2507.21139v1 [cs.CR] 23 Jul 2025

arXiv

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, AUGUST 2025 1

Learning-based Privacy-Preserving Graph Publishing Against

Sensitive Link Inference Attacks

Yucheng Wuf, Yuncong Yang!, Xiao Han, Leye Wang, Junjie Wu

Abstract—Publishing graph data is widely desired to enable a
variety of structural analyses and downstream tasks. However,
it also potentially poses severe privacy leakage, as attackers may
leverage the released graph data to launch attacks and precisely
infer private information such as the existence of hidden sensitive
links in the graph. Prior studies on privacy-preserving graph
data publishing relied on heuristic graph modification strategies
and it is difficult to determine the graph with the optimal
privacy—utility trade-off for publishing. In contrast, we propose
the first privacy-preserving graph structure learning framework
against sensitive link inference attacks, named PPGSL, which
can automatically learn a graph with the optimal privacy—
utility trade-off. The PPGSL operates by first simulating a
powerful surrogate attacker conducting sensitive link attacks on
a given graph. It then trains a parameterized graph to defend
against the simulated adversarial attacks while maintaining the
favorable utility of the original graph. To learn the parameters
of both parts of the PPGSL, we introduce a secure iterative
training protocol. It can enhance privacy preservation and ensure
stable convergence during the training process, as supported
by the theoretical proof. Additionally, we incorporate multiple
acceleration techniques to improve the efficiency of the PPGSL
in handling large-scale graphs. The experimental results confirm
that the PPGSL achieves state-of-the-art privacy—utility trade-
off performance and effectively thwarts various sensitive link
inference attacks.

Index Terms—Link Inference Attack, Privacy Protection,

tEqual contribution.

Manuscript received 2 December 2024; revised 6 June 2025 and 7 July
2025; accepted 22 July 2025. Date of publication XX August 2025; date
of current version XX August 2025. The authors thank the senior editor,
associate editor, and anonymous reviewers for their guidance and construc-
tive comments that have tremendously improved the paper. X. Han and J.
Wu are supported in part by the National Key R&D Program of China
(2023YFC3304700). X. Han is supported in part by the National Natural
Science Foundation of China under grant No. 72071125 and 72031001. J.
Wau is supported in part by the National Natural Science Foundation of China
under grant No. 72031001, 72242101, and the Outstanding Young Scientist
Program of Beijing Universities (JWZQ20240201002). (Corresponding au-
thor: Xiao Han.)

Yucheng Wu and Leye Wang are with the Key Lab of High Confidence Soft-
ware Technologies, Peking University, Ministry of Education, Beijing 100871,
China, and the School of Computer Science, Peking University, Beijing
100871, China (e-mail: wuyucheng@stu.pku.edu.cn; leyewang @pku.edu.cn).

Yuncong Yang is with Key Laboratory of Interdisciplinary Research of
Computation and Economics (Shanghai University of Finance and Eco-
nomics), Ministry of Education, Shanghai 200433, China, and the School of
Information Management and Engineering, Shanghai University of Finance
and Economics, Shanghai 200433, China (e-mail: yycphd@ 163.sufe.edu.cn).

Xiao Han and Junjie Wu are with the Key Laboratory of Data Intel-
ligence and Management, Beihang University, Ministry of Industry and
Information Technology, Beijing 100191, China, and the School of Eco-
nomics and Management, Beihang University, Beijing 100191, China (e-mail:
xh_bh@buaa.edu.cn; wujj@buaa.edu.cn)

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org., provided by the author. The material includes
proof of theoretical analysis and additional experimental results. Contact
wuyucheng @stu.pku.edu.cn for further questions about this work.

Graph Publishing, Graph Neural Network, Graph Learning

I. INTRODUCTION

RAPH data are ubiquitous in our daily lives, spanning

the realms of social relationships [1], [2]], communica-
tion networks [3]], and traffic networks [4]], etc. Owing to the
abundant information in graph data, it is common practice
for data holders to publish them for academic and economic
benefits. For example, universities and research institutes such
as SNAP [5]] and AMiner [6] collect and release substantial
volumes of graph data, significantly fostering the development
of graph data mining; social media share their data via open
APIs (e.g., Facebook [7]) for business. However, sharing graph
data without adequate protection may result in severe privacy
leakage problems, especially when encountering various in-
ference attacks [8]-[[10]. According to privacy laws, including
GDPR [11], it is imperative to protect private information so
that users are unwilling to be exposed to data publications [|12].
This leads to an urgent need for privacy protection measures
when sharing graph data.

This work focuses on one of the most common inference
attacks on graphs: sensitive link inference attacks [13[|-[15].
These attacks use various techniques on released graph data
to accurately deduce hidden sensitive links between users,
posing significant risks to their private information. Hidden
sensitive links, such as private friendships and confidential
transactions, are the links that users intentionally conceal to
protect their privacy and remain invisible to the public. For
example, the Facebook platform allows its users to make
their partial friendships private and invisible from others,
and these hidden friendships are regarded as sensitive links.
Despite the invisibility of sensitive links in the published
graph, they can still be inferred because of the pronounced
similarity between their connected node pairs (i.e., sensitive
node pairs). Preliminary empirical analyses show that node
pairs with hidden links exhibit significantly greater similarity
across various metrics than do unlinked node pairs in Table[l]
This suggests that attackers can easily infer the presence of
hidden links by evaluating the similarity between unconnected
node pairs.

To defend against sensitive link inference attacks, a straight-
forward strategy is to reduce the structural proximity of
sensitive node pairs, which applies to both attributed and
unattributed graphs. However, this strategy unavoidably in-
troduces disturbance to the original graph, thereby leading
to a degradation of graph data utility. Therefore, researchers
strive to improve the protection of sensitive link privacy while

0000-0000/00$00.00 © 2021 IEEE

http://ieeexplore.ieee.org.
https://arxiv.org/abs/2507.21139v1

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, AUGUST 2025 2

TABLE I
STRUCTURAL PROXIMITY (INCLUDING AVERAGE SHORTEST PATH LENGTH
AND DISCONNECTION RATIO), ATTRIBUTE COSINE SIMILARITY AND
EMBEDDING COSINE SIMILARITY (WHERE THE EMBEDDING IS PRODUCED
BY GRAPHSAGE [16]]) OF DIFFERENT TYPES OF NODE PAIRS

Node pair Avg. shortest Discon. Attribute ~ Embedding
Dataset . e L
type path length ratio similarity similarity
w/ visible link 1.000 0.000 0.011 0.900
Cora w/ hidden link 3.206 0.164 0.011 0.702
w/o link 7.007 0.254 0.003 0.499
w/ visible link 1.000 0.000 0.010 0.978
LastFMAsia ~ w/ hidden link 2.480 0.089 0.010 0.947
w/o link 5.560 0.124 0.008 0.820

minimizing the loss of graph utility, i.e., seeking a graph
that strikes an optimal privacy—utility trade-off for publishing.
Concerning the computational infeasibility of enumerating
all potential graph structures, they resort to heuristic graph
modification solutions. More specifically, they often randomly
select a small set of node pairs from the original graph
and greedily identify the best link modifications (e.g., adding
or deleting links) among these candidate node pairs for a
favorable privacy—utility trade-off [13]], [[15]]. Nevertheless, the
main limitation of these heuristic solutions is the lack of
guarantees for reaching the optimal privacy—utility trade-off,
which makes them prone to becoming stuck in local optima.
To overcome the limitations of existing methods, we aim to
develop a solution that can derive an optimal graph structure
for release within a reasonable computational time.

Recent advances in graph structure learning (GSL)
have achieved remarkable success in solving graph-related
tasks [[17]. GSL treats the adjacency matrix of a graph as
a set of continuous parameters, enabling the application of
optimization techniques to refine the parameterized matrix and
determine the optimal graph structure for specific objectives.
However, most existing GSL methods focus on designing ob-
jective functions that enhance robustness, smoothness, and task
performance [18], [[19], with limited attention given to privacy
protection. This work proposes and investigates the prob-
lem of privacy-preserving graph structure learning, aiming
to identify the optimal graph structure that achieves the
best privacy-utility trade-off for graph publishing. To
address this problem, we face the following challenges:

Challenge 1: Differentiable and universal privacy protection
objective. It is crucial to design an appropriate objective to
navigate the graph learning process toward protecting sensi-
tive link privacy. While existing privacy-related studies have
proposed some privacy protection objectives, they are typically
nondifferentiable and thus unsuitable for graph structure learn-
ing [15]. How can we create a differentiable privacy objective
that provides a supervisory signal throughout the learning
process? In addition, how can we guarantee that the learned
graph, guided by this objective, is robust enough to withstand
a variety of sensitive link inference attacks?

Challenge 2: Optimal privacy—utility trade-off. Solely focus-
ing on privacy protection can severely degrade the utility of the
learned graph, thereby rendering graph-based tasks ineffective.
How can we design a utility objective function that ensures
that the learned graph retains as much utility as possible from

the original graph? Furthermore, how can we balance privacy
and utility to jointly learn a graph that maximally preserves
privacy while minimizing utility loss?

Challenge 3: Effective and efficient training protocol. The
graph learning process is complex and involves multiple
objectives and many trainable parameters (especially in large
graphs). While most GSL methods adopt an alternating or end-
to-end training protocol for the components corresponding to
different objectives [17], these protocols may expose privacy
during training and lack guarantees of stable convergence.
How can we design an effective and efficient training protocol
to avoid suboptimal solutions and unstable convergence while
ensuring high efficiency and scalability?

By jointly considering the above challenges, this work
makes the following contributions:

o To the best of our knowledge, we are the first to formal-
ize the problem of learning a privacy-preserving graph
against sensitive link inference attacks, which aims to
learn graphs for publishing with the optimal privacy—
utility trade-off. Our research broadens both the realms
of privacy-preserving and graph structure learning studies.

« We propose a generic Privacy-Preserving Graph Structure
Learning (i.e., PPGSL) framework, which is designed to
automatically learn an optimal graph structure that protects
sensitive link privacy. Within the PPGSL, we develop an
effective and differentiable privacy protection objective
derived by establishing a surrogate attack model and
conducting inference on sensitive links (tackling Challenge
1). We also devise a utility objective that minimizes
the distortion between the learned and original graphs,
guiding the learning process toward an optimal privacy—
utility balance alongside the privacy protection objective
(tackling Challenge 2). To ensure stable convergence, we
design a secure iterative training protocol (i.e., SITP) and
introduce speed-up strategies to further increase scalability
and efficiency (tackling Challenge 3).

o Rigorous theoretical analyses confirm the key benefits of
PPGSL with SITP, including stable convergence, optimal
privacy—utility trade-off, and universal defense capability.

We conduct extensive empirical evaluations on six real-
world graph datasets across two common utility tasks (node
classification and link prediction). Our results show that the
PPGSL achieves a superior privacy—utility trade-off compared
with baseline methods and effectively defends against various
sensitive link inference attacks!T]

II. PROBLEM FORMULATION

A. Preliminaries

Let G = (V, E) = (A, X) be a graph, where V is the set of
nodes and E C V xV represents the set of publicly observable
links on the graph. N = |V/| is the total number of nodes. For
the unweighted graph, we use A = {w;;} € {0, 1} to
denote the adjacency matrix of G, where the entry w;; = 1
if the link (v;,v;) € E; otherwise, w;; = 0. For the weighted

I'The code is available at https:/github.com/wuyucheng2002/PPGSL, along
with detailed parameter settings and experimental results of the PPGSL.

https://github.com/wuyucheng2002/PPGSL

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, AUGUST 2025 3

graph, A = {w;;} € RV*N where w;; is the edge weight of
(vi,v). X € RVXP denotes the node feature matrix, where
D is the dimension of the node features. Let G’ = (V, E') =
(A’ X') denote the released graph dat

Definition 1 (Sensitive links). The set of sensitive links,
denoted as Es CV XV, exists yet remains unobservable on
graph G due to privacy concerns, signifying that EsNE = @.

Definition 2 (Sensitive node pair). A pair of nodes v; and v,
is called a sensitive node pair if (v;,v;) € Es.

Furthermore, we define nonexistent links as pairs of nodes
that are not connected by any link (neither a publicly observ-
able nor sensitive link) in the original graph, denoted by E,,.
Thus, we have £, N E;, =J and £, N E = &.

