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Abstract

With the rise of voice synthesis technology threaten-
ing digital media integrity, audio watermarking has be-
come a crucial defense for content authentication. How-
ever, current solutions often lack robustness to effects like
high-pass filtering and temporal modifications and suffer
from poor watermark localization. We introduce WaveV-
erify, a watermarking system that addresses these chal-
lenges using a Feature-wise Linear Modulation (FiLM)-
based generator for resilient multiband watermark embed-
ding and a Mixture-of-Experts detector for accurate ex-
traction and localization. Our unified training framework
enhances robustness by applying multiple distortions per
backpropagation step via a dynamic effect scheduler. Eval-
uations across multiple datasets show WaveVerify outper-
forms SOTA models like AudioSeal and WavMark, achiev-
ing zero Bit Error Rate (BER) under common distortions
and MloU scores of 0.98+ under severe temporal modifi-
cations. The parallel FiLM-based generator also reduces
training time by ~80% compared to sequential embedding
approaches. Code and pretrained models are available at:
https://github.com/vchsl/WaveVerify.

1. Introduction

The rapid advancement of voice generation technologies
has enabled the synthesis of speech that is perceptually in-
distinguishable from genuine human voices [33, 17]. While
these innovations facilitate beneficial applications such as
personalized text-to-speech systems [37] and voice preser-
vation [16], they have also introduced significant risks, in-
cluding deepfake impersonation scams [23] and synthetic
media-driven disinformation campaigns [7]. Recent reports
indicate that in 2024, deepfake fraud attempts surged by
over 1,300% compared to 2023 [26], underscoring the ur-
gent need for robust audio content authentication. The fi-
nancial sector has been particularly impacted, with a loss of
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over $10 million to voice scams [2] and individual victims
reporting losses exceeding $6,000 from Al-generated deep-
fake calls [35]. In response, regulators and governments
worldwide are enacting measures to improve Al content
transparency and traceability, emphasizing the development
of forensic tools and watermarking techniques as essential
strategies to uphold media integrity.

A predominant forensic approach for detecting synthe-
sized audio involves training binary classifiers to distin-
guish between natural and synthetic speech, as demon-
strated in [36, 39]. This method, commonly referred to as
passive detection, offers a relatively straightforward miti-
gation strategy. However, its effectiveness is increasingly
challenged as generative models continue to improve, nar-
rowing the perceptual and statistical gap between authentic
and synthetic audio.

Audio watermarking has thus emerged as a promising
alternative for asserting ownership and authenticity of au-
dio media. By embedding imperceptible yet robust sig-
nals within audio content, watermarking enables reliable
detection and verification [28, 12]. Deep learning-based
watermarking methods have addressed many limitations of
traditional techniques (e.g., spread spectrum [15], patch-
work [38], and echo hiding [4]), improving imperceptibil-
ity, retrieval accuracy (measured by Bit Error Rate, BER),
and resilience to audio effects. These methods typically em-
ploy a generator for watermark embedding, an effect simu-
lator for robustness, and a detector for retrieval [40, 21, 30].
However, most rely on audio effect simulators with fixed
distortion parameters, which can limit effectiveness against
unforeseen real-world attacks (audio modifications/ manip-
ulations).

Recent innovations such as WavMark [12] and Au-
dioSeal [28] have improved these foundations. WavMark
introduced synchronization patterns for watermark local-
ization, while AudioSeal achieved faster detection speeds
and enhanced sample-wise watermark localization. De-
spite these advances, current watermarking techniques re-
main vulnerable to temporal manipulations (e.g., reversal
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Figure 2. (a) The end-to-end training pipeline of Wave Verify, where a FiLM-based generator embeds bits into speech, followed by tempo-
ral/sequence/effect augmentations, and extraction via a locator and MoE detector. (b) MoE watermark detector architecture: Input audio
is processed by a HILCodec encoder, then routed through multiple expert networks via a learned gating mechanism to produce the final

extracted watermark bits.

and speed changes), structural modifications (e.g., trimming
and segment shuffling), and obtain limited localization pre-
cision, which undermines their effectiveness in adversarial
or real-time scenarios.

WaveVerify addresses these aforementioned limitations
by rethinking watermark embedding and detection. It uses
a Feature-wise Linear Modulation (FiLM)-based genera-
tor to adaptively spread watermark features across multi-
ple frequency bands and temporal scales, enhancing robust-
ness against spectral and temporal attacks. For detection,
a Mixture-of-Experts (MoE) architecture routes extraction
through specialized sub-networks resilient to distortions. Its
training pipeline includes aggressive, adaptive augmenta-
tions, enabling reliable detection even under severe audio
alterations.

The key innovations of Wave Verify are listed as follows:

¢ A robust FiLM-based generator architecture that
adaptively and uniformly embeds and distributes wa-
termark features across multiple frequency bands and
temporal scales to ensure robustness to audio effects
and temporal manipulations.

¢ A Mixture-of-Experts detector for resilient water-
mark extraction by dynamically routing through spe-
cialized sub-networks tailored to diverse distortions
and manipulations, consequently enhancing robust-
ness to a wide range of unseen audio manipulations.

¢ A dynamic augmentation and effect scheduling
strategy that accelerates training and ensures robust-
ness to a wide range of real-world audio effects or dis-
tortions.

¢ Comprehensive empirical validation demonstrating
state-of-the-art performance in both watermark bit re-

covery (BER) and localization (MIoU), with signifi-
cant improvements and robustness against attacks over
prior work.

2. Related Work

Audio watermarking has evolved significantly, begin-
ning with traditional signal processing techniques that laid
the foundation for imperceptible and robust embedding.
Early approaches, such as spread spectrum watermarking,
distributed signals across the frequency domain to resist
interference [15], while echo hiding techniques embedded
watermarks by introducing imperceptible echoes with spe-
cific delay parameters [10]. Phase-based methods further
advanced robustness by modifying phase components of au-
dio signals [6]. However, these methods struggled against
modern audio transformations like compression and filter-
ing, as highlighted by Cox et al. [14] and Bassia et al. [8],
underscoring the need for more adaptive solutions.

