* S20__AMP_ PolicyC:
private-networks:ActivateDeviceldentifier
auditmanager:UpdateAssessment

« Role: S20__UserA_ RoleA (Assumable by:
S20__UserA)
— Inline Policies:

* S20__IP_ UserA_ RoleA:
iam:ListAttachedUserPolicies (UP)
ec2:AllocateAddress
controltower:CreateManagedAccount

— Attached Managed Policies:

* S20_AMP_ PolicyT:
ssm:CancelCommand
globalaccelerator:CreateAccelerator

« Role: S20__UserA__RoleB (Assumable by:
S20__UserA_ RoleA)
— Inline Policies:

* S20_IP__UserA__RoleB:
iam:GetUserPolicy (UI)
iotanalytics:UpdateDatastore
iotanalytics:UpdatePipeline

— Attached Managed Policies:
x AmazonEKSServicePolicy (AWS)

User: S20__UserB
e Inline Policies:

— S20__IP_ UserB:
* iam:ListUserPolicies (UI)
¢ Attached Managed Policies:
— S20_AMP_ PolicyD:

* codecatalyst:DeleteConnection
* codeguru:GetCodeGuruFreeTrialSummary

¢ Group: S20_ UserB_ GroupA (Includes
S20__UserB)

— Inline Policies:

* S20_IP_ UserB:
drs:DeleteJob
— Attached Managed Policies:
* S20__AMP_ PolicyX:
globalaccelerator:DeleteAccelerator

codedeploy:BatchGetApplications

+ Role: S20__UserB__RoleA (Assumable
S20__UserB)
— Inline Policies:
* S20__IP_ UserB_ RoleA:

ram:CreatePermission
cloudfront:AssociateAlias
iam:ListAttachedGroupPolicies (GP)

— Attached Managed Policies:

* S20__AMP_ PolicyE:
s3:ListBucket
ec2:Describelnstances

« Role: S20__UserB__RoleB (Assumable
S20__UserB__RoleA)
— Inline Policies:

* S20__IP_ UserB_ RoleB:
connect:ActivateEvaluationForm
connect:AssociateBot

— Attached Managed Policies:
x AmazonEKSServicePolicy (AWS)
+« Role: S20__UserB__ RoleC (Assumable
S20__UserB__RoleB)
— Inline Policies:

* S20_IP_UserB_ RoleC:
iam:GetRolePolicy (RI)

— Attached Managed Policies:
* AmazonRoute53ReadOnlyAccess (AWS)
User: S20__UserC
¢ Inline Policies:
— S20__IP_ UserC:
* sdb:BatchPutAttributes
* nimble:CreateStudio

¢ Attached Managed Policies:

— S20__AMP_ PolicyF:
* iam:ListAttachedRolePolicies (RP)
* iam:GetGroupPolicy (GI)
* Tam:ListGroupPolicies (GI)

by:

by:

by:

¢ Group: S20__UserC__GroupA (Includes

S20__UserC)

— Inline Policies:

* S20__IP_ UserC__GroupA:
cloudfront:CreateKeyGroup
cloudfront:CreateKeyValueStore

— Attached Managed Policies:

* S20__AMP_ PolicyG:
cloudfront:CreatePublicKey
cloudfront:CopyDistribution

« Role: S20__UserC__RoleA (Assumable
S20_ UserC)

86

by:

— Inline Policies: Scenario 21:

* S20__IP_ UserC__RoleA:
iam:ListRolePolicies (RI) User: S21_ UserA

— Attached Managed Policies: + Inline Policies:

* S20__AMP__PolicyO:

— S21_IP_ UserA:
ram:CreateResourceShare

* aiops:Createlnvestigation

¢ Role: S20__UserC__RoleB (Assumable by: % iot:CreateThing

S20__UserC__RoleA)
— Inline Policies: o Attached Managed Policies:

* S20__IP_ UserC__RoleB:
cloudfront:DisassociateDistributionWebACL

— Attached Managed Policies: * iot:DeleteThing
bed k:DeleteG drail
* AmazonRoute53ReadOnlyAccess (AWS) ¥ bedrock:Deletetuardral

— S21__AMP__PolicyA:

— S21__ AMP_ PolicyB:
« Role: S20__UserC__RoleC (Assumable by:

S20__UserC__RoleB) * bedrock:InvokeAgent
* bedrock:UpdateFlow

— Inline Policies: * iam:SimulatePrincipalPolicy (SPP)

* S20_IP_UserC__RoleC:

s3-object-lambda:GetObjectAcl o Group: S21_ GroupA (Includes S21_ UserA)
iam:GetPolicyVersion (P)
— Attached Managed Policies: — Inline Policies:
* S20__AMP_ PolicyJ: * S21_IP_ GroupA:
tax:GetExemptions - iam:ListRoles (R)
ec2:Bundlelnstance - s3:CreateBucket

lambda:CreateFunction

User: S20__UserD
e Inline Policies:

ec2:RunInstances
— Attached Managed Policies:

* AmazonRoute53ReadOnlyAccess (AWS)
* S21__ AMP_ PolicyC:
- s3:CreateBucket
e« Attached Managed Policies: - lambda:CreateFunction
. ec2:RunInstances
— 520_AMP_ PolicyY: s3:ListBucket

* sns:SetTopicAttributes - ec2:Describelnstances
* sns:CreateTopic

— S20__IP_ UserD:

