arXiv:2507.21122v1 [cs.CR] 18 Jul 2025

Kintsugi: Decentralized E2EE Key Recovery

Emilic Ma![0009—0005—3322-0805] 2[0000—0001—7252—6958]

and Martin Kleppmann
! University of British Columbia, British Columbia, Canada
contact@emilie.ma
2 University of Cambridge, Cambridge, United Kingdom
martin.kleppmann@cst.cam.ac.uk

Abstract. Kintsugi is a protocol for key recovery, allowing a user to re-
gain access to end-to-end encrypted data after they have lost their device,
but still have their (potentially low-entropy) password. Existing E2EE
key recovery methods, such as those deployed by Signal and WhatsApp,
centralize trust by relying on servers administered by a single provider.
Kintsugi is decentralized, distributing trust over multiple recovery nodes,
which could be servers run by independent parties, or end user devices in
a peer-to-peer setting. To recover a user’s keys, a threshold ¢+ 1 of recov-
ery nodes must assist the user in decrypting a shared backup. Kintsugi is
password-authenticated and protects against offline brute-force password
guessing without requiring any specialized secure hardware. Kintsugi can
tolerate up to t honest-but-curious colluding recovery nodes, as well as
n —t — 1 offline nodes, and operates safely in an asynchronous network
model where messages can be arbitrarily delayed.

Keywords: Decentralized key recovery - End-to-end encryption.

1 Introduction

As end-to-end encrypted (E2EE) services gain popularity, an important problem
is account or key recovery. With non-E2EE services, a user who loses their device
or switches to a new one can simply log in on a different machine with their
username and password. In an E2EE setting, this is problematic: the password
may lack sufficient entropy, so it cannot securely seed a key for decrypting a
backup of the user’s data. Common recovery mechanisms for E2EE platforms
include user-selected recovery passwords [26], recovery codes [27J20JI8], short
PINs with hardware-enforced guess limits [I1], local copies of recovery files [4],
or a designated recovery contact [S[422]. However, a key issue with existing
recovery methods is the trend towards centralization: users cannot verify that
the central service implements recovery securely or reliably. Existing mechanisms
have associated tradeoffs:

— Signal’s Secure Value Recovery [II] and WhatsApp’s E2EE backups [26]
require the user to remember a four-digit PIN and rely on trusted hardware,
like hardware security modules (HSMs), to limit PIN guesses. In the case of
Signal, multiple hardware elements are distributed across several locations

https://arxiv.org/abs/2507.21122v1

2 E. Ma, M. Kleppmann.

and cloud providers. Nevertheless, the hardware on both platforms remains
a centralized system, operated by a single party that must be trusted to
correctly manage the key recovery infrastructure.

— Apple iCloud allows users to designate a single recovery contact [§]. If this
contact is untrustworthy and has physical access to one of the user’s devices,
they are able to take over the user’s account.

— Recovery codes used by services like MEGA [20] or LastPass [18], and Bitcoin
wallet recovery seed phrases consisting of twelve random words [2I], avoid
trusting any other parties. However, their high-entropy nature makes them
impractical to remember, and paper backups are prone to being lost. Digital
recovery files are at risk of device loss or failure or improper storage in an
unencrypted cloud service, undermining the system’s E2EE properties [10].

— Applying Shamir Secret Sharing [23] to split a recovery key across multiple
contacts raises the issue of authentication: when a contact receives a request
to participate in secret reconstruction, the contact needs to decide if the
request is genuine. This is susceptible to social engineering, tricking contacts
into revealing their secret shares to an adversary. There is also no protection
against a threshold of contacts colluding to reconstruct the key directly and
no way to change the set of contacts without repeating the secret-sharing
process.

Centralized infrastructure is a risk for applications that require metadata
privacy (e.g. anonymity networks) or where the infrastructure may be shut down
outside of their control (e.g. hosting for government-sanctioned activists), besides
requiring users to blindly trust the service. For example, WhatsApp uses a HSM-
based Backup Key Vault service to protect against brute-force attacks, but this
requires trusting the HSMs, which are under WhatsApp’s sole control [16].

There is also an aspect of cost: Signal, WhatsApp, and Apple iCloud all rely
on HSMs to ensure only authenticated users can recover their data. However,
these HSMs are expensive and difficult to deploy. For instance, Signal’s staging
(non-production) Secure Value Recovery implementation costs $2,100/month to
run [II]. In turn, this limits decentralization efforts: while volunteers may be
happy to help run nodes for a decentralized service on consumer-level hardware
(e.g. Tor node operators), it becomes cost-prohibitive to participate if specialized
hardware is required. We thus wished to explore a new space in recovery protocols
that avoids any reliance on centralized infrastructure or specialized hardware.

In this paper, we propose Kintsugi, a decentralized key recovery protocol
based on a peer-to-peer network of recovery nodes. Nodes may be servers op-
erated by different parties, or end-user devices of contacts, or a mixture of the
two. To recover their secret key on a new device, the user must keep track of and
provide a password. Then, the device communicates with at least ¢t + 1 recovery
nodes, where t is the reconstruction threshold chosen by the user when they
set up their recovery contacts. The recovery nodes do not need to check that
requests are authentic; they only need to rate-limit requests to prevent online
brute-force attacks on the user’s password. Kintsugi is capable of handling up
to t honest-but-curious nodes who participate in the protocol correctly but may

Kintsugi: Decentralized E2EE Key Recovery 3

collude in trying to compromise the user’s secrets, and n — ¢t — 1 offline nodes,
where n is the total number of recovery nodes for this user. To obtain the user’s
secret key, t 4 1 recovery nodes would need to collude and additionally mount an
offline brute-force attack on the user’s password. Users can update their recovery
nodes at any time, and even if some recovery nodes are compromised over time,
the user’s account remains secure thanks to secret refreshing, which regularly
regenerates the shares of secrets held by the nodes without changing the joint
secret itself. Kintsugi can also operate in an asynchronous network model, where
messages may be arbitrarily delayed.

