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ABSTRACT
Federated Learning (FL) enables collaborative model training while
preserving data privacy, but it is highly vulnerable to backdoor
attacks. Most existing defense methods in FL have limited effective-
ness due to their neglect of the model’s over-reliance on backdoor
triggers, particularly as the proportion of malicious clients increases.
In this paper, we propose FedBAP, a novel defense framework for
mitigating backdoor attacks in FL by reducing the model’s reliance
on backdoor triggers. Specifically, first, we propose a perturbed
trigger generation mechanism that creates perturbation triggers
precisely matching backdoor triggers in location and size, ensuring
strong influence on model outputs. Second, we utilize these pertur-
bation triggers to generate benign adversarial perturbations that
disrupt the model’s dependence on backdoor triggers while forc-
ing it to learn more robust decision boundaries. Finally, we design
an adaptive scaling mechanism to dynamically adjust perturba-
tion intensity, effectively balancing defense strength and model
performance. The experimental results demonstrate that FedBAP
reduces the attack success rates by 0.22%-5.34%, 0.48%-6.34%, and
97.22%-97.6% under three types of backdoor attacks, respectively. In
particular, FedBAP demonstrates outstanding performance against
novel backdoor attacks.
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1 INTRODUCTION
As data privacy and security concerns become increasingly promi-
nent, Federated Learning (FL) [20] has emerged as a promising
distributed machine learning paradigm, attracting widespread at-
tention. Unlike traditional centralized training, FL enables multiple
clients to train models locally and upload only model updates to
a central server for aggregation, thereby facilitating collaborative
learning across devices or institutions while preserving data pri-
vacy [40]. Since FL allows efficient training without exposing raw
data, it has been widely adopted in various domains, including
smart devices [9], healthcare [27], IoT device [21], and financial
risk management [4].

However, this decentralized training paradigm also introduces
new security challenges, particularly backdoor attacks [8], which
pose a significant threat to FL systems. Specifically, during the FL
training process, malicious clients can inject stealthy backdoors
into local models through methods such as data poisoning or model
replacement. These backdoors can then propagate to the global
model through the server’s model aggregation. Once the attack suc-
ceeds, the global model will output the attacker’s designated target
class when encountering a specific trigger, while maintaining high
accuracy on normal inputs, making the attack extremely difficult
to detect and defend against [1, 29, 30]. Furthermore, due to the
decentralized nature of FL, the server is unable to directly access
or audit the clients’ training processes, making backdoor attacks
even more elusive and harder to detect [8].

Existing defense mechanisms can be broadly categorized into
two approaches [25]: mitigating the impact of infected models [10,
12, 23, 26, 37, 42] and filtering out malicious models or parame-
ters [3, 7, 11, 13, 16, 25, 31, 33, 35, 38, 41]. However, both of these
approaches have significant limitations. The former is challenged
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by the difficulty of precisely identifying backdoor features, often re-
lying on intrusive interventions that can disrupt the model’s ability
to learn normal tasks, leading to a decline in main task performance.
The latter typically relies on feature statistics or anomaly detec-
tion, making it susceptible to failures when dealing with complex
or stealthy backdoor strategies, potentially mislabeling legitimate
updates, and impacting system stability. Furthermore, due to the
non-independent and identically distributed (non-IID) nature of
client data in FL, these defense strategies struggle to accommo-
date the diverse backdoor attack patterns encountered by different
clients. Therefore, existing backdoor defense methods still face the
following challenges:

Challenge 1 (Identification of Backdoor Attack Features).
The stealthy characteristics of backdoor features fundamentally
limit current defenses’ capability in both accurate feature identifi-
cation and subsequent complete backdoor removal.

Challenge 2 (Balancing BackdoorAttackDefense andMain
Task Accuracy). Current backdoor defense methods require exces-
sive interference with the model aggregation process for backdoor
removal, consequently degrading the main task’s accuracy.

To address the above challenge, we focus on the nature of back-
door attacks, namely that backdoor attacks cause the model to
overly rely on triggers rather than the global semantic features.
Driven by this insight, we propose FedBAP, a Benign Adversarial
Perturbation based defense framework against backdoor attacks in
FL. Our goal is to eliminate the model’s dependence on backdoor
triggers, thereby bypassing the challenging process of backdoor
identification and ensuring the model’s exclusive focus on glob-
ally representative features. To achieve this, we first propose a
perturbation trigger generation mechanism that significantly in-
fluences the model’s backdoor decision boundary by generating
perturbation triggers that are very similar in position, and size
to the backdoor triggers. Second, we design benign adversarial
perturbations generation mechanism that utilize perturbation trig-
gers for adversarial training on the client, to reduce the model’s
dependence on backdoor triggers and encourage it to learn more
robust data features, thereby addressing Challenge 1. Finally, we
propose an adaptive scaling mechanism that achieves a balance
between defense strength and model performance by dynamically
adjusting the intensity of benign adversarial perturbations, thus
addressing Challenge 2. Experimental results show that FedBAP
effectively mitigates backdoor attacks while preserving model ac-
curacy, demonstrating its effectiveness as a defense strategy.

Our main contributions are as follows:

• We propose FedBAP, a Benign Adversarial Perturbation
based defense framework against backdoor attacks in FL.
FedBAP effectively mitigates backdoor threats while pre-
serving the model’s main task performance.
• We propose a novel perspective that introduces a fundamen-
tally new defense approach rooted in the model’s training
behavior itself, focusing on the essential dependency nature
of models on backdoor features, thereby effectively eliminat-
ing backdoors.
• We conduct extensive experiments under various federated
backdoor attack scenarios, demonstrating that FedBAP sig-
nificantly outperforms existing defense methods and, in

some cases, even enhances the model’s accuracy on the main
task.

2 RELETEDWORK
Extensive research [1, 6, 14, 15, 17–19, 22, 28, 34, 39, 43] has demon-
strated that FL is highly susceptible to backdoor attacks. To mitigate
these threats, researchers have proposed various defense mecha-
nisms. Existing work on defending against targeted attacks in FL
can be broadly categorized into two main approaches [25]: mitigat-
ing the impact of infected models and filtering out infected models
or parameters.

Mitigating the Impact of Infected Models. Several methods
aim to reduce the influence of compromised models without ex-
plicitly removing them. FLIP [37] produces an adversarial training-
based approach to generate reverse-triggered augmented data, miti-
gating backdoor threats by exposing the model to counterexamples.
LeadFL [42] enhances model resilience through Hessian-based reg-
ularization, improving gradient stability and reducing the impact of
malicious updates. FedGame [12] formulates a game-theoretic de-
fense that models the interaction between defenders and attackers,
optimizing global model updates by reverse-engineering backdoor
triggers and target classes. Lockdown [10] isolates malicious param-
eters using subspace training, which includes initialization, search,
pruning, and aggregation to defend against backdoor attacks while
reducing computational complexity. CrowdGuard [26] further im-
proves backdoor resilience by leveraging client feedback, analyzing
hidden-layer neuron behavior, and performing iterative pruning
to remove poisoned models. FLAME [23] employs dynamic model
clustering, adaptive weight clipping, and differential privacy noise
injection to detect and suppress adversarial updates.

