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ABSTRACT
Adversarial attack methods for 3D point cloud classification reveal
the vulnerabilities of point cloud recognition models. This vulner-
ability could lead to safety risks in critical applications that use
deep learning models, such as autonomous vehicles. To uncover
the deficiencies of these models, researchers can evaluate their
security through adversarial attacks. However, most existing ad-
versarial attack methods are based on white-box attacks. While
these methods achieve high attack success rates and impercepti-
bility, their applicability in real-world scenarios is limited. Black-
box attacks, which are more meaningful in real-world scenarios,
often yield poor results. This paper proposes a novel black-box
adversarial example generation method that utilizes a diffusion
model to improve the attack success rate and imperceptibility in
the black-box setting, without relying on the internal informa-
tion of the point cloud classification model to generate adversar-
ial samples. We use a 3D diffusion model to use the compressed
features of the point cloud as prior knowledge to guide the re-
verse diffusion process to add adversarial points to clean exam-
ples. Subsequently, its reverse process is employed to transform
the distribution of other categories into adversarial points, which
are then added to the point cloud. Furthermore, density-aware
Chamfer distance is incorporated to constrain the noise added dur-
ing back-propagation, further improving the imperceptibility of
adversarial examples. Experimental results demonstrate that the
proposed method exhibits high attack performance against vari-
ous point cloud recognition models and defense methods, signif-
icantly enhancing the effectiveness of black-box attacks. In the
black-box scenario, the attack success rate can reach about 90%.
The code for this work is available at: https://github.com/AdvPC/
Generating-Adversarial-Point-Clouds-Using-Diffusion-Model.

1 INTRODUCTION
Deep neural networks (DNNs) have achieved remarkable success
in various computer vision tasks, particularly in processing and
analyzing 2D [45, 55] and 3D data [31, 43, 90]. However, studies
show that DNNs are vulnerable to adversarial examples (AEs): care-
fully crafted perturbations added to clean samples that can mislead
models without being noticeable to humans [9, 18, 64, 96]. Specifi-
cally, for 2D data, such as 2D images, sight color modifications on
clean samples can fool recognition models and even pose significant
threats to real-world applications [15]. Similar adversaries can also
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be used on 3D point clouds. Recent research shifted focus to the
recognition of 3D point clouds due to their increasing importance in
multiple fields [14]. For instance, autonomous driving systems rely
on LiDAR sensors to perceive and map the environment, because
point clouds offer more precise geometric and structural informa-
tion than 2D images [79, 101]. However, point cloud models are also
found to be susceptible to AEs [2, 12, 35, 61, 62, 69, 95]. Existing
methods dominantly use white-box adversaries to maximize attack
success rates and imperceptibility, whereas black-box settings re-
main underexplored on point cloud. In this work, we propose a
novel approach for generating point cloud AEs with diffusion mod-
els, aiming to enhance attack success rate and stealthiness under
black-box settings.

Point clouds are sets of unordered points that describe the shape
of objects [74], and recognition models make predictions based on
the representation of point cloud [17]. Shape latent is the compres-
sion feature of 3D point cloud. Therefore, generated adversarial
point clouds are expected to keep shape changes perceptually neg-
ligible to humans, but capable of misleading recognition models.
Several works extended existing gradient-based and optimization-
based methods to point clouds [34, 35, 82], including Fast Gradient
Sign Method (FGSM) [34], Projected Gradient Descent (PGD) [35],
and Carlini and Wagner (C&W) attack [82]. In these methods, the
generated perturbations are adjustable hyperparameters typically
measured by Hausdorff distance [94] and Chamfer distance [48].
However, they face a trade-off problem between imperceptibility
and attack success rate. Higher attack success rates require more
perturbations, while strong perturbations reduce imperceptibility.
Another line of work aimed to minimize perturbations by adding,
dropping, or shifting existing points. The modifications are based
on manually designed rules either in greedy ways [87] or using op-
timization strategies [42]. These pioneering explorations on point
clouds are predominantly in white-box settings, which are less
applicable to real-world scenarios compared to black-box settings.
Existing black-box attacks are primarily limited to query-based
methods but have yet to achieve comparable attack success rates
and stealthiness [26, 33, 47, 78]. Given the shortcomings of current
adversarial examples generation schemes in black-box scenarios,
we rethink the black-box adversarial examples generation method
from the perspective of generative models.

In this work, we propose a novel black-box adversarial exam-
ples generation method, which uses the reverse diffusion process
to add adversarial noise to the clean point cloud to craft adver-
sarial examples. We regard AE generation as a reverse diffusion
process, where the distribution of other classes is transformed into
an adversarial distribution in the reverse-diffusion process. In ad-
dition, to enable the reverse-diffusion process to generate point
clouds with obvious shape meanings, we use shape potential as
prior knowledge. In the sample generation setting, the adversarial
noise comes from the prior knowledge, and we use the normal-
izing flow [7] to parameterize the prior knowledge and drive the
model to obtain strong expressive power. To further improve the
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interference-free execution of adversarial examples, we introduce
the density-aware chamfer distance [80] to bind the noise added
during the back-propagation process. To evaluate the effectiveness
of the black-box adversarial examples generation method using
diffusion models, we evaluate our black-box adversarial examples
generation method on common 3D point cloud recognition models,
including PointNet2 [52], Curvenet [46], PointConv [81] and com-
pare it with optimization-based methods [82] and generation-based
methods [6]. The results demonstrate that our method successfully
generates AEs capable of simultaneously fooling different point
cloud recognition models. The contribution of our work can be
summarised as follows:

• We propose a novel guided black-box adversarial method for
generating adversarial point clouds. In our approach, point
clouds from other classes are encoded into latent represen-
tations, which are conditions to guide the recovery process
during reverse diffusion. The reverse diffusion process can
automatically learn the significant features required to mis-
lead the target model effectively under guidance.