B. Sensitive Link Inference Attacks

Attackers’ goal. Attackers aim to accurately infer the
existence of sensitive links Es within the graph G. Taking
Facebook as an example, it shares certain user attributes (e.g.,
nickname and age) and public friendship data via an open API,
typically for commercial purposes. However, this data sharing
also poses a threat to the privacy of users who choose to
hide their private friendships from a public view. Specifically,
malicious data users (i.e., attackers) can retrieve the public
social network data via the API and leverage it to conduct
inference attacks on the hidden private friendships between
the privacy-sensitive users. Leaks of private friendships not
only violate user privacy but can also have more severe
consequences. For example, attackers may exploit hidden links
to defraud or blackmail users or execute advanced network
attacks such as Phishing attacks [20] and Sybil attacks [21]].

Attackers’ knowledge. Attackers can access the released
graph G’ on public platforms but do not have any information
on the sensitive links F.

Attack model. Attackers can employ various algorithms to
establish an attack model (denoted as M), such as employing
network embedding similarity to infer link existence [22]]. Note
that the true sensitive links are unavailable to attackers, and the
only available information is G’. Therefore, they may sample
a set of existing/nonexistent links from G’ as positive/negative
samples to construct a dataset used to train the attack model
M and then conduct inference on E, via the well-trained
model. This is reasonable because sensitive pairs are expected
to exhibit high similarity, such as connected node pairs (as
demonstrated in Sec. . Formally, given G’ and the chosen
attack model M, the training process aims to minimize the
expected inference error on FEj, and Ej, where E, C E’
denotes the existing links sampled from G’ and E!, represents
the nonexistent links sampled from G':

M* = arg n}&ln(error(M(G/), E,UE,)) ey

After the training process of the attack model, attackers utilize
the well-trained model M™ to infer the existence of F.

2Note that we do not add or remove nodes on the graph G (ie., V' =V),
so we omit V' here.

C. Problem Definition

Now, we define our privacy-preserving graph structure
learning problem as follows: Given an original graph G
and a set of sensitive links FE,, our objective is to learn
a graph G’ via a graph structure learning function Hg(-)
with a set of parameters 6 such that G’ = Hy(G). The
learned graph G’ should maximize the error of the well-trained
attack model M™ in inferring the sensitive links F; to protect
privacy; G’ should also minimize the data distortion for utility
preservation. Mathematically, our problem can be formulated
as follows:

Privacy goal: mgx(error(M*(Hg(G)),Es)),)
M* =arg rrjl\iln(error(/\/l (Ho(G)), E, UE,)) (3
Utility goal: nlgn(dist(Hg(G),G)) 4)

where dist(-,-) is a general distance function used to quantify
the difference between the topologies of two graphs.

III. PROPOSED FRAMEWORK: PPGSL

In this section, we elucidate our proposed privacy-
preserving graph structure learning (i.e., PPGSL) framework,
which learns a graph with the optimal privacy—utility trade-
off against sensitive link inference attacks. In particular, the
PPGSL consists of two iterative training modules (i.e., sur-
rogate attack module and privacy-preserving graph learner
module), and its overview is depicted in Fig. [T} The surrogate
attack module imitates an attacker conducting inference attacks
in two phases. First, it constructs a surrogate attack model
that is based on a given learned graph; second, it uses the
attack model to infer the existence of sensitive links and
induces a privacy leakage risk due to the current graph.
The privacy leakage information is subsequently delivered
to the other graph learner module as a supervisory signal
of the learning process. In addition, the privacy-preserving
graph learner module parameterizes the graph structure to
be trainable and manages the learning process. It updates the
graph structure to reduce privacy leakage while controlling the
distortion to maintain data utility. We also propose a secure
iterative training protocol to iteratively train the two modules,
enhancing both the privacy level of the learned graph and
the stability of the optimization process. In addition, several
speed-up strategies are put forth to improve the scalability and
efficiency of the PPGSL.

A. Surrogate Attack Module

To guide our graph learner in producing a privacy-
preserving graph, we need to provide supervisory signals that
direct the learned graph structure toward minimizing privacy
leakage. To achieve this goal, we first establish a surrogate
attack model to simulate inference attacks on sensitive links.
The privacy leakage risk induced by this surrogate attack
model then serves as a supervisory signal, instructing the graph
learner to produce a graph that resists inference attacks.

Previous studies have proposed the use of heuristic metric-
based surrogate attack models, such as the resource allocation

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, AUGUST 2025 4

Privacy Protection
;— Maximize inference error.:
]
o Yh Graph Surrogate i
Original G 0> "e;;"er attack model H
0
High privacy risk 7y &7 GNN f Inference
High data utility ! Encoder /¢|[5>| attack
i simulation
Prediction
. . 1
«+++ Sensitive links i ; head 8y
— Existent links H O55C
--- Nonexistent links : Learned G’
! a Utility Maintenance
] . .
1 Measure data distortion
Post-
processing
i -
]
|:|'> Dat i ..
- - i ata passing Original G Learned G’
Low privacy risk I ===» Back-propagation T
High data utility L Minimize data distortionJl

Fig. 1. Overview of the PPGSL.

index [[15]], for similar purposes. However, these approaches
face two significant limitations. First, simple heuristics capture
limited information, providing only local structure proximity
details, which may result in weak surrogate attack models
and imprecise supervisory signals. Second, existing heuristic
metric-based surrogate attack models are nondifferentiable,
making them unsuitable for providing signals that support gra-
dient back-propagation in our learning-based graph structure
optimization process.

To address these issues, we propose a machine learning
(ML)-based surrogate attack model. As described in Sec.
the relatively high structural proximity between sensitive node
pairs significantly contributes to the ease with which attackers
infer sensitive links. By leveraging ML techniques, we develop
a surrogate attack model that effectively exploits structural
proximity information within the graph. Furthermore, this ML-
based surrogate attack model ensures that both the training and
inference processes are fully differentiable.

1) Surrogate Attack Model Architecture: Our surrogate at-
tack model comprises a graph neural network (GNN) encoder
and a prediction head. Its forward propagation is differentiable,
allowing us to utilize its information to direct the optimization
of graph structure learning through gradient back-propagation.
Moreover, GNN encoders are widely used by attackers and
present effective attack performance in previous works [14],
making our surrogate attack model highly representative.

In particular, we employ a GNN encoder (denoted as fy) to
generate informative node embeddings, as GNNs are highly
expressive for representing graph data [23]. As analyzed in
Sec. [l node pairs with sensitive links exhibit increased struc-
tural proximity, a vulnerability often exploited by attackers.
The GNN effectively identifies this relationship—nodes with
close structural distance will produce embeddings with high
similarity as the GNN iteratively aggregates neighborhood
information. Generally, any GNN model, such as GCN [24]]
or GraphSAGE [16], can serve as the encoder.

Additionally, the prediction head (denoted as d,,) determines
the existence of a link on the basis of the learned node
embeddings of its two ends. It uses a similarity metric such as

cosine similarity or inner product [14] or employs multilayer
perceptrons (MLPs) that concatenate the embeddings of the
target link’s two ends as input vectors and output the similarity
score of the link. The prediction head further includes a
sigmoid function o(z) = 1/(1 + e %) € (0,1) to convert
the similarity score into the predicted probability of a link’s
existence. Specifically, a probability near 0 suggests dissimilar
node embeddings and the absence of the target link, whereas
a probability close to 1 indicates similar node embeddings and
the presence of the target link. The GNN encoder f, and pre-
diction head J,, together form an effective and representative
attack method, which substitutes M in Eq. [

2) Surrogate Attack Model Training Objective: Essentially,
our surrogate attack model is trained to infer the existence
of links on the basis of node embedding similarity in the
learned graph. Given a learned graph G’ = Hy(G), we first
construct the training dataset for the surrogate attack model by
sampling an edge set £}, from G’ as the positive samples and
a set of nonexistent edges FE/, as the negative samples. Then,
we train the surrogate attack model by making the predicted
link existence probability close to the edge weight for positive
samples and close to O for negative samples. The objective is
as follows:

%ﬂn Loattack =E(y;,0;)eB, CE (0,2, 25),w};)

@ R (5)
+ E(U,‘,,’L}j)EE;L CE (54,0 (2’17 Z;)? 0)

where CE(-,-) is the cross-entropy function. We use 7' =
fo(G") to denote the learned node representations on graph
G', z; denotes the representation of node v;, and wj; is the
weight of edge (v;,v;). Intuitively, using Eq. [5| connected
nodes are forced to have similar embeddings (the degree of
similarity relates to the edge weight), whereas unconnected
weights are repelled to exhibit orthometric embeddings.

3) Inference Attack Simulation: Once the training of the
surrogate attack model is complete, it can be used to infer the
existence of sensitive links. By inputting each sensitive link
into the model, we obtain a predicted probability indicating
its existence. Essentially, the simulation results provide an
estimate of the privacy leakage of sensitive links. To precisely
estimate the risk, we ensure that the surrogate attack model is
adequately trained for convergence.

B. Privacy-Preserving Graph Learner Module

The privacy-preserving graph learner is a nonlinear learning
model that transforms an original graph into a new privacy-
preserving graph. It comprises a graph model architecture and
learning objectives that address both privacy protection and
utility maintenance goals. We will subsequently elaborate on
these components.

1) Graph Model Architecture: Like various graph model ar-
chitectures in recent studies for other graph learning purposes,
such as graph denoising [25]], [26], we apply a straightforward
full graph parameterization (FGP) approach to construct the
graph model architecture for our privacy-preserving aim. FGP
treats each entry of the adjacency matrix of a graph as
an independent parameter and allows the learning of any
adjacency matrix. We use H with parameters 6 to denote

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, AUGUST 2025 5

the graph model architecture using FGP, i.e., G' = Ho(G).
Since # may encompass nonsymmetrical and negative values,
which are impermissible for an adjacency matrix, we refine
to derive the learned adjacency matrix with symmetrization
and truncation techniques. In particular, symmetrization is
executed as #° = (0 + 07)/2. Additionally, we confine the
values of 67, between 0 and 1, truncating those falling below
0 or exceeding 1, 65} = min{max{6;;,0},1} € [0,1]. In
summary, Hg(G) can be determined as follows:

0+67
5 ,0},1} (6)

As a result, the adjacency matrix A’ = Hy(G) € [0, 1]V*N is
continuousf’| and we can interpret its term ng as the weight
of edge (v;, v;) throughout the training phase. Notably, while
we use FGP here for its simplicity and flexibility, the proposed
PPGSL framework can accommodate alternative graph model
architectures in place of FGP.

2) Privacy Protection Objective: As described in
Sec. given a graph G’ produced by graph learner, the
surrogate attack module trains an attack model and simulates
inference attacks on sensitive links. The results of the attack
serve as an estimate of the privacy leakage of sensitive links
in the produced graph. To guide the graph learner toward
reducing privacy leakage, we use the inference results of
the surrogate attack model on the current learned graph as a
supervisory signal. Specifically, we aim to update the graph
structure so that the surrogate attack model is more likely to
misclassify sensitive links as nonexistent, thereby achieving
the privacy protection goal. This objective is formulated as:

H(6) = min {max

H%in Lpriv =]E(vi,vj)EEs CE (530(‘2;7 Z;)v 0) @)

3) Utility Maintenance Objective: 1t is also important to
maintain the utility level of graph data for downstream ap-
plications. As delineated in Eq. d] we measure the loss of
data utility by the distortion between the original graph and
the learned graph. The original graph data are considered
to possess the highest level of data utility, and any data
distortion will lead to a deterioration in utility, as noted in
prior studies [27]-[29]]. In essence, more pronounced data
distortion indicates greater loss in data utility. Specifically,
the data distortion can be ascertained via distance metrics,
e.g., the Frobenius norm. We aspire to guide the learned
graph structure toward minimal distortion; hence, the utility
maintenance objective function can be instantiated as follows:

min Lot = |4 — Al ®)

Optimizing Eq. [8| guarantees that the learned adjacency matrix
A’ aligns closely with the original adjacency matrix A, thereby
preserving the utility of the learned graph data. Since this
objective provides a universal gauge and performs well across
various downstream tasks, it is particularly suitable for graph
publishing scenarios, where downstream tasks are unknown.

3Since we only learn the graph structure and do not generate new node
attributes, i.e., G’ = (A’, X), we also use the expression A’ = Hy(G) for
brevity.

4) Overall Objective: To derive the overall objective for
optimizing the graph learner, the privacy protection and utility
maintenance objectives can be combined as follows:

Ingin £learne’r = Ep'riv + aﬁutil (9)

where a € [0,400) functions as a hyperparameter to control
the trade-off between the privacy protection effect and the
data utility level. A smaller o indicates intensified privacy
protection, albeit at the expense of reduced data utility.