2 Threat Model

We assume that all recovery nodes correctly follow the protocol (i.e. are not
Byzantine). Byzantine fault-tolerance is not yet implemented in our prototype,
but could be added based on prior work [29]. Each user can choose the number of
recovery nodes they use, n, and the key reconstruction threshold, ¢. Kintsugi can
tolerate up to ¢ honest-but-curious recovery nodes, which may collude, attempt
to guess the user’s password, and do not rate-limit responses, but otherwise
correctly follow the protocol, and n — ¢t — 1 offline nodes, which do not respond
to recovery requests.

We assume an adversary who can both passively eavesdrop and actively inter-
fere with network traffic, including making recovery requests to recovery nodes.
Additionally, the adversary can obtain the secret shares of up to ¢ recovery nodes
(the same t honest-but-curious nodes previously mentioned) within any given re-
fresh interval and perform brute-force attacks, although we assume they cannot
compute discrete logarithms. Alternatively, we also allow an adversary who ob-
tains more than ¢ secret shares, but who lacks computational resources such that
offline brute-force attacks have a negligible success rate.

Finally, we assume an asynchronous network model, where messages may be
arbitrarily delayed.

3 Kintsugi Protocol

Several properties are required for Kintsugi’s design.

— Recovery of the user’s key requires the participation of a group of recovery
nodes. An adversary wanting to reconstruct the user’s key should require
both collusion among at least ¢ 4+ 1 recovery nodes and brute-force password
guessing. We accomplished this via an threshold Oblivious Pseudo-Random
Function (OPRF) exchange. See section for more details. This OPRF
usage was inspired by the OPAQUE protocol [28].

— A threshold of recovery nodes must be involved in the key reconstruction.
This requires a secret sharing scheme, like Shamir’s Secret Sharing [23].

4 E. Ma, M. Kleppmann.

— Users must be able to change their recovery nodes and the threshold of nodes
required to recover the user’s key. This must be possible at any time, not
requiring a delay until the start of a next epoch. Former recovery nodes
should also not be able to participate in the reconstruction of the user’s key.
This requires a dynamic, proactive secret sharing scheme: the set of recovery
nodes can be updated (dynamic committee) and the shares held by recovery
nodes can be renewed while keeping the joint secret the same (proactive
refresh). Using a proactive secret sharing scheme also guards against shares
being compromised over time, since old shares will be invalidated on each
refresh.

— Kintsugi should continue to correctly operate in an asynchronous network
model where messages can be arbitrarily delayed, as we reasonably expect
recovery nodes to go offline (e.g. maintenance, server outage, network inter-
ruption). Synchronous protocols become unsafe in an asynchronous network,
because the nodes whose messages are delayed may be ejected, causing fault-
tolerance against honest-but-curious or genuinely offline nodes to decrease.

Kintsugi consists of three protocols: user registration, key recovery, and chang-
ing recovery nodes. A prototype implementation, built with Rust, Tauri, and
libp2p, is available as open sourc

3.1 Threshold OPRF

We combine an Oblivious Pseudo-Random Function (OPRF) with Shamir secret
sharing (SSS) [23] to obtain a threshold OPRF [14], which is performed once
per user registration or key recovery request. This OPRF output is used as an
encryption key for the recovery data backup.

Consider an elliptic curve group E of prime order g. We use the Ristretto
curve [25], a modification of Curve25519 to eliminate cofactors, because of its
efficiency and its compatibility with off-the-shelf OPRF libraries. Let pwd be the
user’s password. Kintsugi’s OPRF is a deterministic function f(P,s) where:

— P = HAsHTOCURVE(pwd) € E, the user’s password hashed to a point on
the curve using a scheme like Elligator [9]

— 8 € Zq is a secret selected by the user’s device during registration, of which
each recovery node j holds a SSS share s;

— the user inputs P to the function f without knowing s, and learns the output
f(P,s) = s- P, the scalar product in the elliptic curve group

— the recovery node j inputs s; to the function, and learns neither P nor s- P

— the output f(P,s) = s- P is computationally indistinguishable from random

To perform an OPRF evaluation, the user’s device first generates the uni-
formly random secret s € Z, and splits s into SSS shares that are distributed
to the recovery nodes. SSS works by defining a threshold ¢ and a polynomial
SSS(x) = s+ iz + cox? ... cyxt, where the coefficients ¢; € Zq are sampled

3 Ihttps://github.com/kewbish /kintsugi

https://github.com/kewbish/kintsugi

Kintsugi: Decentralized E2EE Key Recovery 5

uniformly randomly. For each user, each recovery node is assigned an integer
index i = 1,2,3..., and its secret share s; = SSS5(i) (i.e. the polynomial evalu-
ated at its index using arithmetic in the field Z;). Any collection of ¢ + 1 points
can then be interpolated together to recover the secret constant term, which is

s = SS5(0).

Fig. 1. Threshold OPRF evaluation after secret share setup.

User

o

R - Multiply each

Covery response by A;(0)-r; ' F—

Node 1 p y Ai(0) - 7;
Recovery Sum responses

Node i =s5-P —
Recovery

Node t +1

See Figure[I] for an example OPRF evaluation flow. The user’s device chooses
and stores a random blinding scalars r; € Z, to prevent recovery nodes from
learning P. The user’s device sends r; - P to every recovery node ¢, which mul-
tiplies it by s; and returns the result. After the user’s device has received ¢ + 1
such results, it multiplies each response s; -r; - P by r;” ! to obtain s; - P. It then
applies Lagrange interpolation to find s - P.

Let A;(z) be the Lagrange polynomial:

where zj, is the index at which the SSS poly-

N(z) = H T — Tm nomial was evaluated (i.e. the recovery node’s
' <m iyt Ti T Tm index) for the kth secret share being interpo-
T m#i lated.