• We leveraged a novel loss function to generate adversarial
point clouds with minimal perturbations.

• The experimental data show that we can achieve over 90%
attack success rate when facing different point cloud recog-
nition models even with defenses.

We will introduce this paper from the preliminaries, method,
experiment results and conclusion.

2 RELATEDWORK
We introduced a diffusion model to create adversarial samples and
verified it in the commonly used 3D point cloud recognition model.
To confirm the robustness of adversarial examples, we used several
common defense methods for testing. Details are introduced in
Sections 2.1-2.3.

2.1 Point Cloud Recognition
A point cloud is a sparse collection of points sampled by sensors to
capture surface details [21]. Each point in the cloud specifies its po-
sition in the 3D coordinate system. Due to the unique characteristics
of point clouds, models must learn representations from unordered
inputs and extract information over both local and global geometric
features. PointNet [51] is a benchmark model that directly takes raw
point clouds as inputs and ensures permutation invariance through
a symmetric function. PointNet++ [52] incorporates a PointNet-
based hierarchical structure to learn the neighborhood information
of each point, further improving the recognition of local geometric
information. Due to its simplicity and effectiveness, subsequent
works have used PointNet++ as a backbone, extending it with atten-
tion mechanisms [13, 88, 97] or adaptive sampling strategies [32]
for better local feature extraction and inference efficiency. Dynamic
Graph CNN (DGCNN) [76] builds on these ideas by dynamically
updating the graph structure of the point cloud to capture local geo-
metric relationships more effectively, enabling robust and flexible
feature learning. CurveNet [46] further enhances this by repre-
senting the local geometry of points with learned curve segments,
which improves the model’s ability to capture fine-grained geo-
metric details. PointConv [81] introduces convolution operations

specifically designed for point clouds, enabling efficient and scal-
able learning of both local and global features. In this work, we
leverage these advanced models to evaluate the performance and
robustness of our proposed method for generating adversarial point
clouds.

2.2 3D Adversarial Attacks and Defences
Unlike image AEs directly adding perturbations, 3D AEs have to
modify the shape of point clouds. However, large movements in
shifting positions or changing the number of points bring unig-
norable perturbations to the perceptual quality. Therefore, current
works focus on the trade-off between attack success rates and point
movement. A few pioneering works extend gradient-based methods
to 3D data that were originally developed for images. Liu et al. [34]
and Yang et al. [87] applied the Fast Gradient Sign Method (FGSM)
by constraining the movement of each point within a small range in
𝐿2 norm. Further works [29, 35, 42, 77, 82, 95] improved Projected
Gradient Descent (PGD) and Carlini and Wagner (C&W) attacks
by using either distance constraints or optimization functions to
limit the point movement during AE generation. This enhances
the smoothness of the adversarial point cloud, making the differ-
ence between it and the clean point cloud invisible to human eyes
while achieving better attack performance. However, all of these
methods require access to model-specific parameter details. Naderi
et al. [78] proposed a "model-free" approach that does not require
knowledge of the target model. Tang et al. [66] use generative mod-
els for adversarial example generation, enabling the creation of
high-quality and metastable adversarial examples without the need
for model-specific information. The advantage of these black-box
attacks lies in their ability to generate effective adversarial exam-
ples without prior knowledge of the target model’s architecture or
parameters, enhancing their applicability and versatility in various
scenarios. The method we proposed is based on a generative diffu-
sion model. Unlike previous generative approaches, we incorporate
adversarial noise from the latent space perspective. This enhances
the robustness, transferability, and quality of adversarial examples
by mitigating outlier generation.

2.3 Diffusion Models
In recent years, diffusionmodels have garnered significant attention
in both academia and industry, demonstrating remarkable results
across various applications. The diffusion process considered in
this paper is closely related to probabilistic diffusion models, as
referenced in [25, 40, 49, 59]. Probabilistic diffusion models are a
class of latent variable models that transform noise sampled from a
Gaussian distribution into a data distribution using Markov chains.
These models operate by iteratively adding and removing noise,
effectively learning the underlying data distribution through a se-
ries of reversible transformations. While much of the existing work
has focused on image-based diffusion models, our approach ex-
tends these concepts to the realm of 3D point clouds. In contrast to
traditional image diffusion models, our diffusion model is specifi-
cally designed to handle 3D point cloud data by conditioning on
latent variables to introduce noise into the 3D point cloud and
subsequently rethinking point cloud black-box attacks from a la-
tent variable perspective. By leveraging the inherent structure and



properties of 3D point clouds, our method aims to enhance the
robustness and accuracy of point cloud processing tasks. The appli-
cation of diffusion models to 3D data presents unique challenges
and opportunities, as the high-dimensional and unstructured nature
of point clouds necessitates novel techniques for effective noise
addition and removal. Our approach incorporates advanced proba-
bilistic methods to manage these complexities, ensuring that the
diffusion process preserves the geometric integrity and fine-grained
details of the 3D structures. By conditioning on latent variables, our
model introduces controlled perturbations to the point clouds, al-
lowing for a nuanced examination of black-box attacks from a latent
variable perspective. This enables us to develop more sophisticated
and resilient defense mechanisms against such attacks, enhancing
the overall robustness and accuracy of point cloud processing tasks.
Our work demonstrates the potential of diffusion models to handle
high-dimensional, unstructured data, paving the way for future
research into leveraging these models for complex data structures
and applications.