5) Postprocessing: 1f the original graph G is unweighted,
we need to recover the learned adjacency matrix A’ = Hy(G)
with continuous values into an unweighted adjacency matrix
A with discrete values for publishing. To this end, we em-
ploy a postprocessing method using an independent Bernoulli
distribution 7~ with the edge weight A;j as the probability
parameter to discretize the learned adjacency matrix, i.e.,
Al; = T(Aj;). Thus, the final published adjacency matrix
A" possesses entries of either 0 or 1.

C. Secure Iterative Training Protocol

Analytically, it is challenging to simultaneously optimize
the two parameter groups in our framework’s surrogate attack
model and privacy-preserving graph learner. To address this,
we introduce an innovative secure iterative training protocol
(denoted as SITP) that iteratively trains both models. Un-
like typical adversarial regularization approaches (e.g., Ad-
vReg [30]), which alternate training between the two models
until they converge simultaneously, SITP focuses on training
the privacy-preserving graph learner by using a well-trained
surrogate attack model at each step of the gradient descent
process to update the graph learner’s parameters 6. In other
words, SITP iteratively retrains a surrogate attack model and
performs a gradient descent update for graph structure learning
until the privacy-preserving graph learner converges. Formally,
considering that the two sets of variables ¢ (of f4) and 0 (of
Hp) in the PPGSI_EL SITP performs the following optimization
procedure in the ¢-th iteration:

1) Reinitialize and optimize ¢: At each iteration, reinitialize

¢ randomly and optimize it to minimize Lg¢tqc, With 6
fixed, yielding

¢(t+1) = arg mgn Lflttack(¢7 o(t)) (10)

2) Update 6: Fix ¢t and perform one step of gradient
descent on @ to minimize Licqrner (01, 6), yielding

00 =09 — Vg Licarner(0"TD,00) (1)

where 7 is the learning rate.

Our proposed SITP offers several advantages in the privacy-

preserving data publishing scenario:

« Enhanced privacy preservation. In the initial training
phase, the surrogate attack model inevitably encodes the
privacy information from the original graph, as it is trained
to infer sensitive links on the basis of this information.

4o (of d) can be seen as part of ¢ (of fy), as ¢ and ¢ are updated jointly.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, AUGUST 2025 6

If the attack model is continually trained without reini-
tialization, this privacy-related prior cannot be eliminated,
leading to a significant divergence from the true attack
model. Consequently, the graph learner may stray from
developing a genuinely privacy-preserving graph. Reini-
tializing the attack model periodically in SITP, however,
helps ensure that the learned graph achieves greater privacy
preservation.

« Stable convergence. The surrogate attack model is opti-
mized to converge in each update step, allowing the graph
learner to converge more reliably. Theorem [I] validates the
convergence property of the graph learner Hy under our
proposed SITP.

« Efficient training process. Compared with training the
graph learner, training the surrogate attack model is rel-
atively straightforward and converges quickly because
of its fewer parameters and simpler training objectives.
Therefore, retraining the attack model after each gradient
descent step of the graph learner incurs tolerable compu-
tational overhead and can even reduce the overall training
time compared with typical training protocols.

We also empirically compare SITP with typical training

protocols in terms of privacy—utility trade-offs, convergence,
and training efficiency, as shown in Sec.

D. Speed-up Strategies

The scalability and efficiency of the vanilla PPGSL may
encounter limitations for two reasons:

(1) The space complexity of the graph learner Hy, exacer-
bated by the FGP method, necessitates O(N?) parameters
for optimization, thereby posing a significant scalability
issue when the graph is large.

(2) Each iteration for updating the learned graph G’ requires
retraining the surrogate attack model until convergence
to achieve accurate privacy leakage estimation, which is
time-consuming. Thus, we propose two speed-up strate-
gies to increase the scalability and efficiency of the
PPGSL as follows.

PPGSL-sparse. Since graphs are typically sparse in practice
(i.e., |E] < N?), we can parameterize only the existing links
and portions of nonexistent links in the original graph rather
than parameterizing the whole adjacency matrix via the FGP
method. Specifically, we define a parameter of the sampling
factor denoted by k, and we randomly sample a set of (kx|E]|)
nonexistent links. We then parameterize the edge weight of
each existent and sampled nonexistent link. By this strategy,
we can substantially reduce the computational complexity of
the PPGSL from O(N?) to O((k + 1) x |E|). Moreover, a
larger sampling size k for nonexistent links leads to enhanced
privacy protection (owing to the potential structural noise of
adding edges) but with increased computational overhead.

PPGSL-skip. Considering the subtle variation in the learned
graph structure within each update, we can persistently utilize
the surrogate attack model derived from the preceding graph
structure, thereby reducing the update frequency of the sur-
rogate attack model and reducing the overall model training
time. We define a parameter of update interval, symbolized by

Algorithm 1 Pseudocode of the PPGSL Framework

Input: the original graph G = (A, X), the set of sensitive links s,
hyper-parameters «, k, p, the training epoch N; and learning
rate 71 of the surrogate attack model, the training epoch N2 and
learning rate 72 of the privacy-preserving graph learner

Output: the learned graph structure A” for publishing

1: Sample (k x |E|) nonexistent edges and construct the graph
learner Ho

: Initialize parameters of the graph learner Ho

: Construct the surrogate attack model fg, d,

for ez = 0; e2 < Na; e2 ++ do
Generate a graph structure, A’ < Hqo(G)
if e2 % . = 0 then

Initialize parameters of surrogate attack model fg, d
for e; =0;e1 < Ni;e1++ do
Sample sets of existent and nonexistent links from A’
Calculate La¢¢ack in Eq. |5 based on A’
Laat(;ack) —

TeYRIUNRELN

Update parameters, ¢ < ¢ — n1 - 9
9Lattack

—_

p—m: o

12: end for

13: end if

14: Calculate Licqrner in Eq. E] based on fy, d,, A’, and A

15: Update parameters, 6 <— 6 — 1o - a’%%

16: end for

17: Generate a graph structure, A’ < Hq(G)

18: Discretize the graph structure using Bernoulli sampling function
T, A" « T(A)

19: return A"

1. Specifically, we retrain the surrogate attack model every p
iterations, as opposed to constant updates at each iteration.
Amplifying © may curtail time expenditures but yield less
precise results.

The pseudocode of our proposed PPGSL framework with
two speed-up strategies is shown in Algorithm [T}

IV. THEORETICAL ANALYSES

Rigorous theoretical analyses prove the convergence prop-
erty of the PPGSL’s training protocol, the optimality of its
privacy—utility trade-off, and its generalizability across var-
ious attack methods. The detailed proofs are provided in

Appendix [A]

Theorem 1 (Convergence of the PPGSL). In PPGSL train-
ing procedures, graph learner Hg converges under SITP.

Proof Sketch. Under the training of the PPGSL with SITP,
the following inequality holds from the ¢-th iteration to the
(t 4 1)-th iteration (the detailed proof is in Proposition [I)):

E[Elearner (¢(t+1)7 9(t+1))] S E[£learner(¢(t)7 9(1‘))] (] 2)

which implies that each full iteration (reinitializing and opti-
mizing ¢, then updating) results in a nonincreasing expected
value of the loss function Ljeqpner- Since the expected value
of Licarner 18 nonincreasing at each iteration and is assumed
to be lower-bounded, by the Monotone Convergence Theorem,
E[Licarner (¢, 0)] converges to a stable value as the iteration
index t increases. Therefore, graph learner Hy converges. [

Theorem 2 (Empirical Optimal Privacy-utility Trade-off
of the PPGSL). Minimizing the training objective Licarner

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, AUGUST 2025 7

TABLE II
STATISTICS OF THE DATASETS.

Dataset #Nodes #Links #Features #Labels
PolBlogs 1,490 19,025 0 2
LastFMAsia 7,624 27,806 128 18
DeezerEurope 28,281 185,504 128 2
Cora 2,708 10,556 1,433 7
CiteSeer 3,327 9,104 3,703 6
PubMed 19,717 88,648 500 3

of the PPGSL achieves the empirical optimal privacy—utility
trade-off at a specified utility level.

Proof Sketch. Relying on the Lagrangian dual method, we can
prove that minimizing Ljcqrner can be reinterpreted as mini-
mizing privacy loss while adhering to a given utility constraint
(the detailed proof is in Proposition [2). This ensures that the
empirical optimal privacy—utility trade-off is attained. O

Theorem 3 (Generalized Privacy Protection Performance
of the PPGSL). The PPGSL provides a lower bound of the
privacy protection level on sensitive links in a graph regardless
of the sensitive link inference model adopted by attackers. The
inference error probability p(Es # M*(G")) of any inference
model M* that attempts to infer E from the published graph
G’ is lower-bounded by:

H(E,) - I(G';E,) — 1
log |&;|

p(Es # M*(G")) > (13)

where |Eq| denotes the cardinality of the set of possible values
of Es, I(-,-) represents mutual information, and H (-) denotes
information entropy. Furthermore, this lower bound increases
during the PPGSL training process.

Proof Sketch. Motivated by prior studies that confirmed a
relationship between the inference success of any algorithm
and mutual information measures [31], [32]], we establish a
connection between PPGSL and mutual information. Let I(-, -)
denote mutual information; then, the privacy goal of our prob-
lem can be reformulated as ming I(G’; E,). We aim for the
learned graph G’ to contain as little mutual information about
sensitive links as possible. In the PPGSL training process, the
mutual information I(G’; E,) decreases (the detailed proof is
in Proposition [3).

According to Fano’s inequality, the inference error prob-
ability p(Es; # M*(G')) of any inference model M*
that attempts to infer E; from G’ is lower-bounded by
%, where H(E;) and log |€;| are constants for
a given prisvate information variable E. Consequently, as the
mutual information I(G’; F) decreases, the lower bound on
the inference error probability p(Fs; # M*(G')) increases,
where M™ is any sensitive link inference model trained on
the published graph G’. Therefore, the PPGSL inherently
increases the inference error probability by maximizing this
lower bound, regardless of the inference algorithm used. [

TABLE III
TRADITIONAL NODE PROXIMITY METRICS FOR LINK INFERENCE
ATTACKS. N (z): THE NEIGHBOR SET OF VERTEX x; Order: THE MAXIMUM
HOP OF NEIGHBORS NEEDED TO CALCULATE THE PROXIMITY SCORE.

Metrics Formula Order
Common Neighbor (CN) N (z) NN (y)] first

Adamic-Adar (AA) ZZeN(me(y) eV Second
Resource Allocation (RA) Zze/\/’(m)m/\/’(y) \N%z)l second

V. EXPERIMENTS
A. Experimental Setup

1) Datasets: We conduct experiments on six commonly
used real-life datasetf]> including three social networks: Pol-
Blogs, LastFMAsia and DeezerEurope; and three citation
graphs: Cora, CiteSeer and PubMed. Their statistics are sum-
marized in Table [l The dataset descriptions are as follows:

« PolBlogs [33] is a relationship network of political blogs,
where nodes represent blogs and edges signify links ex-
tracted from their front pages. Each node is labeled as
either liberal or conservative.

o LastFMAsia [34] is a social network of users from Asian
countries on the music service LastFM. Nodes represent
users, edges denote friendships, and node labels are users’
home countries, with features based on preferred artists.

o DeezerEurope [34]] is a social network of European
Deezer users. Nodes represent users, and links represent
mutual follower relationships. Node labels stand for gen-
der, and features are derived from favorite artists.

e Cora, Citeseer and PubMed [35] are citation networks,
where nodes stand for documents and edges denote cita-
tions. Each node has a bag-of-words feature vector and is
labeled by the document category.

Following prior works [13], [15], we arbitrarily mask 10%
of existing links within each graph as sensitive links and
randomly select an equivalent quantity of nonexistent links
as negative samples for evaluation.

2) Sensitive Link Inference Attacks and Privacy Metric:
To assess the privacy protection efficacy of the PPGSL, we
employ diverse methods to conduct various sensitive link
inference attacks on its generated published graph. A lower
inference success rate indicates stronger privacy protection.
We consider eight distinct attacks that fall into the following
two categories:

o Structure-based attacks: Common Neighbor (CN),
Adamic-Adar (AA), Resource Allocation (RA), and
SEAL [36]. These methods calculate node proximity
scores as probabilities for the existence of sensitive links.
The three traditional metrics are presented in Table
SEAL extracts local subgraphs around each target link
and trains a link prediction model based on them. We
implement SEAL with node attributes disregarded and the
hop number set to 2.