Then, the Lagrange interpolation to reconstruct s - P is:

/\1(0)'81 ~P+/\2(O)'82~P+~'~+>\t+1(0)'St+1'P
= (A1(0) - 51+ A2(0) - 52+ -+ + A1 (0) - s¢41) - P
= s- P (by Lagrange interpolation of the shares of s)

This computation is performed in the group E, with - denoting scalar mul-
tiplication and 4+ denoting point addition. However, the result is the same as if
the secret s had been reconstructed in Z, field arithmetic, then multiplied with
the point P: the interpolation is performed “in the exponent” [14].

The output s - P is the encryption key for the recovery data backup, as
detailed below. Crucially, no party in this protocol can reconstruct s, because

6 E. Ma, M. Kleppmann.

each node only returns the scalar multiplication of their share with the user-
provided password point, and never the actual share. Even if the point P is
chosen by an adversary, they cannot compute s, as that would require computing
a discrete log.

The protocol would be insecure if P = p- G, where G is a generator of E and
p is an efficiently computable function of pwd. The adversary could send G to
the recovery nodes without knowing pwd, compute s- G from the responses, and
then perform an offline brute-force attack on the password, trying many values
p until the correct OPRF output p-s-G = s- P is returned. In contrast, if the
discrete logarithm of P is not known, as is the case when using a scheme like
Elligator [9] to hash pwd to a point on the curve, the adversary must send a
separate request to the recovery nodes for each password attempt. This turns an
offline brute-force attack into an online one, allowing recovery nodes to enforce
rate-limiting on password guesses.

3.2 Registration and Key Recovery

During registration, the user provides a username and a password, and hashes
their password into their secret curve point P. The user also samples a uniformly
random secret s € Zg, splits it into SSS shares, and distributes shares to their
selected recovery nodes via encrypted and authenticated channels. The OPRF
output s- P is then used as the key to encrypt a backup of the user’s recovery key,
and any other data they wish to restore after a device loss, with an authenticated
encryption scheme. This encrypted backup is sent to all recovery nodes, which
store it along with their secret share s;.

When recovering their key, we assume users will not have access to or re-
member their set of recovery nodes. On registration, we use a distributed hash
table (DHT), a decentralized, replicated key-value store, to store a mapping from
username to recovery node identifiers.

In our implementation, we used the Kademlia DHT [I9] provided by libp2p
[2] to map usernames to a list of the recovery nodes’ libp2p addresses. To prevent
DHT poisoning or unauthorized updates, users provide their public key when
first updating their DHT entry and sign subsequent updates. This approach is
not confidential, leaking the identities of each user’s chosen recovery nodes. This
may be problematic for privacy if the recovery nodes are the user’s contacts
in a peer-to-peer setting, for example. However, the user would otherwise be
required to keep track of their recovery nodes, and we argue that exposing this
limited information is an acceptable tradeoff. We also note that Kademlia does
not provide any integrity guarantees: this is not an issue given our threat model
assumes no Byzantine nodes, but a misbehaving DHT node could otherwise
serve fake recovery node information. Future implementations of Kintsugi may
benefit from a different, BF'T DHT or from storing recovery node information
on a central server to simplify the threat model.

Users recover their key by looking up their recovery nodes by username in
the DHT, inputting their password, and then initiating a threshold OPRF evalu-
ation. This recovery can be performed on a different device than the device used

Kintsugi: Decentralized E2EE Key Recovery 7

during user registration. The user also downloads their encrypted key backup
from one of the recovery nodes. If the password was correct, they can decrypt
the backup with the computed OPRF output s- P, and thus recover their data. If
decryption fails, this may indicate that the password was incorrect, or that one of
the recovery node responses was corrupted or modified by an active network ad-
versary. The only way of trying a new password is to restart the threshold OPRF
evaluation with a new P. Recovery attempts may be replicated as a transparent
audit log across nodes to alert users to potentially fraudulent recovery attacks
if high volumes of attempts are made: we leave this as future work.

During recovery, users exchange unauthenticated messages with their re-
covery nodes. This enables users to initiate contact without knowing anything
besides their username and password. Recovery nodes must implement rate-
limiting to prevent against online brute-force attacks: for example, rate-limiting
recovery requests by IP. This rate-limiting does not depend on HSMs: if at most ¢
recovery nodes fail to rate-limit attempts, any attackers sending forged requests
will still need to wait for the slowest recovery node among the t+1 reconstruction
nodes to return a result before the attacker can check their attempt. Note that
if IP rate-limiting is applied, attackers may be able to use a botnet or rent large
blocks of IPs in the cloud to circumvent the rate-limit. However, rate-limiting
instead per user may lead to denial-of-service attacks if attackers impersonate a
user to use up their quota before they can submit a genuine recovery request.
We leave this tradeoff as an area for future exploration.

Users are free to choose their reconstruction threshold ¢ and the total number
of recovery nodes n. In our prototype implementation’s Ul, we defaulted to
t = 3,n = 5. Choosing n > t is convenient for increased availability if some
nodes are offline, but an adversary has more recovery nodes to choose from to
potentially compromise and reconstruct s.

3.3 Dynamic Proactive Secret Sharing

Dynamic proactive secret sharing (DPSS) combines two of the required proper-
ties: users must be able to update their set of recovery nodes, and former nodes
must not be able to participate in recovering the user’s key. DPSS is used to
refresh each recovery node’s secret share s; used in the threshold OPRF.

We use the high-threshold Honey Badger approach by Yurek et al. [29]. Honey
Badger is an asynchronous DPSS protocol, which means that it remains opera-
tional in the face of unpredictable network delays: this fulfills our final require-
ment for our choice of DPSS.

The core idea of Honey Badger is for each node i to generate a new SSS poly-
nomial SSS!(x) = s; + ¢, + cha? ... c},a* with the new polynomial’s constant
term being the node’s old secret share s;. The node then broadcasts SSS.(j) to
each other node j, which allows node j to interpolate a new node share s; that
represents the original nodes’ shares at index j. These new node shares can be
further interpolated to recover the original secret s. Recall that each s; = S55(7)
and s = 59 = 5595(0); likewise, each interpolated new share s can be thought of
as S555((i), or alternative shares of sy = s. Thus, when these s} are interpolated

8 E. Ma, M. Kleppmann.

again, the original s is recovered. Intuitively, consider that the original secret
s is split into shares once, with each of those node shares being split up again.
This broadcast changes which nodes hold which sub-shares of the original secret,
although the underlying shared data remains the same. S5S}(z) can have a dif-
ferent degree, and therefore a different reconstruction threshold ¢, than SSS(z),
allowing users to add or remove recovery nodes. This secret refresh can also be
configured to run at some desired interval (e.g. once per day) to protect against
recovery nodes’ shares being leaked over time.