Filtering Out Infected Models or Parameters. Another line
of work focuses on identifying and excluding compromised updates
through robust aggregation and anomaly detection. FLTrust [3]
adopts a trust-based framework by leveraging a small clean dataset
to assign trust scores to client updates, ensuring that malicious
contributions are effectively downweighted during aggregation.
FPD [31] produces a four-module defense mechanism incorporat-
ing reliable client selection, similarity-based anomaly detection, and
update denoising to filter out both colluding and non-colluding ad-
versarial clients. AGRAMPLIFIER [7] strengthens Byzantine-robust
aggregation rules by employing local update amplification tech-
niques, improving robustness against adversarial updates. FLDetec-
tor [38] utilizes consistency detection, Euclidean distance-based sus-
picious scoring, and k-means clustering to isolate malicious clients.
FLARE [33] analyzes penultimate layer representations to assess
update credibility and mitigate poisoning effects. FLShield [13] ad-
dresses verification challenges in FL through representative model
generation and class-wise loss impact measurement, ensuring the
integrity of updates before aggregation. BackdoorIndicator [16] in-
jects OOD-based indicator tasks into the global model to proactively
detect any backdoor-poisoned local model uploads.

These approaches have proven effective in various settings. How-
ever, they overlook the fundamental characteristic of backdoor
attacks, where the model develops a strong dependence on back-
door triggers. As the intensity of backdoor attacks increases, the
defensive performance of these methods will significantly decrease.
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3 PRELIMINARIES
3.1 Federated Learning
We consider a standard FL setup where a set of clients 𝑆 aim to
collaboratively train a global model𝑤 with the coordination of a
server. Let D𝑖 be the private training dataset held by the client
𝑖 , where 𝑖 ∈ 𝑆 . In the 𝑡-th communication round, the server first
randomly selects a set of clients 𝑆𝑡 , where |𝑆𝑡 | ≤ |𝑆 |. The server
then distributes the current version of the global model𝑤𝑡 to the
selected clients. Each selected client 𝑖 ∈ 𝑆𝑡 first uses the global
model to initialize its local model, then trains its local model on its
local training dataset, and finally uploads the local model update
to the server. We use 𝑔𝑖𝑡 to denote the local model update of the
client 𝑖 in the 𝑡-th communication round. The server aggregates the
received updates on model weights and updates the current global
model weights as follows:

𝑤𝑡+1 = 𝑤𝑡 + A({𝑔𝑖𝑡 |𝑖 ∈ 𝑆𝑡 }) (1)
whereA is an aggregation rule adopted by the server. For instance,
a widely used aggregation rule FedAvg [20] takes an average over
the local model updates uploaded by clients.

3.2 Threat Model
Attacker’s goals. As the existing studies on FL backdoor attacks,
an attacker’s goal is to enforce models to classify data samples with
triggers embedded to specific incorrect labels while keeping a high
accuracy for samples without triggers embedded.

Attacker’s capabilities.We assume that the server is honest.
Following threat models in previous studies [1, 6, 18, 34, 36, 39],
we consider an attacker that can compromise a certain number of
clients. Specifically, the attacker can access to the training datasets
and global model updates of these compromised clients, allowing
manipulation of their uploaded updates. Furthermore, malicious
clients under the attacker’s control can communicate and synchro-
nize their attack strategies. The attacker also has access to a snap-
shot of the global model in each round and can directly modify
both model weights and datasets on compromised clients.

4 METHOD
4.1 High-level Description
As shown in Figure 1, FedBAP consists of three key mechanisms:
Perturbation Triggers Generation, Benign Adversarial Perturbation
Generation, andAdaptive Scaling. The detailedworkflow of FedBAP
is described in Algorithm 1, and the complete process is outlined
as follows:
• Step 1: Initialization. Before the start of FL, the server
initializes the global model and the scaling factor, which
are then distributed to all clients. The scaling factor is a
dynamic parameter produced to adjust the strength of benign
adversarial perturbations after the defense is activated.
• Step 2: Perturbation Trigger Generation. At the desig-
nated start round, each client executes the MaskGen and
PatternGen algorithms based on the preliminary converged
global model to generate perturbation triggers. These trig-
gers are later used to guide the generation of benign adver-
sarial perturbation.

Previous Data BAP

Perturbation Trigger Mask

Perturbation Trigger Pattern

Perturbation Trigger
Local Training

Model AggregationScaling Factor

ServerMalicious Client

Benign Client

loss  value

attack

Backdoor Model

local  update

Previous Data

global 
model

malicious  update

PatternGen
MaskGen

BAPGen
AdaptiveScaling

Figure 1: Overview of FedBAP. At the defense start round,
the server distributes the global model to clients ( 1○). Clients
generate perturbation triggers ( 2○ and 3○), apply BAPGen to
create perturbations and upload loss values ( 4○). The server
updates the scaling factor ( 5○). Clients then train locally and
send model updates to the server ( 6○ and 7○).

• Step 3: Benign Adversarial Perturbation Generation.
After the defense starts, clients use the perturbation trig-
gers and the current scaling factor to execute the BAPGen
algorithm, generating benign adversarial perturbations. And
benign adversarial perturbation loss values are also uploaded
once defense is activated.
• Step 4: Local Training. Each client trains a local model
using its private data and subsequently uploads the corre-
sponding model update.
• Step 5: Adaptive Scaling. After the defense is triggered,
the server adjusts the scaling factor by executing the Adap-
tiveScaling algorithm based on the received Benign adver-
sarial perturbation loss values and the current scaling factor.
• Step 6: Model Aggregation and Distribution. The server
aggregates local updates into a new global model and dis-
tributes it to clients.

4.2 Perturbation Trigger Generation
The main objective of the perturbation trigger generation mecha-
nism is to create a trigger that matches the size and position of the
backdoor trigger, but has a greater impact on the model predictions.
Unlike malicious triggers, perturbation triggers are designed to
steer gradient updates away from backdoor-reliant behaviors and
toward more robust feature representations. According to DEFINI-
TION 1, each perturbation trigger consists of a mask that defines its
spatial region and a pattern that specifies the perturbation applied.
These components are carefully derived to maintain consistency
with attacker-defined triggers while maximizing their ability to
disrupt shortcut learning. The following section details the con-
struction methodology.

DEFINITION 1. The perturbation trigger consists of two compo-
nents [32]:

• 𝑀 , which represents the trigger mask. It is a two-dimensional
matrix with the same height and width as the original image,
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Algorithm 1 Overview of FedBAP
FedBAP:

Parameter: Local epochs 𝐸1, learning rate 𝜂1, start round 𝑡𝑠 ,
scaling factor 𝑐𝑡𝑠 , number of clients𝑚, number of communication
rounds 𝑁 .

