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ABSTRACT

The rapid advancement of Generative Artificial Intelligence (GAI) has fueled the proliferation of
deepfakes—synthetic media encompassing both fully generated content and subtly edited authentic
material—posing profound challenges to digital security, misinformation mitigation, and identity
preservation. This systematic review critically evaluates state-of-the-art deepfake detection method-
ologies, with an emphasis on reproducible, publicly available implementations to foster transparency
and scientific validation. The analysis delineates two core paradigms: (1) the detection of fully
synthetic media, leveraging statistical anomalies and hierarchical feature extraction, and (2) the
localization of manipulated regions within authentic content, often employing multi-modal cues such
as visual artifacts and temporal inconsistencies. These approaches, spanning uni-modal and multi-
modal frameworks, demonstrate notable precision and adaptability in controlled settings, effectively
identifying manipulations through advanced learning techniques and cross-modal fusion.

However, a comprehensive assessment reveals a pervasive limitation: the insufficient evaluation
of adversarial robustness across both paradigms. Current methods, while proficient against known
generative techniques, exhibit vulnerability to adversarial perturbations—subtle, intentional alter-
ations designed to evade detection—undermining their reliability in real-world adversarial contexts.
This gap highlights a critical disconnect between methodological development and the evolving
threat landscape of GAl-driven attacks. To address this, we contribute a curated GitHub reposi-
tory aggregating open-source implementations of the reviewed methods, enabling researchers to
replicate, extend, and stress-test these approaches. Our findings emphasize the urgent need for
future work to prioritize adversarial resilience, advocating for the design of scalable, modality-
agnostic architectures capable of withstanding sophisticated manipulations. This review not only
synthesizes the strengths and shortcomings of contemporary deepfake detection but also charts a
path toward robust, trustworthy systems amid escalating digital threats. Link to github repository:
https://github.com/Magnet200/S0T_Deepfake_Detection_Mechanisms
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1 Introduction

Generative Artificial Intelligence (GAI) refers to the class of Al models designed to generate synthetic data that closely
resembles real-world input. Initially developed to augment imbalanced datasets using techniques such as Generative
Adversarial Networks (GANSs), Variational Autoencoders (VAEs), and Autoregressive models, GAI has evolved into
a powerful paradigm driving advancements across multiple domains [} [2]. Beyond its foundational role in data
augmentation, GAI has revolutionized content creation, enabling human-computer collaboration (HCC) in areas such
as art, music, literature, healthcare, and scientific research [3}4]. Its widespread adoption has significantly impacted
industries by improving efficiency, reducing costs, and fostering innovation [J5].

Modern GAI models generate content across diverse modalities, including text, images, audio, video, and code.
Prominent applications such as ChatGPT, Bard (Gemini), Midjourney, Copilot, DALL-E, and Synthesia demonstrate
its broad utility [0, [7]. While these technologies offer substantial benefits, they also introduce ethical, security, and
privacy concerns. The ability of generative models to produce highly realistic yet synthetic media raises concerns about
misinformation, intellectual property rights, and privacy breaches. Consequently, research efforts increasingly focus on
developing ethical and regulatory frameworks to ensure responsible deployment and forensic analysis of generative
systems [8, 9].

Despite their transformative potential, GAI systems pose significant risks when misused. In education, the unrestricted
use of generative models undermines academic integrity and critical thinking skills [10]]. In business, inadequate
regulatory controls expose organizations to security vulnerabilities and ethical dilemmas [11]]. In healthcare, biased
training data can lead to inaccurate Al-assisted diagnostics and decision-making [[12]]. Moreover, the propensity of
GAI models to memorize and regenerate sensitive training data raises privacy concerns, particularly in journalism and
legal contexts where confidential information must be safeguarded [[13]. These risks underscore the broader societal
implications of GAI including job displacement, socio-economic inequalities, and the potential weaponization of
synthetic content for manipulation and disinformation campaigns [[14].
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Figure 1: The graph illustrates the annual publication count in the field of DeepFakes. The data, obtained from
dimensions.ai [15]], highlights the development trend of Deepfakes detection from 2017 to 2024.

Among the most pressing challenges associated with GAI is the proliferation of synthetic media, commonly known
as DeepFakes. DeepFakes leverage generative models to manipulate visual, auditory, and textual content, posing
substantial threats to digital security, democratic stability, and public trust. As illustrated in Figure[T] research interest in
DeepFake detection has surged in response to the increasing sophistication and accessibility of these technologies [[15].
Malicious use cases include disinformation campaigns, identity fraud, extortion, and non-consensual explicit content
generation, as exemplified in Figure[2] These developments highlight the urgent need for robust forensic techniques
capable of identifying and mitigating synthetic media threats. In particular, advancing adversarially robust detection
mechanisms is crucial to ensuring the integrity and trustworthiness of digital content [16].

This systematic review explores the current state of DeepFake detection methodologies, with a focus on uni-modal
and multi-modal approaches, adversarial robustness, and cross-domain generalization. By critically analyzing existing
frameworks, we aim to identify gaps in detection strategies and propose directions for future research toward more
resilient and scalable solutions.



Unmasking Synthetic Realities in the GAI Era A PREPRINT

Image Translation Model

"two young women with
curly hair standing next
to each other"

"Alter Identity” _ Possible edits: "Change style",
"Alter identity", "modify context",
"change gender",

“Replace one woman with
a man”

Figure 2: Illustration of a multi-stage pipeline in which a threat actor manipulates a source image using a text-conditional
image generator, guided by identity-altering instructions, to produce a synthetic target image with modified personal
attributes.

2 Background and Technical Foundation

The evolution of deepfake technology is intrinsically linked to advancements in generative artificial intelligence (GAI).
Since its emergence in 2017, deepfake technology has rapidly progressed from rudimentary face-swapping applications
to sophisticated synthetic multimedia generation systems. This advancement is primarily driven by developments
in generative models, notably Generative Adversarial Networks (GANSs) [[L7], Diffusion Models (DMs) [18], and
Variational Autoencoders (VAEs) [19]], which collectively underpin modern deepfake creation.

Early generative models relied on standalone architectures, such as basic encoder-decoder frameworks. However, the
field has since shifted toward sophisticated conditional generation paradigms [20], enabling precise control over synthetic
outputs. This shift has facilitated the integration of multiple modalities—visual, auditory, and textual—enhancing
both the quality and versatility of generated media. For example, Conditional GANs [21} [22| 23] allow generators
to produce tailored synthetic content based on specific input conditions, such as facial landmarks or text prompts.
Similarly, Diffusion Models [24, 25| 26]] employ iterative denoising processes to create high-fidelity synthetic media
guided by user-defined constraints, offering a robust alternative to GAN-based approaches.