Fig. 2. DPSS Secret Refreshing

Node 1 % S1
Former

Recovery Node 4
Nodes

Multiply responses
. by X;(0) and sum
........................... . . :SSSO(J):S;

New Recovery Node j

/
S

Honey Badger is able to tolerate up to one-third of nodes being Byzantine
and not following the protocol. The Kintsugi prototype currently does not imple-
ment these aspects of Honey Badger (e.g. the multi-valued validated Byzantine
agreement), and hence requires all recovery nodes to correctly follow the pro-
tocol and only tolerates honest-but-curious or offline nodes. There is currently
no way to determine which secret shares are valid for interpolation in order to
recover s, which would be an issue in the presence of Byzantine recovery nodes.
Kintsugi can be made Byzantine fault-tolerant in the future by implementing
the remainder of the Byzantine agreement protocols.

Honey Badger requires a designated dealer node to calculate and broadcast
the initial secret shares. In Kintsugi, the user whose key is being recovered acts as
the dealer. This level of trust is acceptable, because the user’s key is ultimately
being recovered and we can assume the user behaves honestly. Applications that
wish to avoid trusted setup can use a distributed key generation (DKG) protocol,
such as the one proposed by Das et al. [12].

We also weighed other asynchronous DPSS protocols: in particular, we con-
sidered DyCAPS [I3], a protocol with similar fault-tolerance guarantees and
communication costs. We ultimately chose Honey Badger over DyCAPS due to
Honey Badger’s support of the Ristretto curve in existing OPRF instantiations
and ease of development, whereas DyCAPS requires a pairing-friendly curve,
such as the BLS12-381 curve, and would have required a custom OPRF design.

Kintsugi: Decentralized E2EE Key Recovery 9

3.4 Changing Recovery Nodes

When users change their recovery nodes or their recovery threshold ¢, they ini-
tiate a DPSS refresh. Users then update their DHT entry of recovery nodes to
hold the new set of recovery nodes, and the former recovery nodes destroy their
old secret shares.

Former recovery nodes cannot participate in current key recovery attempts,
thanks to the DPSS refresh protocol. Formerly valid secret shares, interpolated
with current, refreshed shares, will fail to reconstruct s. For additional security,
former recovery nodes are expected to cooperate and delete their old shares.
Otherwise, it is possible for ¢,;4 + 1 former recovery nodes to collude and recover
s, for the threshold t,;4 at the point when the former recovery nodes were valid.
Still, colluding recovery nodes cannot gain any information about P without
mounting a brute-force attack.

4 Discussion

Kintsugi’s approach provides several key benefits:

— Decentralization. Authentication mechanisms like OPAQUE [28§], and most
other E2EE platforms (see Table , rely on a single point-of-failure server
for recovery. Distributing secret shares across multiple recovery nodes mit-
igates the concern that the server may mount attacks (e.g. brute-force) on
the user’s password or that the server secret is leaked.

— Recovery from lost devices. Because Kintsugi is based on a password,
users can access their recovery key backups on a different device, in contrast
to recovery schemes requiring hard copies of data. By design, Kintsugi does
not provide any means of recovery if the user loses their password.

— Brute-force and collusion resistance. Kintsugi makes it relatively safe
to use a lower-entropy password. If the backup encryption key were directly
derived from the password without an OPRF exchange, offline brute-force
attacks on the user’s password would be feasible due to the low entropy of
most passwords, whereas the OPRF output point used as an encryption key
in Kintsugi has higher entropy. Kintsugi also requires the participation of
recovery nodes to reconstruct the key, so attackers cannot directly perform
an offline brute-force without compromising at least ¢ + 1 secret shares.
On the other hand, the rate-limiting performed by recovery nodes protects
against online brute-force attacks.

A limitation of Kintsugi is that users must still keep track of their password.
However, passwords remain a common experience that many users are com-
fortable with, as opposed to storing recovery codes or hard copies of recovery
files. Kintsugi’s usage of an OPRF output based on a low-entropy password is
a sweet spot between short, easy-to-remember means of recovery like PINs [I1]
and high-entropy mechanisms such as Bitcoin seed phrases [21].

10 E. Ma, M. Kleppmann.

Kintsugi’s concept of recovery nodes is flexible: it also allows the user’s con-
tacts’ devices to serve as recovery nodes, similar to the social recovery methods
used on platforms like PreVeil [22] or Apple iCloud [§]. One could consider an
instantiation of Kintsugi leveraging email, SMS, or chat apps instead of our use
of libp2p to conduct the OPRF evaluations. The user’s contacts would act as
a human-enforced “social rate limit” to prevent online brute-force attacks, since
contacts are unlikely to respond to high volumes of requests.

5 Related Work

Table [1] compares the recovery mechanisms and properties of several E2EE ser-
vices. Blessing et al. [I0] have highlighted several concerns with existing E2EE
platforms, including risks of total account lockout due to improper storage of
recovery codes or files used by apps like WhatsApp and 1Password. As shown
in the table, few platforms use decentralized recovery mechanisms, and those
relying on social contacts for recovery are often vulnerable to social engineering.

5.1 Social Recovery and Trust Distribution

Several E2EE services rely on social recovery to provide some aspect of trust
distribution or decentralization. For example, Apple iCloud allows users to des-
ignate a single recovery contact who can help the user regain access to their
account [8I0]. The account owner is asked some verification questions as au-
thentication, and iCloud has a waiting period in place to alert the account owner
to potentially malicious recovery attempts. Nevertheless, a trusted recovery con-
tact is often close enough to the user to guess answers to verification questions.
In addition, the failsafe timeout relies on the user being online during that pe-
riod to notice any notifications. This approach is also centralized, as Apple is a
required intermediary in the recovery process.