The advent of deep learning revolutionized audio wa-
termarking by enabling end-to-end optimization of water-
mark embedding and extraction processes. HiDDeN intro-
duced a pioneering framework for a trainable watermark-
ing solution, leveraging neural networks to enhance robust-
ness against diverse distortions [40]. More recent deep
learning-based methods have further improved adaptabil-
ity and performance by jointly training generator and de-
tector networks, often incorporating adversarial objectives
and distortion simulation during training [11, 20]. For
instance, IDEAW employs invertible dual-embedding and
attack-aware training to improve both capacity and local-
ization, addressing key challenges in neural watermark-
ing [20].

Recent techniques
dioSeal [

like WavMark [12] and Au-
] have further improved performance through



synchronization patterns and joint optimization of
generator-detector networks, respectively. WavMark lever-
ages invertible neural networks for reciprocal encoding and
decoding, achieving high capacity and imperceptibility,
as well as automatic watermark localization. AudioSeal
achieves superior temporal precision and detection speeds
but faces challenges with specific attack vectors like high-
pass filtering or temporal modifications. Benchmarking
studies such as AudioMarkBench confirm that while these
methods are robust to many black-box forgery attacks,
they remain vulnerable to adaptive watermark-removal
strategies, especially those that exploit detector APIs or
operate in the spectrogram domain [1].

Despite these advancements, existing watermarking
techniques remain vulnerable, particularly to temporal and
combined attacks that involve multiple types of distortions
(e.g., speed changes combined with spectral filtering, or
compression followed by noise addition) [11, 1]. More-
over, recent work has highlighted the limitations of cur-
rent schemes in the face of generative Al-driven attacks,
which can remove watermarks while preserving audio qual-
ity, raising concerns about the long-term viability of wa-
termarking for intellectual property protection [|1]. While
solutions like SilentCipher [30] have explored information-
theoretic capacity optimization and adversarial training to
counter unseen distortions, their practical application is lim-
ited by constraints such as a lack of explicit localization ca-
pabilities. These limitations motivate the development of
WaveVerify, which addresses these gaps through a novel
FiLM-based generator architecture and Mixture-of-Experts
detector design.

3. Proposed Method
3.1. WaveVerify Framework Overview

Figure 2 shows the overview of the framework of
WaveVerify. The proposed WaveVerify framework intro-
duces a novel end-to-end approach for robust audio water-
marking, integrating three synergistic components within a
unified Audio Watermarking architecture as illustrated in
Figure 2(a). At its core, the framework consists of a Gener-
ator, a Locator, and a Detector, each optimized for specific
tasks in the watermarking pipeline.

The Generator trained adversarially alongside a Dis-
criminator, employs an encoder-decoder architecture with
Feature-wise Linear Modulation (FiLM) [25] for water-
mark embedding. This design choice is crucial for com-
putational efficiency, as conventional bottleneck embedding
approaches require significantly more training time due to
the sequential nature of processing through the entire net-
work. By leveraging FiLM for adaptive modulation at mul-
tiple hierarchical levels, our approach distributes the water-
mark embedding process across the network architecture,

enabling more efficient parallel computation and reducing
overall training time by approximately 80% compared to
our implemented bottleneck-based alternatives (embedding
watermark at the bottleneck layers) while maintaining ro-
bust watermark integration. Direct training time compar-
isons with existing methods, such as AudioSeal, are not
feasible due to variations in hardware configurations and
the lack of publicly available or executable implementation
code.

The framework’s Locator enables precise identification
of watermark presence or absence for each individual audio
sample (i.e., sample-level identification) of watermarked re-
gions while maintaining minimal computational overhead.
Complementing these components, the Detector utilizes
a sophisticated architecture (approximately 4.5M parame-
ters) featuring a Mixture-of-Experts (MoE) module with
multiple specialized expert networks (referred to as sub-
networks), significantly enhancing the model’s capacity to
diverse audio attacks (detailed in Figure 2(b)).

To further improve robustness against audio edits and
reduce training time, the framework incorporates tempo-
ral augmentations and audio effects, using a dynamic ef-
fect scheduler, during the end-to-end training stage. Next,
we discuss these individual components of the Wave Verify
framework as follows:

3.2. Watermark Embedding and Modulation

Previous watermarking approaches like AudioSeal [28]
use “direct linear extension” to embed watermarks by sim-
ply repeating fixed message-derived vectors across the tem-
poral dimensions of intermediate audio features. This
method lacks resilience to temporal modifications in audio,
resulting in suboptimal and uneven distribution of water-
mark information across different time segments. We em-
bed watermarks across the entire audio signal without using
voice activity detection. Addressing these limitations, we
introduce a sophisticated hierarchical modulation architec-
ture that operates at multiple temporal scales as follows:

* A message processing module employs a multi-layer
perceptron (MLP) to transform the n-bit watermark
sequence into adaptive modulation parameters (scale
~ and shift 3 vectors), enabling dynamic control over
the watermark embedding process

* The framework implements multi-scale feature modu-
lation throughout the encoder’s hierarchical layers, uti-
lizing frequency-specific FILM (Feature-wise Linear
Modulation) [25] layers to apply adaptive modulation
across multiple frequency bands, enhancing the robust-
ness of the watermarking to temporal edits and audio
effects such as high pass filtering. This multi-band
distribution prevents the concentration of watermark



information in specific frequency regions, thereby in-
creasing resilience against filtering attacks that target
particular frequency ranges.