Recent innovations in multi-modal learning have further elevated synthetic media generation, particularly in text-to-
image (T2I) and text-to-video (T2V) domains. Models like DALL-E [27] exemplify this capability by generating
photorealistic images from textual descriptions, while T2V advancements leverage pre-trained visual representations
to produce coherent video sequences without requiring paired text-video training data [28]]. These developments are
supported by spatial-temporal architectures that enhance motion modeling and resolution, resulting in highly realistic
video content [28]]. Such progress has significantly expanded the scope of deepfake applications across modalities.

In the visual domain, deepfakes benefit from conditional image synthesis and high-resolution video generation
techniques. Audio deepfakes, driven by models such as WaveNet [36]] and Tacotron [37], utilize generative architectures
trained on speech data to produce realistic synthetic voices, often synchronized with visual elements for enhanced
authenticity. Text-based synthetic content, powered by large language models like GPT [38]], generates human-like
narratives that can complement other modalities. The convergence of these advances has given rise to multi-modal
deepfakes, where synchronized audio, visual, and textual components create highly convincing synthetic media. High-
profile cases, such as political misinformation campaigns and identity spoofing [39]], highlight the growing realism and
accessibility of this technology.

This increased sophistication, however, presents formidable challenges for detection systems. Traditional methods,
which often exploit modality-specific artifacts—such as those in GAN-generated images [40]—struggle against modern
deepfakes. Diffusion-based models, for instance, produce fewer detectable traces, complicating forensic analysis [41].
Moreover, these generative frameworks can be exploited through adversarial techniques, crafting deepfakes designed to
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Table 1: Comparative analysis of prior systematic reviews on deepfake detection, highlighting their modality coverage,
detection paradigm and evaluation focus.

Coverage Aspects 291 (300 [31,32] [33] [34] [35] \ Our Study
Detection Modalities

Image-based v o X X ([ v v
Video-based v v X X ([ J v v
Audio-based X X v X o X v
Text-based X X X v ([ J X v
Multi-modal X X X X v v v
Detection Paradigms

Fully Synthetic v v v v 4 4 4
Edited Region Localization @ X X X X ([ v
Evaluation Metrics

Cross-dataset Generaliza- v o o o o v v
tion

Natural Perturbations o X ([ J X X [ J v
Adversarial Robustness X X v X ([ X v

v Comprehensive coverage, @ Partial coverage, X Limited/No coverage

evade detection algorithms. Subtle perturbations, as explored in adversarial attack research [42]], can deceive classifiers,
exposing vulnerabilities in existing detection frameworks, especially in real-world adversarial settings.

The seamless integration of multi-modal cues and the emergence of adversarially crafted threats underscore the urgent
need for advanced detection strategies. These must address not only the realism of modern deepfakes but also their
intentional manipulations across modalities. The remainder of this review critically evaluates state-of-the-art uni-modal
and multi-modal deepfake detection approaches, with a focus on enhancing adversarial robustness to counter these
evolving synthetic challenges.

3 Systematic Review Methodology

To systematically assess advancements in deepfake detection, we conducted a structured literature review, emphasizing
model robustness, transferability, and multi-modal approaches. Traditional detection methods rely on publicly available
datasets, limiting their effectiveness against novel generative architectures. The rapid evolution of deepfake generation,
particularly with techniques such as Low-Rank Adaptation (LoRA) [43]], has increased the diversity of synthetic content,
making exhaustive model-specific training impractical. This review, therefore, examines the generalization capability of
detection models across datasets and their adaptability to emerging threats.

3.1 Search Strategy and Inclusion Criteria
Our review follows a systematic approach for selecting relevant literature. We queried the following databases:

» Databases: Dimensions.ai, Semantic Scholar, IEEE Xplore, ACM Digital Library, and arXiv.

non

adversarial
cross-domain

* Search Terms: "Deepfake detection," "Image/Audio/Video/Text-based deepfake detection,
robustness in Al forensics," "uni-modal deepfake detection," "multi-modal deepfake detection," "
generalization in synthetic media detection."

* Timeframe: Studies published from January 2023 to early 2025 were prioritized to ensure coverage of the
latest advancements.

* Inclusion Criteria: Peer-reviewed journal and conference papers focusing on image, video, audio, text-based,
and multi-modal deepfake detection.

* Exclusion Criteria: Papers without empirical results, non-English publications, and theoretical discussions
without publicly available implementation.

Each study underwent a systematic quality assessment evaluating: (1) relevance to deepfake analysis domains, (2)
availability of public implementation repositories, (3) experimental validation on contemporary benchmark datasets,
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and (4) methodological innovation relative to existing approaches—ensuring our review encompasses technically sound,
reproducible, and state-of-the-art contributions.

3.2 Scope of Existing Systematic Reviews

The field of deepfake detection has seen extensive research, leading to multiple systematic reviews. However, existing
surveys often focus on specific modalities rather than comprehensively addressing deepfake detection across different
forms of synthetic media. Table [I] provides an overview of prior surveys, highlighting their scope, strengths, and
limitations.

Most prior reviews target image and video-based detection, with notable contributions focusing on facial deepfake
analysis and fully synthetic content identification [29, [30]. While these studies provide a strong foundation, they
typically exclude audio and text-based manipulations, limiting their applicability in multi-modal contexts. Similarly,
surveys on audio deepfake detection focus on speech synthesis and voice conversion techniques but do not address
cross-modal threats that combine visual and auditory elements [31} [32]].

Text-based deepfake detection, particularly in misinformation and fake news detection, has been explored in recent
studies [33]]. However, these works primarily analyze linguistic patterns and do not integrate insights from other modali-
ties. Some broader surveys attempt to cover multiple modalities [34} 35], yet they lack a comprehensive adversarial
robustness evaluation and fail to systematically assess cross-dataset generalization and real-world transferability.

While these reviews have significantly advanced the field, none provide a unified framework that integrates deepfake
detection across all media formats, including image, video, audio, text, and multi-modal systems. Additionally, most
prior studies focus on conventional detection approaches without addressing emerging challenges such as adversarial
attacks, generative fine-tuning, and imperceptible content manipulations.