1Password, an E2EE password manager, also supports social recovery via
Recovery Groups assigned to teams of users [3]. Each Recovery Group member
is able to help users recover access to their account. The whitepaper notes that
this recovery process should require some out-of-band verification of requests
and that the onus is on Recovery Group members to avoid social engineering.
As well, because each Recovery Group member is able to unilaterally recover
access, a single malicious recovery contact can gain access to the user’s verifi-
cation requests via email access and ultimately access the user’s account. This
is less secure than threshold-based designs, where recovery contacts must also
compromise the other contacts’ secrets to reconstruct the user’s recovery key.

PreVeil is another E2EE platform, focusing on email and file collaboration.
Among the E2EE providers listed in Table [T} it is the only service that sup-
ports decentralized recovery. PreVeil supports the notion of Approval Groups, a
threshold social key recovery scheme, but their whitepaper does not explain how
these groups protect against approvers colluding to recover the key [22]. PreVeil
also supports Express Account Recovery, a feature that requires two shares to

Table 1. Comparison of E2EE platforms and their recovery mechanisms.

Method Properties
Service Data Password™ Recovery PIN Recovery Social Resistant HSM- Decent-
name recovered codes files contacts to social ~ based ralized
engineering
. Signal Key - - v[11] - - N/A v (1] -
leizzislaglng, WhatsApp Account v [26] v [27] - - - - v'[26] -
PreVeil Key - - - - v'[22] N/A - v'[22]
Apple iCloud Account - v [7] - - v [8] - v [6] -
File storage MEGA Account - v [20] - - - N/A - -
Password 1Password Account - v 4] - v'[4] v 4] - - -
manager LastPass Account V18] vV |[18] - - - N/A - -
Misc. SSS 23] Key - - - - v'[23] - - v
(not E2EE) Bitcoin Key - V2] - - - - ok v
OPAQUE Key v[28] - - - - N/A - -
Our paper Kintsugi Key v - - - v v - v

* In this table, passwords refer to user-chosen, memorable secrets, whereas recovery codes are
automatically generated. PINs are also user-chosen, but shorter and low-entropy.
** Hardware crypto wallets act as consumer-grade HSMs.

A10A009Y K93 HHEH POZI[eIIUad9(] ISNSHUTS]

1T

12 E. Ma, M. Kleppmann.

recover the key, with the user storing one share and the other being stored on the
PreVeil server [I7]. However, this requires the user to safely store their share in
an accessible location and relies on PreVeil as a single trusted party in recovering
the user’s key.

Note that none of the E2EE platforms listed in Table [1| that support so-
cial recovery contacts are resistant to social engineering attacks. An adversary
may trick social contacts into providing their secret shares or initiating a re-
covery operation. Alternatively, social contacts may collude to gain access to
the user’s account. Some prior work on decentralized key recovery provides pro-
tection against individual curious nodes, but not gossiping, honest-but-curious
nodes [5].

5.2 OPAQUE

We drew inspiration from the password-authenticated key exchange (PAKE)
protocol OPAQUE |[2§] for Kintsugi. OPAQUE provides a way for users to au-
thenticate themselves to a server without revealing their password to the server
in plaintext. OPAQUE specifies methods for registration and login: in Kintsugi’s
design, we reframe login as key recovery while applying similar OPRF flows. Also,
in OPAQUE, a single malicious server can perform an offline brute-force attack
to guess the user’s password; in Kintsugi, a threshold of recovery nodes must
collude before offline brute-force is possible.

5.3 Threshold OPRFs

Several other threshold OPRF-based systems exist. For instance, Jarecki et al.
propose an updatable, oblivious key management system for encrypted stor-
age systems [15], based on their prior threshold OPRF work [I4]. Their work
describes a key management service with which clients perform an OPRF ex-
change to encrypt data and its decentralized, threshold OPRF-based variant.
Although their system utilizes proactive secret sharing, the system does not
specify how recovery nodes can be dynamically changed. It also requires the
joint, distributed generation of new secrets and a distributed multiplication pro-
tocol, whereas Kintsugi avoids the need for any distributed key generation by
relying on the user to deal secret shares. However, their system supports rotation
of the OPRF secret s such that the encrypted data can be exclusively decrypted
by new keys, while Kintsugi only rotates the secret shares and maintains the
same shared s.

Juicebox is another decentralized key recovery protocol, based on PIN au-
thentication and threshold OPRF exchanges [24]. Its design distributes trust
across “realms”, representing independent service providers. Juicebox does not
allow updating these realms or the user’s recovery threshold ¢ after registra-
tion, and it requires at least some of these realms to be HSM-based in order
to rate-limit PIN guesses. Interestingly, it also allows for HSM-based realms to
be supplemented by software-backed providers, as long as a sufficient threshold
of realms is reached in total. This provides a more cost-effective and scalable

Kintsugi: Decentralized E2EE Key Recovery 13

approach, compared to other methods which are entirely reliant on HSMs, like
WhatsApp’s and Signal’s recovery schemes.

6 Conclusion

Decentralized recovery mechanisms for E2EE services mitigate the risks of typ-
ical, centralized recovery flows. Relying on trusted hardware under a single
provider’s control can pose concerns for applications requiring metadata privacy
or lacking financial resources. In this paper, we propose Kintsugi, a decentral-
ized recovery protocol that distributes trust over multiple recovery nodes. Future
work may include implementing Byzantine fault-tolerance and exploring alter-
native instantiations, such as a PKI-based recovery flow instead of relying on
rate-limiting. In addition, we plan to integrate Kintsugi as an extension module
for the Automerge CRDT library as part of a project to support authentication
[1I30]. Overall, Kintsugi offers a new outlook on secure recovery protocols, elim-
inating the need for centralized infrastructure while allowing users to recover
from device loss and maintaining strong security properties.