3 PRELIMINARIES
3.1 Point Cloud
Let {𝑋,𝑦} be a point cloud and its corresponding label, where
𝑋 = {𝑥𝑖 }𝑛𝑖=1, 𝑥𝑖 ∈ ℛ3 refers to 𝑛 points involved to represent a
meaningful shape of a point cloud. Each single point 𝑥𝑖 has three
dimensions to describe its location in the space. A 3D classifier 𝐹
learns spatial features of point clouds, which is taskedwith correctly
predicting the label of each: 𝐹 (𝑋 ) = 𝑦. In this work, we aim to
mislead the classifier 𝐹 to output wrong predictions.

3.2 Diffusion Probabilistic Model
A standard probabilistic diffusion model on point clouds consists
of two key processes [25, 40]: 1) a forward diffusion process that
incrementally adds noise to the data, transforming it into pure
noise, and 2) a reverse diffusion process that iteratively denoises
the data to reconstruct the original input (e.g., an image or point
cloud) [25, 40]. Assuming that each point 𝑥𝑖 in a point cloud is
sampled independently from the same underlying distribution (e.g.,
a point distribution), we model the diffusion and reverse processes
for individual points 𝑥𝑖 .

The forward process gradually corrupts original data 𝑥𝑖 over a
fixed number of steps 𝑇 [25, 40]:

𝑞(𝑥 (1:𝑇 )
𝑖

|𝑥 (0)
𝑖

) =
𝑇∏
𝑡=1

𝑞(𝑥 (𝑡 )
𝑖

|𝑥 (𝑡−1)
𝑖

), (1)

where𝑞(𝑥 (𝑡 )
𝑖

|𝑥 (𝑡−1)
𝑖

) refers to the noise-adding process at each step
𝑡 conditioned only on the previous step 𝑡 − 1 [25, 40]. Specifically,
Gaussian noise is added iteratively as follows:

𝑞

(
𝒙 (𝑡 ) | 𝒙 (𝑡−1)

)
= 𝒩

(
𝒙 (𝑡 ) ;

√︁
1 − 𝛽𝑡𝒙

(𝑡−1) , 𝛽𝑡 𝑰
)
, 𝑡 = 1, . . . ,𝑇 ,

(2)
where 𝛽𝑡 ∈ (0, 1) are hyperparameters controlling the noise level at
each step. Larger values of 𝛽 bring more noise. As 𝑡 increases, the
point cloud 𝑥 becomes increasingly noisy, eventually approaching
pure Gaussian noise at step 𝑇 .

The reverse process aims to recover meaningful point cloud
structures from the noisy data generated by the forward process
[40]. These meaningful structures are encoded into a latent rep-
resentation 𝑧 which serves as a condition for reconstructing the
original sample from step 𝑇 to 0. The reverse process at each step
is defined as

𝑝𝜽

(
𝒙 (0:𝑇 ) | 𝒛

)
= 𝑝

(
𝒙 (𝑇 )

) 𝑇∏
𝑡=1

𝑝𝜽

(
𝒙 (𝑡−1) | 𝒙 (𝑡 ) , 𝒛

)
, (3)

𝑝𝜽

(
𝒙 (𝑡−1) | 𝒙 (𝑡 ) , 𝒛

)
= 𝒩

(
𝒙 (𝑡−1) ; 𝝁𝜽

(
𝒙 (𝑡 ) , 𝑡, 𝒛

)
, 𝛽𝑡 𝑰

)
, (4)

where 𝜇𝜃 is an estimated mean through a neural network based
on 𝑥 (𝑡 ) and the latent representation 𝑧 of the desired point cloud.
Unlike prior diffusion-based methods for point cloud generation
[40], which rely on clean point clouds as guidance, our approach
aims to generate adversarial examples. To achieve this, we condition
the reverse process on latent representations 𝑧 associated with
adversarial classes rather than clean samples. This adaptation allows
the reverse diffusion process to generate adversarial point clouds
with minimal perceptual noises.

3.3 Problem Analysis
The adversarial perturbation is added by the reverse diffusion pro-
cess of the diffusion model. Since each reverse diffusion generation
of the diffusion model can generate samples similar to the previous
step, based on this feature, we assume that the reverse diffusion
process [40] can generate an adversarial point cloud close to the
previous step’s sample point cloud. After iterating this process,
we generate the adversarial examples we need. In order to limit
the added perturbation 𝛿 from being too large, resulting in unex-
pected deformation of the generated adversarial examples, we use
the density-attracted chamfer distance (DCD) to ensure the consis-
tency of the point cloud, which enhances the robustness to local
details and is computationally efficient. To further improve the con-
cealment of point clouds, we introduce Mean Square Error(MSE). At
the same time, this approach can prevent the original shape of the
point cloud from being destroyed due to the generation diversity
of the generation model itself. Subsequently, in order to improve
the effectiveness of the attack, we need a query update module to
improve the adversarial nature of the noise points and ensure that
they effectively mislead the recognition model. Based on this idea,
we propose an adversarial examples generation scheme based on
the diffusion model, and the specific approach will be explained in
detail in the next section.

4 METHOD
This section outlines three steps for generating adversarial point
clouds, as presented in Figure 2: 1) calculate the latent representa-
tions of guidance point clouds, 2) generate adversarial point clouds
through a reverse diffusion process, 3) suppress the diversity of
the diffusion model. We begin by introducing the threat model
considered in this work.

4.1 Threat Model
This work focuses on generating adversarial point clouds under
black-box settings to simulate real-world scenarios. The goal is to



Figure 1: Comparison of various attack methods..

craft effective adversarial point clouds that mislead a target point
cloud classifier 𝐹 by adding imperceptible noise 𝛿 :

𝐹 (𝑋 + 𝛿) ≠ 𝑦. (5)

In this setting, the adversary has limited access to the internal
details of the target model 𝐹 , such as its parameters or outputs.
Additionally, the generated adversarial samples are designed to be
transferable, enabling them to deceive unseen classifiers as well.