Output:Model𝑤𝑁

1: init𝑤0
2: for 𝑡 = 1 to 𝑁 do
3: 𝑆𝑡 ← a random set of𝑚 clients
4: // Client Side;
5: if 𝑡 = 𝑡𝑠 then
6: 𝑀 ← MaskGen(𝑤𝑡 )
7: Δ𝑥 ← PatternGen(𝑤𝑡 , 𝑀)
8: end if
9: for 𝑖 ∈ 𝑆𝑡 in parallel do
10: 𝑤 ′ ← 𝑤𝑡

11: 𝑙𝑜𝑠𝑠𝑖𝑡 ← 0
12: if 𝑡 ≥ 𝑡𝑠 then
13: 𝑙𝑜𝑠𝑠𝑖𝑡 ,𝑤

′ ← BAPGen(𝑐𝑡 ,𝑤 ′, 𝑖, 𝑀,Δ𝑥𝑖 )
14: end if
15: for 𝑒 = 1 to 𝐸1 do
16: for (𝑥,𝑦) ∈ D𝑖 do
17: 𝑤 ′ ← 𝑤 ′ − 𝜂1∇𝑤′ ℓ ((𝑤 ′ (𝑥), 𝑦)
18: end for
19: end for
20: 𝑔𝑖𝑡 ← 𝑤 ′ −𝑤𝑡

21: end for
22: // Server Side;
23: if 𝑡 ≥ 𝑡𝑠 then
24: 𝑙𝑜𝑠𝑠𝑡 ← 1

|𝑆𝑡 |
∑
𝑖∈𝑆𝑡 𝑙𝑜𝑠𝑠

𝑖
𝑡

25: 𝑐𝑡+1 ← AdaptiveScaling(𝑙𝑜𝑠𝑠𝑡 , 𝑐𝑡 , 𝑡)
26: end if
27: 𝑤𝑡+1 ← 𝑤𝑡 + 1

|𝑆𝑡 |
∑
𝑖∈𝑆𝑡 𝑔

𝑖
𝑡

28: end for
29: return𝑤𝑁

where the same mask value is applied across all color channels.
The values of𝑀 range from 0 to 1, determining the proportion
of the original image that the trigger can cover.
• Δ𝑥 , which represents the trigger pattern. It is a three-dimensional
matrix with the same height, width, and number of channels
as the original image.

Let𝐴(·) denote the process of embedding a trigger into the original
image 𝑥 . The embedding operation 𝐴(𝑥,𝑀,Δ𝑥) is defined as:

𝐴(𝑥,𝑀,Δ𝑥) = (1 −𝑀) · 𝑥 +𝑀 · Δ𝑥 (2)

where the mask 𝑀 selectively mixes the original image 𝑥 with the
perturbation trigger pattern Δ𝑥 .

Perturbation TriggerMaskGeneration. The first step is to ob-
tain the mask of the perturbation trigger. Ideally, this mask should
closely resemble that of the backdoor trigger, ensuring that it accu-
rately interferes with the model’s decision path during adversarial
training without straying from the critical region of the backdoor
feature. This alignment guarantees that the perturbation effectively

aids the model in correcting its over-reliance on the backdoor trig-
ger. According to DEFINITION 2, in a backdoored model, the back-
door trigger has a significantly smaller backdoor distance compared
to non-backdoor triggers. Thus, our goal is to identify a trigger that
successfully activates the backdoor while minimizing the backdoor
distance. Formally, our optimization objective is defined as:

argmin
𝑀, Δ𝑥

ℓ (𝑤 (𝐴(𝑥,𝑀,Δ𝑥)), 𝑦𝑡 ) + 𝜆 · ∥𝑀 ∥ (3)

where ℓ (·) denotes the cross-entropy loss function,𝑤 (·) represents
the neural network, 𝑥 is the input image, 𝑀 is the trigger mask,
Δ𝑥 is the trigger pattern, 𝑦𝑡 is the target class, 𝜆 is a regularization
coefficient controlling the trade-off between classification loss and
the sparsity of the mask𝑀 .

DEFINITION 2. Given an image from the source class 𝑖 , a trigger
composed of a mask 𝑀 and a pattern Δ𝑥 can flip the image’s label
to the target class 𝑗 . The class-wise distance 𝑑𝑖→𝑗 is measured as
∥𝑀𝑖→𝑗 ∥, where ∥ · ∥ denotes the 𝐿1 norm, representing the number
of pixels that need to be modified to flip the label from class 𝑖 to class
𝑗 . This metric quantifies the difficulty of transitioning from class 𝑖
to class 𝑗 [32]. Based on this, we introduce the concept of backdoor
distance. Given an image from an arbitrary source class, if a backdoor
exists, the backdoor distance 𝑑∀→𝑡 is defined as ∥𝑀𝑡 ∥, where class 𝑡 is
the target class. Since the existence of the backdoor makes it easier to
flip samples from any class to the target class, we have the inequality:

∥𝑀𝑡 ∥ ≪ ∥𝑀𝑖→𝑗 ∥, s.t. 𝑗 ≠ 𝑡 (4)

indicating that flipping a sample to the backdoor target class is sig-
nificantly easier than flipping it to any other classes.

Each client iterates over all possible target classes and optimizes
the mask𝑀 according to Equation 3. At the end of each epoch, the
client evaluates the current trigger mask. If the backdoor accuracy
of the current trigger is not lower than the predefined threshold,
and the backdoor distance of the current mask is smaller than the
client’s best recorded mask, then the client’s best mask is updated
to the current mask. Once all clients have obtained their optimal
masks, the server aggregates the masks by computing the average
mask across all clients. The server then binarizes the aggregated
mask by setting values greater than or equal to 0.5 to 1, and values
less than 0.5 to 0. The detailed procedure of the Perturbation Trigger
Mask Generation Algorithm MaskGen is presented in the appendix.

Perturbation Trigger Pattern Generation. After obtaining
the mask, the next step is to determine the perturbation trigger
pattern. We aim to maximize the perturbation trigger’s impact on
the model’s output by increasing the difference in the penultimate
layer representations (PLR). According to DEFINITION 3, differ-
ences in the PLR space translate into corresponding differences in
output probabilities. Therefore, when the distance between two
PLRs is large, the corresponding output probability distributions
exhibit significant divergence. If the perturbation trigger maximally
perturbs the PLR, it can induce a substantial change in the model’s
output.

DEFINITION 3. Let the neural network be defined as 𝑓 : R𝑑1×𝑑2×𝑑3
→ R𝑐 , mapping an input 𝑥 ∈ R𝑑1×𝑑2×𝑑3 to a 𝑐-dimensional prob-
ability vector 𝑞 ∈ R𝑐 , which 𝑐 is the number of classes. We denote
the mapping from the input to the penultimate layer representations
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(PLR) as 𝑔 : R𝑑1×𝑑2×𝑑3 → R𝑜 . The output of 𝑔 is the PLR, denoted
as 𝑟 ∈ R𝑜 [33]. Finally, we define 𝜎 : 𝑟 ∈ R𝑜 → 𝑞 ∈ R𝑐 as the map-
ping function from the PLR to the output probability vector. We use
Ω = [𝜔1, 𝜔2, · · · , 𝜔𝑐 ] to represent the weight connecting the penul-
timate layer to the last layer where 𝜔𝑘 ∈ R𝑜 denotes the weights
connecting to the 𝑘-th neuron of the output layer. We have

𝑞1 − 𝑞2

2 ≤ ∥Ω∥2 ∥𝑟1 − 𝑟2∥2 (5)

where 𝑟1 and 𝑟2 are the PLR of two input 𝑥1 and 𝑥2 respectively, 𝑞1

and 𝑞2 are the output probability vector for input 𝑥1 and 𝑥2 respec-
tively,



𝑞1 − 𝑞2

2 denotes the Euclidean distance between 𝑞1 and 𝑞2,
∥𝑟1 − 𝑟2∥2 denotes the Euclidean distance between 𝑟1 and 𝑟2.