Acknowledgments. Emilie Ma conducted this work as a visiting researcher at the
University of Cambridge.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Automerge CRDT, https://automerge.github.io/

2. Kademlia DHT (2023), https://docs.libp2p.io/concepts/discovery-routing,/
kaddht /

3. 1Password: 1Password Security Design (2024), https://1passwordstatic.com /files/
security /1password-white-paper.pdf

4. 1Password: If you forgot your 1Password account password or you can’t unlock the
app (2024), https://support.1password.com/forgot-account-password /

5. Anderson, J., Stajano, F.: On Storing Private Keys in the Cloud, vol. 7061,
p. 98-106. Springer Berlin Heidelberg, Berlin, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-45921-8 16, http://link.springer.com/10.1007/978-3-
662-45921-8 16

6. Apple: Escrow security for iCloud Keychain (2024), https://support.apple.com/
en-gb/guide/security /sec3e341e75d /web

7. Apple: Set up a recovery key for your Apple Account (2024), https://
support.apple.com/en-gh /109345

8. Apple: Set up an account recovery contact (2024), https://support.apple.com/en-
gb /102641

9. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve
points indistinguishable from uniform random strings. In: Proceedings of the 2013
ACM SIGSAC conference on Computer & Communications Security. p. 967-980.

https://automerge.github.io/
https://docs.libp2p.io/concepts/discovery-routing/kaddht/
https://docs.libp2p.io/concepts/discovery-routing/kaddht/
https://1passwordstatic.com/files/security/1password-white-paper.pdf
https://1passwordstatic.com/files/security/1password-white-paper.pdf
https://support.1password.com/forgot-account-password/
https://doi.org/10.1007/978-3-662-45921-8_16
https://doi.org/10.1007/978-3-662-45921-8_16
https://doi.org/10.1007/978-3-662-45921-8_16
https://doi.org/10.1007/978-3-662-45921-8_16
http://link.springer.com/10.1007/978-3-662-45921-8_16
http://link.springer.com/10.1007/978-3-662-45921-8_16
https://support.apple.com/en-gb/guide/security/sec3e341e75d/web
https://support.apple.com/en-gb/guide/security/sec3e341e75d/web
https://support.apple.com/en-gb/109345
https://support.apple.com/en-gb/109345
https://support.apple.com/en-gb/102641
https://support.apple.com/en-gb/102641

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

E. Ma, M. Kleppmann.

CCS 13, Association for Computing Machinery, New York, NY, USA (Nov
2013). https://doi.org/10.1145/2508859.2516734, https://dl.acm.org/doi/10.1145/
2508859.2516734

Blessing, J., Hugenroth, D., Anderson, R.J., Beresford, A.R.: SoK: Web
Authentication in the Age of End-to-End Encryption (arXiv:2406.18226)
(Jun 2024). https://doi.org/10.48550/arXiv.2406.18226, http://arxiv.org/abs/
2406.18226, arXiv:2406.18226 [cs|

Connell, G., Fang, V., Schmidt, R., Dauterman, E., Popa, R.A.: Secret Key Re-
covery in a Global-Scale End-to-End Encryption System. In: 18th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 24). pp. 703—
719. USENIX Association, Santa Clara, CA (Jul 2024), https://www.usenix.org/
conference /osdi24 /presentation /connell

Das, S., Xiang, Z., Kokoris-Kogias, L., Ren, L.: Practical asynchronous high-
threshold distributed key generation and distributed polynomial sampling. In: 32nd
USENIX Security Symposium (USENIX Security 23). pp. 5359-5376. USENIX
Association, Anaheim, CA (Aug 2023), https://www.usenix.org/conference/
usenixsecurity23/presentation /das

Hu, B., Zhang, Z., Chen, H., Zhou, Y., Jiang, H., Liu, J.: DyCAPS: Asyn-
chronous Dynamic-committee Proactive Secret Sharing (2022/1169) (2022), |https:
//eprint.iacr.org/2022/1169, publication info: Preprint.

Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: TOPPSS: Cost-Minimal Password-
Protected Secret Sharing Based on Threshold OPRF. In: Gollmann, D., Miyaji,
A., Kikuchi, H. (eds.) Applied Cryptography and Network Security. pp. 39-58.
Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-
319-61204-1 3

Jarecki, S., Krawczyk, H., Resch, J.: Updatable Oblivious Key Management for
Storage Systems. In: Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security. p. 379-393. ACM, London United King-
dom (Nov 2019). [https://doi.org/10.1145/3319535.3363196, https://dl.acm.org/
doi/10.1145/3319535.3363196

Krassovsky, S., Cadden, G.: How WhatsApp is enabling end-to-end encrypted back-
ups (Sep 2021), https://engineering.fb.com/2021,/09/10/security /whatsapp-e2ee-
backups/

Laroche, G.: (2024), https://www.preveil.com/blog/product-release-selective-
sync-account-recovery/

LastPass: Recover your lost master password for LastPass (2024),
https://support.lastpass.com/s/document-item?language=en US&bundleld=
lastpass& topicld=LastPass%2Frecover-master-password.html& LANG=enus
Maymounkov, P., Maziéres, D.: Kademlia: A Peer-to-Peer Information System
Based on the XOR Metric. In: Revised Papers from the First International Work-
shop on Peer-to-Peer Systems. p. 53—65. IPTPS ’01, Springer-Verlag, Berlin, Hei-
delberg (2002)

MEGA: What is my MEGA recovery key? (Dec 2021), https://help.mega.io/
accounts,/password-management /recovery-key

Palatinus, M., Rusnak, P., Voisine, A., Bowe, S.: Mnemonic code for generat-
ing deterministic keys (2013), |https://github.com/bitcoin/bips/blob/master/bip-
0039.mediawiki

