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Abstract 
As the frequency of cyber threats increases, conventional penetration testing is failing to capture the 
entirety of todays complex environments. To solve this problem, we propose the Vulnerability 
Mitigation System (VMS), a novel agent based on a Large Language Model (LLM) capable of 
performing penetration testing without human intervention. The VMS has a two-part architecture for 
planning and a Summarizer, which enable it to generate commands and process feedback. To 
standardize testing, we designed two new Capture the Flag (CTF) benchmarks based on the PicoCTF 
and OverTheWire platforms with 200 challenges. These benchmarks allow us to evaluate how 
effectively the system functions. We performed a number of experiments using various LLMs while 
tuning the temperature and top-p parameters and found that GPT-4o performed best, sometimes even 
better than expected. The results indicate that LLMs can be effectively applied to many cybersecurity 
tasks; however, there are risks. To ensure safe operation, we used a containerized environment. Both 
the VMS and the benchmarks are publicly available, advancing the creation of secure, autonomous 
cybersecurity tools. 
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INTRODUCTION  
Penetration testing, a process of identifying and rectifying vulnerabilities by virtual attacks is a 
traditional practice  that has been performed by human experts. However, as the systems are 
becoming more complex and the number  of possible vulnerabilities to detect is increasing, this 
conventional approach has become too slow and resource-consuming. Although  there are tools like 
Nessus, Snyk, and OpenVas that can detect vulnerabilities,  they lack the flexibility required to 
address more complex scenarios. 
 
In this paper, we present VMS -  an autonomous agent powered by a Large Language Model (LLM) 
that can perform penetration testing without the  need for human intervention. We also suggest new 
benchmarks for such agents. The purpose of this paper is  to describe how LLMs can benefit 
cybersecurity tasks and how this area can be improved. This research  addresses the problems of 
scalability and adaptability and highlights the importance of developing smart, safe, and effective  
tools to combat ever-emerging cyber threats and advance the creation of autonomous cybersecurity 
solutions. 
 
 
METHODS 
This section describes the approach used to design and evaluate Vulnerability Mitigation System 
(VMS), an autonomous penetration testing agent  trained by Large Language Models (LLMs) as well 
as the development of two standard CTF  benchmarks. The study involves agent design, benchmark 
definition, and experimental analysis of LLM-based cybersecurity skills.  The methodology consists of 
three main phases: the development of Vulnerability Mitigation System (VMS)'s architecture, the 
creation of  the CTF benchmarks, and the performance testing and parameter optimization. 
Agent Architecture Design 
The Vulnerability Mitigation System (VMS) was developed with a dual-module architecture of a  
Planner and a Summarizer, both using Large Language Models for autonomous operation. The 
Planner generates executable  commands from contextual data, using a system prompt that treats the 
LLM as an expert penetration tester,  which solve CTF challenges. The Summarizer processes 
command outputs and maintains a history of actions to help  guide subsequent decisions.  
Vulnerability Mitigation System (VMS) operates within a Kali Linux  container, which is isolated by 
firewall rules to avoid any unintended network interactions. The workflow is an iterative  cycle of the 



Planner generating commands, executing them in the container and passing the output to the  
Summarizer, updating the action history, until a flag is captured or a step limit is reached. This  phase 
was about creating a self-contained, independent problem solving system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Benchmark Construction 
Two sets of benchmarks for CTF were created using challenges from PicoCTF and  OverTheWire, 
with a total of 200 tasks spread across six cybersecurity domains: General Skills,  Cryptography, Web 
Exploitation, Forensics, Reverse Engineering and Binary Exploitation. From  PicoCTF, 120 challenges 
were chosen, with descriptions, hints, and downloadable files, and  the levels were classified as easy, 
medium, or hard. Solver scripts were written to pull flags  dynamically. The benchmark included 80 
challenges from four wargames — Bandit, Natas,  Leviathan and Krypton — from OverTheWire, 
which helped to secure skills in Linux navigation, web  security and cryptography. Both benchmarks 
were standardized to include metadata such as categories and difficulty levels, and solver  functions 
were used to develop a reusable framework for assessing LLM-based agents. 
 
Experimental Evaluation 
The evaluation phase tested Vulnerability Mitigation System (VMS)’s performance across the 
benchmarks  by optimizing three variables: observation window size (to limit the length of command 
output), temperature (to  control response variability) and top-p (to control token selection diversity). 
Smaller LLMs such  as Llama-3.1-8B and Phi-3-mini were also tested with window  sizes of 250 
(PicoCTF) and 500 (OverTheWire) characters to  achieve a balance between context retention and 
clarity. Coherence was controlled by setting temperature to  1.0 and moderate creativity was ensured 
by fixing top-p to 0.9.  GPT-4o, GPT-4o-mini, Llama-3.1-8B,  Llama-3.1-70B, Qwen2-72B,  
Mixtral-8x7B, Phi-3-mini-4k and  Phi-3.5-MoE were tested in the eight LLMs for 20 iterative steps per 
challenge. Metrics such as  challenges solved, time per challenge and command usage patterns were 
collected and safety was assessed by monitoring for unintended  behaviors using a containerized 
environment. The results were analyzed to compare model efficacy against domains and difficulty 
levels  to gain insights into the suitability of LLMs for autonomous penetration testing. 
 
 
 
RESULTS AND DISCUSSION 
Vulnerability Mitigation System (VMS)’s performance was evaluated across two benchmarks, with 
parameter optimization and benchmark runs yielding detailed insights. On the PicoCTF benchmark 
(120 challenges), GPT-4o solved 41 challenges, outperforming Llama-3.1-70B (27 challenges) and 
GPT-4o-mini (26 challenges), as shown in Table 1.1. On the OverTheWire benchmark (80 
challenges), GPT-4o completed 32 challenges, followed by Llama-3.1-70B (23 challenges). 
Parameter optimization revealed an optimal observation window size of 250 for PicoCTF and 500 for 
OverTheWire, with performance peaking at a temperature of 1 and top-p of 0.9 (Figure 1.1). Higher 
temperatures increased error rates, with commands at 2.0 rendering systems unusable. Token usage 
rose linearly with steps, plateauing for some models after 10 iterations. 



 
 
Table 1.1 Performance of LLMs on PicoCTF and OverTheWire Benchmarks 
LLM PicoCTF (120) OverTheWire (80) Avg. Time/Challenge (s) 
GPT-4o 41 32 15.2 
Llama-3.1-70B 27 23 18.7 
GPT-4o-mini 26 19 16.8 

 
CONCLUSIONS 
In this paper, we propose the Vulnerability Mitigation System (VMS), a completely autonomous  
penetration testing agent, which is backed by a Large Language Model (LLM). The system was able  
to solve a vast majority of the Capture The Flag (CTF) challenges without any form of human  
intervention. The VMS was designed to have two modules; the Planner and the Summarizer for  
executing commands in a step by step manner. Among the models evaluated, GPT-4o was  the most 
effective, it was able to solve 41 of the 120 PicoCTF challenges  and 32 of the 80 OverTheWire 
challenges, which was beyond our expectations. We also  released two new benchmarks consisting 
of 200 challenges in total to further assess the system and determined the optimal  settings such as 
using temperature 1 and observation window sizes of 250 and 500 respectively.      
 
The results also show how LLMs can enhance cybersecurity automation by addressing the problems 
of scalability and  adaptability. But we noticed some safety risks, for example, the possibility of 
inappropriate use of the system  at higher temperatures, therefore we need strong safety measures 
like containerization. This research therefore becomes the first  to propose the VMS and its 
benchmarks for public access in order to enable future improvement of autonomous cybersecurity  
tools. 
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