3.3 Contributions of This Review

This systematic review provides a comprehensive synthesis of deepfake detection methodologies, encompassing all
primary modalities—image, video, audio, text, and multi-modal systems. It bridges critical gaps in the literature
by integrating uni-modal and multi-modal approaches while offering a structured evaluation of their resilience to
adversarial threats and their adaptability across diverse synthetic media contexts.

A key contribution lies in the classification of detection strategies into two distinct paradigms: (i) the identification
of entirely synthetic media and (ii) the localization of manipulated regions within authentic content. The latter, an
emerging and underexplored domain, demands sophisticated forensic techniques and adaptive analytical methods,
which this review systematically explores.

Additionally, this study delivers an in-depth examination of cross-domain generalization, a crucial attribute for ensuring
detection systems remain effective against evolving generative technologies. By assessing the transferability of detection
approaches across varied synthetic media types, this review establishes a foundation for understanding their robustness
in dynamic, real-world scenarios.

Adversarial robustness is a cornerstone of this analysis, with a critical evaluation of how contemporary detection systems
withstand real-world perturbations and adversarial modifications. This includes a discussion of countermeasures—such
as adversarial training and feature-space regularization—designed to bolster resilience against advanced manipulation
techniques, without reliance on specific attack frameworks.

To uphold scientific integrity and support practical implementation, this review emphasizes studies with publicly
accessible implementations, fostering reproducibility and enabling comparative assessments. A consistent evaluative
framework is applied across all methodologies, scrutinizing their strengths, limitations, and applicability to operational
contexts.

Finally, this review delineates key research gaps and proposes future directions, including the incorporation of
explainable AI for enhanced forensic transparency, the advancement of real-time detection capabilities, and the
exploration of self-supervised learning to improve generalization and robustness. By consolidating current knowledge
and outlining a trajectory for future inquiry, this study serves as a vital resource for developing resilient detection
systems to counter the growing sophistication of generative Al-driven synthetic media.

3.4 Conclusion and Transition to Detection Methodologies

This review consolidates prior research on deepfake detection, emphasizing its strengths and gaps. Unlike previous
surveys, it systematically integrates multi-modal detection, adversarial robustness analysis, and cross-dataset generaliza-
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Figure 3: The broad taxonomy of Deepfake generation and detection strategies.

tion. The following section explores state-of-the-art detection methodologies, evaluating their efficacy in combating the
increasing sophistication of GAIL

4 Deepfake Detection

Deepfake detection methods can be broadly categorized into Uni-modal and Multi-modal approaches, depending on
whether they analyze a single data type or integrate multiple modalities for classification. Uni-modal methods focus
on domain-specific artifacts within images, audio, or text, leveraging spatial inconsistencies, frequency distortions, or
linguistic anomalies to detect manipulations. In contrast, multi-modal approaches enhance robustness by combining
complementary information across modalities, such as synchronizing facial expressions with speech in audio-visual
deepfake detection. Advanced fusion techniques, including attention mechanisms and contrastive learning, further
improve cross-modal consistency analysis, enabling more reliable detection of synthetic content. The broad taxonomy
of Deepfake generation and detection approaches depicted in Figure[3]

4.1 Feature Learning Strategies in Deepfake Detection

Beyond modal categorization, deepfake detection techniques can be classified based on their feature extraction and
learning mechanisms. Traditional approaches primarily focus on spatial pattern learning, frequency spectrum analysis,
and temporal consistency modeling. Spatial-based methods detect visual artifacts, inconsistencies in texture, or
pixel-level anomalies introduced during synthesis [44]]. Frequency-based techniques exploit traces left by generative
models in the frequency domain, leveraging Fourier or wavelet transforms to capture imperceptible patterns [43]].
Temporal consistency learning extends these methods by analyzing motion coherence across frames to detect artifacts
in synthesized videos [46]. Textual-based methods identify linguistic anomalies or contextual inconsistencies in
Al-generated text, such as fake news, using deep learning models like BERT [47].

Recent advancements have explored physiological signal analysis, such as heart rate variations (rPPG) and facial
micro-expressions, to differentiate real and fake content [48]]. Another emerging approach involves detecting semantic
and contextual inconsistencies, focusing on unnatural facial expressions, lip-sync mismatches, or logical errors in
Al-generated text [49]]. To enhance robustness, adversarial perturbation analysis is employed, evaluating how detection
models respond to adversarial attacks or subtle perturbations designed to bypass classifiers [42]. Furthermore, self-
supervised and contrastive learning methods have gained attention for their ability to generalize across different
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generative models by learning invariant feature representations [50]. Explainability-driven strategies, leveraging
techniques like Grad-CAM, SHAP, TSNE, or textual description, also play a role in improving interpretability by
highlighting manipulated regions in images or videos [31]].

These diverse learning strategies collectively contribute to improving deepfake detection, enhancing model generaliz-
ability, and addressing evolving generative Al techniques. To systematically assess the strengths and limitations of these
detection strategies, the following sections provide an in-depth review of Uni-modal detection approaches, evaluating
their model architectures, benchmark datasets used, performance metrics in both natural and adversarial adaptability,
and their generalization ability against unseen generative models.

4.1.1 Uni-modal Deepfake Detection

Image deepfakes: Image-based deepfake detection has been a primary focus due to the proliferation of generative
models producing realistic synthetic images, ranging from fully synthetic faces to subtle manipulations. Early methods
relied on spatial pattern learning using convolutional neural networks (CNNs) to detect pixel-level inconsistencies
(52, 53]]. However, their limited adaptability to diverse generative sources prompted a shift to frequency-domain
analysis, leveraging statistical traces to enhance generalization [54} [55] 56} [57) [58], 59, [60, [61]]. Recent approaches
integrate self-supervised and contrastive learning to improve feature invariance and robustness [62, [66],
while lightweight architectures prioritize efficiency [67} 68]. Robustness against adversarial perturbations is addressed
through watermarking and adaptive frameworks [69] [73]], with explainability-driven strategies enhancing
interpretability 173 [76].

