arXiv:2507.21325v1 [quant-ph] 28 Jul 2025

On Post-Quantum Cryptography Authentication for Quantum
Key Distribution

Juan Antonio Vieira Giestinhas'*, Timothy Spiller!

! University of York, YO10 5DD, York, United Kingdom

Abstract

The traditional way for a Quantum Key Distribution (QKD) user to join a quan-
tum network is by authenticating themselves using pre-shared key material. While
this approach is sufficient for small-scale networks, it becomes impractical as the net-
work grows, due to the total quadratic increase in the number of pre-shared keys re-
quired. To address this scalability issue, Public Key Infrastructure (PKI) combined with
Post-Quantum Cryptography (PQC) offers a more scalable solution, allowing users to
authenticate the QKD traffic remotely to obtain information-theoretical secure (ITS)
keys under the presented assumptions. Unlike traditional PKI, which relies on classical
cryptographic algorithms such as RSA, the approach presented in this paper leverages
PQC algorithms that are believed to be resistant to quantum attacks. Similarly to the
SIGMA or TLS protocols, authentication, confidentiality, and integrity are achievable
against bounded adversaries to ensure secure and scalable quantum networks.

1 Introduction

The development of quantum computers is becoming an increasing threat to the most
commonly used asymmetric algorithms, such as Rivest-Shamir-Adleman (RSA) or Elliptic-
Curve Cryptography (ECC) [1]. With the advent of Shor’s algorithm [2], the feasibility of
retrospective decryption (harvest now, decrypt later) could become possible sooner than
expected, posing risks to sensitive data.

On one hand, Quantum Cryptography, notably Quantum Key Distribution (QKD) [3-5],
can be used to distribute secret keys in an Information-Theoretical Secure (ITS) manner,
with the condition that an authenticated channel is available. The classical channel for QKD
is typically authenticated with pre-shared keys and ITS Message Authentication Codes
(MAC) [6, 7]. However, this approach is not convenient as it forces honest parties to
physically meet each other.

On the other hand, Post-Quantum Cryptography (PQC) is another alternative to asym-
metric cryptography that is believed to be secure against quantum and classical algorithms.
By combining both technologies, ITS keys given by QKD are obtainable through a remote
classical channel authenticated by PQC. Once the first QKD iteration authenticated by
PQC is effected, the shared keys thus obtained may be used to perform ITS authentication
in further QKD iterations.

*Correspondence: qph504Q@york.ac.uk

https://arxiv.org/abs/2507.21325v1

This paper focuses on non-ITS authentication for QKD, specifically relying on PQC and
Public Key Infrastructure (PKI), notably with certificates given by a Certificate Authority
(CA), where parties do not have pre-shared key material to authenticate the classical chan-
nel, which is required to distill an authenticated shared secret key from a QKD protocol. A
general case of authentication for QKD is presented. Two examples of PQC protocols are
presented, a signature-based authentication protocol, and an alternative scheme using Key
Encapsulation Mechanisms (KEM) for authentication without signatures. Furthermore, a
shared-based key authentication example utilizing non-ITS Message Authentication codes
(MAC) is also discussed. A bounded adversary is defined and considered, alongside a con-
ditioned unbounded adversary, to check the I'TS security of the final QKD keys.

The structure and strategy of this paper are as follows. Section 2 summarizes current work
to date, along with further motivation on the need for and approaches to authentication
for QKD. The strategy adopted in this paper is to present formal technical descriptions
of various non-ITS authentication protocols (two that leverage PQC in section 5, and use
of pre-shared key in section 6). This strategy must be built upon formal definitions of
numerous entities, procedures, properties and quantities, which are provided in section
3. As the protocols leverage PQC, the required PQC is discussed in section 4. Sections
5 and 6 then present the non-ITS authentication protocols, as formal, time-ordered lists
of operations, each accompanied by commentary and discussion. This formal approach
provides numerous important consequences.

Examples, that don’t heavily influence this work, are that it is straightforward to evaluate
the time taken (in information round trip units) and computational effort required for one
round of each protocol. Furthermore, it is straightforward to convert the protocol to a flow
diagram, identifying the points where an honest party would abort, having determined they
are interacting with a dishonest impostor. Such a flow diagram also enables careful develop-
ment of pseudo-code and thus actual computer code, to facilitate a real implementation of
the protocol. Such code-development should be undertaken formally and carefully, to avoid
introducing information-leakage vulnerabilities into the actual implementation of what is a
fundamentally secure protocol.

