
Vulnerability Mitigation System (VMS): LLM Agent and Evaluation
Framework for Autonomous Penetration Testing

Farzana Abdulzada

Abstract
As the frequency of cyber threats increases, conventional penetration testing is failing to capture the
entirety of todays complex environments. To solve this problem, we propose the Vulnerability
Mitigation System (VMS), a novel agent based on a Large Language Model (LLM) capable of
performing penetration testing without human intervention. The VMS has a two-part architecture for
planning and a Summarizer, which enable it to generate commands and process feedback. To
standardize testing, we designed two new Capture the Flag (CTF) benchmarks based on the PicoCTF
and OverTheWire platforms with 200 challenges. These benchmarks allow us to evaluate how
effectively the system functions. We performed a number of experiments using various LLMs while
tuning the temperature and top-p parameters and found that GPT-4o performed best, sometimes even
better than expected. The results indicate that LLMs can be effectively applied to many cybersecurity
tasks; however, there are risks. To ensure safe operation, we used a containerized environment. Both
the VMS and the benchmarks are publicly available, advancing the creation of secure, autonomous
cybersecurity tools.

KEYWORDS
Autonomous Penetration Testing Agents, Benchmarks, Capture The Flag Challenges,
Cybersecurity Automation, Large Language Models

INTRODUCTION
Penetration testing, a process of identifying and rectifying vulnerabilities by virtual attacks is a
traditional practice that has been performed by human experts. However, as the systems are
becoming more complex and the number of possible vulnerabilities to detect is increasing, this
conventional approach has become too slow and resource-consuming. Although there are tools like
Nessus, Snyk, and OpenVas that can detect vulnerabilities, they lack the flexibility required to
address more complex scenarios.

In this paper, we present VMS - an autonomous agent powered by a Large Language Model (LLM)
that can perform penetration testing without the need for human intervention. We also suggest new
benchmarks for such agents. The purpose of this paper is to describe how LLMs can benefit
cybersecurity tasks and how this area can be improved. This research addresses the problems of
scalability and adaptability and highlights the importance of developing smart, safe, and effective
tools to combat ever-emerging cyber threats and advance the creation of autonomous cybersecurity
solutions.

METHODS
This section describes the approach used to design and evaluate Vulnerability Mitigation System
(VMS), an autonomous penetration testing agent trained by Large Language Models (LLMs) as well
as the development of two standard CTF benchmarks. The study involves agent design, benchmark
definition, and experimental analysis of LLM-based cybersecurity skills. The methodology consists of
three main phases: the development of Vulnerability Mitigation System (VMS)'s architecture, the
creation of the CTF benchmarks, and the performance testing and parameter optimization.
Agent Architecture Design
The Vulnerability Mitigation System (VMS) was developed with a dual-module architecture of a
Planner and a Summarizer, both using Large Language Models for autonomous operation. The
Planner generates executable commands from contextual data, using a system prompt that treats the
LLM as an expert penetration tester, which solve CTF challenges. The Summarizer processes
command outputs and maintains a history of actions to help guide subsequent decisions.
Vulnerability Mitigation System (VMS) operates within a Kali Linux container, which is isolated by
firewall rules to avoid any unintended network interactions. The workflow is an iterative cycle of the

Planner generating commands, executing them in the container and passing the output to the
Summarizer, updating the action history, until a flag is captured or a step limit is reached. This phase
was about creating a self-contained, independent problem solving system.

Benchmark Construction
Two sets of benchmarks for CTF were created using challenges from PicoCTF and OverTheWire,
with a total of 200 tasks spread across six cybersecurity domains: General Skills, Cryptography, Web
Exploitation, Forensics, Reverse Engineering and Binary Exploitation. From PicoCTF, 120 challenges
were chosen, with descriptions, hints, and downloadable files, and the levels were classified as easy,
medium, or hard. Solver scripts were written to pull flags dynamically. The benchmark included 80
challenges from four wargames — Bandit, Natas, Leviathan and Krypton — from OverTheWire,
which helped to secure skills in Linux navigation, web security and cryptography. Both benchmarks
were standardized to include metadata such as categories and difficulty levels, and solver functions
were used to develop a reusable framework for assessing LLM-based agents.

Experimental Evaluation
The evaluation phase tested Vulnerability Mitigation System (VMS)’s performance across the
benchmarks by optimizing three variables: observation window size (to limit the length of command
output), temperature (to control response variability) and top-p (to control token selection diversity).
Smaller LLMs such as Llama-3.1-8B and Phi-3-mini were also tested with window sizes of 250
(PicoCTF) and 500 (OverTheWire) characters to achieve a balance between context retention and
clarity. Coherence was controlled by setting temperature to 1.0 and moderate creativity was ensured
by fixing top-p to 0.9. GPT-4o, GPT-4o-mini, Llama-3.1-8B, Llama-3.1-70B, Qwen2-72B,
Mixtral-8x7B, Phi-3-mini-4k and Phi-3.5-MoE were tested in the eight LLMs for 20 iterative steps per
challenge. Metrics such as challenges solved, time per challenge and command usage patterns were
collected and safety was assessed by monitoring for unintended behaviors using a containerized
environment. The results were analyzed to compare model efficacy against domains and difficulty
levels to gain insights into the suitability of LLMs for autonomous penetration testing.