4.2 Calculate latent representation 𝑧 as guidance
Adversarial point clouds are meaningful structures that closely
resemble the original input but include subtle perturbations. In
standard diffusion models [40], the meaningful structure of the
desired shape is encoded and represented by latent representations

𝑧, which are used during the reverse diffusion process for recovery.
𝑧 is usually learned through a bottleneck layer from a variational
autoencoder (VAE). However, unlike standard models, our task
focuses on generating adversarial examples. Consequently, the
latent representations 𝑧 are extracted from point clouds belonging
to different classes (i.e., classes that do not overlap with the original
class of the adversarial examples).

In this step, latent representation refers to the encoded abstract
features of input data in a lower-dimensional space, capturing its
essential structure for generative tasks. As the diffusion model
selects points from the Gaussian distribution, we use a transformer-
based model 𝐴 [72] to fuse the point cloud latent representation
with the Gaussian noise to ensure that the added noise points are
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Figure 2: The overview of the proposed method.

the adversarial points we need [40], It can be expressed as:

𝑝 (𝑧) = 𝑝𝑤

(
𝐴−1
𝛼 (𝑧)

)
· 1��det 𝐽𝐴𝛼

(
𝐴−1
𝛼 (𝑧)

) �� (6)

where 𝑝𝑤 comes from Gaussian distribution, 𝐹−1𝛼 (𝑧) represents the
transformation from 𝑧 through 𝐹−1𝛼 back to𝑤 , i.e. the transforma-
tion between the two. 𝐽𝐹𝛼 (𝑤) is the Jacobian matrix of 𝐹𝛼 .

𝑧 represents latent representation, follows a conditional Gaussian
distribution 𝑞(𝑧 |𝑥 (0) ), where 𝜇 serves as the mean of the distribu-
tion, encapsulating the global structure of the input point cloud.
𝑞 (𝑡 ) |𝑥

(𝑡−1)
is the forward diffusion step, as described in Section 3.2.

We use forward diffusion to learn the latent representation of the
point cloud as prior knowledge. ℒ denotes the loss function [40].
As each reverse diffusion step generates a point cloud close to the
previous step, we exploit this feature and use the adversarial latent
representation 𝑧 of the current input to guide the AE generation
process.

4.3 Reverse Diffusion for Point Clouds
In this step, we denote the process of transforming a clean point
cloud into an adversarial point cloud as the reverse diffusion process.
The process can be defined as follows:

𝑥
′
= 𝐴𝑡𝑡𝑎𝑐𝑘 (𝑥) = 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (𝑥𝑇 ) · · · 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (𝑥0), (7)

argminℒ𝐴𝑡𝑡𝑎𝑐𝑘 = ℒ𝐷𝐼𝑆 (𝑥 ′, 𝑥), (8)
where 𝑥 is the input clean point cloud,𝐴𝑡𝑡𝑎𝑐𝑘 (·) denotes the reverse
diffusion operation, 𝑥 ′ is the adversarial examples, and reverse

represents the diffusion of each time step 𝑡 . We useℒ𝐷𝐼𝑆 to conduct
query attacks to improve the attack effectiveness of adversarial
points in the reverse diffusion process, which will be introduced in
the next step.

4.4 Suppressing the Diversity of Diffusion
Model

To prevent the initial point cloud from losing its original shape due
to the strong recovery capability of the reverse diffusion process to
avoid the generation of excessive outlier points, and improve the
concealment of adversarial point clouds we employ a Density-aware
Chamfer Distance (DCD) optimization that increases with each
reverse diffusion step. We use DCD distance as the loss function to
control the diffusion process to ensure consistency between each
successive point cloud. We demonstrate the effect of this in the
subsequent experiment result section. The Density-aware Chamfer
Distance (DCD) is defined as follows:

ℒ𝐷𝐶𝐷

(
𝑋,𝑋

′ )
= min

1
2

(
1
|𝑋 |

∑︁
𝑥∈𝑋

(
1 − 1

𝑛�̂�
𝑒−𝛼 | |𝑥−�̂� ∥2

)
+ 1��𝑋 ′ �� ∑︁

𝑦∈𝑋 ′

(
1 − 1

𝑛𝑥
𝑒−𝛼 | |𝑦−𝑥 ∥2

)ª®¬ , (9)

This distance extracts global features in the first stage and intro-
duces local features with rich geometric information in the second
stage to realize density perception. The detailed method can be
found in [80]. We use the distance as the loss function and minimize



this loss in each step of the 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (·) operation acting on the dif-
fusion process, where 𝑦 =𝑚𝑖𝑛𝑦∈𝑋 ′ | |𝑥 −𝑦∥2, 𝑥 =𝑚𝑖𝑛𝑦∈𝑋 | |𝑦 − 𝑥 ∥2,
and 𝛼 denotes a temperature scalar. Here 𝑛�̂� = |𝑋 𝑦

1 |, Each 𝑦 con-

tributes
���− 1

𝑛𝑦

∑
𝑥∈𝑋 𝑦 𝑒−∥𝑥−𝑦 ∥2

��� ∈ [0, 1] to the overall distance
metric before averaging. This integration ensures that the gener-
ated adversarial samples remain imperceptible while effectively
deceiving the classification model, thus enhancing the robustness
and effectiveness of the diffusion attack scheme.