For this work, however, the really important consequence from a formal presentation of
the authentication protocols is security analysis. Such security analysis can be undertaken
through investigation of a game, or experiment, between a challenger and two precisely
specified adversaries. The outcome of the game informs on the security of the protocol.
This scenario requires formal definition and establishment of a key exchange framework,
which is presented in section 7. Utilizing this framework, formal security analysis of the
protocols is then presented in section 8.

Discussion of the security proof results along with a further specific example is given in
section 9, followed by conclusions delivered in section 10.

2 Motivation, related literature and contribution

PQC signature-based, KEM-based, or even combined protocols have already been imple-
mented to specifically authenticate a classical channel to effectively perform QKD. Bench-
mark parameters with standardized or variants of the National Institute of Standards and
Technology (NIST) PQC algorithms [8], along with implemented or simulated QKD links,
have been estimated in [9-11]. The basic idea underpinning these papers, and for this work,
is to perform unauthenticated QKD and authenticate the post-processing information at
some point after distilling QKD key material using PQC algorithms. An authenticated key

exchange protocol with a security proof based on the “short-term” security of PQC and
“long-term” security of QKD is also found in [12] and is strongly related to the implemen-
tation [10].

Care must be taken when authenticating keys with classical algorithms because imperson-
ation or misbinding attacks may occur, as stated in the SIGMA paper [13]. This is why the
PQC-based authentication protocols presented in this paper follow the SIGMA structure:
computation of an unauthenticated ephemeral key, authentication (signature in SIGMA),
and then binding of secrets with honest entities (MAC in SIGMA) using cryptographic
primitives. This approach not only helps to avoid person-in-the-middle and misbinding
attacks, but also provides the entity protection feature that SIGMA offers. By following
the SIGMA and TLS structures [14], non-ITS but secure authentication, confidentiality and
integrity for QKD is achieved. If QKD is achieved then ITS keys are obtainable.

A similar approach to combine PQC and QKD, proposed in the hybrid authenticated key
exchange (HAKE) protocol Muckle series [15-18], is to mix the different key material to
obtain a final authenticated hybrid key, where its security holds as long as one of the
cryptographic primitives, classical, PQC or QKD, remains secure. The goal of this work is
to discuss the approach where PQC is used to authenticate QKD, whilst also being able
to obtain traffic secrets, whereas in the Muckle series, the goal is to achieve redundancy
by applying different cryptographic primitives that present different strengths. However,
by including the public QKD post-processing information within some Muckle steps, QKD
may also be authenticated by following a protocol similar to the Muckle series. In fact,
the protocols to authenticate QKD within this work are strongly inspired from the Muckle
series and the KEMTLS protocol [19], in addition to the SIGMA and TLS protocols.

This work addresses the separate authentication requirement that QKD presents, particu-
larly in remote scenarios. While pre-sharing keys to authenticate is not always convenient,
PQC and PKI offers a scalable solution for establishing secure QKD networks remotely. The
idea is to apply the PQC approach only in the first QKD iteration, as subsequent iterations
can be authenticated with QKD key material obtained in prior iterations. However, the
presented PQC protocols can be reiterated for different QKD protocols, as derived QKD
keys and secret state parameters can be transferred from one protocol to another securely
while taking into account the failure probability (equivalently the security) of said param-
eters. Taking inspiration from the SIGMA protocol, the Muckle series and the KEMTLS
protocol, the schemes presented in this paper enable QKD protocols to securely distill a
secret key through a classical channel, authenticated due to the “short-term” security for
PQC algorithms assumption, defined in section 4. Additionally, confidentiality and integrity
over the classical traffic, including information of the entities, is provided. The general case
of mono-authentication for QKD is covered, with specific examples similar to those in re-
lated literature. The traffic protection feature is also discussed: this feature holds against
bounded adversaries, even if it is assumed that the PQC secret keys are revealed to the
public after the first QKD instantiation is finalized. The security of the presented protocols
is evaluated using the HAKE framework introduced and reused in the Muckle series [15-18].