Table 2: Uni-modal Deepfake Detection: Synthesis of Mechanisms and Insights

Modality Approach References Strength Challenge

Image-based Detection

Datasets: CelebA, FFHQ, ForenSynths, LSUN, DiffusionForensics, CNNSpot, ProGAN, COCO, ImageNet, LAION, GANGen-Detection, UnivFakeDetect, MSCOCO

Image Frequency-Based 7715411551851 1861[871[881[89)  Uncovers subtle synthesis artifacts Limited by evolving generative techniques

Image Spatial-Based [751901[79180I[771 Captures pixel-level inconsistencies Sensitive to image degradation
Image Adaptive Learning 1581165163176l 826811641162  Adapts to diverse generative models Requires extensive training data

Image Robust Learning 741671 O 111831811 Enhances stability under disruptions ~ High computational complexity
Image Watermarking 169170} 7111721 [731 Embeds detectable authenticity cues ~ Vulnerable to sophisticated attacks

Video-based Detection

Datasets: FF++, Celeb-DF, DFDC, WildDeepfake, FakeAVCeleb, DeeperForensics, ForgeryNet, DFD, Seq-DeepFake, KODF-LS, LSR+W2L, DF40

Video Frame-Based [921[93104195106l[07108199] Leverages static visual cues Misses temporal inconsistencies

Video Temporal-Based (100110111021 [1031[1041[T05) Detects motion-based anomalies Dependent on video quality
[1061 107 (1081

Video Temporal+Graph {1091 [TT0} [TI 11 [T12) Models relational dynamics Complex model training

Video Adaptive Learning % (114} [TT5) 1161 [T17) Handles varied forgery types Limited by dataset diversity

Video Robust Learning [TT9) 120 1181211 [122) Improves reliability in real conditions ~ Resource-intensive processing

Video Hybrid/Advanced (12311241 [125]) Combines local and global features Sensitive to low-quality inputs

Audio-based Detection

Datasets: ASVspoof 2015, ASVspoof 2019, ASVspoof 2021, In-the-Wild, FakeAV Celeb, CVoiceFake, SONICS, WaveFake, EVDA, CLEAR, VSA, GRID,

CD-ADD
Audio Artifact-Focused (1261 [1271 [128] [129] [130] Identifies synthesis imperfections Fails with high-fidelity fakes
Audio Temporal Modeling (13111321 [133] Captures sequential patterns Vulnerable to noise interference
Audio Adaptive Learning (1341 (1351 [136) (1371 [138] Adapts to new synthesis methods Relies on broad data coverage
Audio Robust Learning [1391[1401[1411[142[1431[144 Ensures stability across environments ~ Struggles with atypical audio

Text-based Detection

Datasets: ISOT, TweepFake, OpenLLMText, PHEME, FA-KES, WebText, Ch-9, RealNews, Enhanced TweepFake, SynSciPass

Text Linguistic-Based [146] 148] Exploits syntactic anomalies Limited by style variations
Text Transformer-Based 152] Leverages contextual understanding High computational demands

Text Hybrid/Advanced (1531 Integrates multiple features Challenged by evolving LLMs

Notes: FF++ = FaceForensics++, DFDC = DeepFake Detection Challenge.
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New advancements include Data-Independent Operator (DIO) [[T7], a training-free method using handcrafted filters for
artifact extraction, and Neighboring Pixel Relationships (NPR) [[18], which captures local pixel correlations for source-
invariant detection. Diffusion Reconstruction Error (DIRE) [[19] and its distilled variant [68]] leverage reconstruction
errors to detect diffusion-generated images, while hierarchical frameworks [80] classify images across multiple levels.
Subudhi et al. [81] introduce a meta-learning approach for adaptability, and Abdullah et al. [82]] propose ensemble
methods with content-agnostic features to counter fine-tuned generative models. Chen et al. [83] augment datasets
with masked diffusion models, and Li et al. [[84] optimize spatial-frequency collaboration for IoT security. Challenges
persist in generalizing to unseen models and resisting sophisticated adversarial attacks.

Video deepfakes: Video-based detection targets temporal inconsistencies in manipulated sequences. Early frame-based
methods detected spatial artifacts [97, [102} [103] 93], but overlooked inter-frame dynamics. Temporal consistency
modeling using 3D CNNs and transformers captures lip-sync mismatches and motion irregularities [[104} 100, [105]],
while graph-based modeling identifies relational anomalies [[109, 95 [110]. Generalization is enhanced through self-
supervised and contrastive learning 113|111} |114]], and pre-trained models with adapters [119,|117}[116]. Robustness
is improved via hybrid architectures [[123} (122, [120], with interpretability addressed through explainable techniques
(125011211 124].

Recent contributions include Lin et al. [94], ensuring fairness across demographics, and Zhu et al. [99,192], decomposing
frames into 3D components. SeqFakeFormer++ [106] detects sequential manipulations, while Song et al. [101] use
quality-centric enhancements. Peng et al. [118]] assess perceptual fidelity, and Ba et al. [112] employ information
bottleneck principles. Dong et al. [115] mitigate identity leakage, and Nguyen et al. [96] focus on localized artifacts.
Challenges remain in handling low-quality videos and unseen forgeries.

Audio Deepfakes: Audio detection targets synthetic speech and songs, evolving from artifact-based methods [126]] to
robust techniques leveraging non-verbal cues like breathing [129,136] and temporal dependencies via transformers
[132,1133]. Generalization is improved through continual learning and domain generalization [[127, 128,134,141} [137],
while robustness to perturbations employs augmentation [139, 140, [144]. New methods include HM-Conformer [131]]
for hierarchical feature extraction, TDVSA-Net [[108] for lip-based authentication, and DeMamba [107] for spatio-
temporal analysis. Yang et al. [[135]] fuse multi-view features, and Oiso et al. [[138]] optimize prompt tuning. SafeEar
[143]] ensures privacy, while Klein et al. [[130] trace sources. CtrSVDD [154] targets singing voices, and Weizman et
al. [155]] enhance ASV systems. Xie et al. [142] address ALM-based audio, and Combei et al. [145]] use ensemble
learning. Adversarial robustness and cross-domain performance remain underexplored.

Text Deepfakes: Text detection targets synthetic content like fake news, advancing from linguistic feature extraction
[146,!47] to contextual analysis [147,[149] and domain-specific detection [151}[148]. Generalization employs multi-task
and zero-shot learning 148, [153]], with robustness enhanced by adversarially fine-tuned models [150} 153} (149]. New
methods like Mc-DNN [146] process multi-channel text, OBi-LSTM-CNN [147]] optimize rumor detection, and MAGE
[152] tackle diverse LLMs. Challenges include adapting to evolving LLMs and resisting adversarial text modifications.