In addition, we use the Mean Squared Error (MSE) loss function
to remove outliers. During the diffusion process, we use DCD in-
stead of MSE because DCDmaintains spatial coherence and reduces
excessive outliers by focusing on the local structure of the point
cloud. For final optimization, MSE is used to ensure global align-
ment. This balanced approach leverages DCD for local integrity
during diffusion and MSE for overall alignment, resulting in high-
quality adversarial point clouds with preserved geometric features.
We present the results with different loss settings in subsequent
ablation experiments. The MSE is defined as follows:

ℒ𝑀𝑆𝐸

(
𝑋,𝑋 ′) = min( 1

𝑛

𝑛∑︁
𝑖=1



𝑋𝑖 − 𝑋 ′
𝑖



2
2). (10)

where 𝑋 ′ denotes the generated adversarial point cloud. The 𝑛

stands for the total number of points in the point cloud, and 𝑋𝑖 and
𝑋 ′
𝑖
are the 𝑖-th points in the original and generated point clouds,

respectively. The term ∥𝑋𝑖 −𝑋 ′
𝑖
∥22 represents the squared Euclidean

distance between 𝑋𝑖 and 𝑋 ′
𝑖
, quantifying the error for each point

pair. We minimize MSE to achieve our goal because we found
through experiments that minimizing MSE has little impact on
the attack’s success rate, but it can improve the concealment of
the point cloud. We combine ℒ𝐷𝐶𝐷 with ℒ𝑀𝑆𝐸 to get the final
optimization goal, as shown below:

ℒ𝐷𝐼𝑆 = 𝜆1ℒ𝐷𝐶𝐷 + 𝜆2ℒ𝑀𝑆𝐸 (11)

5 EXPERIMENT
In this section, we present the experiment settings, experimental
results, and ablation studies. Before elaborating on experimental
details, we first set up research questions.

5.1 Research Questions
In this work, we explored generating point cloud AEs with diffu-
sion models. To examine the attack success rate, concealment, and
transferability of our method. We evaluate the method with the
following research questions (RQs).

• RQ1: Given the limited research on generating 3D adversarial
examples, can we use diffusion models to generate effective
adversarial examples across different datasets and models,
Such as PointNet++ and the ModelNet40 dataset?

• RQ2: Can the 3D diffusion scheme generate adversarial exam-
ples resistant to defense when faced with different models?

• RQ3: Explore whether different diffusion steps and noise
constraints affect the performance of generated adversarial
examples?
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Figure 4: Fix the level of noise added by diffusion at each step and optimize
the effect of the number of times on the performance of the attack, targeting
PointNet++.

5.2 Experimental Settings
Datasets. For a fair comparison, we evaluate AEs generated by our
method on ShapeNet andModelNet40 as prior works [26].We assess
the attack performance on ShapeNet, which includes approximately
50,000 3D CAD models across 14 major and 55 subcategories, with
each model containing at least 2,000 points [5]. Additionally, we
evaluate our approach on ModelNet40, consisting of 12,311 CAD
models from 40 object categories, with 9,843 for training and 2,468
for testing [63]. Each object in ModelNet40 is uniformly sampled
to 2,048 points and rescaled to a unit cube. Data augmentation
techniques, such as random scaling and jittering, are applied to
preprocess the point clouds in the test set.

RQ1: To test whether our proposed method can generate effec-
tive adversarial point clouds on different datasets, we tested it on



Table 1: ASR (%) of different attack methods with and without defense on ModelNet40 (MN).

Proxy Model data Defense
Attack Method

Drop
-400

CW
(𝑙2)

CW
(CD)

CW
(HD) GeoA3 AdvPC LG

-GAN DPMA Ours

PointNet MN
- 59.64 100.00 100.00 100.00 100.00 100.00 99.22 93.80 94.20

SRS 58.14 53.00 67.19 69.94 81.65 98.87 92.13 93.48 90.43
SOR 56.28 13.82 15.63 15.80 42.79 46.19 67.25 87.00 93.06

Dgcnn MN
- 45.91 100.00 100.00 100.00 100.00 94.58 86.08 97.45 95.23

SRS 35.05 31.09 37.11 32.29 77.71 70.63 80.60 94.73 92.40
SOR 15.03 2.26 2.92 3.13 56.25 11.04 50.17 93.11 94.60

PointConv MN
- 37.12 100.00 100.00 100.00 96.09 98.54 78.04 94.98 94.50

SRS 35.09 37.29 28.95 27.77 21.48 93.54 71.88 94.06 92.60
SOR 34.44 18.13 17.29 19.16 18.35 91.25 63.88 90.71 93.21

Table 2: Quantitative comparison between our method and existing black-box transfer-based attacks in terms of attack success rate (ASR), Chamfer distance
(CD), Hausdorff distance (HD), and the proxy model used, where CD is multiplied by 102 and HD is multiplied by 102 for better comparison.

Proxy Model Attack
PointNet++ [52] Curvenet [46] PointConv [81]

ASR↑ CD↓ HD↓ ASR↑ CD↓ HD↓ ASR↑ CD↓ HD↓
(%) (10−2) (10−2) (%) (10−2) (10−2) (%) (10−2) (10−2)

PointNet [51]
FGSM [58] 68.2 2.93 12.3 75.7 0.60 5.04 71.9 2.18 17.06
IFGSM [91] 78.0 2.15 16.7 77.0 1.62 12.7 76.0 1.06 11.8
PGD [73] 70.17 9.8 39.1 67.6 9.83 46.9 61.2 9.7 46.2

Dgcnn [76]
FGSM [58] 41.3 2.52 9.13 50.2 2.52 9.13 55.2 4.09 14.29
IFGSM [91] 57.6 3.5 12.5 72.5 3.49 12.5 60.2 3.5 12.52
PGD [73] 61.6 9.63 38.1 62.5 9.73 46.9 62.8 9.8 48.3

Pct [20]
FGSM [58] 30 3.7 14 45.2 3.75 13.9 45.6 3.2 12.4
IFGSM [91] 44.5 5.5 19.3 72.3 5.56 19.3 64.3 5.56 19.3
PGD [73] 69 9.9 48.3 63.4 9.9 48 63.0 9.8 48.3

3D-Diffusion (DifA) Ours 86.0 1.7 7.4 87 1.7 7.4 86 1.7 7.4

both ModelNet40 and ShapeNet datasets. We compare the attack
success rate with four different SOTA and other optimization-based
methods and conduct experimental comparisons on three different
recognition models. The test results of ModelNet40 can be found
in Table 1, and the test results of ShapeNet dataset are shown in
Table 5.