« Embedding-based attacks: node2vec [22] with co-
sine similarity (N2V+sim), GAE [37] with cosine sim-

SAll datasets are available from the PyTorch Geometric libraries:
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html.

https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, AUGUST 2025 8

ilarity (GAE+sim), and combinations with LinearSVC
(N2V+ML, GAE+ML). These methods first obtain node
embeddings through graph representation learning and
then compute the probability of sensitive link existence
via similarity metrics (e.g., cosine similarity [13]], [14])
or classifiers (e.g., LinearSVC [38]], [39]). For classifiers,
the input features are derived from concatenating the
embeddings of two nodes, using published graph links as
positive samples and an equal number of unconnected node
pairs as negative samples for training.

In alignment with previous works [13]], [40], we adopt
the AUC (area under the ROC curve) as the privacy metric.
A higher AUC indicates that it is easier for an attacker to
infer sensitive links, leading to higher privacy risks and worse
privacy protection effect.

3) Utility Evaluation Tasks and Metrics: We leverage two
widely used graph-based tasks, i.e., link prediction and node
classification, to evaluate the utility of the published graph.

Link prediction attempts to predict the missing or potential
links on a graph [36], [41]. We randomly mask 10% of the real
links from the original graph as positive testing links and sam-
ple the same number of nonexistent links as negative testing
links. The set of testing links is nonoverlapping with the set of
sensitive links. For a published graph, we train a GNN model
via unsupervised loss to procure node embeddings [[16] and
then compute embedding similarity to predict the existence of
testing links. We employ the AUC as the performance metric
of link prediction.

Node classification aims to correctly classify the unlabeled
nodes on the basis of the proportion of labeled nodes [14],
[40]. We randomly split the nodes of the original graph,
allotting 30% of the nodes for training and reserving the
remaining 70% for testing. Given a published graph, we train
a two-layer GCN model [24] in a semisupervised manner [24]]
to predict node labels. The F1 score is used to measure the
performance of node classification.

4) Baselines: We compare the privacy—utility trade-off per-
formance of PPGSL with that of seven baselines:

Random [15] randomly removes partial links and adds the
same number of new links to generate perturbed graphs.

DICE [42]] generates perturbed graphs by deleting links
connected to nodes with sensitive links and adding links
between nodes without sensitive links.

PrivGraph [43] exploits community information to gener-
ate synthetic graphs with differential privacy guarantees.

EdgeRand [40] is an edge-DP defense strategy, which
randomly flips each entry in the adjacency matrix according
to a Bernoulli random variable.

LapGraph [40] also guarantees edge—DP. It precalculates
the original graph density using a small privacy budget and
uses that density to clip the perturbed adjacency matrix.

RW-LP [44] replaces real links with fake links between the
starting and terminal nodes of random walks.

PPNE [13]] samples some candidate node pairs for link
perturbation and then iteratively selects the optimal pairs with
a high privacy-utility trade-off to yield the perturbed graph.

5) Running Environment: Our experimental platform is a
PC with an Intel i5 12600KF CPU (10 cores @ 3.7 GHz), 32

GB of RAM, and an NVIDIA RTX 4070Ti SUPER GPU (16
GB). The operation system is Ubuntu 22.04 LTS. We utilize
Python 3.11, PyTorch 1.12.1, and PyTorch Geometric 2.3.1.

6) PPGSL Implementation: If not specified, we employ the
PPGSL-skip (¢ = 50) and the PPGSL-sparse (kK = 1) speed-
up strategies. We adjust a € [0,0.01] to obtain graphs with
varying levels of privacy preservatiorﬂ For the GNN encoder
fo, we utilize a 2-layer GCN with hidden dimensions of [128,
64] and set the training epoch at 500. For the prediction head
d,, we choose cosine similarit For the graph learner Hgy, we
fix the training epoch at 500 and choose the Adam optimizer
with a learning rate of 0.5 to optimize the parameterized graph
structure. We run all the experiments five times and report the
average results.

B. Experimental Results

1) Privacy—utility Trade-off Performance Compared with
Baselines: We report the privacy—utility trade-off performance
of the PPGSL and five baselines under the utility tasks of
link prediction (Fig. J) and node classification (Fig. [3). In
this part, we employ GAE+sim as the attack method because
of its widespread use and superior attack performance [13],
[14]. We plot two variants of the PPGSL where £ = 0 or
k = 1: the PPGSL (k = 0) signifies the parameterization
solely of existing links, confining the structure perturbation to
edge deletion; the PPGSL (k = 1) also parameterizes a subset
of nonexistent links, expanding the structure perturbation to
encompass both edge deletion and addition.

Herein, a low value on the y-axis means higher privacy
protection (lower attack performance), whereas a high value on
the x-axis indicates better utility. We see that directly releasing
original graphs poses a significant risk of privacy leakage for
sensitive links. The points at the top right of the curves denote
the attack AUC and utility evaluations on the original graphs,
where these attacks achieve extremely high attack AUC scores.

Note that by modifying the hyperparameters to control the
privacy—utility trade-off, we can draw a line for each method
to show how utility changes with varying levels of privacy
protection. Most baselines exhibit limited privacy protection
capability, with the lowest attack AUC failing to reach 50%
(almost equivalent to random guessing, representing optimal
privacy protection). In contrast, the PPGSL (k = 1) easily
achieves an attack AUC of approximately 50%, demonstrating
strong privacy-safeguarding ability.

With respect to the performance of the privacy—utility trade-
off, the PPGSL and the baselines show the same pattern: with
greater perturbation, the privacy attack becomes more difficult,
and the utility decreases. More importantly, we observe that
the PPGSL (¢ = 0) and the PPGSL (k = 1) usually
provide greater privacy protection given the same utility,
thereby achieving a better privacy—utility trade-off (i.e., the
PPGSL often appears in the lower right corner of the figures).
Specifically, for Cora in Fig. 2] when the utility level (AUC

%Guidance for selecting « is provided in Appendix

7To demonstrate the robustness of our approach, we also evaluate its
performance with various surrogate attack models. The results and analysis
are presented in Appendix E}

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, AUGUST 2025 9

PolBlogs LastFMAsia DeezerEurope Cora CiteSeer PubMed
95
& 9
é 85
8 80
75
: 70
< 65
]

& 60
< 55
50

70 80 45 55 65 75 85 95

Random -+ DICE PrivGraph ——EdgeRand ——LapGraph ——RW-LP -+ PPNE ——PPGSL (k=0) —PPGSL (k=1)

Fig. 2. Privacy—utility trade-off performance of the PPGSL. X-axis: AUC (%) of the utility task in terms of link prediction; Y-axis: AUC (%) of the GAE+sim
attack method. Points at the top right of the curves represent evaluations of the original graph. The EdgeRand and LapGraph methods result in an out-of-

memory error on DeezerEurope.

PolBlogs

90
85
80
75
70
65
60
55
50

85 30 40 50 60 70 80

LastFMAsia DeezerEurope

Attack AUC (%)

Random —+DICE PrivGraph ——EdgeRand

—LapGraph

CiteSeer PubMed

1.4

66 35 45 55 65 75 85 35 75 55

Cora

—~RW-LP -=PPNE —PPGSL (k=0) —PPGSL (k=1)

Fig. 3. Privacy-utility trade-off performance of the PPGSL. X-axis: F1 score (%) of the utility task in terms of node classification; Y-axis: AUC (%) of the
GAE+sim attack method. Points at the top right of the curves indicate evaluations of the original graph. The EdgeRand and LapGraph methods result in an

out-of-memory error on DeezerEurope.

of link prediction) is approximately 81%, the attack AUC of
the PPGSL (kK = 1) can be reduced to approximately 50%.

Moreover, we note that the PPGSL (k 0) and the
PPGSL (k 1) exhibit divergent privacy—utility trade-off
performances under different utility tasks. For link prediction
(Fig. 2), the PPGSL (k = 1) presents the best privacy-utility
trade-off across all six datasets; for node classification (Fig. @),
however, the PPGSL (k = 0) attains the best privacy—utility
trade-off on more datasets than the PPGSL (k = 1) does.
This disparity could be attributed to the fact that edge addition
introduces greater disruption in node classification; thus, the
PPGSL (k = 1) incurs greater utility loss when safeguarding
privacy, whereas link prediction tasks are less susceptible to
edge addition.

2) Privacy Protection Effects Against Various Inference
Attacks: We conduct experiments to evaluate the PPGSL
against eight sensitive link inference attacks, aiming to ver-
ify its generalized privacy protection effectiveness. Figs. [
and [5] show the results on six datasets under the utility
tasks of link prediction and node classification, respectively.
Our results show that the PPGSL effectively defends against
various inference attacks, as the PPGSL greatly decreases the
attack AUC with tolerable utility loss on downstream tasks.
Specifically, the PPGSL reduces the AUC of most attack
methods to approximately 50% on Cora while preserving
strong performances in link prediction (AUC of 81%) and node
classification (F1 score of 73%). In addition, the fluctuation
in node classification results on DeezerEurope is relatively
minor. This can be attributed to the limited influence of graph
structure information on this task for DeezerEurope, as an
MLP model using solely node features achieves a sufficiently

high F1 score of 63%.

3) Parameter Sensitivity: Sec.[[II-D|introduces the PPGSL-
sparse with a sampling factor £ and the PPGSL-skip with an
update interval p to scale up the PPGSL. Here, we train the
PPGSL with varying k£ and p, and the results on Cora are
shown in Fig. [f] The PPGSL-FGP uses the PPGSL’s model
architecture that parameterizes the full adjacency matrix. We
observe that k¥ = 50 and p = 50/10/1 yield similar trade-
off performances, indicating that p has little effect on the
performance of the PPGSL. Both the PPGSL (k = 1) and the
PPGSL (k = 5) demonstrate similar performance, significantly
outperforming the PPGSL (kK = 0) and the PPGSL-FGP. This
is likely because the PPGSL (k = 0) removes only edges
without adding any, resulting in minimal perturbation and
a lower maximum level of privacy protection. In contrast,
the PPGSL-FGP imposes no restrictions on the addition of
edges, leading to greater perturbation and consequently greater
utility loss. The PPGSL (k = 1) and the PPGSL (k = 5),
however, limit the maximum number of added edges, resulting
in moderate perturbation. They achieve a significant level of
privacy protection while limiting utility loss, thus offering
better privacy—utility trade-off performance. Hence, we rec-
ommend setting k = 1 and x = 50 in most cases (for node
classification tasks, & = 0 can also be tried as discussed in
Sec. .

4) Scalability of the PPGSL: We present the memory usage
and training time of the PPGSL with simulated networks of
diverse scales in Fig. [7} Specifically, we generate a series of
Erdos—Renyi graphs with node counts ranging from 100 to
500,000 and an average node degree of 10. In general, the
memory usage and training time of the PPGSL (k = 0, u =

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, AUGUST 2025 10

LastFMAsia

PolBlogs

DeezerEurope

Attack AUC (%)

70 75 80 85
CN AA RA

9 9575 80 85 90 95 74 77 80 83

SEAL

86 89 79 8 8 8 91 94 79 8 87 91
—N2V+sim

Cora CiteSeer PubMed

95 80 83 8 8 92 95

GAE+sim +—N2V+ML —-GAE+ML

Fig. 4. Privacy protection effect of PPGSL against various attack methods under the link prediction utility task. X-axis: AUC (%) of link prediction.

LastFMAsia DeezerEurope

PolBlogs
95
85
75
65
55

45
70 73 76 79 8 85 60 65 70 75 80

RA SEAL

Attack AUC (%)

85 61.6 61.9 622 625 628 71 75 79 83

—N2V-+sim

CiteSeer

Cora PubMed

87 60 75 75 78 81 84 87

*~GAE+sim —N2V+ML ——GAE+ML

Fig. 5. Privacy protection effect of PPGSL against various attack methods under the node classification utility task. X-axis: F1 score (%) of node classification.

Cora Cora
95 95
90 90
3 Q
S 8 SR
8 80 8 80
27 2
x 70 2 70
=} >}
g 6 g 65
< 60 £ < 60
55 { 55
50 A 50 :
75 79 83 87 91 95 67 71 75 79 83 87

Link Pred. AUC (%) Node Cls. F1-score (%)

k=0, p=50 k=1, p=50 —a—k=5, p=50 k=0, p=10 ——k=0, p=1 —»—FGP, p=50

Fig. 6. Parameter analysis of k£ and p on Cora. Left: link prediction utility
task; right: node classification utility task.