Conclusion: Uni-modal deepfake detection has advanced considerably across modalities. Image-based methods
leverage frequency analysis and self-supervised learning, video detection emphasizes temporal and graph-based
modeling, audio techniques exploit non-verbal cues and transformers, and text detection refines contextual and domain-
specific approaches. Despite progress, challenges in generalization to unseen sources, robustness against adversarial
attacks, and cross-modal adaptability underscore the need for continued research.

4.1.2 Multi-Modal Deepfake Detection Mechanisms

The evolution of generative Al has escalated deepfake synthesis beyond uni-modal alterations—such as facial manipula-
tions in static images or video frames—to intricate multi-modal fabrications integrating visual, auditory, and textual
elements. Uni-modal detection strategies, while proficient in isolating modality-specific anomalies (e.g., pixel-level
distortions or spectral irregularities), exhibit limited efficacy against cross-modal inconsistencies inherent in advanced
generative systems, such as text-driven image synthesis or audio-visual misalignment. Multi-modal detection mech-
anisms address this deficiency by employing integrated learning frameworks—contrastive representation, modality
fusion, and inconsistency modeling—to discern interdependencies and deviations across heterogeneous data streams,
demonstrating superior detection accuracy compared to uni-modal counterparts. Illustrative examples include the
identification of lip-audio desynchronization [[156, [157) [158]] and text-visual incongruities [[159, [160], which evade
uni-modal scrutiny.

A systematic synthesis of recent advancements, as presented in Table 3] delineates seven paradigmatic categories of
multi-modal detection, each leveraging distinct learning strategies and modality combinations. Vision-language models
(VLM) harness supervised learning to align image-text representations (Img+Txt), with frameworks like, DE-FAKE
[169], MM-Det [[161], Prompt2Guard [[162]], AntifakePrompt [160], and Bi-LORA [173}174] optimizing pre-trained
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Table 3: Overview of Multi-Modal Deepfake Detection Mechanisms

Category References Modalities Strengths and Challenges

VLM (T39/[T61) 162/ T63T60lT6AT63I66.  Image+Text Interpretable detection, generalizable across
Leliedllod TN AIATATA generators; limited by prompt dependency,
high-fidelity fakes

AV Sync GamsAmEsIEerarEre Audio+Video Robust to natural perturbations, sync-focused;

IS0 LS IE2 struggles with non-frontal faces, unsynchro-
nized inputs
MYV Fusion (83 MEA M3 Ise Is7mEslsamon Aud+Vid+Txt Broad modality coverage, strong transferabil-
s ity; computationally intensive, alignment is-
sues
SS Learning {1581 (176 (177 (1871 [195] Audio+Video Effective with limited fake data; sync-
dependent, lacks adversarial robustness
ZS Approaches {791 (1811 (196} (71 [166] Aud+Vid+Txt Adapts to unseen methods, minimal training;
challenged by high-fidelity fakes, semantic
reliance
STF Analysis {IT97) [T9%8) [T99) 2001 20T} Spat+Temp+Freq Captures subtle artifacts; high computational
cost, latency concerns
Exp Detection (1631 2011 164 166 [[67] Img+Txt+Vid Enhances interpretability; limited reasoning
depth, dataset-specific
Datasets by Modality:
Image+Text D3, CDDB-Hard, FakeClass, FakeClue, FakeQA, FF++, Celeb-DF, WildDeepfake, DGMA4, StyleGAN2, Latent Diffusion, COCO,
Flickr, SD2, SD3, SDXL, DALL-E, ProGAN, Twitter
Audio+Video \IjFJ;I N]?I};DQ FakeAVCeleb, AVLips, Deepfake TIMIT, LRS2, LRS3, KoDF, pDFDC, FaceForensics++, AV-Deepfake1M, LAV-DF,
i
Aud+Vid+Txt gzﬁ/\\/vcaeb, DFDC, ASVS2015, ASVS2021LA, ASVS2021DF, MUSIC-21, DF-TIMIT, FakeOrReal, InTheWild, DefakeAVMIT,
Spat+Temp+Freq FF++, Celeb-DF, WildDeepfake, DFD, DFDCP, DF-v1.0, CDF1, CDF2, Celeb-DFv2, DFW

Note: Abbreviations: VLM = Vision-Language Models, AV Sync = Audio-Visual Sync, MV Fusion = Multi-View Fusion, SS Learning = Self-Supervised Learning, ZS
Approaches = Zero-Shot Approaches, STF Analysis = Spatial-Temporal-Frequency Analysis, Exp Detection = Explainable Detection; Aud+Vid+Txt = Audio + Video +
Text, Spat+Temp+Freq = Spatial + Temporal + Frequency. Datasets are grouped by modality combinations, reflecting common evaluation contexts.

architectures (e.g., CLIP) for cross-modal feature extraction, achieving robust generalization across diffusion-based
datasets. Audio-visual synchronization (AV Sync) employs supervised temporal modeling, exemplified by AMSDF
(L83, LipFD [[157]], AVSecure [185] and AV-MAE [[182]], which integrate Aud+Vid signals via correlation analysis or
watermarking to mitigate natural perturbations. Multi-view fusion (MV Fusion) consolidates audio, video, and text
(Aud+Vid+Txt) through supervised transformer-based architectures, as in TMI-Former [[184]], FakeSTormer [200], and
AVT2-DWEF [191]], enhancing cross-dataset transferability (e.g., DFDC, FakeAVCeleb) by modeling multi-dimensional
feature interactions.

Complementary paradigms extend this methodological diversity. Spatial-temporal-frequency (STF) analysis, including
SFDG [198]], 3D ConvNet [197], and DBNet [199]], utilizes supervised dynamic graph or 3D-temporal learning to
capture Spat+Temp+Freq inconsistencies, excelling at subtle artifact detection. Self-supervised learning (SS Learning)
frameworks, such as SpeechForensics [176], Feng et al.’s anomaly detection [177], AVFF [187]] and AV-HuBERT
[[L195]], leverage Aud+Vid real-data distributions with contrastive or similarity-based objectives, offering efficacy in
low-resource settings like Fake AVCeleb. Zero-shot (ZS) approaches, exemplified by CCFD [181], FACTOR [196]], and
Jia et al.’s LLM integration [171], exploit pre-trained models or intrinsic Aud+Vid+Txt consistency for adaptability
to novel manipulations sans retraining. Explainable detection (Exp Detection) methods, such as FakeBench [163]],
DD-VQA [164], and HAMMER [167]], employ supervised or zero-shot reasoning over Img+Txt+Vid to elucidate
forgery mechanisms, validated across FF++ and Celeb-DF benchmarks (Table [3).