In FL, client data is typically non-IID, causing backdoor behaviors
to vary across clients. As a result, each client must independently
generate a customized perturbation trigger using local data. To
optimize the trigger’s pattern, we leverage the PLR, which reflects
the model’s output before the final prediction. Let 𝑟1 and 𝑟2 be
the PLRs before and after applying the trigger. We minimize their
cosine similarity to maximize the trigger’s impact, encouraging
it to induce a strong shift in the model’s output. This drives the
model to react to the trigger, facilitating the suppression of back-
door reliance. Once optimized, the pattern is stored for generating
benign adversarial perturbations. The full procedure is detailed in
the PatternGen algorithm in the appendix.

4.3 Benign Adversarial Perturbation Generation
To effectively defend against backdoor attacks, we are dedicated to
breaking themodel’s reliance on backdoor triggers and encouraging
it to learn the global features of the data. To achieve this goal, we
design a benign adversarial perturbation generation mechanism.
This mechanism leverages perturbation triggers generated by our
trigger generationmodule to conduct adversarial training on clients,
thereby reducing the model’s reliance on backdoor triggers and
encouraging the learning of more robust data features.

Benign adversarial perturbations differ fundamentally from tra-
ditional adversarial perturbations. While the latter are crafted to
degrade model performance, the former aim to refine the model’s
decision boundary and enhance robustness against backdoor at-
tacks. This is achieved by steering the model away from spurious,
backdoor-associated features and promoting the learning of more
robust and generalizable representations. By persistently apply-
ing pressure against backdoor dependencies, benign perturbations
reduce the model’s reliance on shortcut-based decision rules and
strengthen its overall resilience.

To generate benign adversarial perturbation in practice, we intro-
duce a client-side training algorithm that incorporates perturbation
triggers into the local data. Each client embeds the predefined per-
turbation trigger into a subset of clean samples and enforces correct
label prediction through adversarial training. In this process, the
perturbation acts as a targeted optimization signal that reshapes
the model’s internal representations. To further amplify its effec-
tiveness, we apply a scaling factor to control the perturbation’s
magnitude. This factor ensures that the perturbation maintains
sufficient influence during training, particularly when the model
begins adapting and the adversarial loss starts to decrease. Finally,
the algorithm returns both the hardened model and the loss value

of the benign adversarial perturbation. The detailed procedure of
our Benign Adversarial Perturbation Generation BAPGen algorithm
is presented in the appendix.

4.4 Adaptive Scaling
As training progresses, the impact of benign adversarial perturba-
tion tends to weaken. This is because benign adversarial perturba-
tion is essentially a gradient update generated through adversarial
training, and as the model converges, the corresponding adversar-
ial loss value decreases. However, this decline can be problematic,
as attackers may continuously reinforce the model’s reliance on
backdoor triggers. It is therefore essential to regulate the perturba-
tion strength within an effective range to prevent the model from
reverting to decision rules based on backdoor trigger dependencies,
while preserving robust generalization.

To address this, we propose adaptive scaling, a mechanism that
dynamically adjusts the strength of benign adversarial perturbation
based on its real-time influence on the model. Leveraging the adver-
sarial nature of benign adversarial perturbation, we use its training
loss value as a proxy for effectiveness: a high loss indicates strong
gradient influence, while a decreasing loss suggests that the model
is adapting and the defense is losing effectiveness. Adaptive scaling
counteracts this by adjusting a scaling factor that amplifies the
perturbation magnitude whenever its effect weakens. This mecha-
nism maintains benign adversarial perturbation within a desirable
range, ensuring continued suppression of backdoor dependencies
throughout training without compromising performance on clean
inputs.

Specifically, the scaling factor is governed by three key compo-
nents. The first is the scaling step size 𝛿 , which is a hyperparameter
that controls the magnitude of adjustment. The second is the loss
ratio 𝛼𝑡 , measuring the relative change between the current and
previous loss values to capture short-term fluctuations. The third is
the smoothing factor 𝛽 , designed to reduce sensitivity to transient
variations and reflect the overall trend of the loss. To compute 𝛽 , we
use a sliding window that averages recent loss ratios, enabling the
mechanism to detect consistent upward or downward trends and
stabilize the adjustment of the scaling factor. The complete adaptive
scaling procedure AdaptiveScaling is detailed in the appendix.

5 EXPERIMENTS
5.1 Experimental Setup
FL Settings. We consider two widely-used benchmark datasets
CIFAR-10 and CIFAR-100 to evaluate FedBAP.We use the method in
[5] to distribute the training images to the clients. For CIFAR-10, we
employ the commonly used ResNet-18 and VGG-19 architectures as
the global model, while for CIFAR-100, we adopt ResNet-18 as the
global model. By default, our federated training setup consists of
100 clients, 10% of which are malicious. In each training round, 10%
of clients are randomly selected to perform local model training. We
assume a non-IID data distribution with a concentration parameter
ℎ of 0.9, following previousworks [6, 18, 39]. The FL training process
consists of 200 communication rounds, with each selected client
training the local model for 2 epochs. The start round for FedBAP
is set to 100, and unless otherwise specified, the scaling step size 𝛿
is set to 1. More setup details can be found in the appendix.
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Table 1: Performance of different defenses on non-IID datasets.

ResNet-18 (CIFAR-10) VGG-19 (CIFAR-10) ResNet-18 (CIFAR-100)

BadNets LP A3FL BadNets LP A3FL BadNets LP A3FL

BBSR 99.37% 93.98% 100.00% 75.66% 95.91% 100.00% 99.53% 83.27% 100.00%
FedAvg ABSR 97.88% 91.29% 100.00% 60.16% 85.06% 100.00% 98.50% 76.57% 100.00%

ACC 85.77% 75.03% 86.18% 78.26% 73.10% 78.95% 59.39% 43.05% 58.36%

BBSR 11.06% 97.51% 49.57% 100.00% 29.01% 99.31% 4.39% 97.34% 5.40%
Krum ABSR 1.27% 93.96% 10.42% 49.19% 2.28% 31.88% 1.24% 64.39% 1.31%

ACC 44.00% 64.37% 45.10% 33.38% 47.76% 36.10% 24.03% 31.16% 26.64%

BBSR 84.23% 87.11% 100.00% 59.97% 95.97% 100.00% 9.30% 96.84% 100.00%
MultiKrum ABSR 56.08% 20.53% 99.71% 22.18% 61.82% 59.74% 4.23% 91.36% 99.94%

ACC 78.84% 71.28% 79.35% 70.06% 67.47% 70.62% 51.32% 38.51% 51.03%

BBSR 96.24% 80.44% 100.00% 12.86% 14.72% 100.00% 48.01% 91.41% 100.00%
FLTrust ABSR 88.57% 29.26% 100.00% 8.66% 6.00% 100.00% 64.38% 42.52% 100.00%

ACC 77.89% 67.70% 78.63% 63.15% 67.66% 67.52% 48.01% 34.99% 48.42%

BBSR 96.62% 9.56% 100.00% 62.57% 16.11% 100.00% 97.75% 35.70% 100.00%
RLR ABSR 70.32% 3.63% 97.64% 38.31% 6.75% 100.00% 93.01% 0.94% 100.00%