FiLM modulates features directly (F’ = v® F +3) with-
out normalization, preserving signal statistics crucial for
watermarking, unlike AdaIN (Adaptive Instance Normal-
ization) which first normalizes features to zero mean and
unit variance before applying affine transformations, po-
tentially removing important signal characteristics needed
for robust watermark embedding. Wave Verify leverages the
HILCodec architecture [3], a state-of-the-art neural audio
codec recognized for its high-fidelity output and compu-
tational efficiency across various bitrates. The generator
adopts HILCodec’s variance-constrained design with time-
domain fully convolutional layers, incorporating spectro-
gram blocks and carefully designed residual components
to extract rich feature representations while maintaining
minimal processing overhead. This architecture’s multi-
resolution capability and L2-normalization techniques nat-
urally complement WaveVerify’s FiLM-based modulation
approach, allowing watermark information to be adap-
tively distributed across multiple frequency bands and tem-
poral scales. For additional technical details regarding
the FiLM-based embedding approach, refer to the supple-
mentary material (Appendix A). By inheriting HILCodec’s
depthwise-separable convolutions and optimized encoder-
decoder structure, Wave Verify achieves exceptional robust-
ness against spectral filtering attacks while maintaining im-
perceptible watermarking with significantly reduced com-
putational requirements compared to previous approaches.

3.3. Augmentation Stage

To enhance watermark robustness against a wide range
of potential modifications, we employ a two-level augmen-
tation strategy during the training stage, explained as fol-
lows:

3.3.1 Temporal Augmentations

At this stage, we add two kinds of temporal augmentations,
namely, segment-level transformations targeting localized
regions and sequence-level transformations altering the en-
tire temporal structure.

For segment-level temporal augmentations, the frame-
work operates on fixed-duration audio segments (0.1s) and
modifies 20% of randomly selected segments, applying
with equal probability one of three transformations: replac-
ing watermarked segments with non-watermarked counter-
parts, setting segments to silence, or replacing segments
with audio from a different source. Complementing these,
we implement sequence-level augmentations by randomly
applying one transformation to the entire audio signal while

preserving watermark content: reversing the temporal or-
der, rotating by a random offset, or shuffling fixed-length
segments (e.g., 0.5s). By forcing the model to identify wa-
termarks across varied sequential patterns, it learns intrinsic
features rather than positional cues, enabling robust sample-
level detection even under significant reordering.

3.3.2 Audio Effect Augmentation

The second class of augmentation ensures robustness
against audio editing. To simulate real-world modifica-
tions, our augmentation pipeline includes diverse audio ef-
fects: highpass filter, lowpass filter, bandpass filter, resam-
ple, speed modification, and random noise (details in Ap-
pendix B.1).

The parameters of those augmentations are fixed to ag-
gressive values to enforce maximal robustness, and the
probability of sampling a given augmentation is propor-
tional to the inverse of its evaluation detection accuracy.
Instead of employing fixed augmentation parameters and
static selection probabilities, we introduce a Dynamic Ef-
fect Scheduler, inspired by curriculum learning princi-
ples [9] but specifically adapted for adversarial watermark-
ing. This scheduler intelligently manages the audio effect
augmentation pipeline during training. It adaptively adjusts
both the selection probability and the specific parameters
(e.g., filter cutoff frequencies, noise levels) for each audio
effect. This adaptation is driven by real-time performance
metrics, primarily the Bit Error Rate (BER) and Mean In-
tersection over Union (MIoU), calculated on the augmented
samples. By prioritizing effects and parameter settings that
currently pose a greater challenge to the model (indicated
by a higher BER or lower MIoU), the scheduler ensures
that the model progressively develops robustness against the
most difficult transformations. The precise mechanism, in-
cluding the use of exponential moving averages for metric
smoothing and the formula for updating probabilities and
parameter distributions, is detailed in Appendix B.2.

Importantly, all augmentations are applied on-the-fly
during training to each batch of audio samples, rather than
pre-generating augmented datasets. This dynamic approach
ensures diverse training conditions while maintaining mem-
ory efficiency, though it introduces approximately 15%
computational overhead compared to training without aug-
mentations due to the real-time audio processing operations.

3.4. Dual-Network Architecture for Watermark De-
tection and Localization

The architecture employs two specialized neural net-
works with shared design principles but distinct functional
objectives: (1) a Detector Network for robust message
recovery through multi-scale feature analysis, which in-
cludes a gating router component to predict and select the



most suitable expert networks (using MOE) for process-
ing a given input, and (2) a Locator Network for pre-
cise temporal identification of watermarked regions via
high-resolution processing. This bifurcated approach ad-
dresses fundamental technical constraints in audio wa-
termarking rooted in well-documented signal processing
principles[ | 4], namely, (a) the feature complexity vs. res-
olution trade-off, as detection requires rich feature rep-
resentations (128+ channels) while localization demands
lightweight architectures (64 channels) to preserve temporal
resolution, and (b) computational efficiency considerations,
as a unified network would require maintaining high chan-
nel dimensions throughout to support detection while also
preserving full temporal resolution for localization. For ad-
ditional theoretical justification and empirical results sup-
porting this dual-network design, please refer to the supple-
mentary material, Appendix C.

Architectural Details. The Detector implements a hi-
erarchical encoder-decoder structure using a modified
SEANet (Speech Enhancement Audio Network)[32]
encoder with (a) four convolutional blocks with
kernel size=7, stride={2,2,2,2}, and channel dimen-
sions={128,256,384,512}, (b) GroupNorm normalization
and Mish activations (f(z) = z - tanh(In(1 + €*))) for
improved gradient flow and training stability, and (c) a
decoder with four experts (F = 4).