These advancements signify a paradigm shift toward holistic detection, yet critical challenges temper their potential,
as cataloged in Table [3] Modality alignment remains problematic under unsynchronized conditions [190] or non-
canonical perspectives [[186, 201], despite robust performance against natural distortions [[185) [179]. Adversarial
robustness is underexplored, with notable exceptions like AVA-CL [178] and MSOC [[192]] employing contrastive or
one-class strategies to counter occlusions. Computational overhead restricts real-time applicability in resource-intensive
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frameworks [198| [186]], while high-fidelity synthetics challenge ZS methods [[181]]. Although generalizability is evident
in cross-modal regularization [173]], transformer fusion [[180], and knowledge distillation [193], linguistic diversity
[157] and subtle manipulations [[167] expose persistent gaps.

This multi-modal transition reflects the escalating sophistication of synthetic media, necessitating a strategic re-
search agenda. Enhancing adversarial resilience through targeted training [200], optimizing computational effi-
ciency via lightweight designs [183]], and exploring nuanced forensic cues—e.g., gaze dynamics [201] or micro-
expressions—represent critical imperatives. Concurrently, bolstering interpretability [164] and scalability [[196] will
bridge the gap between theoretical innovation and practical deployment, ensuring resilience against an evolving threat
landscape. Table [3] encapsulates this state-of-the-art synthesis, delineating mechanisms, modalities, and research
frontiers in multi-modal deepfake detection.

5 Deepfake Edited Regions Detection and localization

Detecting and localizing edited regions in digital content is a critical task in deepfake analysis, necessitating methodolo-
gies that precisely delineate manipulated areas across images, videos, and audio. This section systematically reviews the
technical approaches developed to address this challenge, tracing the progression from traditional forensic techniques
to advanced deep learning frameworks, with an emphasis on the core strategies employed for identifying tampered
regions.

Initial efforts leveraged traditional forensic techniques, focusing on statistical anomalies such as noise inconsistencies
and compression artifacts. Methods like those in [202] 203 204, 205]] utilized noise fingerprints and spatial rich
models to detect low-level tampering traces in static images, while [206]] explored counter-forensic impacts of neural
compression using convolutional feature extraction. These approaches established a baseline but struggled with
scalability against complex manipulations, driving the adoption of deep learning solutions.

Deep learning introduced supervised convolutional neural networks (CNNs) for localization, with hierarchical frame-
works enhancing precision. [207] employed multi-branch feature extractors and localization modules for fine-grained
tamper detection, while [202] integrated noise-sensitive fingerprints with RGB features to generate anomaly maps.
Vision Transformers (ViTs) advanced this further: [208]] combined windowed ViTs with multi-scale feature extraction,
and [209] utilized sparse self-attention to target non-semantic artifacts. Lightweight strategies, such as [210]], adopted
state space models for efficient multi-scale analysis, improving scalability.

Noise-guided methodologies became prominent for exposing subtle edits. [211] fused denoising networks with
cross-attention filters, while [98]] merged ViT and CNN branches to capture local noise cues for inpainting detection.
Contrastive learning approaches, like [203] and [212], applied multi-scale feature fusion and pixel-level contrast to
isolate tampered regions, and [213] explored weakly-supervised localization via patch-based scoring with an Xception
backbone. Specialized techniques included [214], using frequency-domain inter-intra similarity modules, and [215]],
employing reverse edge-attention for inpainting boundary refinement.

Proactive forensics introduced watermarking strategies. [216] and [217]] embedded dual watermarks with invertible
networks and adaptive transforms, while [218]] mined inconsistencies through progressive feature refinement. [219]]
utilized a dual-stream architecture with coarse-to-fine localization, and [220] applied non-mutually exclusive contrastive
learning to tackle data scarcity.

Multi-modal image-based methods integrated diverse cues for enhanced localization. [222] fused RGB and high-
frequency features with object prototypes, [223] employed domain-guided visual-textual analysis, and [224] adapted
CLIP with noise-assisted prompts. [225] targeted text manipulation with transformed domain features, [204] combined
forensic filters via early fusion, and [205] merged noise and spatial features hierarchically. [226] introduced a multimodal
VQA framework, [227] used adaptive perception with auto-annotation, and [228]] orchestrated mesoscopic features
with a CNN-Transformer hybrid.

Video-based localization extended these principles to temporal analysis. [229]] employed spatio-temporal transformers,
[230] applied co-attention fusion across frame streams, and [244] integrated temporal feature attention. [231] utilized
masked autoencoders with meta-learning, [232] leveraged synthetic self-blending, and [233]] adapted SAM with
multiscale adapters. [234] combined ViT and timeseries transformers, and [235]] fused dual-stream modalities for
verification.

Multi-modal video approaches incorporated audio-visual integration. [191] utilized transformer-based dynamic
fusion, [236]] targeted clip-level localization, and [237/]] assessed anomalies via VQA. [238]] combined multiscale ViTs,
[239] 240] fused cross-modal interactions, and [241 242]] applied contextual attention with recurrent units. [243]]
embedded watermarks for dual-modal tamper detection.
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Table 4: Overview of Edited Regions Detection and Localization Mechanisms

Category References Modalities Strengths and Challenges

Traditional Forensic zo2poapoanoszosl Image Detects statistical anomalies with noise and com-
pression features; limited scalability to generative
forgeries

Uni-modal Image DL 07208 pool 1ol 21 es) Image Enables precise localization via hierarchical, noise-

LRI L2020 guided, and contrastive techniques; faces high

computational demands and poor generalization
to novel manipulations

Proactive Image DL {216 217 E181 2191 Image Provides robust preemptive detection via water-
marking; constrained by sensitivity to degradation
and training data variability

Multi-modal Image DL pmramapspzeezzn Img+Txt  Leverages diverse cues for enhanced localization;
2281 challenged by data quality issues and increased
inference complexity

Uni-modal Video DL ppmnzzezazsa Video Captures temporal artifacts with spatial-temporal
=5l models; limited by short sequence processing and
sparse annotations

Multi-modal Video DL mnz6esaesesaeza Vid+Aud  Achieves strong synergy across audio-visual
sallizziagiz modalities; hindered by alignment difficulties and
focus on facial regions