ACC 79.55% 65.58% 78.86% 62.57% 63.21% 63.52% 46.50% 35.70% 47.21%

BBSR 98.77% 97.62% 100.00% 91.08% 98.09% 100.00% 49.07% 91.85% 2.93%
FLAME ABSR 93.39% 95.61% 100.00% 79.17% 71.49% 100.00% 0.56% 86.69% 1.26%

ACC 78.00% 68.77% 79.46% 64.68% 66.29% 69.68% 49.07% 36.68% 48.19%

BBSR 15.83% 36.89% 100.00% 9.97% 11.14% 100.00% 82.45% 20.64% 100.00%
FLIP ABSR 4.37% 8.60% 100.00% 2.48% 3.32% 100.00% 5.92% 4.77% 100.00%

ACC 85.95% 74.67% 85.75% 79.17% 73.87% 78.38% 57.41% 43.56% 58.23%

BBSR 2.51% 4.22% 5.89% 5.78% 5.50% 12.13% 1.11% 0.96% 4.48%
FedBAP (Ours) ABSR 1.55% 2.26% 2.40% 2.26% 2.84% 2.78% 0.58% 0.38% 2.55%

ACC 89.98% 78.64% 89.29% 87.24% 78.40% 86.32% 63.12% 47.22% 63.05%

Baselines.We consider three types of state-of-the-art (SOTA)
targeted attacks: BadNets [8], LP [43], and A3FL [36]. The perfor-
mance of FedBAP is compared with six SOTA defenses: Krum [2],
MultiKrum, FLTrust [3], RLR [24], FLAME [23], and FLIP [37] . De-
tailed descriptions of these comparison schemes can be found in
the appendix.

Evaluation Metrics. We consider Average Backdoor Success
Rate (ABSR), Best Backdoor Success Rate (BBSR), and Main Task
Accuracy (ACC) as evaluation metrics to assess the effectiveness
of FedBAP. ABSR represents the average proportion of backdoor
samples misclassified as the attack target label over the last 20
rounds. It reflects the effectiveness of the defense. BBSR denotes
the highest proportion of backdoor samples misclassified as the
attack target label within the last 20 rounds. It reflects the stability
of the defense. ACC measures the accuracy on benign samples,
representing the proportion of correctly classified benign inputs. It
reflects the usability of the defense.

5.2 Overall Performance
Table 1 presents the performance of different defenses against three
backdoor attacks across various model architectures and datasets in
non-IID settings, while the results for IID settings are provided in
the appendix. Figure 2 illustrates the backdoor success rates (BSR)

and ACC curves of different defenses against the BadNets attack
on ResNet-18 with CIFAR-10, while the results for the LP and A3FL
attacks are shown in the appendix.

As shown in Table 1, FedBAP consistently achieves the lowest
ABSR across most attack scenarios, highlighting its strong effective-
ness in mitigating diverse backdoor threats. In terms of stability,
FedBAP maintains the lowest BBSR across most cases, with mini-
mal fluctuations in BSR over time. The BSR curves in Figure 2 show
that FedBAP remains stable and does not exhibit sudden spikes,
which is critical in ensuring reliable defense performance. Regard-
ing usability, FedBAP consistently achieves the highest ACC across
all attack scenarios, outperforming other baselines. This can be
attributed to the nature of benign adversarial perturbations, which
serve as a form of robust training that improves generalization and
enhances the model’s resilience to abnormal or noisy data.

The results consistently demonstrate that FedBAP outperforms
existing defenses by effectively mitigating backdoor attacks while
maintaining high main task accuracy. Its ability to provide stable
and robust defense in both IID and non-IID settings highlights
its practical applicability in FL scenarios. These findings confirm
that FedBAP is a highly effective and generalizable defense against
various types of backdoor attacks.
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Figure 2: ResNet-18 trained with different defenses on the non-IID CIFAR10 dataset against the BadNets attack.

Table 2: Ablation study.

w/o BAP w/o AS & PG w/o PG w/o AS FedBAP

BBSR 99.37 99.17 5.32 98.97 2.51
ABSR 97.88 97.92 2.25 97.28 1.55
ACC 85.77 88.61 89.15 89.5 89.98

5.3 Ablation Study
We conduct ablation studies on the CIFAR-10 dataset under the Bad-
Nets attack to evaluate the contribution of each component of Fed-
BAP, including Benign Adversarial Perturbation (BAP), Adaptive
Scaling (AS), and Perturbation Pattern Generation (PG). Notably,
in the w/o PG setting, the learned perturbation pattern is replaced
with a randomly initialized one instead of executing PatternGen.
As shown in Table 2, removing any of these components results in
a significant decline in defense performance, indicating that each
module plays an essential role in the effectiveness of the overall
framework.

5.4 Impact of the Proportion of Malicious
Clients

We evaluate the impact of the proportion of malicious clients us-
ing the CIFAR-10 dataset. Specifically, we vary the proportion of
malicious clients from 0.1 to 0.4 under three representative attacks:
BadNets, LP, and A3FL. It is worth noting that we increase the
𝛿 of FedBAP to 1.5 under LP and to 3 under A3FL, as these are
more sophisticated attack strategies. Figures 3, 4, and 5 respectively
illustrate the ABSR and ACC trends of various defenses under the
BadNets, LP, and A3FL attacks. The results show that increasing
the proportion of malicious clients leads to a significant drop in
the performance of most defense methods, except FedBAP. FedBAP
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Figure 3: Impact of the malicious clients proportion on dif-
ferent defenses under the BadNets attack.

consistently achieves the lowest ABSR across all settings, staying
below 6% under LP and A3FL, and under 3% for BadNets. It also
maintains higher ACC than other defenses, demonstrating strong
robustness across different attack scenarios. This is because Fed-
BAP encourages the model to learn robust features rather than
overfitting to malicious patterns, thus maintaining stability even
under stronger attack intensities.

5.5 Impact of the non-IIDness
To investigate the effect of data heterogeneity, we evaluate all meth-
ods under both IID and non-IID settings, where ℎ = 1.0 corresponds
to the IID setting and smaller ℎ values (e.g., ℎ = 0.9 and ℎ = 0.5)
indicate increasing levels of non-IID distribution. We conduct ex-
periments on the CIFAR-10 dataset under the BadNets attack. As
shown in Figure 6, most baseline methods suffer significant degra-
dation in ABSR and ACC as the degree of non-IIDness increases. In
contrast, FedBAP consistently maintains low attack success rates
and exhibits only a minor drop in ACC under non-IID settings.
This demonstrates that FedBAP is not only robust against backdoor
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Figure 4: Impact of the malicious clients proportion on dif-
ferent defenses under LP attack.
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Figure 5: Impact of the malicious clients proportion on dif-
ferent defenses under A3FL attack.
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Figure 6: Impact of the non-IIDness on different defenses
under BadNets attack.

attacks, but also resilient to performance degradation caused by
data heterogeneity.