PreVeil: PreVeil Security and Design (Jul 2023), |https://www.preveil.com/wp-
content /uploads/2019/10/PreVeil Security Whitepaper-v1.5.pdf

https://doi.org/10.1145/2508859.2516734
https://doi.org/10.1145/2508859.2516734
https://dl.acm.org/doi/10.1145/2508859.2516734
https://dl.acm.org/doi/10.1145/2508859.2516734
https://doi.org/10.48550/arXiv.2406.18226
https://doi.org/10.48550/arXiv.2406.18226
http://arxiv.org/abs/2406.18226
http://arxiv.org/abs/2406.18226
https://www.usenix.org/conference/osdi24/presentation/connell
https://www.usenix.org/conference/osdi24/presentation/connell
https://www.usenix.org/conference/usenixsecurity23/presentation/das
https://www.usenix.org/conference/usenixsecurity23/presentation/das
https://eprint.iacr.org/2022/1169
https://eprint.iacr.org/2022/1169
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1145/3319535.3363196
https://doi.org/10.1145/3319535.3363196
https://dl.acm.org/doi/10.1145/3319535.3363196
https://dl.acm.org/doi/10.1145/3319535.3363196
https://engineering.fb.com/2021/09/10/security/whatsapp-e2ee-backups/
https://engineering.fb.com/2021/09/10/security/whatsapp-e2ee-backups/
https://www.preveil.com/blog/product-release-selective-sync-account-recovery/
https://www.preveil.com/blog/product-release-selective-sync-account-recovery/
https://support.lastpass.com/s/document-item?language=en_US&bundleId=lastpass&topicId=LastPass%2Frecover-master-password.html&_LANG=enus
https://support.lastpass.com/s/document-item?language=en_US&bundleId=lastpass&topicId=LastPass%2Frecover-master-password.html&_LANG=enus
https://help.mega.io/accounts/password-management/recovery-key
https://help.mega.io/accounts/password-management/recovery-key
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://www.preveil.com/wp-content/uploads/2019/10/PreVeil_Security_Whitepaper-v1.5.pdf
https://www.preveil.com/wp-content/uploads/2019/10/PreVeil_Security_Whitepaper-v1.5.pdf

23.

24.

25.

26.

27.

28.

29.

30.

Kintsugi: Decentralized E2EE Key Recovery 15

Shamir, A.: How to share a secret. Commun. ACM 22(11), 612-613 (Nov
1979). https://doi.org/10.1145/359168.359176, https://dl.acm.org/doi/10.1145/
359168.359176

Trapp, N.: Key to Simplicity: Squeezing the hassle out of encryption key recov-
ery (Apr 2024), |https:/ /juicebox.xyz/blog/key-to-simplicity-squeezing-the-hassle-
out-of-encryption-key-recovery

de Valence, H.: Ristretto - The Ristretto Group, https://ristretto.group/
WhatsApp: Can’t remember password for encrypted backup (2022), https://
faq.whatsapp.com/639067727894647

WhatsApp: How to reset your two-step verification PIN (2022), https://
faq.whatsapp.com/2183055648554771/

Wood, C., Bourdrez, D., Lewi, K., Krawczyk, H.: The OPAQUE Augmented
PAKE Protocol (2024), https://cfrg.github.io/draft-irtf-cfrg-opaque/draft-irtf-
cfrg-opaque.html

Yurek, T., Xiang, Z., Xia, Y., Miller, A.: Long Live The Honey Badger: Robust
Asynchronous DPSS and its Applications. In: 32nd USENIX Security Symposium
(USENIX Security 23). pp. 5413-5430. USENIX Association, Anaheim, CA (Aug
2023), https://www.usenix.org/conference/usenixsecurity23/presentation/yurek
Zelenka, B., Good, A.: Beehive lab notebook (2024), |https://
www.inkandswitch.com /beehive /notebook/

https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://dl.acm.org/doi/10.1145/359168.359176
https://dl.acm.org/doi/10.1145/359168.359176
https://juicebox.xyz/blog/key-to-simplicity-squeezing-the-hassle-out-of-encryption-key-recovery
https://juicebox.xyz/blog/key-to-simplicity-squeezing-the-hassle-out-of-encryption-key-recovery
https://ristretto.group/
https://faq.whatsapp.com/639067727894647
https://faq.whatsapp.com/639067727894647
https://faq.whatsapp.com/2183055648554771/
https://faq.whatsapp.com/2183055648554771/
https://cfrg.github.io/draft-irtf-cfrg-opaque/draft-irtf-cfrg-opaque.html
https://cfrg.github.io/draft-irtf-cfrg-opaque/draft-irtf-cfrg-opaque.html
https://www.usenix.org/conference/usenixsecurity23/presentation/yurek
https://www.inkandswitch.com/beehive/notebook/
https://www.inkandswitch.com/beehive/notebook/

William Wayman: When the user is setting out the nodes that they want
to share the secrets with, is there a central trusted party that has knowledge of
these nodes?

Reply: The user has knowledge of the nodes, and this is then replicated in a
distributed hash table.

William Wayman: So the user needs to remember these nodes?

Reply: No, this DHT is replicated across all of the Kintsugi nodes. The user
can access these nodes later by querying any recovery node.

William Wayman: So there’s no central party that knows the nodes that a
given user wants to access. There’s no representation of that.

Reply: Yes, there’s no central authority because this list is distributed across
all other nodes. The distributed hash table holds these mappings.!

Fabio Massacci: I like all your examples, but what is the human’s interface in
your protocol? All of your first examples were a human that has lost their device.
Here, you're instead making an example where the user needs a computation
device that can compute an OPRF, so you need another device to actually
recover the keys and do all these other things.

Reply: Recovery takes place locally on the user’s device.

Fabio Massacci: So you need a second device to actually recover the first
device that has been lost.

Reply: Yes, there needs to be recovery servers or other end user devices regis-
tered as recovery nodes. We assume the user has just bought a new device that
they want to recover their data onto and that the recovery flow and its OPRF
computation will take place on this new device.

Jonathan Anderson: If you're not requiring the recovery nodes to do authen-
tication, then if those nodes are being used a lot, how do you do the rate-limiting?
If there’s 10,000 users who are using recovery node 3, what kind of rate-limiting
does it do?