Audio DL 243 1246 247 248 Audio Offers precise temporal forgery detection; re-
stricted by limited adaptability and processing over-
head

Hybrid DL {249/ 250] Img+Vid Integrates flexible features across static and frame
analysis; confined to specific domains with reduced
scalability

Datasets by Modality:

Image CASIA, NIST16, Columbia, Coverage, HiFi-IFDL, CelebA, FFHQ, COCO, Places365, Dolos, WildRF, CollabDif,
DMID, IID-74K, DEFACTO

Image+TeXt CASIA, NIST16, Columbia, Coverage, MMTD, RTM, FF++, Multi-attack, FFA-VQA

Video FF++, Celeb-DF, DFDC, GRIP, VideoSham, HTVD, FaceForensics++, DFD, FMLD, Deepfake TIMIT, SORA, Vimeo-
90K, Davis

Video+Audio DFDC, FakeAVCeleb, LAV-DF, AV-Deepfake M, Deepfake TIMIT, ForgeryNet, Psynd, TVIL

AudiO ADD2023, PartialSpoof, LAV-DF, ASVspoof, VoxPopuli, LibriSpeech, Expresso, Half-truth

Note: Abbreviations: DL = Deep Learning, Img = Image, Vid = Video, Aud = Audio, Txt = Text. References correspond to mechanisms in SectionE] Datasets reflect
evaluation contexts across modalities.

Audio-based methods addressed temporal forgery detection. [245] employed adversarial training with Wav2Vec,
[246] refined proposals with coarse-to-fine learning, and [248]] embedded imperceptible watermarks. [247]] assessed
countermeasures using multi-resolution feature extraction. Hybrid approaches included [250], localizing video frame
edits with spectral analysis, [249], fusing hierarchical features for image deepfakes, and [221], decoding CLIP
embeddings for tampering detection.

Across the spectrum of methodologies reviewed—from traditional forensic techniques to advanced deep learning
frameworks spanning static images, videos, and audio—the proposed approaches demonstrate notable strengths in
detecting and localizing edited regions within digital content. Traditional forensic methods excel at identifying statistical
anomalies, while deep learning variants leverage hierarchical feature extraction, noise-guided analysis, watermarking,
and multi-modal cue integration to achieve precise tamper delineation. These techniques collectively enhance the
ability to pinpoint manipulations with increasing sophistication, adapting to the evolving complexity of deepfake
technologies. However, a pervasive limitation emerges in their collective evaluation: an almost universal absence
of rigorous testing against adversarial robustness, as summarized in Table[d] Despite their efficacy under controlled
conditions, the susceptibility of these methods to adversarial perturbations—such as subtle input modifications designed
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to evade detection—remains largely unaddressed, as evidenced by the consistent omission of such assessments across
the referenced works. This gap is particularly critical in deepfake analysis, where adversarial attacks could exploit
vulnerabilities in feature extraction or model decision boundaries, rendering localization unreliable in real-world
scenarios. The absence of adversarial evaluation underscores a significant challenge to the practical deployment of
these methods, highlighting the urgent need for future research to incorporate robust adversarial testing to ensure
resilience against malicious countermeasures, thereby strengthening the integrity of deepfake detection and localization
frameworks.

6 Open Challenges and Future Directions

Despite notable advancements in deepfake detection, the field continues to grapple with several unresolved challenges
that impede the creation of robust and reliable systems, particularly as generative technologies and adversarial threats
evolve rapidly. These challenges encompass generalizability to emerging generative models, robustness against adver-
sarial and natural perturbations, computational efficiency for real-time deployment, effective multi-modal integration,
precise localization of subtle manipulations, and the availability of diverse datasets. Among these, this review identifies
the evaluation of adversarial robustness as a critical yet underexplored gap within the existing literature. This section
first outlines these broad challenges, then delves into the specific issue of adversarial robustness—examining key attack
strategies, their targeted modalities, and the detection models they undermine—and concludes by proposing future
directions to address these limitations, emphasizing adaptive frameworks and cross-modal knowledge sharing.

Broad Challenges in Deepfake Detection

The relentless advancement of generative models, such as diffusion-based architectures and transformer-based language
models, poses significant hurdles for detection systems, which often struggle to generalize beyond the specific artifact
patterns they were trained to recognize. This challenge is compounded by the need to maintain performance under
natural perturbations—such as compression, environmental noise, lighting variations, or linguistic noise—that can
obscure manipulation cues across image, video, audio, and text modalities. Computational efficiency remains a critical
constraint, particularly for real-time applications where resource limitations demand lightweight yet effective models.
The integration of multi-modal data—spanning image, video, audio, and text—introduces additional complexity, as
aligning features across disparate domains requires overcoming modality-specific noise and inconsistencies. Precise
localization of subtle manipulations, such as minor facial distortions, imperceptible audio splicing, or contextually
inconsistent text, is hindered by insufficient labeled data, while the scarcity of diverse datasets capturing a wide range
of manipulation techniques and real-world conditions restricts model training and evaluation.

These challenges vary across media types. For image-based deepfakes, detection systems must address high-resolution
details and compression artifacts. Video-based systems face temporal inconsistencies and motion-based anomalies. Au-
dio deepfakes present unique difficulties, such as identifying unnatural speech patterns or splicing in noisy environments,
while text-based deepfakes require detecting subtle linguistic manipulations, like contextually inappropriate phrasing
or adversarial perturbations. Recognizing these modality-specific issues is essential for developing comprehensive
detection frameworks capable of addressing the multifaceted nature of synthetic media.

Adversarial Robustness: A Critical Yet Missing Evaluation

Adversarial robustness is a cornerstone of reliable deepfake detection, yet many proposed models lack thorough
assessments against adversarial perturbations, leaving them vulnerable to an increasingly sophisticated array of threats.
This deficiency exposes systems to attacks that exploit weaknesses across modalities—image, video, audio, and
text—compromising a diverse spectrum of detection frameworks, from convolutional neural networks (CNNs) and
frequency-domain analyzers to watermark-based and transformer-based systems. The following adversarial attack
strategies, drawn from recent literature, highlight these vulnerabilities:

* Image and Video Attacks:

— Pixel-Space Attacks: Subtle alterations, such as blur, noise, or exposure adjustments [251 [252]], and
natural shadow overlays [253]], evade spatial detectors (e.g., ResNet50, EfficientNet-b4) by aligning
statistical distributions or masking differences [254]].