3 Definitions/Preliminaries

This section provides the required definitions that are used in the security proofs of this
work. The bounded and conditioned unbounded adversaries considered, Quantum Key
Distribution, dual pseudorandom function, a hash function, signature, key encapsulation
mechanism, and message authentication code are all defined. Some of these definitions

are accompanied by game-based security models, named experiments, which highlight the
security feature of interest for these primitives.

Definition 1. (Hybrid Polynomial-Time Adversary). The bounded adversary con-
sidered within this work is both Probabilistic Polynomial-Time (PPT) and Quantum Polynomial-
Time (QPT), making it Hybrid Polynomial-Time (HPT).

A PPT and QPT adversary represents an adversary with both classical and quantum
bounded computational resources. Given an input of size n, a constant Cpp for the classi-
cal computations, and a constant Cqpt for the quantum computations, the time complexity
of this adversary is O(nPPT) for classical computations and O(n“ePT) for quantum com-
putations.

Since the considered adversary is both PPT and QPT, the adversary is able to run in parallel
both QPT and PPT algorithms to solve a specific problem, if possible. If a specific problem
can be solved in polynomial time by relying only on PPT or QPT algorithms independently,
the time complexity of the adversary is the minimum between O(n“PPT) and O(ncerT).

Furthermore, the adversary is able to combine PPT algorithms with QPT algorithms to
perform HPT algorithms. In this case, given an input of size n, a constant C'ry,,. for the per-
tinent classical computations, a constant CTQPT for the pertinent quantum computations,
and a constant Cparallel for the classical and quantum algorithms that can run in a parallel
way, the total time complexity of the adversary is the summation of the classical algorithm
time complexity, O(n“7ppr), with the quantum algorithm time complexity, O(nCTQPT), mi-
nus the time complexity where classical and quantum algorithms can run at the same time,
O(ncpafa“el). The idea behind the HPT algorithm is to solve a problem in polynomial time
more efficiently, in terms of time complexity, than if an adversary is limited to only classical
or quantum algorithms with their corresponding, and independent, limited resources. That
can be expressed as:

O(uCrerr) + O arr) — O(uCrwe) < min(O@EPrT), 0(ncar))

Note that the HPT adversary can solve problems in polynomial time that have greater than
polynomial time complexity on the classical side but not in the quantum side, by running
QPT algorithms (and vice versa with PPT algorithms). A practical example could be the
factorization of a composite integer to break RSA using Shor’s algorithm [2].

The HPT adversary is allowed to interact with the protocols presented in this paper at any
time. Once the protocols are not in an active state (either because they successfully com-
pleted, or they aborted), the HPT adversary is allowed to ask an unbounded adversary to
obtain the QKD keys with the condition that they were not I'TS. This unbounded adversary
is also limited (termed a conditioned unbounded adversary from now on), since the goal of
having such a threat is to prove that the QKD keys are I'TS once authentication is finalized.
In other words, the conditioned unbounded adversary is hypothetical and is used as a tool
in the security analysis to prove the I'TS property of the final QKD keys.

Definition 2. (Conditioned Unbounded Adversary). An unbounded adversary is
useful when defining ITS security. Unbounded adversaries have infinite resources, infinite
computational power, and have access to ideal quantum and classical technologies, including
ideal quantum memories.

Since the goal of this work is to prove that the protocols presented are secure against
the bounded HPT adversary and to prove that the final authenticated keys are I'TS, the
considered conditioned unbounded adversary is allowed to have total control of the quantum
channel used to perform unauthenticated QKD (Definition 5), is able to read the public
traffic used to distill the unauthenticated QKD keys but is not allowed to interact with
anything else, i.e. with the authentication steps. Note that this conditioned unbounded
adversary could be allowed to actively modify the classical traffic used to distill the QKD
keys from the unauthenticated QKD step; however, that would be detected by the honest
parties during the authentication step, making that degree of freedom ineffective.

The HPT adversary can interact with the conditioned unbounded adversary for two pur-
poses. The first one is to obtain ephemeral QKD keys in the case the HPT adversary is not
the one performing QKD as an honest party. This can be requested at any time, starting
from the moment that the unauthenticated QKD has ended. The second purpose is to check
the ITS security of QKD keys that have been successfully distilled from finalized protocols
or iterations. Once the protocols finish running, the unbounded adversary is allowed to
interact with the HPT adversary in a limited way. If the conditioned unbounded adversary
has access to the distilled QKD keys, compromised during the unauthenticated QKD steps,
then these are revealed to the HPT adversary, making the QKD keys not ITS. Otherwise,
if the unbounded adversary is unable to compromise the ITS keys with the allowed inter-
actions, then the HPT adversary receives nothing and thus learns that the QKD keys are
ITS.