Reply: The rate-limiting is done based on the purported user that’s attempting
recovery, which is limited locally on that recovery node to once every X seconds
or So.

Jonathan Anderson: That means an attacker could perform a denial of service
attack against legitimate recovery attempts by pretending to be me, invoking
the rate-limiting, but they wouldn’t be able to make lots of password guesses. Is
that right?

Reply: Yes, I believe so.?

! We updated the paper to additionally clarify that there is currently no confidentiality
nor integrity guarantee for recovery node information.

2 We are actively brainstorming how to more robustly perform rate-limiting to also
protect against DoS, and the paper proposes IP-based rate-limiting as an alternative

Fabio Massacci: So, as a recovery node, you need to know the identity of the
user, because otherwise you’ll never be able to put a rate limit on them.

Reply: You just need to know the purported identity. User Y could be attempt-
ing to recover User X, for example.

Mark Lomas: So if I've understood this correctly, the user knows that they’ve
succeeded in running this protocol, because they’ve got their data back. But
does anyone other than the user know that it succeeded?

Reply: No.

Mark Lomas: Doesn’t that worry you? Wouldn’t it be useful to have an audit
trail that says ”Somebody appears to be trying to break into Mark Lomas’ ac-
count”? We don’t know whether it was actually Mark’s device, or Susan breaking
in.

Reply: I would imagine it would be easy to have an audit log that tracks recovery
attempts made by purported users.

Mark Lomas: But you won’t know the difference between a successful and a
failed attempt.

Reply: But as a user, you’d be able to see, oh, this wasn’t me.

Mark Lomas: The user could know, but none of the other components in the
system would know.

Martin Kleppmann: (Co-author of paper.) If you wanted the recovery nodes
to be able to find out whether a recovery attempt was successful, you could al-
ways have the user, after they decrypted the envelope, then send back a signed
statement to the recovery notes to let them know after the fact that it was
successful. And if no such statement arrives, then you assume that it was un-
successful.

Fabio Massacci: I think the problem that Mark wants to solve is how someone
else, not the user, can know if somebody’s trying to forge the user’s password.
You can’t assume the user is cooperating if no one’s aware.

Tyler Moore: What would the advantages or disadvantages of adopting the
system be, from the perspective of the platforms themselves? I can see how this
has better security properties than existing efforts. That’s good. But is there
any advantage or disadvantage to say, Signal, adopting this versus their current
protocol? It sounds like these recovery nodes could operate this decentralized
infrastructure, or are you envisioning that the recovery nodes would be oper-
ated by the users themselves? What are the kind of the costs of operating this,
compared to the current approaches? I'm just wondering if that could be an
impediment to these services wanting to adopt your proposal.

Reply: The existing services already have a different type of decentralized in-
frastructure based on having all these HSMs, even if they’re run on different

that comes with its own tradeoffs. In the meantime, however, we argue that genuine
recovery attempts occur so infrequently that this is not a major concern.

cloud providers, under one company’s control, as Signal does. We have to use
decentralized recovery nodes, so you might have to spin up extra servers. As for
the cost of running each of these recovery nodes, you can either use end user
devices, so it could be that one Kintsugi user is acting as a recovery node for
another Kintsugi user, or users can run their own recovery servers, sort of like
Tor’s hobbyist node operator model. These servers can all be operated by differ-
ent service providers, which is a main advantage of the whole decentralization
idea.

Liqun Chen: Is it true that under the secret sharing scheme, anyone else
can request recovery but cannot get the right message back because they’re not
the original user? Does this mean the secret that the user shares cannot be a
low-entropy password? Should it be a high entropy secret?

Reply: Due to the threshold OPRF construction, it doesn’t matter what the
user provides as their password, which becomes the OPRF secret. It’s okay to
use a lower entropy password because under the hood, the OPRF multiplies
the secret by a random scalar, which provides more entropy. Then, assuming
the discrete log problem, this becomes safe to combine with the recovery nodes’
secret, so entropy is less of a problem.

Frank Stajano: At some point, you said that this method was impervious
to social engineering. I am constitutionally skeptical about this type of claim.
Could you please elaborate?

Reply: I said this in the context of existing social recovery schemes, where you
tell your friend, ”Hi, I lost my phone. Can you help get me back in?” Your friend
has to decide if this is the genuine person that they know. With our scheme,
because the recovery nodes operate blind to whatever the user has blinded their
password to be, the recovery nodes don’t have to make this judgment call on
whether or not a recovery request was authentic.

Frank Stajano: On what basis does a recovery node make its decision to
cooperate and apply its share?

Reply: It will always cooperate.?

Martin Kleppmann: The one thing that you have to trust the recovery nodes
to do is to perform the rate limiting, so to not allow more than, say, one password
guess per second per username.

Frank Stajano: So the claim could be rephrased as saying “It is totally socially
engineerable, in the sense that they will always respond, but because there’s a
limit, they can’t go very far.”

Martin Kleppmann: Yes, and with every communication with the recovery
nodes, the adversary can only try one password guess, whereas with a social

3 We assume no Byzantine nodes. Byzantine fault-tolerance can be integrated into
this protocol as a result of other protocol building blocks, but has not yet been
implemented.

recovery system, if you manage to convince the recovery contact once, then
you're in.

Frank Stajano: So “impervious to social engineering” could have meant “It is
not possible to persuade the recovery nodes to cooperate. Instead they cooperate
all the time, but we have a rate limit, and therefore it does not matter.”

Tyler Moore: I think it means that her protocol does not rely on a human
making a critical decision, which is the component which is inherently socially
engineerable.

Tyler Moore: Last question: why do you call it Kintsugi?

Reply: Kintsugi is the Japanese art of mending together broken pottery with
gold. One would fill in the cracks in a broken vase, for example, with gold in order
to highlight the imperfections while making the vase better and new again. In
this case, we’re mending together our distributed key shares into this stronger,
decentralized key recovery protocol. Thank you.

	Kintsugi: Decentralized E2EE Key Recovery