5.6 Impact of the Scaling Step Size
To evaluate the impact of the scaling step size 𝛿 on the effectiveness
of our defense, we compare the ACC and BSR across different values
of 𝛿 using the CIFAR-10 dataset under A3FL attacks, where the pro-
portion of malicious clients is set to 40%. As shown in Figure 7, we
present results starting from round 110, as the defense mechanism
is activated at round 100. Experimental results show that increasing
𝛿 effectively enhances backdoor suppression but may also degrade
model performance. When 𝛿 < 3, the backdoor effect tends to
re-emerge during training. In contrast, BSR drops below 5% and
remains suppressed when 𝛿 = 3. However, further increasing 𝛿 to 4
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Figure 7: Impact of the scaling step size.

leads to a noticeable decline in ACC, indicating potential instability.
These results suggest that a small benign adversarial perturbation
may be insufficient to eliminate the backdoor, while an overly large
one can harm the model’s performance. Therefore, choosing an
appropriate 𝛿 is crucial for balancing robustness and utility. Among
the evaluated settings, 𝛿 = 3 strikes the best trade-off, offering
effective backdoor suppression while maintaining stable accuracy
on the main task.

6 CONCLUSION
In this paper, we propose FedBAP, a robust FL defense mechanism
against backdoor attacks. In FedBAP, we propose a novel defense
approach that stems from the behavior of model training itself, fo-
cusing on the inherent reliance of the model on backdoor features.
FedBAP utilizes perturbation trigger to generate benign adversarial
perturbations and employs adaptive scaling to control the perturba-
tionmagnitude, therebymitigating the influence of malicious model
updates while preserving overall model accuracy. This method of
weakening reliance from the source, guiding training locally, and
stabilizing the system through dynamic adjustment ensures both
enhanced defense effectiveness and the preservation of model ac-
curacy. Our extensive evaluation on two benchmark datasets, three
backdoor attack strategies, and six defense methods demonstrates
that FedBAP effectively suppresses backdoor effects and achieves
SOTA performance, consistently outperforming existing defense
approaches in multiple scenarios. In future work, we plan to extend
our method to asynchronous FL and personalized FL to address
backdoor attacks faced in these FL scenarios.
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A ALGORITHMS

Algorithm 2 Perturbation Trigger Mask Generation
MaskGen:

Input: Global model𝑤𝑡 .
Parameter: Class numbers 𝑁𝑐𝑙𝑎𝑠𝑠 , epochs 𝐸2, learning rate 𝜂2,

backdoor accuracy threshold 𝑎𝑐𝑐𝑇𝐻 , regularization coefficient 𝜆.
Output: Trigger mask𝑀 .
1: 𝑆 ← the set of all clients
2: for 𝑖 ∈ 𝑆 in parallel do
3: for 𝑦𝑡 = 0 to 𝑁𝑐𝑙𝑎𝑠𝑠 do
4: init𝑀𝑦𝑡

𝑖
and Δ𝑥

𝑦𝑡
𝑖

randomly
5: for 𝑒 = 1 to 𝐸2 do
6: for (𝑥,𝑦) ∈ D𝑖 do
7: 𝑙𝑜𝑠𝑠 ← ℓ

(
𝑤𝑡 (𝐴(𝑥,𝑀𝑦𝑡

𝑖
,Δ𝑥

𝑦𝑡
𝑖
)), 𝑦𝑡

)
+ 𝜆 · ∥𝑀𝑦𝑡

𝑖
∥

8: 𝑀
𝑦𝑡
𝑖
← 𝑀

𝑦𝑡
𝑖
− 𝜂2∇𝑀𝑦𝑡

𝑖
𝑙𝑜𝑠𝑠

9: Δ𝑥
𝑦𝑡
𝑖
← Δ𝑥

𝑦𝑡
𝑖
− 𝜂2∇Δ𝑥𝑦𝑡

𝑖
𝑙𝑜𝑠𝑠

10: end for
11: compute backdoor accuracy 𝑎𝑐𝑐
12: if 𝑎𝑐𝑐 ≥ 𝑎𝑐𝑐𝑇𝐻 and ∥𝑀𝑦𝑡

𝑖
∥ < ∥𝑀𝑏𝑒𝑠𝑡

𝑖
∥ then

13: 𝑀𝑏𝑒𝑠𝑡
𝑖
← 𝑀

𝑦𝑡
𝑖

14: end if
15: end for
16: end for
17: end for
18: for 𝑗 = 0 to 𝑟𝑜𝑤𝑀 do
19: for 𝑘 = 0 to 𝑐𝑜𝑙𝑀 do
20: 𝑀 [ 𝑗] [𝑘] ← I

{
1
|𝑆 |

∑
𝑖∈𝑆 𝑀

𝑏𝑒𝑠𝑡
𝑖
[ 𝑗] [𝑘] ≥ 0.5

}
21: end for
22: end for
23: return𝑀

Algorithm 3 Perturbation Trigger Pattern Generation
PatternGen:

Input: Global model𝑤𝑡 , trigger mask𝑀 .
Parameter: Epochs 𝐸3, learning rate 𝜂3.
Output: Trigger patterns Δ𝑥 .
1: 𝑆 ← the set of all clients
2: for 𝑖 ∈ 𝑆 in parallel do
3: init Δ𝑥𝑖 randomly
4: for 𝑒 = 1 to 𝐸3 do
5: for (𝑥,𝑦) ∈ D𝑖 do
6: 𝑟1 ← 𝑤

𝑝𝑒𝑛𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒
𝑡 (𝐴(𝑥,𝑀,Δ𝑥𝑖 ))

7: 𝑟2 ← 𝑤
𝑝𝑒𝑛𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒
𝑡 (𝑥)

8: Δ𝑥𝑖 ← Δ𝑥𝑖 − 𝜂3∇Δ𝑥𝑖
𝑟1 ·𝑟2
∥𝑟1 ∥ ∥𝑟2 ∥

9: end for
10: end for
11: end for
12: return Δ𝑥

We present the detailed workflow of four key algorithms in Fed-
BAP, namely MaskGen, PatternGen, BAPGen, and AdaptiveScaling.

Algorithm 4 Benign Adversarial Perturbation Generation
BAPGen:

Input: Scaling factor 𝑐𝑡 , local model𝑤 ′, client 𝑖 , trigger mask𝑀 ,
perturbation trigger Δ𝑥𝑖 .

Parameter: Benign adversarial perturbation epochs 𝐸4,
learning rate 𝜂4.

Output: Benign adversarial perturbation loss value 𝑙𝑜𝑠𝑠𝑖𝑡 , local
model𝑤 ′.
1: for 𝑒 = 1 to 𝐸4 do
2: for (𝑥,𝑦) ∈ D𝑖 do
3: 𝑙𝑜𝑠𝑠 ← 𝑐𝑡 · ℓ (𝑤 ′ (𝐴(𝑥,𝑀,Δ𝑥𝑖 ), 𝑦)
4: 𝑤 ′ ← 𝑤 ′ − 𝜂4∇𝑤′𝑙𝑜𝑠𝑠
5: end for
6: end for
7: 𝑙𝑜𝑠𝑠𝑖𝑡 ← the average value of 𝑙𝑜𝑠𝑠 over 𝐸4 epochs on D𝑖

8: return 𝑙𝑜𝑠𝑠𝑖𝑡 ,𝑤
′

Algorithm 5 Adaptive Scaling
AdaptiveScaling:

Input: Benign adversarial perturbation loss value 𝑙𝑜𝑠𝑠𝑡 , scaling
factor 𝑐𝑡 , round 𝑡 .