The decoder employs a Mixture of Experts (MoE)
approach. Each expert f; consists of three depthwise-
separable convolutional layers (kernel size=3, stride=1) fol-
lowed by temporal unpooling. The final output combines
the predictions from all experts through a weighted sum us-
ing learned gating weights, applied via the Hadamard prod-
uct (®):

4
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where z is the encoded representation from the encoder,
fi(2) is the output of the i-th expert network, Wéz) are the
learned gating weights for expert 7, and o represents the sig-
moid activation function. At inference, the gating network
output, a(Wél)z), effectively acts as a selection probability
or weight, determining the contribution of each expert f; to
the final output based on the input representation z.

The Locator employs a streamlined SEANet [32] vari-
ant optimized for temporal precision with (a) three con-
volutional blocks with kernel size=7, stride={2,2,2}, and
channel dimensions={64,64,64}, (b) transposed convolu-
tions with stride={8,4,2} for resolution recovery, and (c)
depthwise-separable convolutions reduce parameters by 7 x
versus standard convolutions.

Parameter Efficiency Techniques. The locator network
employs several techniques to achieve significant parameter

efficiency compared to the Detector expert architecture, re-
sulting in a dramatic reduction from 4.5M parameters (De-
tector Expert) to just 0.13M parameters (Locator), a 97% re-
duction. This efficiency is crucial for maintaining high tem-
poral resolution for localization. Using 64 vs. 128 channels
results in 4 x fewer parameters while maintaining sufficient
feature expressivity. A lightweight multi-scale feature fu-
sion mechanism that combines features from different res-
olution levels (stride-2, stride-4, and stride-8) using 1x1
convolutions before upsampling, improving accuracy while
adding minimal parameters. Specific encoder layers share
weights across similar processing stages, reducing unique
parameters by 15% without significant performance impact.

Further, through symmetric padding and stride manage-
ment, the locator network maintains strict input-output tem-
poral alignment:

Tin +2P - K

Tout = { g

J + 1 (per block) 2)

where P represents the padding, K is the kernel size, and
S is the stride. By carefully selecting values for each layer
(P=3, K=7, S=2 for encoding layers; P=1, K=4, S=2 for
decoding layers), this precise temporal alignment enables
detection windows as small as 50ms with positional accu-
racy of +2 samples at 16kHz, critical for identifying partial
tampering.

3.5. Loss Functions

WaveVerify combines reconstruction, detection, local-
ization, and adversarial losses into a multi-objective func-
tion optimized through hierarchical weighting.
Reconstruction and Localization Loss. Building on spectral
reconstruction losses from neural codecs [19], we introduce
a weighted scheme prioritizing time-domain fidelity:

£rec = )\wave »Cwave + >\spec £spec + )\mel Emel
3)
where Lwave = |z —Z|1 represents direct waveform match-
ing between original (z) and watermarked () audio, Lspec
computes multi-scale STFT loss (window sizes 512/2048),
and Lmel calculates mel-band (150/80 filter banks) spectral
loss. Our weighting scheme emphasizes temporal accuracy
over spectral fidelity based on ablation studies.
Detection Loss. For detection, we jointly optimize two
complementary BCE losses, i.e. presence-masked detection
loss and temporal localization loss. The presence-masked
detection loss focuses learning on watermarked regions us-
ing binary mask m; € 0, 1:

Lo = =3 Yiey [y log p* + (1 — y;) log(1 — p*)

“)
where p;~ represents the detector network’s predicted

probability of watermark bit value at position ¢, and y; €

(det)



0,1 denotes ground truth watermark bits. This formula-
tion concentrates gradient updates on areas containing ac-
tual watermark content.

The temporal localization loss enforces global awareness
by predicting watermark presence across all timesteps:

Lo =~ 4 S, [milog™ + (1 - m) log(1 — )]
)
Here pgk’c) denotes the locator network’s prediction of
watermark presence at position ¢, while m,; serves as the
ground truth mask. Though structurally similar to Lqe, this
loss optimizes temporal boundary detection rather than bit
value accuracy, requiring separate network heads.
Adversarial Loss. Adversarial training employs multi-scale
discriminators with weighted objectives:

Laae = AgenE [(1 = D(G(2)))] + Aea 12y | () = (Gl
(6)
where f;(x) represents feature maps at layer [ of discrim-
inator D when processing real audio z, and f;(G(z)) corre-
sponds to audio features of the generated audio. The feature
matching term stabilizes training by preserving intermedi-
ate representations across multiple discriminator layers (L).
Combined Loss. The complete objective integrates these
components through task-specific weights:

Etotal - Erec + )\detEe [E(ejet] + )\locEe [ﬁleoc] + Eadv

(N

The expectation [E. computes average over augmentation

variants from our dynamic scheduler, implemented through

parallel processing of augmented copies per sample. This

weighting prioritizes detection robustness (BER) over lo-
calization precision (MIoU).

4. Experiments
4.1. Dataset

To achieve domain generalization in speech processing,
we utilize multiple diverse speech datasets [24, 5, 18, 29],
all resampled to 16kHz. We implement stratified batch sam-
pling with controlled distribution mentioned in percentage:

* LibriSpeech (40%) [24]: 1,000 hours of read English
speech, with the main corpus used for training and a
held-out set of 100 unseen speakers reserved for test-

ing.

* Common Voice (30%) [5]: 200 hours spanning 10 lan-
guages, with the bulk used for training and 5,000 test
clips from 1,000 new speakers held out for testing.

* CMU ARCTIC (15%) [18]: 20 hours of professional
speech, with the majority used for training and testing
performed using a leave-two-speakers-out strategy.

* DiPCo (15%) [29]: 40 hours of conversational speech,
with the initial sessions used for training and the last
10 sessions reserved for testing.

This multi-dataset approach, combined with strict
speaker-disjoint testing within each primary dataset, helps
ensure model generalization. Furthermore, we assessed
cross-domain performance on entirely unseen datasets,
RAVDESS [22] and ASVspoof 2019 [34], confirming ro-
bust generalization.