RQ2:We report the attack access rate with non-defense on Mod-
elNet40 and ShapeNet. While ModelNet40 shows more distinguish-
able results than ShapeNet, we report the results of the rest tasks
on ModelNet40. For ModelNet40, we chose three surrogate models
for black-box transfer-based attack evaluation and compared them
with our proposed approach. For ShapeNet, we use the proposed
method to evaluate the attack performance of two models.
Models. Our approach is evaluated on six benchmark 3D recog-
nition models: PointNet [51], PointNet++(MSG) [52], PointConv
[81], Pct [20], DGCNN [76], and Curvenet [46]. These models were
chosen for their unique architectures and established performance
in 3D recognition tasks:

(1) PointNet uses a symmetric function for permutation invari-
ance, while PointNet++ introduces hierarchical feature learn-
ing.

(2) PointConv enhances feature representation with a point
cloud-specific convolution, and Pct excels with a transformer-
based architecture.

(3) DGCNN captures local structures with dynamic graph con-
struction.

(4) Curvenet uses 3D curves for feature extraction.

We selected PointNet, DGCNN, and Pct as proxy models to con-
duct comparative tests on PointNet++, Curvenet, and PointConv,

evaluating our approach’s robustness with and without defense
measures. This evaluation across diverse architectures allows us to
assess the generalizability and effectiveness of our method, provid-
ing insights into its performance against various 3D recognition
systems.
Baselines. We leverage a pre-trained open-source 3D-diffusion
model, trained on extensive point cloud data, as the basis for our
manifold attack and compare our approach (Ours) with eight base-
line methods. These include the deletion-based method Drop-400
[98], which drops the most critical 400 points, and perturbation-
based methods using optimization like C&W under 𝑙2-norm, Cham-
fer distance (CD), and Hausdorff distance (HD) constraints [82]. Ad-
ditionally, we consider GeoA3 [77], which applies geometric-aware
constraints, and AdvPC [22], which focuses on high transferabil-
ity. We also compare against generative-based methods such as
LG-GAN [100] and DPMA [65]. For attack performance testing, we
select the best configuration of these adversarial attack methods
to achieve the best attack success rate[65] they can achieve. Due
to time constraints, we selected only FGSM, IFGSM, and PGD as
comparative experiments for evaluating stealthiness.
EvaluationMetrics. We begin by statistically analyzing the attack
success rate (ASR) of the generated adversarial samples on the 3D
point cloud recognition model to evaluate the method’s effective-
ness. To assess the imperceptibility and efficacy of the generated
adversarial point clouds, we compute the Hausdorff Distance and
Chamfer Distance between the original point cloud and the ad-
versarial output. The Hausdorff Distance quantifies the maximum
deviation between point sets, while the Chamfer Distance measures
the average displacement, providing insights into the subtlety of



the perturbations. The formula is defined as follows.

ASR =

∑𝑁
𝑖=1 I(𝑌𝑖 ≠ 𝑌𝑖 )

𝑁
× 100%, (12)

𝒟𝐶

(
𝑋,𝑋 ′) = 1

∥𝑋 ′∥0

∑︁
𝑦∈𝑋 ′

min
𝑥∈𝑋

∥𝑥 − 𝑦∥22 (13)

𝒟𝐻

(
𝑋,𝑋 ′) = max

𝑦∈𝑋 ′
min
𝑥∈𝑋

∥𝑥 − 𝑦∥22, (14)

In these formulas, 𝑋 represents the original point cloud, and 𝑋 ′

denotes the adversarial point cloud. Equation 12 defines the Attack
Success Rate (ASR), which quantifies the percentage of perturbed
samples misclassified by the model. 𝑌𝑖 and 𝑌𝑖 represent the true and
predicted labels, respectively, and 𝑁 is the total number of samples.
Equation 13 defines the Chamfer Distance (𝒟𝐶 ), which calculates
the average displacement between points in 𝑋 and 𝑋 ′. Equation
14 defines the Hausdorff Distance (𝒟𝐻 ), which measures the maxi-
mum deviation between points in the two sets. The ASR, defined
in Equation 12, quantifies the ratio of perturbed examples incor-
rectly classified by the black-box transfer-based attacked model.
Evaluating our attack in terms of effectiveness, stealthiness, and
transferability offers a comprehensive understanding of its impact
on 3D recognition models.

• Effectiveness: Measured by the attack success rate (ASR),
which reflects the percentage of adversarial examples that
successfully mislead the target model. A higher ASR indi-
cates a more effective attack.

• Stealthiness: Assessed using theHausdorff distance andCham-
fer distance to ensure that the generated adversarial exam-
ples are imperceptible and maintain a high degree of simi-
larity to the original point clouds.

• Transferability: Evaluated by testing the adversarial exam-
ples on different models to determine the robustness and
generalization of the attack across various 3D recognition
systems.

RQ3: We use ablation experiments to find out the impact of
different diffusion steps and noise constraints on the attack perfor-
mance of generated adversarial examples. Details can be seen in
Ablation Studies.