ERGraph ERGraph
1.5
= >«
o 1 R
= g .,
I >}
5 05 S
g g 3
0 =
2 z .
— =]
05 $ 1
= =
-1 0
1 2 3 4 5 6 1 2 3 4 5 6
Log,, #Nodes Log,, #Nodes
k=0, p=50 —+— k=1, p=50 —4—k=5, p=50 k=0, p=10 — k=0, p=1 ——FGP, p=50

Fig. 7. Memory usage (left) and time consumption (right) for training the
PPGSL on Erdos—Renyi graphs with varying node quantities. The training
epoch is set to 500, as the PPGSL typically converges within 500 iterations.

50) increase approximately linearly with the node count. With
@ = 50, we compare the PPGSL-sparse with k£ € {0,1,5}
and the PPGSL-FGP. The PPGSL-sparse drastically reduces
memory usage, particularly when & is small. With £ = 0,
we compare the PPGSL-skip with p € {1,10,50}, and it is
apparent that as p increases, the time consumption diminishes

remarkably, whereas the privacy—utility trade-off performance
remains almost unchanged (please see Fig. [6).

Notably, for a graph with up to 100,000 nodes, the PPGSL
can complete training with our recommended settings (k = 1,
¢ = 50) in just 9.2 minutes, with an average memory
usage of 6.2 GB. In contrast, for a graph of the same size,
the most comparable method, PPNE, requires approximately
16.7 minutes per iteration and converges around the 3,000th
iteration [13]]. Consequently, the PPGSL achieves a training
speedup of 16.7 x 3,000 + 9.2 ~ 5,445.7 times faster than
the PPNE for a complete training process.

5) Convergence of the PPGSL: We conduct experiments
to verify the convergence of PPGSL. Fig. [§] illustrates the
changes in loss and privacy/utility evaluation results during
the training of the graph learner Hy for different values of p
(the update interval of the surrogate attack model). We observe
that training loss generally decreases, with minor fluctuations
when p # 1. In particular, when p = 50, the loss jumps
every 50 epochs (see Fig. due to updates of the surrogate
attack model. At these points, the surrogate model changes to
a stronger version, temporarily increasing the privacy loss.

Regarding the privacy/utility evaluation results (Fig. [8b] [8d]
and [Bf), we observe that as the number of epochs increases,
both privacy protection (as indicated by a general decrease
in the attack AUC) and utility maintenance (reflected in the
increase in the link prediction AUC and node classification
F1 score) improve. Therefore, the PPGSL demonstrates fast
and stable convergence capability, ensuring the effectiveness
of the privacy-preserving graph learning process. Additionally,
the convergence speed is higher when p is smaller.

6) Comparison of Different Training Protocols: We com-
pare our proposed SITP (with an update interval of pu = 50)
against a standard adversarial training baseline, ADV, which
follows the protocol of AdvReg [30]. As shown in Fig.[9] SITP
demonstrates a superior privacy—utility trade-off. Compared
with the ADV baseline, it simultaneously achieves a higher

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, AUGUST 2025 11

Loss
= - N w ES

100 200 300 400 500
Epoch

=

(a) Training loss of yu = 1.

Loss
£ 5 o =

°

100 200 300 400 500
Epoch

(€) Training loss of 1 = 10.

Loss
= o N S

)

100 200 300 400 500
Epoch

(e) Training loss of x = 50.

W_WW

70
60 4

Link Pred. AUC
Node Cls. Fl-score
—— Attack AUC

Evaluation results (%)

0 100 200 300 400 500
Epoch

(b) Evaluation results of p = 1.

90

E 2 2

Evaluation results (%)

E

| = Link Pred. AUC
Node Cls. Fl-score
—— Attack AUC

S
]

0 100 200 300 400 500
Epoch

(d) Evaluation results of 1 = 10.

90 4

] ‘

3 £

2

Evaluation results (%)

Link Pred. AUC
Node Cls. Fl-score
—— Attack AUC

2

0 100 200 300 400 500
Epoch

(f) Evaluation results of x = 50.

Fig. 8. Variations in loss and privacy/utility evaluation results as the number
of epochs increases in the training process of graph learner Hy on Cora under

different v settings.

~— Link Pred. AUC
~—— Node Cls. Fl-score
—— Attack AUC

2
2

2

2

W\”\/w

504 — Link Pred. AUC
Node Cls. Fl-score
—— Attack AUC

2

Evaluation results (%)
Evaluation results (%)

2

&
&
.
&

100 200 300 400 500 100 200 300 400 500
Epoch Epoch

(@) Evaluation results under SITP. (b) Evaluation results under ADV.

Fig. 9. Comparison of privacy/utility evaluation results across different
training protocols. SITP: our proposed secure iterative training protocol, with
a surrogate attack model update interval of p = 50; ADV: typical adversarial
training protocols, such as AdvReg [30].

link prediction AUC (better utility) and a lower attack AUC
(stronger privacy). A detailed comparison of convergence and
training efficiency is provided in Appendix [C}

V1. RELATED WORKS
A. Privacy-Preserving Graph Data Publishing

We first review three typical categories of privacy-
preserving graph data publishing studies aimed at protect-

ing link privacy: graph anonymization methods, differential
privacy (DP) methods, and heuristic-based methods. Graph
anonymization methods [44]]-[50] aim to anonymize the links
on the original graph by rewiring them via randomization
techniques while preserving certain properties of the orig-
inal graph to ensure utility. However, the primary goal of
anonymization is to protect links on the original graph from
reidentification rather than safeguarding hidden sensitive links
against inference attacks.

DP methods [43]], [S1]-[54] are conventionally designed to
defend against Bayesian inference attacks without arbitrary
prior knowledge. In the context of graph privacy protection,
DP methods usually prevent the original graph from being
inferred on the basis of the released graph or embedding by
introducing random noise with rigorous theoretical privacy
guarantees. However, they often need to introduce excessive
noise into the original data to defend against various link
inference attacks (e.g., GNN attacks [14]], [55]), making it
challenging to achieve a good privacy—utility trade-off.

Several heuristic-based methods [13]], [15] have been pro-
posed to defend against link inference attacks. They often
first assess the privacy and utility of potential perturbations
in a graph; then, they manually select the perturbation that
provides the best privacy—utility trade-off to find the near-
optimal graph structure iteratively. However, these methods
often result in significant computational costs and produce
only local optimal solutions rather than global optimal ones.
They barely enumerate all the potential perturbations for
privacy and utility assessment.

Compared with existing methods, the PPGSL is designed
with a crafted privacy objective to measure the privacy leakage
caused by sensitive link inference attacks. Additionally, the
PPGSL automatically optimizes the graph structure to achieve
an optimal privacy—utility trade-off via a learning method.

B. Link Inference Attacks

Link inference attacks exploit inherent patterns within the
graph to reidentify or infer private structural information.
Depending on the goal, method, and attacker’s knowledge,
these attacks can be divided into two categories: attacks in
graph data publishing and attacks against open GNN APIs.

Link inference attacks in graph data publishing. In
this context, attackers have access to the whole published
graph data [|I5] or its node embedding [10]]. Specifically, if
attackers obtain the node embedding of the target graph, they
can directly conduct embedding-based attacks by leveraging
the similarity information between the embeddings of target
node pairs [10], [13]], [56]. Comparatively, given the published
graph data, attackers can carry out link inference attacks via
Bayesian methods and structure-based approaches [9]], [36],
[57] or conduct embedding-based attacks after learning node
embedding with the published graph [13].

Link inference attacks against open GNN APIs. This
stream of studies typically assumes that there is an open
GNN API, which is trained to complete the node classification
task, and attackers have black-box access to this API [14]],
[40], 58], [59]. Recently, the LinkTeller attack method was

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, AUGUST 2025 12

introduced, which recovers private links on a graph through
influence analysis [40]. Specifically, by querying the GNN API
with adversarial input node features and analyzing its influence
on the target node’s output, an attacker can infer whether a link
exists between the input node and the target node. Moreover,
some recent work has considered the disparity in individual
privacy risks [59], [[60].

This work focuses on protecting sensitive links from in-
ference attacks in the context of whole graph data sharing.
We also note that some existing works have proposed defense
strategies regarding attacks against open GNN APIs [58], [61]].
Since these strategies typically aim to build privacy-preserving
GNN models, they are unsuitable for the graph data sharing
problem we address.

C. Graph Structure Learning

Graph structure learning (GSL) seeks to simultaneously
derive an optimized graph structure and corresponding graph
representations [17]]. Most current GSL studies focus on learn-
ing robust graph representations or improving the performance
on specific downstream tasks through the concurrent optimiza-
tion of the graph structure and the GNN encoder [18], [19],
[25], [62]-[65]]. Recently, self-supervised GSL has emerged to
address scenarios where the task label is scarce or downstream
tasks are unknown [26], [66], [67].

Although both the PPGSL and GSL procure the targeted
graph via a learning-based approach, the PPGSL significantly
deviates from conventional GSL methods in its training ob-
jectives and training protocol. Specifically, while most GSL
methods aim to learn a robust GNN encoder, our goal is to
learn privacy-preserving graph data for publishing. The com-
ponents of the PPGSL and GSL frameworks differ. Notably,
the PPGSL incorporates surrogate attack models to generate
privacy protection signals—a component that is absent in stan-
dard GSL approaches. The introduction of this new component
also necessitates an effective and distinct training protocol.

VII. CONCLUSION AND DISCUSSION

This work makes theoretical contributions to the field of
trustworthy graph systems by expanding the research scope
and supplying novel privacy-preserving technologies [68].
Specifically, we formulate a novel learning-based graph data
publishing problem against sensitive link inference attacks
and propose a privacy-preserving graph structure learning
framework, dubbed PPGSL. Two core modules are designed to
parameterize the graph structure and optimize for privacy and
utility objectives; a secure iterative training protocol is intro-
duced to ensure privacy preservation and stable convergence.
Theoretical analyses validate the convergence and optimality
of the PPGSL. Extensive experiments demonstrate the state-
of-the-art performance of the PPGSL in achieving an optimal
privacy—utility trade-off.

We also discuss the limitations and future directions of this
work. First, the PPGSL currently focuses only on perturbing
the graph structure to protect sensitive links. Looking forward,
we aim to design a unified framework that can learn both node
features and topological structure for privacy-preserving data

publishing. Second, we adopt a GNN-based surrogate attack
model in our method, which may not represent all adversaries
with different knowledge. Devising a more powerful surrogate
attack model to capture broader privacy risks is a promising
future research direction. Finally, while the PPGSL seeks
to reduce the average privacy risk across the entire graph,
it is crucial to consider the disparity in individual risks to
ensure fairness [59], [60]. Incorporating both privacy and
fairness considerations can lead the PPGSL toward more
comprehensive and trustworthy data sharing [69].

REFERENCES

[1] X. Han, L. Wang, N. Crespi, S. Park, and A. Cuevas, “Alike people,
alike interests? inferring interest similarity in online social networks,”
Decis. Support Syst., vol. 69, pp. 92-106, 2015.

[2] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph
neural networks for social recommendation,” in The World Wide Web
Conference, 2019, pp. 417-426.

[3] J. Sudrez-Varela, P. Almasan, M. Ferriol-Galmés, K. Rusek, F. Geyer,
X. Cheng, X. Shi, S. Xiao, F. Scarselli, A. Cabellos-Aparicio et al.,
“Graph neural networks for communication networks: Context, use cases
and opportunities,” IEEE Network, vol. 37, no. 3, pp. 146-153, 2021.

[4] L. Wang, D. Chai, X. Liu, L. Chen, and K. Chen, “Exploring the
generalizability of spatio-temporal traffic prediction: Meta-modeling and
an analytic framework,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 4,
pp- 3870-3884, 2021.

[5] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[6] “AMiner Dataset.” [Online]. Available: https://www.aminer.cn/aminer_.
data

[7]1 “Facebook Graph APL.” [Online]. Available: https://developers.facebook.
com/docs/graph-api

[8] J. Jia, B. Wang, L. Zhang, and N. Z. Gong, “Attriinfer: Inferring user
attributes in online social networks using markov random fields,” in
Proceedings of the 26th International Conference on World Wide Web,
2017, pp. 1561-1569.

[91 Y. Zhang, M. Humbert, B. Surma, P. Manoharan, J. Vreeken, and

M. Backes, “Towards plausible graph anonymization,” in 27th Annual

Network and Distributed System Security Symposium, 2020.

V. Duddu, A. Boutet, and V. Shejwalkar, “Quantifying privacy leakage

in graph embedding,” in MobiQuitous 2020-17th EAI International

Conference on Mobile and Ubiquitous Systems: Computing, Networking

and Services, 2020, pp. 76-85.