Parameter: Scaling step size 𝛿 , start round 𝑡𝑠 , window size 𝑘 .
Output: Updated scaling factor 𝑐𝑡+1.

1: compute 𝛼𝑡 ←
{
1, if 𝑡 = 𝑡𝑠
loss𝑡
loss𝑡−1 , if 𝑡 > 𝑡𝑠

2: compute 𝛽 ←


1, if 𝑡 − 𝑡𝑠 = 0∑𝑡−1

𝑗=𝑡𝑠 𝛼 𝑗

𝑡−𝑡𝑠 , if 0 < 𝑡 − 𝑡𝑠 < 𝑘∑𝑡−1
𝑗=𝑡−𝑘 𝛼 𝑗

𝑘
, if 𝑡 − 𝑡𝑠 ≥ 𝑘

3: compute 𝑐𝑡+1 ←

𝑐𝑡 + 𝛿𝛽√

𝛼𝑡
, if 𝛼𝑡 ≥ 1

𝑐𝑡 + 𝛿𝛽

𝛼2
𝑡

, if 𝛼𝑡 < 1
4: return 𝑐𝑡+1

These algorithms constitute the core of our defense mechanism and
are essential for enhancing the robustness and generalization of
the global model. Their pseudocode is presented in Algorithms 2–5
to facilitate reproducibility and a better understanding of our ap-
proach.

B DETAILS OF EXPERIMENT SETUP
All experiments are conducted using the PyTorch framework on
an NVIDIA RTX 3080 Ti GPU. The implementations of backdoor
attacks, including BadNets [8] and LP [43], as well as defenses such
as Krum [2], MultiKrum, FLTrust [3], RLR [24], FLAME [23], and
FLIP [37], were directly used from implementations by LP [43].
The A3FL [36] attack is re-implemented for fair comparison, with
reference to the original code. The detailed experimental hyperpa-
rameter settings are shown in Tables 3 and 4.
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Table 3: Hyper-parameters settings in FL.

Experimental parameters Parameter settings

Number of clients 100
Select clients proportion 0.1

Malicious clients proportion 0.1
Malicious data proportion 0.5

Trigger size 5 × 5
Global training rounds 200

Local epochs 2
Learning rate 0.01
Batch size 64

Table 4: Hyper-parameters settings in FedBAP.

Experimental parameters Parameter settings

𝐸1 Local epochs 2
𝜂1 Learning rate 0.01
𝑡𝑠 Start round 100
𝐸2 Local epochs for MaskGen 100
𝜂2 Learning rate for MaskGen 0.1

𝑎𝑐𝑐𝑇𝐻 Backdoor accuracy threshold 0.9
𝜆 Weight for backdoor distance 0.01
𝐸3 Local Epochs for PatternGen 100
𝜂3 Learning rate for PatternGen 10
𝐸4 Local epochs for BAPGen 10
𝜂4 Learning rate for BAPGen 0.01
𝛿 Scaling step size 1
𝑘 Window size 5

C BASELINE ATTACKS
• BadNets [8] is one of the earliest and most influential back-
door attack methods. It demonstrates that deep neural net-
works trained in an outsourced or untrusted environment
can be embedded with malicious behavior. A BadNet main-
tains high accuracy on clean data but misclassifies specific
attacker-chosen inputs containing a trigger. The attack is
stealthy and persistent—even retraining the model may not
completely remove the backdoor. This foundational work
highlights the vulnerability of DNNs to covert manipulation
during training.
• LP [43] is a novel backdoor attack strategy by identifying
backdoor-critical (BC) layers—a small set of layers primar-
ily responsible for model vulnerability. By targeting only
these layers, LP achieves comparable attack effectiveness to
full-model attacks while significantly improving stealthiness
against existing defenses.
• A3FL [36] is an adaptive backdoor attack that dynamically
adjusts the trigger to align with the global model training
dynamics in FL. Unlike traditional static triggers, A3FL opti-
mizes the trigger to survive scenarios where the global model
actively tries to unlearn it. It remains effective even under
limited attack budgets and demonstrates high attack success
rates against a broad range of state-of-the-art defenses.

D BASELINE DEFENSES
• FedAvg [20] is one of the most popular algorithms in FL. It
is designed to address the challenges of training machine
learning models in a decentralized manner, where data is
distributed across multiple devices and cannot be shared due
to privacy concerns. The core idea of FedAvg is to perform
local model updates on each participating device and then
aggregate these updates to form the global model. Specifi-
cally, each client computes model updates by training locally
on its own data, and after a few local updates, the models are
averaged on the central server. This process reduces the need
for sharing raw data, as only model updates are exchanged.
• Krum [2] is a Byzantine-resilient aggregation algorithm
designed to safeguard distributed learning, particularly in
the context of Stochastic Gradient Descent. In a distributed
system with 𝑛 workers, Krum can tolerate up to 𝑓 Byzantine
workers. The algorithm works by selecting the model update
that is closest to the majority of other updates, effectively
identifying and excluding those that deviate significantly,
which are assumed to be malicious. This approach ensures
that even with the presence of faulty or adversarial updates,
the global model can still converge correctly.
• MultiKrum is an extension of the Krum algorithm designed
to provide greater robustness in distributed learning systems,
particularly against Byzantine faults.While Krum aggregates
model updates by selecting the one closest to the majority,
MultiKrum improves upon this by considering multiple can-
didates rather than just one. Specifically, MultiKrum selects
the 𝑘 closest updates, where 𝑘 is a predetermined number
based on the level of fault tolerance required. By doing so,
it ensures that even if more than one Byzantine worker is
present, the global model can still be updated reliably. This
multi-candidate approach increases resilience, offering bet-
ter protection against adversarial behavior compared to the
single-update selection in Krum.
• FLTrust [3] is a Byzantine-robust FL method that bootstraps
trust from the server side by leveraging a small, clean root
dataset. Unlike other defenses that solely rely on statisti-
cal filtering of client updates, FLTrust maintains a server
model trained on trusted data and uses it to evaluate the
alignment of client updates. It assigns trust scores based on
the directional similarity between client updates and the
server model update, normalizes all updates to limit their
impact, and then performs trust-weighted aggregation. This
approach significantly improves robustness against strong
adaptive attacks, even when a large fraction of clients are
malicious.
• RLR [24] is a defense mechanism designed to mitigate back-
door attacks in FL. Instead of filtering or removing suspicious
client updates, RLR takes a different approach by dynamically
adjusting the server-side learning rate for each dimension of
the model update. This adjustment is based on the degree of
agreement among clients on the sign of the update in each
dimension. The core intuition is that dimensions with high
disagreement are more likely to be manipulated by malicious
clients, and thus should be updated more conservatively. By
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Table 5: Performance of different defenses on IID datasets.