* sns:CreatePlatformEndpoint
* sns:CreatePlatformApplication

. Group: $20_UserD_ GroupA (Includes « Role: S21__RoleA (Assumable by: S21_ UserA)

S20__UserD
—) — Inline Policies:

— Inline Policies: « S21_IP_ RoleA:

* S20__IP_ UserD_ GroupA: . s3:ListBucket
elasticbeanstalk:AssociateEnvironmentOperationsRole . oco:Describelnstances
elasticbeanstalk:DescribeApplications

— Attached Managed Policies:

* S20_AMP_ PolicyU:
elasticbeanstalk:RemoveTags
elasticbeanstalk:TerminateEnvironment

— Attached Managed Policies:

* S21__AMP_ PolicyD:
ssm:CancelCommand
codeguru:GetCodeGuruFreeTrialSummary

« Role: S20__UserD__RoleA (Assumable by: =« Role: S21__RoleB (Assumable by: S21__RoleA)
S20__UserD)

_ Inline Policies: — Inline Policies:

% S20_TIP_ UserD_ RoleA: * S21_IP_RoleB:

sns:Publish s3:CreateBucket

sns:DeleteTopic lambda:CreateFunction

— Attached Managed Policies: — Attached Managed Policies:
* AmazonRoute53ReadOnlyAccess (AWS) * AmazonEKSServicePolicy (AWS)
* S20__AMP_ PolicyZ: * S21__AMP_ PolicyE:
elasticbeanstalk:DeletePlatformVersion - ec2:AllocateAddress
elasticbeanstalk:DescribeEvents + ec2:Bundlelnstance

87

Scenario 22: * ec2:DescribeAddresses
* ec2:DescribeBundleTasks

User: S22_ UserA * ec2:Describelnstances

¢ Inline Policies:
— S22 IP_ UserA:

* rds:DescribeDBSnapshots
* rds:DescribeDBSecurityGroups * 522_IP__GroupA:
lambda:ListLayers
lambda:ListFunctions

— S22 AMP_ PolicyA: — Attached Managed Policies:

* rds:DescribeDBInstances x S22 AMP_ PolicyC:
* rds:DescribeDBClusters s3:ListBucket

— S22__AMP__PolicyB: - cloudformation:ListStacks

e Group: S22_ GroupA (Includes S22_ UserA)

— Inline Policies:

¢ Attached Managed Policies:

88

	List of Tables
	List of Figures
	Abstract
	Introduction
	Background
	Real-World Cloud Security Incidents
	The Complexity of Modern IAM Environments
	Detection and Remediation Gaps
	Why IAM Enumeration Matters
	Academic and Industrial Perspectives

	Problem Statement
	IAM Misconfigurations
	The Visibility Gap
	Complexity in Practice

	Background Knowledge
	What is AWS Identity and Access Management?
	History and Evolution of AWS IAM
	Core Concepts and Terminology

	Core IAM Entities
	IAM Users
	IAM Groups
	IAM Roles
	IAM Policies

	AWS IAM Organizational Structure and Scoping
	AWS Accounts and Organizational Units (OUs)
	AWS Organizations and Cross-Account Access
	Delegated Administration and Trust Relationships

	IAM Policy Language and Evaluation
	Policy Document Structure (JSON)
	Policy Elements (Effect, Action, Resource, Condition, Principal)
	Policy Evaluation Logic (Explicit Deny, Allow, Implicit Deny)
	Condition Keys and Advanced Policy Constructs

	Authentication and Authorization in AWS
	Authentication Mechanisms (Console, CLI, SDK, API)
	Temporary Security Credentials (STS, AssumeRole, Federation)
	Multi-Factor Authentication (MFA)

	Related Works - Prior-Art Models and Frameworks
	Introduction
	Tools/Frameworks Analysis
	Conclusion

	SkyEye Framework and Proposed Models
	Cross-Principal IAM Enumeration Model (CPIEM)
	What is Single-Principal IAM Enumeration Model (SiPIEM)?
	What is Separate-Principal IAM Enumeration Model (SePIEM)?
	What is the limitation of the single-principal or separate-principal IAM enumeration model?
	How SkyEye Framework and CPIEM mitigate these limitations?

	Transitive Cross-Role Enumeration Model (TCREM)
	IAM Deep Enumeration Capabilities
	Retrieval of In-Scope IAM Groups and In-Scope IAM Roles for User Principals
	Retrieval of Inline Policies for User Principals
	Retrieval of Attached Managed Policies for User Principals
	Retrieval of Inline Policies for In-Scope IAM Groups
	Retrieval of Attached Managed Policies for In-Scope IAM Groups
	Retrieval of Inline Policies for In-Scope IAM Roles
	Retrieval of Attached Managed Policies for In-Scope IAM Roles
	Alternative Retrieval by iam:GetAccountAuthorizationDetails
	Inverse Enumeration Model for Attached Managed Policy
	Deep Comparison Model for Policy Documents of Active Version and Historical Versions

	The Integration of MITRE ATT&CK Cloud

	Evaluation
	Proposed Scenarios
	Scenario-based Benchmarking between SkyEye and other frameworks
	Weighting Methodology for Proposed Scenarios
	Calculation Methodology
	Benchmarking Table

	Future Works
	Conclusion
	Bibliography
	Appendix