Furthermore, the HPT adversary is allowed to send the gathered traffic from the authen-
tication steps to the unbounded adversary. Note that since the primitives that provide
authentication, confidentiality and integrity are not ITS, the unbounded adversary can
trivially break those, given the classical traffic. That is why the unbounded adversary is
not allowed to transmit the compromised secrets to the HPT adversary but only the non-1TS
distilled QKD keys.

Note that if authentication fails against the HPT adversary, the distilled QKD keys are not
secure, thus not ITS.

Definition 3. (Quantum Key Distribution). A Quantum Key Distribution (QKD)
protocol uses the properties of quantum mechanics to generate a shared secret key be-
tween honest parties [3-5]. Properties of quantum mechanics exploited to achieve secure
quantum communication include the no-cloning theorem [20], the Heisenberg uncertainty
principle [21], and quantum entanglement, depending on the QKD protocol [22]. QKD is
divided into two parts: the preparation, sending, and measurement of qubits (quantum
side) and a post-processing part for information reconciliation (classical side), typically di-
vided into sifting, parameter estimation, error correction, and privacy amplification. The
quantum side information is transmitted through an insecure quantum channel whereas the
classical side information is transmitted through an authenticated classical channel. The
quantum side involves QPT algorithms, while the classical side involves PPT algorithms.
Since both sides are polynomial-time, the overall QKD protocol can be seen as a HPT
algorithm, QKD = {KeyGen}, with an associated key set K = {0,1}* of arbitrary length.
The KeyGen algorithm is described as:

- KeyGen(k, *) = {(Kqkp, mqkp), L}: The algorithm outputs the shared authen-
ticated key Kqgp of arbitrary size * > 0 between honest parties, given a security
parameter . For practical purposes, the corresponding authenticated public infor-
mation mqgp used to distill the secret key Kqip is also an output. If QKD is aborted,

then | is returned.

The abortion condition strongly depends on the specific QKD protocol. For discrete-variable
QKD (DV-QKD), this condition is often determined by the quantum bit error rate (QBER),
which is obtained after the honest parties compare some of the assumed correlated sent
and measured bits using the authenticated classical channel [3, 5]. For continuous-variable
QKD (CV-QKD), this condition often depends on the signal-to-noise ratio [4]. The abortion
condition also depends on whether the honest parties detect a tampering by an adversary
within the authenticated classical channel. If an abortion occurs, the secret parameters and
any revealed information from the public channel are discarded and never used again. Note
that in practice, QKD may run continuously without ever aborting. However, when the
keys are not secure, the final size of Kgxp would be zero.

Although different QKD protocols employ various methods for quantum state preparation,
measurement, and post-processing, they all produce an authenticated shared secret key and
the corresponding authenticated public information: Kqkp and mqkp are QKD protocol-
agnostic.

A QKD iteration starts with honest parties exchanging and measuring quantum signals
according to some agreed protocol and ends once privacy amplification is applied to their
reconciled key, regardless of how many quantum signals, base sifting, parameter estimation,
or other post-processing step but privacy amplification, are done in between.

Definition 4. (Quantum Key Distribution Security). The underlying problem be-
hind the generation of the QKD keys relies on the bounds given by the laws of physics
rather than the hardness of a mathematical problem, which makes the shared QKD secrets
obtained from a QKD protocol between parties ITS from an ideal point of view. This means
that the security of QKD does not depend on the computational power of the adversaries,
implying that it is secure even against unbounded adversaries.

Ideally, an unbounded adversary A has no advantage in distinguishing between secrets
distilled from a QKD protocol and random keys of the same length. The distinguishability
game is defined with the experiment Expgf(']ghffry(*), illustrated in Experiment 1, where
the unbounded adversary A is able to perform a query to the QKD oracle and execute any
operation within the QKD oracle’s quantum and authenticated classical channels, while the

QKD oracle generates the QKD key.
Expgi'gffry (%):
b & 0,1
if QKD does not abort:
(Ko, mqkp) < KeyGen(x), K; &k
else:
return L < KeyGen(x)
b/ < A(Kb, mQKD)
if o/ = b return 1, else return 0

Experiment 1: Distinguishability security experiment for QKD.