“General Data Protection Regulation (GDPR).” [Online]. Available:

https://gdpr-info.eu/

L. Yao, Z. Chen, X. Wang, D. Liu, and G. Wu, “Sensitive label

privacy preservation with anatomization for data publishing,” IEEE

Trans. Dependable Secure Comput., vol. 18, no. 2, pp. 904-917, 2019.

X. Han, Y. Yang, L. Wang, and J. Wu, “Privacy-preserving network em-

bedding against private link inference attacks,” IEEE Trans. Dependable

Secure Comput., vol. 21, no. 2, pp. 847-859, 2024.

X. He, J. Jia, M. Backes, N. Z. Gong, and Y. Zhang, “Stealing links from

graph neural networks.” in USENIX Secur. Symp., 2021, pp. 2669-2686.

S. Yu, M. Zhao, C. Fu, J. Zheng, H. Huang, X. Shu, Q. Xuan,

and G. Chen, “Target defense against link-prediction-based attacks via

evolutionary perturbations,” IEEE Trans. Knowl. Data Eng., vol. 33,

no. 2, pp. 754-767, 2019.

W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation

learning on large graphs,” Adv. Neural Inf. Process. Syst., pp. 1024—

1034, 2017.

Y. Zhu, W. Xu, J. Zhang, Y. Du, J. Zhang, Q. Liu, C. Yang, and S. Wu,

“A survey on graph structure learning: Progress and opportunities,” arXiv

e-prints, pp. arXiv—2103, 2021.

W. Jin, Y. Ma, X. Liu, X. Tang, S. Wang, and J. Tang, “Graph structure

learning for robust graph neural networks,” in Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2020, pp. 66-74.
[19] N. Liu, X. Wang, L. Wu, Y. Chen, X. Guo, and C. Shi, “Compact graph
structure learning via mutual information compression,” in Proceedings
of the ACM Web Conference 2022, 2022, pp. 1601-1610.

[20] Z. Alkhalil, C. Hewage, L. Nawaf, and I. Khan, “Phishing attacks: A
recent comprehensive study and a new anatomy,” Front. Comput. Sci.,
vol. 3, p. 563060, 2021.

[10]

(1]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

http://snap.stanford.edu/data
https://www.aminer.cn/aminer_data
https://www.aminer.cn/aminer_data
https://developers.facebook.com/docs/graph-api
https://developers.facebook.com/docs/graph-api
https://gdpr-info.eu/

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, AUGUST 2025 13

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

P. W. Fong, “Preventing sybil attacks by privilege attenuation: A design
principle for social network systems,” in 2011 IEEE Symposium on
Security and Privacy, 2011, pp. 263-278.

A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016, pp. 855—
864.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” in International Conference on Learning Represen-
tations, 2019.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

B. Fatemi, L. El Asri, and S. M. Kazemi, “Slaps: Self-supervision
improves structure learning for graph neural networks,” Adv. Neural Inf.
Process. Syst., vol. 34, pp. 22667-22681, 2021.

Y. Liu, Y. Zheng, D. Zhang, H. Chen, H. Peng, and S. Pan, “Towards
unsupervised deep graph structure learning,” in Proceedings of the ACM
Web Conference 2022, 2022, pp. 1392-1403.

D. Yang, D. Zhang, B. Qu, and P. Cudré-Mauroux, “Privcheck: Privacy-
preserving check-in data publishing for personalized location based ser-
vices,” in Proceedings of the 2016 ACM International Joint Conference
on Pervasive and Ubiquitous Computing, 2016, pp. 545-556.

J. Jia and N. Z. Gong, “Attriguard: A practical defense against attribute
inference attacks via adversarial machine learning,” in 27th USENIX
Security Symposium, 2018, pp. 513-529.

I.-C. Hsieh and C.-T. Li, “Netfense: Adversarial defenses against privacy
attacks on neural networks for graph data,” IEEE Transactions on
Knowledge and Data Engineering, vol. 35, no. 1, pp. 796-809, 2023.
M. Nasr, R. Shokri, and A. Houmansadr, “Machine learning with
membership privacy using adversarial regularization,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, 2018, pp. 634-646.

F. du Pin Calmon and N. Fawaz, “Privacy against statistical inference,”
in 50th Annual Allerton Conference on Communication, Control, and
Computing. 1EEE, 2012, pp. 1401-1408.

X. Han, Y. Yang, J. Wu, and H. Xiong, “Hyobscure: Hybrid obscuring
for privacy-preserving data publishing,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 36, no. 8, pp. 3893-3905, 2023.

L. A. Adamic and N. Glance, “The political blogosphere and the 2004
us election: Divided they blog,” in Proceedings of the 3rd International
Workshop on Link Discovery, 2005, pp. 36-43.

B. Rozemberczki and R. Sarkar, “Characteristic functions on graphs:
Birds of a feather, from statistical descriptors to parametric models,” in
Proceedings of the 29th ACM International Conference on Information
& Knowledge Management, 2020, pp. 1325-1334.

Z. Yang, W. Cohen, and R. Salakhudinov, “Revisiting semi-supervised
learning with graph embeddings,” in International Conference on Ma-
chine Learning. PMLR, 2016, pp. 40-48.

M. Zhang and Y. Chen, “Link prediction based on graph neural net-
works,” Advances in Neural Information Processing Systems, vol. 31,
2018.

T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv
preprint arXiv:1611.07308, 2016.

F.-Y. Sun, J. Hoffman, V. Verma, and J. Tang, “Infograph: Unsupervised
and semi-supervised graph-level representation learning via mutual
information maximization,” in International Conference on Learning
Representations, 2019.

Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph
contrastive learning with augmentations,” Adv. Neural Inf. Process. Syst.,
vol. 33, pp. 5812-5823, 2020.

F. Wu, Y. Long, C. Zhang, and B. Li, “Linkteller: Recovering private
edges from graph neural networks via influence analysis,” in 2022 I[EEE
Symposium on Security and Privacy (SP). 1EEE, 2022, pp. 2005-2024.
L. Lii and T. Zhou, “Link prediction in complex networks: A survey,”
Physica A: Stat. Mech. Appl., vol. 390, no. 6, pp. 1150-1170, 2011.
D. Ziigner and S. Giinnemann, “Adversarial attacks on graph neural
networks via meta learning,” in International Conference on Learning
Representations, 2019.

Q. Yuan, Z. Zhang, L. Du, M. Chen, P. Cheng, and M. Sun, “Privgraph:
Differentially private graph data publication by exploiting community
information,” in USENIX Security, 2023.

P. Mittal, C. Papamanthou, and D. X. Song, “Preserving link privacy in
social network based systems,” in 20th Annual Network and Distributed
System Security Symposium, 2013.

E. Zheleva and L. Getoor, “Preserving the privacy of sensitive relation-
ships in graph data,” in Privacy, Security, and Trust in KDD: First ACM
SIGKDD International Workshop. Springer, 2008, pp. 153-171.

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

X. Ying and X. Wu, “On link privacy in randomizing social networks,”
Knowl. Inf. Syst., vol. 28, pp. 645-663, 2011.

——, “Randomizing social networks: a spectrum preserving approach,”
in proceedings of the 2008 SIAM International Conference on Data
Mining. SIAM, 2008, pp. 739-750.

A. M. Fard, K. Wang, and P. S. Yu, “Limiting link disclosure in social
network analysis through subgraph-wise perturbation,” in Proceedings of
the 15th International Conference on Extending Database Technology,
2012, pp. 109-119.

A. Milani Fard and K. Wang, “Neighborhood randomization for link
privacy in social network analysis,” World Wide Web, vol. 18, pp. 9-32,
2015.

Y. Liu, S. Ji, and P. Mittal, “Smartwalk: Enhancing social network
security via adaptive random walks,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, 2016,
pp- 492-503.

H. H. Nguyen, A. Imine, and M. Rusinowitch, “Differentially private
publication of social graphs at linear cost,” in Proceedings of the 2015
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining 2015, 2015, pp. 596-599.

R. Chen, B. C. Fung, P. S. Yu, and B. C. Desai, “Correlated network
data publication via differential privacy,” VLDB J., vol. 23, pp. 653-676,
2014.

Q. Xiao, R. Chen, and K.-L. Tan, “Differentially private network data
release via structural inference,” in Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2014, pp. 911-920.

Z. Qin, T. Yu, Y. Yang, I. Khalil, X. Xiao, and K. Ren, “Generating
synthetic decentralized social graphs with local differential privacy,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 425-438.

B. Jayaraman and D. Evans, “Evaluating differentially private machine
learning in practice,” in USENIX Security Symposium, pp. 1895-1912,
2019.

X. Wang and W. H. Wang, “Link membership inference attacks against
unsupervised graph representation learning,” in Proceedings of the 39th
Annual Computer Security Applications Conference, 2023, pp. 477-491.
X. Xian, T. Wu, Y. Liu, W. Wang, C. Wang, G. Xu, and Y. Xiao,
“Towards link inference attack against network structure perturbation,”
Knowl.-Based Syst., vol. 218, p. 106674, 2021.

L. Meng, Y. Bai, Y. Chen, Y. Hu, W. Xu, and H. Weng, “Devil in
disguise: Breaching graph neural networks privacy through infiltration,”
in Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, 2023, pp. 1153-1167.

H. Zhang, B. Wu, S. Wang, X. Yang, M. Xue, S. Pan, and X. Yuan,
“Demystifying uneven vulnerability of link stealing attacks against graph
neural networks,” in International Conference on Machine Learning.
PMLR, 2023, pp. 41 737-41752.

H. Zhang, X. Yuan, and S. Pan, “Unraveling privacy risks of individual
fairness in graph neural networks,” in 2024 IEEE 40th International
Conference on Data Engineering (ICDE). 1EEE, 2024, pp. 1712-1725.
S. Sajadmanesh, A. S. Shamsabadi, A. Bellet, and D. Gatica-Perez,
“{GAP}: Differentially private graph neural networks with aggregation
perturbation,” in 32nd USENIX Security Symposium (USENIX Security
23), 2023, pp. 3223-3240.

Y. Chen, L. Wu, and M. Zaki, “Iterative deep graph learning for graph
neural networks: Better and robust node embeddings,” Adv. Neural Inf.
Process. Syst., vol. 33, pp. 19314-19 326, 2020.

D. Luo, W. Cheng, W. Yu, B. Zong, J. Ni, H. Chen, and X. Zhang,
“Learning to drop: Robust graph neural network via topological denois-
ing,” in Proceedings of the 14th ACM International Conference on Web
Search and Data Mining, 2021, pp. 779-787.

Q. Sun, J. Li, H. Peng, J. Wu, X. Fu, C. Ji, and S. Y. Philip, “Graph
structure learning with variational information bottleneck,” in Proc.
AAAI Conf. Artif. Intell., vol. 36, 2022, pp. 4165-4174.

H. Wang, Y. Fu, T. Yu, L. Hu, W. Jiang, and S. Pu, “Prose: Graph
structure learning via progressive strategy,” in Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
2023, pp. 2337-2348.

K. Li, Y. Liu, X. Ao, J. Chi, J. Feng, H. Yang, and Q. He, “Reli-
able representations make a stronger defender: Unsupervised structure
refinement for robust gnn,” in Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2022, pp. 925—
935.

J. Zhao, Q. Wen, M. Ju, C. Zhang, and Y. Ye, “Self-supervised graph
structure refinement for graph neural networks,” in Proceedings of

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, AUGUST 2025

[68]

[69]

[70]

[71]

[72])

(73]

[74]1

[751

the Sixteenth ACM International Conference on Web Search and Data
Mining, 2023, pp. 159-167.

B. Wu, Y. Bian, H. Zhang, J. Li, J. Yu, L. Chen, C. Chen, and J. Huang,
“Trustworthy graph learning: Reliability, explainability, and privacy
protection,” in Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2022, pp. 4838-4839.

H. Zhang, B. Wu, X. Yuan, S. Pan, H. Tong, and J. Pei, “Trustworthy
graph neural networks: Aspects, methods, and trends,” Proceedings of
the IEEE, vol. 112, no. 2, pp. 97-139, 2024.

A. A. Alemi, 1. Fischer, J. V. Dillon, and K. Murphy, “Deep variational
information bottleneck,” in International Conference on Learning Rep-
resentations, 2017.