RESULTS AND DISCUSSION
Vulnerability Mitigation System (VMS)’s performance was evaluated across two benchmarks, with
parameter optimization and benchmark runs yielding detailed insights. On the PicoCTF benchmark
(120 challenges), GPT-4o solved 41 challenges, outperforming Llama-3.1-70B (27 challenges) and
GPT-4o-mini (26 challenges), as shown in Table 1.1. On the OverTheWire benchmark (80
challenges), GPT-4o completed 32 challenges, followed by Llama-3.1-70B (23 challenges).
Parameter optimization revealed an optimal observation window size of 250 for PicoCTF and 500 for
OverTheWire, with performance peaking at a temperature of 1 and top-p of 0.9 (Figure 1.1). Higher
temperatures increased error rates, with commands at 2.0 rendering systems unusable. Token usage
rose linearly with steps, plateauing for some models after 10 iterations.

Table 1.1 Performance of LLMs on PicoCTF and OverTheWire Benchmarks
LLM PicoCTF (120) OverTheWire (80) Avg. Time/Challenge (s)
GPT-4o 41 32 15.2
Llama-3.1-70B 27 23 18.7
GPT-4o-mini 26 19 16.8

CONCLUSIONS
In this paper, we propose the Vulnerability Mitigation System (VMS), a completely autonomous
penetration testing agent, which is backed by a Large Language Model (LLM). The system was able
to solve a vast majority of the Capture The Flag (CTF) challenges without any form of human
intervention. The VMS was designed to have two modules; the Planner and the Summarizer for
executing commands in a step by step manner. Among the models evaluated, GPT-4o was the most
effective, it was able to solve 41 of the 120 PicoCTF challenges and 32 of the 80 OverTheWire
challenges, which was beyond our expectations. We also released two new benchmarks consisting
of 200 challenges in total to further assess the system and determined the optimal settings such as
using temperature 1 and observation window sizes of 250 and 500 respectively.

The results also show how LLMs can enhance cybersecurity automation by addressing the problems
of scalability and adaptability. But we noticed some safety risks, for example, the possibility of
inappropriate use of the system at higher temperatures, therefore we need strong safety measures
like containerization. This research therefore becomes the first to propose the VMS and its
benchmarks for public access in order to enable future improvement of autonomous cybersecurity
tools.

REFERENCES

1. Abramovich, T., Udeshi, M., Shao, M., Licret, K., Xi, H., Milser, S., Jankmend, M., Shano, H.,
"Enhanced interactive generative model agent for CTF challenges," arXiv preprint
arXiv:2409.16165, 2024.

2. Balon, T., Baggili, I., "Cybercompetitions: A survey of competitions, tools, and systems to
support cybersecurity education," Education and Information Technologies, vol. 28, no. 9, pp.
11759-11791, 2023.

3. CrowdStrike, "2024 Global Threat Report," Accessed: November 1, 2024. [Online]. Available:
https://www.crowdstrike.com/global-threat-report/

4. Deng, G., Lie, Y., Mayoral-Vilches, V., Liu, P., Li, Y., Xu, Y., Zhang, T., Liu, Y., Piazger, M.,
Rass, S., "PentestGPT: An LLM-empowered automatic penetration testing tool," arXiv preprint
arXiv:2305.06782, 2023.

5. Happe, A., Cito, J., "Getting pwn’d by AI: Penetration testing with the language models," in
Proceedings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ser. ESEC/FSE ’23, ACM,
November 2023. [Online]. Available: http://dx.doi.org/10.1145/3611643.3613083

6. Leune, K., Petrilli Jr, S. J., "Using capture-the-flag to enhance the effectiveness of
cybersecurity education," in Proceedings of the 18th Annual Conference on Information
Technology Education, 2017, pp. 47-52.

7. Minace, S., Mikolov, T., Nikrad, N., Chenaghlu, M., Socher, R., Amatriain, X., Gao, J., "Large
language models: A survey," arXiv preprint arXiv:2402.06196, 2024.

8. Motlagh, F. N., Hajizadeh, M., Majd, M., Najafi, P., Cheng, F., Meinel, C., "Large language
models in cybersecurity: State-of-the-art," arXiv preprint arXiv:2402.00891, 2024.

9. Noever, D., "Can large language models find and fix vulnerable software?" arXiv preprint
arXiv:2308.10345, 2023.

10. Tenable, Inc., "Nessus," Accessed: November 1, 2024. [Online]. Available:
https://www.tenable.com/products/nessus

11. Xi, Z., Chen, W., Guo, X., He, W., Ding, Y., Hong, B., Zhang, M., Wang, J., Jin, S., Zhou, E., et
al., "The rise and potential of large language model based agents: A survey," arXiv preprint
arXiv:2309.07864, 2023.

https://www.crowdstrike.com/global-threat-report/
http://dx.doi.org/10.1145/3611643.3613083
https://www.tenable.com/products/nessus

12. Xu, J., Stokes, J. W., McDonald, G., Bai, X., Marshall, D., Wang, S., Swaminathan, A., Li, Z.,
"AutoAttacker: A large language model guided system to implement automatic cyber-attacks,"
2024. [Online]. Available: https://arxiv.org/abs/2403.01038

13. Yang, J., Prabhakar, A., Narasimhan, K., Yao, S., "Intercode: Standardizing and
benchmarking interactive coding with execution feedback," Advances in Neural Information
Processing Systems, vol. 36, 2024.

14. Yao, Y., Duan, J., Xu, K., Cai, Y., Sun, Z., Zhang, Y., "A survey on large language model
(LLM) security and privacy: The good, the bad, and the ugly," High-Confidence Computing, p.
100211, 2024.

15. Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong,
Z., et al., "A survey of large language models," arXiv preprint arXiv:2303.18223, 2023.

https://arxiv.org/abs/2403.01038

	Abstract
	KEYWORDS
	INTRODUCTION
	METHODS
	Agent Architecture Design
	RESULTS AND DISCUSSION
	CONCLUSIONS
	REFERENCES