Note that if the unbounded adversary tampers too much within the quantum channel or
tampers within the authenticated classical channel, the QKD oracle will detect this and
output the abort symbol. Continually tampering too much and making the QKD oracle
to abort is equivalent to a denial of service (DoS) attack. Since the goal is to describe the
security of QKD authenticated with PQC, DoS is not treated in this work.

In the ideal QKD scenario with ideal devices, the advantage of an unbounded adversary A
to win the Experiment 1 is zero:

ind-theor ind-theor 1
Adviipr ™ (%) = [PriBxpaip () = 1) — 5| =0

However, the imperfections in implemented devices, the practical insecurity of the quantum
channel and the information leakage and/or limitations from the usual implemented post-
processing steps of QKD introduce a negligible exploitable advantage eqrp(k) [23, 24],
which varies according to the considered specific QKD protocol, post-processing methods
and the desired security level k. In the same way, the authentication of the classical channel
introduces a negligible exploitable advantage €,,t,. The authentication can be ITS, giving

a Egtsh security [25], or non-ITS but conditionally secure, giving a Eapli%}(lj security.

For the case where an unbounded adversary is present when I'TS authentication is per-
formed, QKD is secure if the unbounded adversary has a negligible advantage to win the
experiment Expgfd{D, (K, *), defined in the same way as the experiment 1, a result proved
in [26]:

in in 1
AdVQ%D,A("@ *) = PT[EXPQ%D,A(“, *) = 1] — B < eQip(K) + ehhin (K)

Note that the unbounded adversary wins all the times, i.e. Advi(S%D’ Ak, %) = %, if non-1TS
authentication is performed, by realizing impersonation attacks.

In the same way, QKD is secure if all bounded HPT adversaries have a negligible advantage
to win the experiment Exp&%u (K, %), defined in the same way as the experiment 1:

| | 1
Advgkp a(k, %) = |Pr[Expgip a(k, *) = 1] — 5| = eQr (k) + €auen (k)

Where eauen (1) € {113 (k), 651&)}? (k)}, and the non-ITS, but post-quantum, authentication

holds as discussed in section 4.

For the rest of this paper, egxp and e,4¢n depend implicitly on an arbitrary security pa-
rameter £, i.e. eQrp = eQr (k) and Eauth = Eauth (k).

To give a physical interpretation to the epsilons, the probability that the practical ITS QKD
keys have not been compromised by any adversary is upper bounded by (eQxp + €auth), OF
in other words, the probability they are not secure as intended is bounded by (eqkp +€auth)-
A successful QKD protocol and the derived keys are typically assumed to have a security
proportional to (€QKD + Eauth)-Secure.

Definition 5. (Unauthenticated Quantum Key Distribution). Unauthenticated
QKD is defined as the same as QKD from Definition 3 but the obtained shared key is
distilled between two, not necessarily honest, parties through an insecure, unauthenticated,
classical channel. This implies that the unauthenticated QKD key obtained from KeyGen,
Kqxp, is not secure unless the corresponding public information mqgp is authenticated in
further steps by the honest parties, if they are indeed both honest.

A conditioned unbounded adversary A is allowed to interact with the unauthenticated QKD,
without targeting the authentication property of the classical channel (Definition 2). Let

Expﬁfa:fﬁoé&lj (K, %) be the same Experiment 1 but this time the unbounded adversary is

not allowed to target the authentication of the classical channel from the QKD oracle. Since
authentication is not targeted, the QKD oracle can be replaced by an unauthenticated QKD
oracle without changing the advantage of the adversary to win the distinguishability game.
The advantage of the conditioned unbounded adversary A to win EXPLT;?I?QKD, Ak, %) is

the already defined egx p(k).

Definition 6. (From unauthenticated QKD to authenticated QKD). Let two par-
ties perform unauthenticated, and eqp-secure, QKD to obtain an insecure shared key
Kqkp and the corresponding public information mqip used to distill Kqip. If the tran-
script mqgp is authenticated by honest parties in further steps using an e,¢n-secure compos-
able authentication scheme, the unauthenticated QKD becomes equivalent to QKD, defined
as in Definition 3, making the shared key, Kqkp, ITS and (eqxp + €autn)-secure [27].