M. 1. Belghazi, A. Baratin, S. Rajeshwar, S. Ozair, Y. Bengio,
A. Courville, and D. Hjelm, “Mutual information neural estimation,”
in International Conference on Machine Learning. PMLR, 2018, pp.
531-540.

P. Cheng, W. Hao, S. Dai, J. Liu, Z. Gan, and L. Carin, “Club: A con-
trastive log-ratio upper bound of mutual information,” in International
Conference on Machine Learning. PMLR, 2020, pp. 1779-1788.

R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman,
A. Trischler, and Y. Bengio, “Learning deep representations by mutual
information estimation and maximization,” in International Conference
on Learning Representations, 2019.

B. Poole, S. Ozair, A. Van Den Oord, A. Alemi, and G. Tucker, “On
variational bounds of mutual information,” in International Conference
on Machine Learning. PMLR, 2019, pp. 5171-5180.

B. Wang, J. Guo, A. Li, Y. Chen, and H. Li, “Privacy-preserving
representation learning on graphs: A mutual information perspective,”
in Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, 2021, pp. 1667-1676.

Yucheng Wu received the bachelor’s degree in data
science and big data technology from Shanghai Uni-
versity of Finance and Economics, China, in 2023.
She is currently working toward the PhD degree in
computer software and theory with the School of
Computer Science, Peking University, China. Her
research interests include large-scale data mining
and graph neural networks.

Yuncong Yang received a BS, MS and Ph.D. degree
in management science and engineering from the
Shanghai University of Finance and Economics, in
2018, 2020 and 2025, respectively. He is a member
of the Key Laboratory of Interdisciplinary Research
of Computation and Economics (Shanghai Univer-
sity Finance and Economics), Ministry of Education.
His work has been published in leading journals in
computer science, including TDSC and TKDE. His
research interests include graph neural networks and
privacy protection in machine learning.

Xiao Han is a full professor at the School of
Economics and Management, Beihang University.
She received a Ph.D. in informatics from the Pierre
and Marie Curie University and Institut Mines-
TELECOM/TELECOM SudParis in 2015. Her re-
search focuses on data-driven intelligent systems
in business and societal contexts, with particular
focuses on data security and privacy. Her work
has been published in leading journals and top-tier
conference proceedings in information systems and
computer science, including MISQ, JOC, TDSC,

TIFS, TKDE, TSE, WWW, AAAI, etc.

Leye Wang is a tenured associate professor at
Key Lab of High Confidence Software Technolo-
gies (Peking University), Ministry of Education,
China, and School of Computer Science, Peking
University. His research interests include ubiquitous
computing and data privacy protection. Wang re-
ceived a Ph.D. in computer science from the Pierre
and Marie Curie University and Institut Mines-
TELECOM/TELECOM SudParis, France, in 2016.
His research has appeared in journals and conference
proceedings such as MISQ, JOC, TDSC, TIFS,

TKDE, Al Journal, IEEE Computer, IEEE Comm. Mag., WWW, AAAI ASE,
etc.computing, mobile crowdsensing, and urban computing.

Junjie Wu is currently the full professor of the
School of Economics and Management, Beihang
University. He is also the director of the MIIT Key
Laboratory of Data Intelligence and Management.
He holds a B.E. degree from the School of Civil
Engineering and a Ph.D. degree from the School of
Economics and Management, Tsinghua University.
His research interests include data and decision
intelligence, with intense applications to business,
finance, cities and industries. He has published
prolifically in journals and proceedings including

MISQ, ISR, JOC, TKDE, KDD, NeurIPS, AAAI etc.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, AUGUST 2025 15

APPENDIX
A. Proof of Theoretical Analysis
1) Convergence of the PPGSL:

Lemma 1. Suppose that L£(01,02) is strongly convex with
respect to 0y for any fixed 0, and that L is continuously
differentiable with respect to both 01 and 0. Then the optimal
solution 07 changes slowly as 0y varies.

Proof. Define 07(62) = argming, £(01,02) as the optimal
value of 6, given a fixed 5. Since £(61, 62) is strongly convex
in 6, for each fixed 0o, 07 (62) exists uniquely.

By the first-order optimality condition for 6 (f2), we have:

Vo, L(07(02),02) =0 (14)

Since L is strongly convex in #;, the Hessian
V3, L(07(02),02) is positive definite for each 6. By
the implicit function theorem, 67(f3) is a continuously
differentiable function of 6.

Taking the total derivative of Vg, L£(67(02),62) = 0 with
respect to 03, we obtain the following:

d

dbs

do; (0
Vo, L(6}(6),02) = V3. L(6}(62),02) - Cllé;)

+ Vo, Vo, L(07(02),02) =0

15)

Solving for %ﬁf?), we obtain the following:
do; (6 N -1 .
108) (93, 005(0.02)) " Vo, V0, (016),00)
(16)
Since L is strongly convex with respect to 61,

V3, L(67(02),02) is bounded below by a positive constant m,
giving the following:

b7 (02)
dbf

Thus, as 0 varies, the change in 67 (05) is bounded, imply-
ing that 67 (02) varies slowly with respect to 05 if Vg, Vg, L
is well behaved.

This bound on d“’;TEfz) implies that 67 (62) changes gradually
as 0, changes, ensuring that the updates to 6> do not cause
large, abrupt changes in optimal ¢;. Hence, the update scheme
where 67 is reoptimized for each update of 65 remains stable.

O

1
< E Hv91v92‘c(9T(02)702)” (17)

This lemma provides the theoretical basis for the claim that,
under strong convexity of £ with respect to 6;, the optimal
6, will vary smoothly as 6, is updated, making this training
approach converge more stably.

Proposition 1. Under the training of the PPGSL with SITP,
the following inequality holds from the t-th iteration to the
(t + 1)-th iteration:

]E[‘Clearner (¢(t+1)7 9(t+1))] S E[£learner(¢(t)a e(t))} (18)

Proof. (1) Update Step for ¢. At each iteration ¢, we first
reinitialize ¢ and optimize it with #(*) fixed to minimize
Lattack (0, G(t)). Since the reinitialization is random, we con-
sider the expected value of Lguqcr after this step. Let

E[Lattack (00T, 6)] represent the expected minimum value
of Lgttack after reinitialization and optimization over ¢. By
definition of ¢(*+1), we have the following:

E[£attack(¢(t+l)7 e(t))] S E[Eattack (d)(t)a e(t))] (19)

As 6 only updates one step in each iteration, Lieqrner (¢, 6)
changes more drastically when 6 changes, and the change in
¢ is relatively small when 6 changes according to Lemma
Thus, the change in ¢ results in little change in Ljeqrner (9, 0),
and we see it as not changing:

E[ﬁlearner (¢(t+1)7 o(t))] = E[£learner(¢(t)a e(t))] (20)

(2) Update Step for 6. Suppose that Ljcqrpner 1S convex in 0
with a Lipschitz continuous gradient. We fix ¢(*t1) and update
6 via a gradient descent step to minimize Licqrner (60, 0).
Assuming that Ljeqpner 18 convex in 6 and has a Lipschitz
continuous gradient, we can ensure that for a sufficiently small
learning rate 7, the update satisfies the following:

Llearner(qs(t+1), 9(t+1)) < Elearner(¢(t+1)a a(t))

- g||v0ﬁlearner(¢(t+l)7H(t))H2

(2D

To derive this, we apply the Lipschitz continuity property
to expand Licarner (90D, 0041 around 0®) as follows:

Elearvze7‘(¢(t+1)7 9(t+1)) < Llearner(¢(t+1)a H(t))

+ vG£learner(¢(t+1)7 a(t))—r<9(t+1) - e(t))

+ £Hg(t+1) — 9|2
2
(22)
where L represents the Lipschitz constant of the gradient of
the function Ljeqrner(¢p,0) with respect to 6. This means
that the gradient of Ljcqrner With respect to 6 does not
change too quickly, which we can mathematically state as
||v9£lea7'ner(¢a 9/) - Vﬁ?[-:lea’rner((ba 9)” < L”a/ - 9” for any
0 and ¢'.
Substitute the gradient descent update #(‘t1D) = gt —
Vo Licarner (@D, 61) into the following inequality:
Elear7ler(¢(t+1)a 9(t+1)) S Llearner((yb(tJrl)v e(t))
- 77Hv9£leamer(¢(t+l)a e(t))”Q
L 2
777 |‘v9£learner(¢(t+1)7 e(t)) ||2
(23)

+

The terms can be rearranged to obtain the following:
Licarner($,00D) < Licgrer (671D, 0)
— (1= B) 190 (652,00
(24)
Choosing 17 < 1 ensures that n — LT"Q > 2, yielding
Licarner ($"T,00%V) < Licarner (947, 61)

- g ||V9£learner(¢(t+1)7 H(t))H2
(25)
Thus, as expected, updating € decreases Ljcqrner as follows:

E[£learner(¢(t+l)7 9(t+1))] S E[£learner(¢(t+l)7 e(t))] (26)

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, AUGUST 2025 16

(3) Combining Updates. Combining Eq. 20| and Eq. 26] the
following inequality holds from the ¢-th iteration to the (¢t+1)-
th iteration:

E[£learner(¢(t+l)v 0(t+1))] S E[£learner(¢(t)a a(t))} (27)

O
2) Optimal Privacy-utility Trade-off of the PPGSL:

Proposition 2. Consider the following two optimization prob-
lems:

o Constrained Optimization Problem:

IHHiIl Epm'v (9) s.t. Lyl (0) <e (28)
o Unconstrained Regularization Problem:
Hgn £learner(9) - ['priv (9) + aﬁutil(e) (29)

Assume that both Ly, (0) and Ly41(6) are convex func-
tions of 0 and that the feasible region satisfies Slater’s condi-
tion. Then, there must exist an o* > 0 such that if o = o, the
optimal solutions of both the constrained and unconstrained
problems are equivalent.

Proof. We begin by constructing the Lagrangian for the con-
strained problem with the Lagrange multiplier A > 0:

‘Clagr(ea)\) = 'Cpriv (9) +A (‘cutil(e) - 6) (30)

Our goal is to solve the following:
maxmin Liagr(0,\) (31)
Karush—-Kuhn-Tucker (KKT) Conditions: Given that

Lpriv(0) and Ly4(0) are convex functions and that
the feasible region satisfies Slater’s condition, the KKT
conditions are both necessary and sufficient for optimality.
Let 6* be the solution to the constrained problem. The KKT
conditions for (6*, *) are as follows:

o Primal feasibility: L, (6*) <e.

e Dual feasibility: A* > 0.

o Stationarity: Vg Ly (0%) + A* Vo Ly (0%) = O.

o Complementary slackness: A* (L(0%) —€) =

By the complementary slackness condition, we consider two
possible cases:

e Case 1: L,4;(0*) = e Here, the constraint is active,
meaning that £,;;;(0*) reaches the upper limit €. The KKT
conditions guarantee the existence of A* > 0. On the basis
of the stationarity condition, * = —%. The
solution #* for the constrained problem also minimizes
the objective Lieqrner(0) = Lpriv(0) + aLyri(6) when
o = — 3l as Vo Ly (07) +" Vo Lo (97) = 0
for the extreme point 6*.

e Case 2: A* = 0. Here, the utility constraint is not
binding, ie., Lu:;(0*) < e. Since A* = 0, minimizing
the unconstrained problem is equivalent to minimizing
Lyriv(0) alone. This solution also satisfies the original
constraint L,+;(6*) < e without requiring any additional
penalty. Furthermore, for optimizing Ljeqrner(6), mini-
mizing £, (0) alone is equivalent to having a* = 0.

Therefore, under these conditions, there exists an o« = a*
such that the optimal solution 6* of the constrained problem
also minimizes the unconstrained regularization problem. The
two problems are equivalent when:

*

a = a*, where o satisfies the KKT conditions. (32)

O

3) Generalized Privacy Protection Performance of the
PPGSL: The GNN encoder f,, parameterized by ¢, maps z,,
in the observational space to an embedding vector z,, in a latent
space, i.e., z; = fy(xi), and Z = [21; 20;...; 2] € RVX4 s
the node embedding matrix. Z’ is the node embedding matrix
of G', where Z' = f,(G’). Here, f, is the GNN encoder
of the surrogate attack model. Taking node embedding as a
bridge, we can reformulate the privacy goal ming I(G’; E;)
as follows®}

Embedding Goal: mgxI(G';Z’) (33a)

New Privacy Goal: m@in I(Z'; Ey) (33b)

Since the random variables in Eq. 33| are possibly high-
dimensional and their posterior distributions are unknown,
the mutual information terms are difficult to calculate. Moti-
vated by existing mutual information neural estimation meth-
ods [70]-[75]], we solve this challenge by translating the
intractable mutual information terms into tractable terms by
designing variational bounds.