4.2. Experiment Setup

The experiments were conducted using the PyTorch
framework on NVIDIA Quadro RTX 8000 GPUs. All au-
dio samples were preprocessed to 16kHz sampling rate.
The training set comprised 500,000 audio segments of 1.0-
second duration, while validation utilized 50 distinct seg-
ments. For comprehensive evaluation, we employed 1,000
extended audio clips of 10.0 seconds each from RAVDESS
and ASVspoof datasets.

For training the proposed WaveVerify watermarking
model, the optimization protocol employed AdamW opti-
mizer with hyperparameters 5; = 0.8, 82 = 0.99, and an
initial learning rate of 1 x 10™%, coupled with an exponen-
tial decay schedule (y = 0.999996). The model training
was carried out for 600,000 iterations with a batch size of
32. Validation was performed at 1,000-iteration intervals.

In addition to evaluating on held-out portions of the pri-
mary datasets, we performed cross-domain evaluation us-
ing completely unseen test datasets: RAVDESS [22] and
ASVspoof 2019 [34]. These datasets feature different
acoustic conditions, recording environments, and speaker
demographics than those used during training, allowing
for a true assessment of model generalization. This strict
speaker-disjoint and cross-domain evaluation ensures that
performance metrics reflect genuine generalization rather
than memorization of speaker characteristics or dataset-
specific artifacts.

4.3. Evaluation Metrics

The system’s performance is evaluated using two com-
plementary metrics: the standard Bit Error Rate (BER) for
message recovery accuracy, and we employ Mean Inter-
section over Union (MIoU) to assess the precision of wa-
termark localization. To comprehensively assess the per-
ceptual quality of the watermarked audio, we also utilize
industry-standard metrics including Perceptual Evaluation
of Speech Quality (PESQ) [27] for perceived speech qual-
ity, Short-Time Objective Intelligibility (STOI) [31] for in-
telligibility, Signal-to-Interference Ratio (SISNR) for signal



clarity, and ViSQOL Audio Quality Metric (VISQOL) [13]
for overall audio quality. This comprehensive evaluation
framework ensures both reliable message extraction and ac-
curate temporal identification of watermarked regions, ad-
dressing the dual challenges of robust watermark detection
and precise localization.

5. Results

In order to provide a transparent and comprehensive
evaluation, all experiments were repeated in triplicate. Re-
sults are reported as mean =+ standard deviation, and paired
t-tests confirm that improvements (e.g., in MIoU and BER)
are statistically significant (all p < 0.001).

5.1. Audio Quality Assessment and Trade-Off Anal-
ysis

Table 1 reports various audio quality metrics including
PESQ, STOI, ViSQOL, and SISNR, measured on the un-
seen test set of 10-second clips. WaveVerify achieves per-
fect speech intelligibility (STOI = 1.00 + 0.00) and the
highest perceptual quality (ViISQOL = 4.76 £ 0.07). Au-
dioSeal records the highest PESQ (4.59 + 0.06), while
WavMark demonstrates superior signal fidelity (SISNR =
36.28 £ 0.50 dB). These differences highlight design trade-
offs between perceptual naturalness and robust watermark
recovery, an area that will be explored further in future
work.

Table 1. Audio Quality Comparison across Different Models. Bold
values indicate the best performance for each metric.

Methods PESQ STOI  ViSQOL  SISNR
Wave Verity (Ours) 4.34 1.00 4.76 24.23
WavMark 4.42 0.982 4.64 36.28
AudioSeal 4.59 0.994 4.63 25.24

5.2. Quantitative Evaluation under Diverse Audio
Effects

To evaluate WaveVerify’s robustness, we compared it
against AudioSeal [28] and WavMark [12] across five audio
effects, Table 4, assessing detection (TPR/FPR) and local-
ization (MIoU). WaveVerify demonstrates superior perfor-
mance, with near-perfect detection and significantly higher
MIoU. For instance, with high-pass filtering (500 Hz cut-
off), WaveVerify achieves an MIoU of 0.984+0.004, com-
pared to AudioSeal’s 0.658+0.012 (p < 0.001 for all com-
parisons). This robustness is evaluated on cross-dataset
evaluations, which includes evaluations performed on the
RAVDESS [22] and ASVspoof 2019 [34] datasets. Addi-
tional effect-wise results across different kind of noise and
compression types are provided in Appendix B.

WaveVerify’s superior robustness is attributed to its ar-
chitectural design and training. Specifically, attributed

BER Distribution miloU Distribution

Median: 1.00

Bit Error Rate (BER)
°
By
°
EY

Median: 0.00

AudioSeal WaveVerify (Ours) AudioSeal
Method Method

WaveVerify (Ours)

Figure 3. Performance under temporal sequence attacks. Error
bars indicate standard deviations over three runs. WaveVerify
shows significantly lower BER and higher MIoU compared to Au-
dioSeal (p < 0.001).

to its FiLM-based embedding to distribute the watermark
across multiple frequency bands, enhancing resilience to
frequency-selective distortions. Further, the Mixture-of-
Experts detector adaptively processes distorted audio, im-
proving watermark extraction and localization. Further-
more, a dynamic effect scheduler during training enhances
generalization by prioritizing challenging distortions. Fi-
nally, a dedicated Locator network, optimized for high tem-
poral resolution, accurately identifies watermark bound-
aries. These factors enable Wave Verify to outperform state-
of-the-art methods.

5.3. Robustness Against Combined Effect Attacks

While individual audio effects provide a baseline assess-
ment of watermark robustness, real-world scenarios often
involve multiple simultaneous transformations/attacks. To
evaluate WaveVerify’s resilience under more challenging
conditions, we conducted a comprehensive analysis of com-
bined audio effect attacks that better represent practical ad-
versarial scenarios. We specifically selected combinations
that preserve overall speech intelligibility and maintain a
reasonable Signal-to-Interference Ratio (SISNR), ensuring
that the watermarked content remains perceptually viable
and realistic for downstream applications. This avoids sce-
narios where the audio is so degraded that evaluation of wa-
termark recovery becomes impractical or meaningless.