— Black-Box Perturbations: Attacks targeting salient facial regions using Natural Evolutionary Strategies
(NES) [74} 255]], super-resolution techniques [256], or diffusion-based purification [257] challenge
models like MesoNet, XceptionNet, and Swin-Small, achieving imperceptible yet potent degradation.
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— Frequency-Domain Attacks: Spectral manipulations [82]], 2D convolutional filters [258]], and frequency-
based Bayesian perturbations [259] degrade detectors like DCT and FrequencyForensics, exploiting
spectral inconsistencies with high transferability.

— Latent-Space Attacks: Perturbations in generative model representations, such as StyleGAN2’s latent
space [260], customized Stable Diffusion outputs [[82]], or diffusion-based latent optimization [261} 262}
263|264, bypass DNN-based and commercial detectors (e.g., Baidu, Tencent) with remarkable success
rates.

— Backdoor Attacks: Poisoned training data with embedded triggers [265, [266] or diffusion process
manipulations [265]] compromise models like WideResNet and DeiT-S, activating malicious behavior
during inference.

— Watermarking Attacks: Diffusion purification [257], universal spectral-domain attacks [267]], and adver-
sarial watermark fine-tuning [268]] undermine watermark-based detectors (e.g., StegaStamp, RivaGAN),
significantly reducing detection efficacy.

* Audio Attacks: Adversarial noise injection or splicing [266], white-box attacks like FGSM and PGD [269],
and GAN-based transferable attacks [270] exploit temporal inconsistencies, targeting neural network detectors
(e.g., LCNN, RawNet3) and end-to-end models (e.g., RawNet2, Res-TSSDNet), with detection accuracies
dropping sharply (e.g., 98% to 26%).

» Text Attacks: Adversarial perturbations, such as synonym substitution or grammatical alterations [266],
and low-cost attacks like decoding strategy shifts and DFTFooler [[153]], mislead text-based detectors (e.g.,
GROVER, BERT-Defense) by preserving semantic meaning while altering syntactic or statistical features,
achieving high evasion rates (up to 91.3%).

These strategies collectively underscore systemic frailties across detection paradigms, emphasizing the urgent need for
comprehensive robustness evaluations that encompass the full spectrum of modalities and adversarial threats identified
in current research.

Future Directions: Adaptive Frameworks and Cross-Modal Knowledge Sharing

To address these challenges, particularly the critical gap in adversarial robustness, future research must prioritize the
development of adaptive detection frameworks that leverage cross-modal knowledge sharing to enhance resilience
across image, video, audio, and text modalities. Drawing on recent advancements, such frameworks could enable
detectors to dynamically adjust their focus based on input characteristics and task demands, improving their ability to
identify subtle manipulations and withstand diverse adversarial perturbations.

A key strategy involves designing modality-agnostic architectures that integrate and transfer knowledge across media
types. For instance, image-based detectors could incorporate audio cues to detect lip-sync inconsistencies, while
text-based systems might verify narrative consistency with visual elements, mitigating modality-specific attacks by
diversifying feature representations [271, 272, 1273]]. Expert-driven architectures, with specialized modules targeting
distinct manipulation types—such as facial distortions in video, voice cloning in audio, or syntactic anomalies in
text—could be dynamically weighted based on input reliability, enhancing sensitivity to cross-modal anomalies [274].

To counter the rapid evolution of deepfake technologies, parameter-efficient adaptation techniques, such as lightweight
projectors or adapters, could facilitate rapid recalibration to emerging manipulation methods without extensive retraining.
Unsupervised or semi-supervised learning approaches could reduce reliance on scarce labeled datasets, leveraging
abundant unlabeled data to improve robustness. Explainable Al techniques could enhance localization capabilities,
providing interpretable insights into detected manipulations and informing targeted countermeasures [275]].

Standardized benchmarks encompassing a broad spectrum of adversarial scenarios—spanning pixel-space, frequency-
domain, latent-space, backdoor, and watermarking attacks across all modalities—are essential for consistent and
rigorous robustness assessments. Datasets enriched with adversarial perturbations, reflecting real-world conditions,
will further support model generalization. Lightweight models balancing computational efficiency with resilience will
ensure practical deployment in resource-constrained environments.

Finally, the societal implications of deepfake detection failures—such as misinformation, fraud, or privacy
breaches—underscore the need for robust systems. Future efforts should integrate ethical considerations, developing
transparent and accountable frameworks to safeguard public trust and security.

In summary, while deepfake detection faces a multifaceted array of challenges, the insufficient evaluation of adversarial
robustness remains a pivotal shortfall. By adopting adaptive frameworks with cross-modal knowledge sharing, embed-
ding adversarial training, and establishing standardized benchmarks, the field can advance toward reliable, scalable
detection systems capable of countering the dynamic and escalating threats posed by synthetic media.
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7 Conclusion

The escalating sophistication of Generative Artificial Intelligence has amplified the deepfake threat across image, video,
audio, and text modalities, challenging the integrity of digital systems and societal trust. This systematic review has
elucidated the strengths and limitations of contemporary deepfake detection methodologies, spanning uni-modal and
multi-modal frameworks adept at identifying fully synthetic media and localizing subtle manipulations within authentic
content. While these approaches demonstrate commendable precision in controlled settings, their vulnerability to
adversarial perturbations and limited generalizability to emerging generative techniques underscore a critical gap in
real-world applicability.

Our analysis highlights the urgent need for robust, adaptable detection systems capable of withstanding the evolving
landscape of synthetic media threats. By prioritizing reproducibility through a curated repository of open-source
implementations, this study fosters transparency and enables rigorous validation of current methods. The integration
of multi-modal cues emerges as a promising avenue, yet the pervasive shortfall in adversarial robustness demands
innovative solutions beyond traditional paradigms. Future advancements must focus on scalable, modality-agnostic
architectures that enhance resilience, alongside standardized evaluation protocols to ensure consistent performance
across diverse scenarios.

In synthesizing these insights, this review not only consolidates the current state of deepfake detection but also delineates
a strategic path forward. The development of trustworthy systems—capable of mitigating misinformation, safeguarding
privacy, and maintaining digital security—hinges on addressing these identified challenges with a concerted emphasis
on robustness and adaptability. This study thus provides a foundational framework for advancing next-generation
detection capabilities, poised to meet the complexities of an increasingly synthetic digital era.
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