Assuming that the distilled and authenticated QKD key Kqkp has length L, Kqip can
be partitioned into n smaller keys of arbitrary size I; with L > " | l;, such as Kqkp =
5SQKD, || - - - |[55QKD, |[sSrest Where || denotes concatenation (and ss is short for shared se-
cret), the length [ssqkp,| = l; for i = 1,...,n, and |ss;eq| = L — Y7 l;. Note that if
any part of Kqkp, such as ssqkp,, is used for cryptographic purposes (e.g., renewing au-
thentication material), that portion should not be reused for other cryptographic tasks, to
avoid accidental or unexpected leakage of the secret. The remaining unused key material
remains ITS and (eqip + €auth)-secure. The privacy amplification step, executed by all
QKD protocols at the end, produces keys that are both uniformly random and independent
with probability upper-bounded by eqkp, typically following the leftover hash lemma [28].
Privacy amplification reduces any correlation between the key bits, as well as between the
key bits and the adversary’s potential information, to a negligible level, which is quantified
inside egrp. The combination of privacy amplification with an epsilon composable au-
thentication scheme makes the final keys security upper-bounded by (egx p + €auth), Where
eqrp(k) includes the probability of failure given by the privacy amplification step and the
security parameter . For example, let Kqkp = $SQKD||SSrest, Where ssqkp is used for au-
thentication with HPT secure primitives. Once the authentication is securely implemented,
since the primitives used are HPT, an unbounded adversary could compromise ssqkp,
making the key non-ITS once used. However, the remaining part, $spest, remains I'TS and
(eQK D + €auth)-secure, as the individual bits from the QKD protocols are indistinguishable
from truly random bits with at least 1 — egQxp — €autn probability.

There could be instances where a single QKD iteration does not produce enough key material
to run the HPT primitives within the protocols presented in sections 5 and 6. The concate-
nation of different QKD keys obtained through different QKD iterations or QKD protocols
is possible. However, this implies that the security of the new concatenated key has also a
new upper bound. Let K be the concatenation of “m” QKD keys, K = Ki||Ks||...||Km.
By Definition 4, each QKD key “i”, ¢ € {0,1,...,m}, is g;-secure. This implies that the
concatenated key K is (1 —II7", (1 — ¢;))-secure, which is upper bounded by X" ;.

For simplicity, the epsilon security of any QKD step within the protocols presented in this
paper is assumed to upper-bounded by the same value egx p(x), dependent on an arbitrary
security parameter k.

Next, the definition for dual pseudorandom function, signature, message authentication
code, and key encapsulation mechanism and their corresponding securities are presented,
similarly to within the Muckle series [15-18].

Definition 7. (Dual Pseudorandom Function). The pseudorandom functions (PRF's)
used in this work are assumed to be dual PRFs. That is:

For a PPT pseudorandom function PRF: K x M — R there exists the dual PPT PRFdual
defined as PRF9"l: M x K — R where PRF(k, m) = PRF%!(m, k) for any bit string m
€ M and key k € K. For a given security parameter s, the key set R corresponds to the
random output set {0,1}". The sets M and K each separately depend on k.

The security of the PRFs and their dual counterpart are based on the distinguishing game.
For a HPT adversary A and security parameter k, the corresponding advantage functions
are defined as:

in in 1

Adviite o) = |PriEsofie A() = 11~ 3
ind ind 1
AdVPRqual’A(Fa) = PT[EXpPRFd“a17A(K) =1] - 3

where the experiments Expif}ﬁR (k) and EXpi;ngua]’ A(K)

that the HPT adversary A is able to perform a polynomial number of queries ¢ to the PRF
or PRF4"@! oracles.

are defined in Experiment 2, such

EXpiFI’lP%F*,A(“):

b & (0,1}

k&K

fori<+ 1toq:
m; (—./4(7“1,...,7“2;1) e M
if * = dual rg, + PRF(m;, k), else ro, +~ PRF(k, m;)
71, ﬁ R € {O, 1}'{

b A(T’bl, e ,T’bq)

if ¥ = b return 1, else return 0

Experiment 2: Distinguishability security experiment for PRF or PRFIu,

The pseudorandom functions PRF and PRFY"@ are PPT, QPT or HPT secure if for all re-
spective PPT, QPT or HPT adversaries A, the advantages Advgﬁp’ (k) and Advgﬁqual A(K)

are negligible in the security parameter x. That is, Adviﬁlﬁp’ (k) < neglprp (k) and Adv}?&qual’ A(K)

< neglPRqual(R), where negl(k) is a function that takes as input the security parameter

and defined as: there exists & > kg such that negl(kg) < -+~ for every positive polynomial

p(ko)
p.