ResNet-18 (CIFAR-10) VGG-19 (CIFAR-10) ResNet-18 (CIFAR-100)

BadNets LP A3FL BadNets LP A3FL BadNets LP A3FL

BBSR 99.71% 95.64% 100.00% 91.87% 95.43% 100.00% 99.60% 90.76% 100.00%
FedAvg ABSR 99.11% 95.54% 100.00% 83.86% 94.03% 100.00% 98.20% 88.95% 100.00%

ACC 87.34% 74.42% 87.41% 82.34% 75.69% 82.33% 60.17% 43.08% 60.04%

BBSR 13.36% 98.83% 13.40% 10.20% 99.57% 7.94% 3.10% 96.17% 1.69%
Krum ABSR 4.94% 50.86% 5.71% 4.37% 27.46% 3.20% 0.65% 89.96% 0.63%

ACC 76.92% 68.77% 77.21% 70.36% 65.46% 69.62% 37.53% 29.43% 34.56%

BBSR 8.44% 97.69% 10.91% 6.14% 94.69% 5.75% 1.23% 94.28% 2.49%
MultiKrum ABSR 3.51% 97.07% 4.87% 3.47% 55.86% 2.73% 0.41% 91.07% 0.81%

ACC 84.88% 73.21% 84.02% 79.13% 72.97% 79.10% 52.77% 38.25% 51.83%

BBSR 78.27% 99.94% 100.00% 9.81% 96.71% 100.00% 91.98% 97.92% 100.00%
FLTrust ABSR 64.73% 94.37% 100.00% 7.82% 93.58% 100.00% 85.73% 86.93% 100.00%

ACC 81.61% 73.51% 82.82% 70.36% 71.81% 71.67% 50.21% 38.75% 49.54%

BBSR 87.57% 34.99% 100.00% 51.16% 91.36% 100.00% 89.74% 26.98% 100.00%
RLR ABSR 71.63% 13.96% 100.00% 36.46% 87.80% 100.00% 74.25% 12.83% 100.00%

ACC 82.56% 69.98% 82.04% 68.65% 68.66% 69.77% 48.50% 36.91% 47.20%

BBSR 6.67% 93.51% 9.38% 7.23% 98.43% 7.50% 1.07% 87.92% 1.74%
FLAME ABSR 3.47% 89.59% 3.91% 4.02% 90.12% 3.40% 0.53% 81.16% 0.92%

ACC 84.12% 74.35% 84.49% 78.65% 74.73% 77.93% 50.68% 40.80% 51.13%

BBSR 94.80% 14.34% 100.00% 7.12% 6.27% 100.00% 93.81% 4.01% 100.00%
FLIP ABSR 10.33% 7.25% 100.00% 2.82% 3.48% 100.00% 5.27% 1.80% 100.00%

ACC 86.72% 74.93% 87.89% 81.02% 75.64% 82.24% 59.22% 43.27% 59.14%

BBSR 4.59% 4.59% 4.83% 2.51% 5.03% 3.23% 0.95% 0.97% 2.60%
FedBAP (Ours) ABSR 2.16% 2.75% 2.21% 1.84% 3.05% 2.26% 0.55% 0.55% 1.79%

ACC 90.55% 80.81% 86.58% 87.73% 81.07% 88.24% 63.61% 46.51% 64.08%

Table 6: Performance of different defenses on Fashion-MNIST.

BadNets A3FL CerP

BBSR ABSR ACC BBSR ABSR ACC BBSR ABSR ACC

FedAvg 99.98% 99.93% 92.46% 99.99% 99.97% 91.90% 100.00% 100.00% 92.38%
Krum 99.63% 22.47% 79.59% 99.76% 39.65% 77.51% 74.33% 7.88% 75.75%
MultiKrum 100.00% 99.73% 91.14% 99.97% 99.90% 91.57% 100.00% 99.99% 91.82%
FLTrust 17.38% 13.41% 89.66% 98.53% 81.43% 89.93% 96.45% 79.85% 89.83%
RLR 100.00% 86.66% 90.94% 99.99% 86.66% 91.05% 100.00% 80.00% 91.24%
FLAME 99.48% 95.99% 91.19% 99.98% 99.95% 91.12% 100.00% 100.00% 91.35%
FLIP 11.16% 1.19% 91.92% 94.42% 15.36% 92.02% 100.00% 100.00% 92.21%
RoseAgg 99.68% 73.34% 91.18% 100.00% 99.71% 91.12% 100.00% 99.78% 92.04%
Snowball 99.97% 99.88% 91.84% 100.00% 99.98% 91.57% 100.00% 99.98% 91.67%
BackdoorIndicator 99.93% 50.42% 88.32% 99.98% 99.93% 88.88% 100.00% 99.41% 87.86%
FedBAP (Ours) 1.77% 0.42% 90.79% 0.65% 0.21% 90.83% 0.43% 0.14% 90.15%

selectively shrinking the learning rate in these contentious
dimensions, RLR effectively suppresses the influence of poi-
soned updates while still allowing benign information to
be aggregated. RLR does not require knowledge of which

clients are malicious, and can be seamlessly integrated into
standard FL protocols with minimal overhead.
• FLAME [23] is a defense framework against backdoor at-
tacks in FL that aims to eliminate malicious behavior while
preserving model utility. Unlike filtering-based methods or
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Figure 8: ResNet-18 trained with different defenses on the non-IID CIFAR10 dataset against the LP attack.
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Figure 9: ResNet-18 trained with different defenses on the non-IID CIFAR10 dataset against the A3FL attack.

differential privacy approaches that may suffer from limited
threat coverage or significant accuracy degradation, FLAME
estimates the minimal amount of noise required to remove
backdoors. It employs model clustering and weight clipping
to reduce the necessary noise injection, thereby maintaining
benign performance.
• FLIP [37] is a novel defense strategy based on trigger re-
verse engineering to mitigate backdoor attacks in FL. Unlike
previous robust aggregation or certified robustness methods,
FLIP focuses on hardening benign clients and analyzes the

theoretical relationship between cross-entropy loss, attack
success rate, and clean accuracy. It guarantees reduced attack
success without harming benign performance.

E ADDITIONAL EXPERIMENTAL RESULT
Table 5 presents the performance of different defenses against three
backdoor attacks across various model architectures and datasets
in IID settings. The results in Table 5 clearly illustrate the per-
formance of different defense strategies against backdoor attacks
on IID datasets. The result demonstrate that FedBAP consistently
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shows superior performance in both resisting backdoor attacks and
maintaining accuracy across different settings.

Figure 8, 9 illustrates the BSR and ACC curves of different de-
fenses against the LP and A3FL attacks on ResNet-18 with CIFAR-10.
The curves in Figures 8 and 9 demonstrate that FedBAP effectively
keeps the BSR within a low range while maintaining stability, with-
out any sudden spikes. This indicates that FedBAP can consistently
control the impact of attacks and avoid instability in the defense
performance. Such stability is crucial for ensuring the reliability
and long-term effectiveness of the defense system.

To further validate the effectiveness and generalizability of Fed-
BAP, we extend our experiments to the Fashion-MNIST dataset. We
additionally incorporate the CerP [18] attack and compare FedBAP
with recently proposed defenses, including RoseAgg [35], Snow-
ball [25], and BackdoorIndicator [16]. Specifically, we adopt ResNet-
18 as the global model architecture, set the malicious client pro-
portion to 30%, the total number of global communication rounds
to 100, and the defense start round in FedBAP to 85. As shown in
Table 6, FedBAP demonstrates strong and consistent performance
across all attack types.
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