Table 3 shows, combining high-pass filter (3500Hz)
and noise (0=0.001), WaveVerify achieved perfect detec-
tion (TPR=1.000, FPR=0.000) and high MIoU (0.975 +
0.006), outperforming AudioSeal and WavMark. Simi-
lar superior robustness was observed under low-pass fil-
ter (2000Hz) with speed change (0.8 x) and bandpass filter
(300-4000Hz) with resampling (32000Hz) and (8000Hz).
These results demonstrate Wave Verify’s strong resilience to
complex, combined audio manipulations due to its architec-
ture and dynamic training strategy.

5.4. Resilience Against Temporal Attacks

To assess resilience against temporal reordering attacks,
we tested our method on audio reversal, circular shift-



Table 2. Comparative Robustness Evaluation of Watermarking Methods (mean =+ SD, p < 0.001) against Audio Effects. Results are based
on evaluations performed on 1,000 audio clips per effect, specifically from cross-dataset evaluations (RAVDESS and ASVspoof 2019).

Audio Effect ‘ WaveVerify (Ours) ‘ AudioSeal ‘ ‘WavMark
| Det. (TPR/FPR) ~ MIoU | Det. (TPR/FPR)  MIoU | Det. (TPRFFPR)  MIoU
Identity 1.000 (1.000/0.000) 0.985 1.000 (1.000/0.000) 0.895 1.000 (1.000/0.000) 0.870
Resample (32000Hz) 1.000 (1.000/0.000) 0.986 0.975 (0.975/0.072) 0.875 0.960 (0.970/0.045) 0.860
Resample (8000Hz) 1.000 (1.000/0.000) 0.989 0.969 (0.969/0.092) 0.812 0.932 (0.927/0.073) 0.834
Speed (0.8 %) 1.000 (1.000/0.000) 0.983 0.957 (0.957/0.087) 0.903 0.940 (0.950/0.060) 0.890
Lowpass Filter (2000Hz) 1.000 (1.000/0.000) 0.982 0.978 (0.978/0.038) 0.882 0.970 (0.975/0.032) 0.865
Highpass Filter (3500Hz) 1.000 (1.000/0.000) 0.984 0.875 (0.875/0.095) 0.612 0.855 (0.880/0.065) 0.595
Bandpass Filter (300-4000Hz) 1.000 (1.000/0.000) 0.981 0.935 (0.935/0.068) 0.712 0.915 (0.925/0.055) 0.690
Table 3. Robustness Evaluation Against Combined Audio Effect Attacks
Combined Effects ‘ Wave Verify (Ours) ‘ AudioSeal ‘ WavMark
| Det.(TPRFPR) ~ MIoU | Det.(TPR/FPR)  MIoU | Det.(TPRFPR)  MloU
Highpass (3500Hz) + Noise (=0.001) 1.000 (1.000/0.000)  0.975 | 0.820(0.820/0.115)  0.635 | 0.795 (0.795/0.082)  0.612
Lowpass (2000Hz) + Speed (0.8x) 1.000 (1.000/0.000)  0.979 | 0.892(0.892/0.108)  0.722 | 0.871(0.871/0.098)  0.708
Bandpass (300~4000Hz) + Resample (32000Hz) | 1.000 (1.000/0.000)  0.981 | 0.887 (0.887/0.095)  0.705 | 0.862(0.862/0.105)  0.684

ing, and segment shuffling. Figure 3 shows that WaveV-
erify maintains a zero Bit Error Rate (BER; 0.00 & 0.00)
and MIoU above 0.95 £ 0.005 across all temporal at-
tacks. In contrast, AudioSeal’s performance degrades sig-
nificantly (e.g., under reversal, the BER increases to 0.56
+ 0.02). The improved performance is attributable to our
FiLM-based embedding and targeted temporal augmenta-
tions added during training. It is important to note that
while WavMark provides watermark localization at a seg-
ment level, both AudioSeal and WaveVerify achieve finer-
grained, sample-wise localization, offering greater preci-
sion in identifying tampered regions. Therefore, WavMark
is not compared with Wav Verify for this experimental study.

Average mloU by Watermark Removal Percentage

Mean loU

Method
—@- AudioSeal
WaveVerify (Ours)

1‘0 2‘0 Sb 4‘0 Sb 60 76 8‘0 9‘0
Percentage of Watermark Removed

Figure 4. MIoU under varying levels of partial watermark re-

moval. WaveVerify consistently achieves high MIoU (above 0.98),

whereas AudioSeal shows severe degradation as watermark por-

tions are removed. Error bars represent standard deviations over

three trials.

5.5. Robustness under Partial Watermark Removal

In a further test, segments of watermarked audio were
randomly removed (ranging from 10% to 90%), and local-
ization accuracy was measured via MIoU. As illustrated in
Figure 4, WaveVerify consistently maintains MIoU > 0.98
£ 0.003 even with up to 90% removal, while AudioSeal
exhibits significant performance drops (e.g., MIoU falls to
0.65 £ 0.03 at 70% removal). This demonstrates the robust-
ness of our watermark localization process in fragmented
scenarios. This is attributed to WaveVerify’s FiILM-based
embedding generator architecture that distributes the water-
mark across frequencies and time, ensuring sufficient infor-
mation remains for its sample-level Locator to accurately
identify fragmented watermarked regions, unlike methods
relying on continuous temporal patterns.