5.3 Experimental Results - RQ1
Performance Comparison with White Box Attacks and Gen-
erative Attacks. The result in Table 1 shows that Drop-400 per-
forms the worst. Among them, the three CW attacks (using l2,
Chamfer Distance, andHausdorffDistance as loss functions), GeoA3,
and AdvPC all showed a 100% success rate on PointNet. In particu-
lar, LG-GAN [100], DPMA [65] and our method also successfully
attacked these models, but the success rate was slightly lower than
the previous methods. This is because the previous methods are
white-box attack methods, which can use the gradient information
of the attacked model, which greatly improves the success rate of
the attack. However, our proposed method differs from LGAN and
DPMA in that our method does not use any information from the
attacked model, and our method is dataset-oriented rather than
sample-oriented. In addition, the attack success rate of AdvPC on
Dgcnn and PointConv did not reach 100%, due to the trade-off
imposed by auto-encoder for transferability.

Black-box Performance And Comparison. We comprehen-
sively compare our 3D diffusion black-box attack with various
baselines, including regular optimization-based attacks such as
FGSM, IFGSM, and PGD. Specifically, our method is implemented
with a reverse diffusion step size of 100 and 1𝑡 DCD optimization
iterations, while all baselines adopt untargeted attacks with 𝜖 set to
0.32. The comparisons are conducted on the same RTX 3050 GPU,
evaluating metrics such as attack success rate (ASR), Chamfer dis-
tance (CD), and Hausdorff distance (HD). The results listed in Table
2 show that our method incurs the least geometric distance cost
to achieve nearly 90% ASR, with a lower time budget compared to
regular optimization-based attacks. This aligns with our intuition
that the diffusion model better preserves the point features from
the original point clouds during adversarial example generation.

To evaluate the generalizability of these attack methods, we
assessed the performance of adversarial point clouds after careful
data preprocessing and measured the attack’s success rate (ASR)
across different models. The results demonstrate that our proposed
diffusion attack consistently outperforms other methods in most
cases in terms of ASR, CD, and HD, indicating its robustness and
effectiveness across various 3D recognition models.

5.4 Results on Defense Approaches - RQ2
To further validate the robustness of each attack method, we per-
form performance evaluation tests on the produced adversarial
examples after the defense methods. We consider common point
cloud input preprocessing defense methods [65]. We demonstrate
the superiority of our proposed scheme by testing it against other
attack methods (FGSM, IFGSM, PGD). Input defense methods We
choose two common input preprocessing schemes (SOR, SRS) for
point clouds, The results are shown in Tables 3 and 4. Moreover, the
attack effect of our proposed method after SOR defense is almost
the highest success rate among all attacks, and it also performs best
in Chamfer Distance and Hausdorff Distance.
Performance comparison under SOR defense approachWe
use the SOR defense method with 𝑘 set to 2 and 𝛼 using 1.1 as the
defense parameter, and the results obtained show that our proposed
scheme still has good aggressiveness after the point cloud defense
treatment. In our experiments, we found that if the proxy model is
Pointnet, the success rate in attacking PointNet++, Curvenet, and
PointConv models is higher than if the proxy model is the other
two. Using Dgcnn as the proxy model, the attack performance for
Curvenet, PointConv is higher than that for PointNet++. This is an
interesting phenomenon, suggesting that point cloud attacks can
be ideally achieved by using similar models to generate adversarial
examples for robustness tests. And the experimental results show
that the attack method based on the diffusion generation model
we proposed can produce better attack performance on different
models through one-time proxy model generation, and the Cham-
fer Distance and Hausdorff Distance are smaller than other attack
methods, indicating the superiority of our method. As shown in
the figure, we show the visualization of adversarial point clouds of
our proposed method and Shape-Invariant(SI) for comparison in
Table ??. The SI method is set to 𝜖 = 0.16 and step size = 0.007, The
noise scale of our method is set to 0.05𝑡 . Our adversarial genera-
tion scheme based on the diffusion model has fewer outliers and a



Table 3: Quantitative comparison between our method and existing black-box transfer-based attacks in terms of attack success rate (ASR), Chamfer distance
(CD), Hausdorff distance (HD), the proxy model and defense method SOR used, where CD is multiplied by 102 and HD is multiplied by 102 for better
comparison.

Proxy Model Attack Defense
PointNet++ [52] Curvenet [46] PointConv [81]

ASR↑ CD↓ HD↓ ASR↑ CD↓ HD↓ ASR↑ CD↓ HD↓
(%) (10−2) (10−2) (%) (10−2) (10−2) (%) (10−2) (10−2)

PointNet
FGSM [58]

SOR
54.3 1.2 16.3 66.5 1.6 2.05 54.3 1.2 16.3

IFGSM [91] 75.3 4.8 38.5 80 4.3 30.5 72 1.02 12.2
PGD [73] 69.5 9.9 48.2 82 9.95 48.2 80 9.7 46.4

Dgcnn
FGSM [58]

SOR
45.05 2.72 11.68 61 2.7 11.6 64.8 3.84 14.5

IFGSM [91] 48.5 5.07 18.4 73.2 3.84 14.5 73 3.84 14.4
PGD [73] 69.5 9.9 48.2 83 9.75 48.1 82 9.8 47.6

Pct
FGSM [58]

SOR
46.8 2.75 11.68 61.8 2.7 11.6 54.9 2.7 11.6

IFGSM [91] 47.8 5.09 18.5 77.8 5.09 18.5 65.6 5.06 18.4
PGD [73] 72.7 9.8 48.3 72.5 9.8 48.3 81 9.8 48.3

3D-Diffusion (DifA)Ours SOR 84.7 1.4 6.8 86.2 1.4 6.8 85.0 1.4 6.8

Table 4: Quantitative comparison between our method and existing black-box transfer-based attacks in terms of attack success rate (ASR), Chamfer distance
(CD), Hausdorff distance (HD), the proxy model and defense method SRS used, where CD is multiplied by 102 and HD is multiplied by 102 for better comparison.