Lemma 2. Training neural networks fs with the objective
Sfunction Lgtiacr, of the PPGSL (Eg. [5]) is equivalent to
achieving the embedding goal (Eq. 33d).

Proof. For the mutual information term in Eq. we derive
the following variational lower bound:

(G, 7))
(w;

/

=1 ij;zz,z]‘)

=H(wj;) — H(wj;|z, ;)

=H(wj;) + By, zg,qulogp(3176 %)

= H(w}y) + Ep(ep oy ur,) KL (00124 2o (2t) O
+Epar 2w,)long(NENS)

>H(wi;) + Ep(ay,2) 10g 0 (w352, 25)

=Lp(wiy; 2}, 7))

where KL (p(-)||q(-)) is the Kullback-Leibler divergence be-
tween two distributions p(+) and ¢(-) and is nonnegative qs(J is
an (arbitrary) auxiliary posterior distribution. I,rp(wj;; z;, ;)
is the variational lower bound of the mutual information term,
and H(wj;) is a constant. Note that the lower bound is tight
when the auxiliary distribution ¢, becomes the true posterior

distribution p.

8Note that we slightly misuse the notations G and Es for the sake of
simplicity. They are initially employed to represent the original graph and the
sensitive links, and we also use them to denote random variables here.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, AUGUST 2025 17

Our goal is to maximize the variational lower bound by
estimating the auxiliary posterior distribution g, via a parame-
terized neural network. We parameterize q,, via a link predictor
d,, defined on the node representations. Specifically, we have

roor
max max Lp(wi;; 2, 25)

< max mgx EP(Z;’Z}) log g, (w;

=maxmaxEp.; .1) log i (wij| fo(x7), fo(2]))
Z 5¢<f¢(x;)af¢(x;)>vw;g)

(i,)EELUE,

< minmin g CE (6
[(®
(i,j)EE,VUE],

;176 %5)

A2 max max —CE(

(fo(x)), fo(z})), wiy)

(35)
where CE (-,-) denotes the cross-entropy function. In the
learned graph G', Ej, is a set of sampled existing edges,
and E/ is a set of sampled nonexistent edges. The final
objective function in Eq. [33]is just Lattqcr in Eq.[5] Therefore,
by taking L,tt4cr as an objective function and training the
parameterized neural networks, we can achieve the embedding

goal (Eq. [334). O

Lemma 3. Training neural networks Hgy with the objective
Sfunction L, of the PPGSL (Eq. [?]) is equivalent to achieving
the new privacy goal (Eq. 33D).

Proof. We define w;; € {0,1} as the adjacency matrix of
sensitive links, where w;; = 1 if (v;,v;) € Es and wi; = 0
otherwise. The new privacy goal (Eq. 33b) can be specified

as ming I(w;;; z;, 2;), and we derive the VCLUB inspired by
[72] as follows:
I(Eg; Z")

:I(Zj? ZZ7 Z])

<ILcrus(wy;; z;, 25) (36)

:Ep(z;,z ,wfv) lOg qtp(‘Z,“ J)

= Epa,2p(w;) log q, (wiy|2, 25)

where g, (wj;|2{,2};) is an auxiliary distribution of

p(wi;|zi, 25) that needs to satisfy the following condition:

KL((Zz’zj7wz_])”q§0(z7,72]aw)) <
KL (p(=5, 2)p(wi; s (2, 25, wiy))

That is, I,cryp is a mutual information upper bound if the
variational joint distribution gy (z;, 2}, w;;) is closer to the
joint distribution p(2}, 2}, w;;) than to p(z;, z;)p(wy;).

To achieve the above inequation, we need to minimize the

KL-divergence as follows:

(37

mgnKL(p(z, 25 wi))ap (2, 25, wg;))
:mgﬂKL(p(wi;|27s 2j)gp (w27, 25))
=m¢in1Ep<z = wz,) log p(wis| 2, 25) (38)
—]Emz;,z;-,wf)logqsa(AR

& max By o wr) 108 4 (w)5125; 25)

Finally, our target to achieve Eq.[33b/becomes the following
adversarial training objective:

. . s .
min mwm IvCLUB(wij, Zi Zj)

@meinmngp(z 2 wg)logq@(”|zz,])

zmeinmgx Z —CE (04(2;, 25), wi;) (39
(i,7)€Es

zmeinmax Z —CE (4, (ZZ,ZJ) 1)
(i,7)€Es

where CE(-,-) denotes the cross-entropy function. Eq.
draws away the sensitive node pair embeddings, which is
equivalent to our training objective Ly,,.;,,. Therefore, by taking
L,riv as an objective function and training the parameter-
ized neural networks, we can achieve the new privacy goal

Eq. O

Lemma 4. In every update step of Ho, if fy is sufficiently
retrained to convergence, then optimizing 6 to minimize

I(Z'; Es) results in a decrease in 1(G'; E).

Proof. In each update step of the graph learner, we fully
retrain fy until convergence. According to Lemma [2| training
fo with the objective function L4401 Will achieve the inter-
mediate goal (Eq. [B3b), i.e., I(G'; Z') reaches its maximum
value. Owing to the expressive limitations of GNN [23],
we assume that the maximum value of I(G’;Z’) remains
unchanged. We prove that if I(G’; Z’) does not change and
I(Z'; E,) decreases, then I(G’; E;) will also decrease.

Let H(-) denote the information entropy of a random vari-
able. Given that the variability space of the random variables
G', Es, and Z' is fixed, we assume that H(G'), H(E;),
and H(Z') remain constant. From the relationship of mutual
information, we have the following:

I(Z/§Es) = I(Z/§E5‘G/) +I(Z/;E5;G/) (40)

Assuming that I(Z'; Es; G') either increases or remains
unchanged, we can deduce that I(Z'; E5|G’) must decrease.
Since I(Z'; E4|G’) is bounded by 0 < I(Z';E;|G") <
H(Z'|G"), it cannot decrease indefinitely. After sufficient
iterations of optimization, I(Z'; Es|G") approaches zero and
cannot decrease further. At this point, the assumption that
I(Z'; E5|G") decreases becomes invalid, leading to the con-
clusion that I(Z’; Es; G') must decrease.

During the overall optimization process, since I(G’;Z’)
remains unchanged and I(Z’; E) decreases, we conclude
that I(Z'; Es;G') decreases. Consequently, we find that
I(E;;G") = I(G';Eq|Z') + I(Z'; Es; G') decreases, thus
confirming that the derivation holds. O

Proposition 3. In PPGSL training process, the mutual infor-
mation 1(G'; Es) decreases.

Proof. From Lemmas [2] and [3] training the objective functions
in the PPGSL increases I(G’;Z’) and decreases I(Z'; Es).
According to Lemma |4} increasing I(G’; Z’) and decreasing
I(Z'; E,) together lead to a decrease in I(G’; E) in the
PPGSL training process. O

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, AUGUST 2025 18

0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch

(a) Graph learner training loss un- (b) Graph learner training loss un-
der SITP. der ADV.

0.72

0 200 400 600 800 1000 0 1000 2000 3000 4000
Epoch Epoch

(C) Surrogate attack model train- (d) Surrogate attack model train-
ing loss under SITP. ing loss under ADV.

Fig. 10. Comparison of training robustness across different training protocols.
SITP: our proposed secure iterative training protocol, with a surrogate attack
model update interval of ;1 = 50; ADV: typical adversarial training protocols,
such as AdvReg [30].

B. Guidance on Trade-off Parameter Selection

Empirically, the trade-off parameter « is typically chosen
within the range of [0.001, 0.01]. The appropriate value of «
tends to be smaller for larger graphs (i.e., graphs with more
nodes) to achieve a similar level of privacy protection. This
is because in larger graphs, the adjacency matrix has more
entries. Consequently, for the same proportional perturbation,
the Frobenius norm of the difference in adjacency matrices,
and thus the utility loss L, will be larger. A smaller «
is therefore needed to balance L,:; with the privacy loss
term Lp.;,. Moreover, to adjust the balance between utility
and privacy, if a higher level of utility is desired, o can be
appropriately increased; if a stronger privacy protection effect
is needed, o can be appropriately decreased.

C. Comparison of Different Training Protocols

We compare the training robustness between our proposed
SITP with an update interval ¢ = 50 and typical adversarial
training protocols similar to AdvReg [30] (denoted ADV).
From Fig. [I0] we can conclude that SITP outperforms ADV
in terms of convergence and training efficiency.

o Convergence: Under SITP, the graph learner’s training
loss generally decreases over time, with minor jumps at
multiples of 50 epochs due to updates in the surrogate
attack model. In contrast, under ADV, the graph learner’s
training loss does not consistently decrease, which may
converge to a local rather than a global optimum (compare
Fig. [T0a] and [TODB).

o Training efficiency: With SITP, when the graph learner
updates for 500 epochs, the surrogate attack model only
requires 1,000 total updates (due to its faster convergence,

Cora Cora
95 95
90 90
S 8 3 8
o 80 S 8
3 75 3 75
.; 70 < 70
£ 6 g 6
< 60 < 60
55 55
50 50
73 77 81 8 8 93 6 70 74 78 82 86

Link Pred. AUC (%) Node ClIs. F1-score (%)

—+—Train-COS, Attack-COS
+—Train-IP, Attack-COS
Train-MLP, Attack-COS

—2—Train-COS, Attack-IP
Train-IP, Attack-IP
Train-MLP, Attack-IP

—o—Train-COS, Attack-MLP
Train-IP, Attack-MLP
Train-MLP, Attack-MLP

Fig. 11. Robustness across diverse surrogate models on Cora. COS: cosine
similarity-based predictor, IP: inner production-based predictor, MLP: multi-
layer perceptron-based predictor.

where retraining does not significantly increase the compu-
tation time). In contrast, ADV needs approximately 4,000
updates of the surrogate attack model for the same num-
ber of graph learner updates, resulting in higher training

overhead (compare Fig. and [T0d).

D. Robustness across Diverse Surrogate Models

Most link prediction attacks operate on a common principle:
they all exploit feature similarity and structural similarity (em-
bedding similarity also results from feature and structural sim-
ilarity). This shared foundation suggests that a defense trained
against one type of surrogate model should be robust against
others. To verify this hypothesis, we evaluate our defense
against surrogate models built with three distinct prediction
heads: a cosine similarity-based predictor (COS), an inner
product-based predictor (IP), and a multilayer perceptron-
based predictor (MLP). In our experiment, the defender trains
the defense graph via a surrogate model with one specific
predictor. The attacker, however, is free to use a model with
any of the three predictors, creating both matched (defender
and attacker use the same model) and mismatched scenarios.
As shown in Fig. [T1] our defense remains effective even in
mismatched scenarios, with only slight performance degrada-
tion compared with when the models are matched.

	Introduction
	Problem Formulation
	Preliminaries
	Sensitive Link Inference Attacks
	Problem Definition

	Proposed Framework: PPGSL
	Surrogate Attack Module
	Surrogate Attack Model Architecture
	Surrogate Attack Model Training Objective
	Inference Attack Simulation

	Privacy-Preserving Graph Learner Module
	Graph Model Architecture
	Privacy Protection Objective
	Utility Maintenance Objective
	Overall Objective
	Postprocessing

	Secure Iterative Training Protocol
	Speed-up Strategies

	Theoretical Analyses
	Experiments
	Experimental Setup
	Datasets
	Sensitive Link Inference Attacks and Privacy Metric
	Utility Evaluation Tasks and Metrics
	Baselines
	Running Environment
	PPGSL Implementation

	Experimental Results
	Privacy–utility Trade-off Performance Compared with Baselines
	Privacy Protection Effects Against Various Inference Attacks
	Parameter Sensitivity
	Scalability of the PPGSL
	Convergence of the PPGSL
	Comparison of Different Training Protocols

	Related Works
	Privacy-Preserving Graph Data Publishing
	Link Inference Attacks
	Graph Structure Learning

	Conclusion and Discussion
	References
	Biographies
	Yucheng Wu
	Yuncong Yang
	Xiao Han
	Leye Wang
	Junjie Wu

	Appendix
	Proof of Theoretical Analysis
	Convergence of the PPGSL
	Optimal Privacy–utility Trade-off of the PPGSL
	Generalized Privacy Protection Performance of the PPGSL

	Guidance on Trade-off Parameter Selection
	Comparison of Different Training Protocols
	Robustness across Diverse Surrogate Models