6. Conclusion

WaveVerify sets a new standard for robust and effi-
cient audio watermarking, targeting media authentication
and deepfake mitigation. It uses a FiLM-based generator
for adaptive embedding and a Mixture-of-Experts detector
for resilient extraction. WaveVerify outperforms prior work
like AudioSeal, especially under frequency distortions, tem-
poral edits, and watermark loss. Experiments show near-
zero Bit Error Rate and MIoU > 0.98. Future work aims
to improve perceptual audio quality and extend to other au-
dio domains such as music, environmental sound, and other
non-speech audio.
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Supplementary Material

1. Additional Details on FiLM-based Water-
mark Embedding

This hierarchical approach ensures uniform distribution
of watermark information across temporal audio segments
while accommodating variable-length speech inputs, ad-
dressing a critical limitation of existing methods. By dis-
tributing FiLM layers throughout the encoder hierarchy, the
framework modulates both low-level (short-term) and high-
level (long-term) audio features, capturing features at vari-
ous abstraction and temporal scales. The frequency-specific
aspect is implemented by partitioning the encoder’s feature
maps along the channel dimension, with each subset cor-
responding to a distinct frequency band, allowing the wa-
termark to be adaptively embedded across multiple spec-
tral regions. The multi-scale nature of our framework en-
ables more nuanced control over the watermark embed-
ding strength and distribution across both time and fre-
quency bands, resulting in enhanced robustness against a
wide range of audio transformations and attacks without
compromising speech quality. This approach directly ad-
dresses the limitations of previous methods that concen-
trate watermark information in vulnerable frequency bands
or rely on rigid temporal patterns, which are susceptible to
filtering and temporal modifications.

2. Extended Augmentation Methodology

2.1. Comprehensive Audio Effect Augmentation Pa-
rameters

To simulate real-world modifications and ensure the wa-
termark’s robustness against audio editing, we apply a di-
verse set of audio effects during training. The specific ef-
fects and their dynamically sampled parameter ranges used
within our augmentation pipeline are detailed below:

* High-pass filtering: Cutoff frequencies are sampled
uniformly from the range [100 Hz, 3 kHz]. This simu-
lates the removal of low-frequency content.

e Low-pass filtering: Cutoff frequencies are sampled
uniformly from the range [2kHz, 16 kHz]. This simu-
lates the removal of high-frequency content, common
in bandwidth-limited channels.

* Bandpass filtering: Cutoff frequencies [300Hz,
4 kHz] combining high-pass and low-pass characteris-
tics.

¢ Resampling: Audio is downsampled and then upsam-
pled to target sample rates selected randomly from
{8kHz, 16 kHz, 32kHz}. This tests robustness against
changes in sampling frequency.

* Speed modifications: Playback speed factors are
drawn uniformly from the range [0.8x, 1.25x]. This
simulates time-stretching or compression effects often
applied in media playback or editing.

¢ Additive Noise:

— Gaussian Noise: Applied with Signal-to-Noise
Ratio (SNR) levels sampled uniformly from the
range [10dB, 30dB]. This simulates common
background noise in real-world recordings.

— Pink Noise: Added with SNR levels sampled
uniformly from the range [10dB, 30dB]. Pink
noise has a spectral density inversely propor-
tional to frequency, mimicking natural ambient
sounds.

— Babble Noise: Multi-talker babble noise is intro-
duced with SNR levels sampled uniformly from
the range [10 dB, 30 dB]. This simulates overlap-
ping speech interference.

¢ Lossy Compression:

— MP3 Compression: Audio is compressed us-
ing MP3 codecs with bitrates sampled from
{64 kbps, 96kbps, 128kbps}. This simulates
common web and streaming distribution scenar-
i0s.

— AAC Compression: Audio is compressed us-
ing AAC codecs with bitrates sampled from
{64 kbps, 96kbps, 128kbps}. This simulates
common mobile and streaming distribution sce-
narios, often more efficient than MP3.

* 8-bit Quantization: The audio signal is uniformly
quantized to 8 bits, simulating aggressive bit-depth re-
duction that can occur during storage or transmission.

The selection probability and specific parameters for
these effects are managed during training by our proposed
Dynamic Effect Scheduler, which adapts based on model
performance metrics (BER and MIoU) to prioritize chal-
lenging transformations.

2.2. Implementation Details of Dynamic Effect
Scheduling Algorithm

Most audio watermarking systems use fixed augmenta-
tion pipelines. In contrast, we propose an adaptive Ef-
fect Scheduler that optimizes robustness through intelligent
management of data augmentation, inspired by curriculum
learning but adapted for adversarial watermarking. The
scheduler dynamically adjusts the selection and parame-
ters of audio transformations based on two key performance
metrics:



Table 4. Extended comparative robustness against Noise, Resample lossy compression (MP3, AAC) and bit-depth reduction (8-bit quan-
tization). Mean detection rates (TPR/FPR) and localization scores (MIoU) evaluated on 1,000 cross-dataset samples. See Table 2 in
main paper for robustness against filtering, additive noise, and speed modifications. All methods tested under identical conditions with

p < 0.001.

Audio Effect | WaveVerify (Ours) | AudioSeal | WavMark

| Det. (TPR/FPR)  MIoU | Det. (TPRFPR)  MIoU | Det. (TPRFPR)  MloU
Gaussian Noise (20dB SNR) | 1.000 (1.000/0.000)  0.987 | 0.992(0.992/0.020)  0.915 | 0.988 (0.988/0.022)  0.900
Pink Noise (20dB SNR) 1.000 (1.000/0.000)  0.986 | 0.985(0.985/0.025)  0.900 | 0.980 (0.980/0.030)  0.890
Babble Noise (20dB SNR) 1.000 (1.000/0.000)  0.984 | 0.960 (0.960/0.050)  0.850 | 0.945(0.945/0.065)  0.830
Resample (8000Hz) 1.000 (1.000/0.000)  0.989 | 0.969 (0.969/0.092)  0.812 | 0.932(0.927/0.073)  0.834
MP3 (128 kbps) 1.000 (1.000/0.000)  0.980 | 0.980 (0.980/0.030)  0.880 | 0.975(0.975/0.035)  0.860
MP3 (96 kbps) 1.000 (1.000/0.000)  0.978 | 0.970 (0.970/0.040)  0.865 | 0.960 (0.960/0.050)  0.845
MP3 (64 kbps) 1.000 (1.000/0.000)  0.975 | 0.950 (0.950/0.060)  0.840 | 0.930(0.930/0.070)  0.810
AAC (96 kbps) 1.000 (1.000/0.000)  0.979 | 0.975(0.975/0.035)  0.870 | 0.965(0.965/0.045)  0.850
8-bit Quantization 1.000 (1.000/0.000)  0.970 | 0.900(0.900/0.080)  0.750 | 0.880 (0.880/0.090)  0.720