Proxy Model Attack Defense
PointNet++ [52] Curvenet [46] PointConv [80]

ASR↑ CD↓ HD↓ ASR↑ CD↓ HD↓ ASR↑ CD↓ HD↓
(%) (10−2) (10−2) (%) (10−2) (10−2) (%) (10−2) (10−2)

PointNet
FGSM [58]

SRS
68.9 9.89 4.83 66.5 3.6 20.5 67.6 2.29 25.4

IFGSM [91] 75.3 4.8 38.5 70 4.8 23.5 80.1 1.6 16.1
PGD [73] 68.9 9.89 4.83 65.2 9.8 4.83 64.6 9.89 4.8

Dgcnn
FGSM [58]

SRS
23.4 4.0 14.0 41.1 4.0 14.0 51.8 4.0 14.0

IFGSM [91] 34.7 5.7 19.2 70 5.7 19.2 68.6 5.7 19.2
PGD [73] 68.6 9.89 48.3 65.5 9.89 48.3 64.8 9.8 48.1

pct
FGSM [58]

SRS
22 3.9 13.9 42.3 3.9 13.9 48.7 3.9 13.9

IFGSM [91] 33.1 5.8 19.27 68.8 5.8 19.2 68.0 5.8 19.2
PGD [73] 69.5 9.8 48.3 65.5 9.7 47.2 64.9 9.7 47.2

3D-Diffusion (DifA)Ours SRS 85.0 1.5 6.7 82.3 1.5 6.7 81.2 1.5 6.7

smoother surface than the SI attack. Regardless of whether it has
undergone the point cloud defense method, the point cloud quality
generated by our adversarial sample generation scheme is superior
to that of the SI attack.

Performance comparison under SRS defense approach: Al-
though our proposed method shows good performance against SOR
defense methods, it may be insufficient against some well-designed
adversarial examples, for this reason, we conducted SRS defense
experiments to improve the persuasiveness of our method. For SRS
defense method, we set the drop num points to 500, experimental
results show that our proposed method has better attack perfor-
mance and transferability in the face of both defense methods, and
the distance shows that our attack does not significantly damage
the original point cloud. Moreover, after the adversarial point cloud
generated by other attack methods is passed through the SRS de-
fense method, the attack success rate drops significantly. It can
be seen that randomly discarding 500 points is effective in reduc-
ing adversarial losses. Overall our 3D diffusion attack has strong
resistance and good transferability against these defenses.

5.5 Ablation Studies - RQ3
The amount of noise added by the attack is a critical and config-
urable parameter that affects the performance of our method. We
evaluated different numbers of DCD optimizations with a fixed
number of diffusion model steps, and the results are shown in Fig
4. Our method is directly affected by the number of optimizations,

Table 5: Attack success rate (ASR) and Chamfer Distance of our method
with PointNet++ and Curvenet on ShapeNet.

Attack
PointNet++ [52] Curvenet [46]

ASR↑ CD↓ ASR↑ CD↓
(%) (10−2) (%) (10−2)

Ours
Chair 70 0.8 64 0.8

Airplane 65 0.3 75 0.3
Bench 82 1 93 1

and the performance of the attack progressively decreases as the
number of optimizations decreases from 5𝑡 to 1𝑡 .
Table 6: Different loss function settings are used in the diffusion process
and the impact of the order on the results.

Loss
PointNet++ [52]

ASR↑ CD↓ HD↑

Ours
CDC 73 0.13 0.71

MSE+CDC 70 0.06 0.46
CDC+MSE 71 0.06 0.23

In order to find the appropriate number of optimizations, we
combine the success rate of the attack and the various metrics of
the resistance to defense and the stealthiness of the generated ad-
versarial examples, and use the 2t optimization as our experimental
benchmark.

To investigate the impact of different loss functions during the
diffusion process on the generation of adversarial samples, we con-



ducted ablation experiments focusing on the sequence and combina-
tion of these loss functions. As shown in Table 6, the combination of
DCD and MSE demonstrates a strong constraint on the noise added
during the diffusion process while minimally affecting the attack
success rate. These results suggest that the DCD+MSE combination
effectively balances the imperceptibility of the perturbations and
the overall attack performance. Due to time constraints, we only
selected the Chair classification test set data for evaluation.
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Figure 5: Comparison experiments of Chamfer Distance and Hausdorff
Distance under different settings of the number of DCD optimizations for
diffusion attacks, with the attack target network as PointNet++.

6 CONCLUSION
The deceptive and imperceptible point cloud was successfully gen-
erated using 3D diffusion modeling to attack the target autopilot
system. This attack proves to be effective, causing the system to
misjudge in the perception phase, potentially leading to danger-
ous behaviors. The attack point cloud is imperceptible. The gener-
ated point cloud demonstrates robustness and adaptability across
various scenes, lighting conditions, and vehicle states, effectively
compromising the target system’s perception and decision-making
modules. Our proposed black-box adversarial sample generation
method is capable of producing deceptive adversarial examples
(AEs) with a certain degree of transferability. However, the method
incurs significant time costs during execution. While generating
black-box adversarial examples using generative models seems fea-
sible, there remains room for improvement in reducing deformation
compared to more advanced white-box approaches. In future work,
we will continue to explore methods for generating black-box ad-
versarial examples with less deformation from the perspective of
the diffusion model encoder.
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