Algorithm 1 Dynamic Effect Scheduling (Revised)

Require: Effects F, smoothing factor 8 = 0.9
Initialize uniform probabilities po(e) = 1/|E|
Initialize BERema(e) = 0.5, MIoUema(e) = 0.5 foralle € E
for each training iteration ¢ do
Sample effects according to probabilities p:(e)
Apply selected effects with parameters sampled from
P(0le)
Compute BER?(e), MIoUt(e) for each applied effect
Update EMAs:
BERema(e) + (- BERema(e) + (1 — 3) - BER¢(e)
MlIoUema(e) < § - MIoUema(e) + (1 — 8) - MIoUt(e)
Update probabilities using weighted performance metrics:
pt + 1(6) — softmax wl-BERema(e)+w,I%»(lfMIoUema(e))

Update parameter distribution P(6|e) based on success rates
end for
return Model with best validation performance

e Bit Error Rate (BER): The ratio of incorrectly de-
coded bits to the total watermark bits, directly mea-
suring recovery accuracy. Lower is better; O indicates
perfect recovery.

¢ Mean Intersection over Union (MIoU): Quantifies
the overlap between predicted and true watermarked
regions, measuring localization precision. Higher
(closer to 1) is better.

The scheduler uses these metrics to adapt effect proba-
bilities via a temperature-scaled softmax:

Pe+1(e) = softmax (“’1'BERema(eHw;'(1*M10Uema(e)))
®)

Here, w; = 0.8 and wo = 0.2 balance BER and MIoU
importance, prioritizing BER as detection accuracy is of-
ten more critical than exact localization. These weights
were determined through a systematic evaluation of dif-
ferent configurations. The temperature parameter 7' (ini-
tially 1.0, later reduced to 0.7) controls the exploration-
exploitation trade-off, with higher values encouraging more
uniform probabilities across effects.

The scheduler maintains exponential moving averages
(EMA) of metrics for stability, as outlined in Algorithm 1.

We set the EMA smoothing factor 5 = 0.9, balanc-
ing stability and adaptability, ensuring the scheduler adapts
smoothly without overreacting to transient fluctuations. To
optimize effect parameters (e.g., filter cutoffs, noise levels),
the scheduler uses a success-rate mechanism with Laplace
smoothing:

success_count(d, e) +
total_count(#, e) + o + 3

where o = 1.0 (standard additive smoothing) prevents zero
probabilities for parameter values with few observations,
ensuring continued exploration of the parameter space. A
”success” is defined as BER=0. Parameter ranges are ini-
tialized based on common audio processing standards and
known attack parameters. For example, high-pass filter cut-
offs range from 100Hz to 3kHz, while speed modification
factors range from 0.8 to 1.25, consistent with the range
used in practical audio watermarking applications.
During training, the scheduler operates in two phases:

P(fle) x )

1. Exploration phase: Initially uses higher temperature
values and uniform parameter sampling to explore the
effect space



2. Exploitation phase: Gradually reduces temperature
and focuses on challenging effects and parameter con-
figurations that most effectively test watermark robust-
ness

The combination of temporal-structural augmentation
and dynamic scheduling creates a comprehensive system
capable of addressing diverse audio manipulation patterns,
including spectral modifications (filtering), temporal modi-
fications (speed changes, reversal), and structural edits (seg-
ment removal or shuffling).

3. Technical Specifications of Dual-Network
Architecture

The separation into distinct networks resolves three in-
herent tensions in audio processing systems:

1. Feature complexity vs. resolution trade-off: De-
tection requires rich feature representations (deep net-
works with 128+ channels) to identify distorted pat-
terns, while localization demands lightweight archi-
tectures (64 channels) to preserve temporal resolu-
tion. This tension aligns with established principles in
signal processing where increased feature complexity
typically comes at the cost of temporal resolution.

2. Computational efficiency considerations: A uni-
fied network would require maintaining high chan-
nel dimensions throughout to support detection while
also preserving full temporal resolution for localiza-
tion, resulting in excessive computational overhead.

Our preliminary experiments with unified architectures
involved training five different model configurations
with shared encoders but varying decoder designs on
the LibriSpeech dataset (100 hours subset). These tests
consistently showed a 4.3x increase in computation
time (51.3ms vs. 2.05ms) with only marginal perfor-
mance gains (0.02 BER improvement), highlighting
the inefficiency of the unified approach.

3. Task-specific optimization conflicts: Detection bene-
fits from receptive fields spanning multiple seconds (1s
at 16kHz) to capture long-range dependencies, while
localization requires sample-level precision. These
competing optimization targets create gradient con-
flicts during training of unified models, as observed
in preliminary experiments where unified models con-
verged to suboptimal solutions (0.83 MIoU vs. 0.98 in
our dual-network approach).

While our dual-network architecture offers significant
advantages, it does introduce certain trade-offs. The sep-
arate networks require additional parameters and memory

overhead compared to a single-task architecture. There’s
also increased implementation complexity for system inte-

gration, and potential synchronization challenges between
detector and locator outputs in real-time applications. How-
ever, our experiments indicate these costs are substantially
outweighed by the performance benefits and computational
efficiency gains.