Definition 8. (Hash function). The hash function H of this paper is assumed to be at
least weakly collision resistant. That is:

Given a known bit string m € M, the PPT hash function H: M — D, and the corresponding
digest H(m) € D, an HPT adversary has negligible advantage Advy a(x) < negly (k) of
finding m’ € M such that H(m) = H(m’), given a security parameter x.

Definition 9. (Signature - ¥). Signatures are composed by three PPT algorithms ¥ =
{KeyGen, Sign, Ver}, with an associated bit string set M, defined as:

- KeyGen(k) — (sk, pk): The algorithm takes as input a security parameter x and
outputs a secret key sk with the corresponding public key pk.

- Sign(sk, m) — o: The algorithm takes as input a secret key sk and a bit string m
€ M and outputs a signature tag o.

- Ver(pk, m, o) — {0,1}: The algorithm takes as input a public key pk, a bit string m
€ M and a signature tag o and outputs a bit € {0,1}.

Y is correct if for all (sk, pk) + KeyGen(x) and o < Sign(sk, m) given any security
parameter x € N and bit string m € M, then Ver(pk, m, o) = 1:

Pr [Ver(pk, m, Sign(sk,m)) = 1] = 1

Definition 10. (EUF-CMA security of X). For a HPT adversary A, the advantage
function for existential unforgeability under chosen message attacks (EUF-CMA) of ¥ is:

AdV%Ef"CMA(/ﬁ) = Pr [Expggf'CMA (k) = 1]

Where the experiment Exp%gf'CMA(/i) is defined in Experiment 3.

ExpEUFCMA(x)

(sk, pk) « KeyGen(x), Q + 0
fori«+ 1toq:
m; < .A(pk, 01,y .. 70'1‘—1) eM
o; < Sign(sk, m;), Q + QU {m;}
(m*, 0*) « A(pk,o1,...,04)
if Ver(pk, m*, 0*) =1 AND m* ¢ Q return 1, else return 0

Experiment 3: EUF-CMA security experiment for signature Y.

vThe signature scheme ¥ is PPT, QPT or HPT EUF-CMA secure if for all respective PPT,
QPT or HPT adversaries A4, the advantage Advggf'CMA(m) is negligible in the security
parameter k. As a formal inequality, Adv%fif'CMA(n) < negls; pur-cMma (k).

Definition 11. (Key Encapsulation Mechanism - KEM). Key Encapsulation Mech-
anisms (KEM) are composed by three PPT algorithms KEM = {KeyGen, Enc, Dec}, with
an associated key set K, defined as:

- KeyGen(rk) — (sk, pk): The algorithm takes as input a security parameter x and
outputs a secret key sk with the corresponding public key pk.

- Enc(pk) — (k, ¢): The algorithm takes as input a public key pk and outputs a key k
€ K and the corresponding encapsulation ciphertext c.

- Dec(sk, ¢) — {k, L}: The algorithm takes as input a secret key sk and a ciphertext
¢ and outputs the decapsulated k € I or L in case of failure.

KEM is correct if for all (sk, pk) < KenGen(x) and (k, c) < Enc(pk) given any security
parameter x € N, then k < Dec(sk, c):

Pr[Dec(sk, ¢) =k] =1

10

Definition 12. (IND-CPA and IND-CCA security of KEM). For a HPT adversary
A, the advantage functions for indistinguishability under chosen-ciphertext attacks (IND-
CCA) and for indistinguishability under chosen-plaintext attacks (IND-CPA) of KEM are:

1
AR) = |Pr [BoRBE 00) = 1] - 5

1
AR () = [Pr (BB) = 1] - 5

where the experiments Exp{yE]?\fjA(/{) and EXp%EDM?EA(Ii) are defined in Experiment 4.

EXP%E?\?EA (k):
(sk, pk) < KeyGen(k), Q < 0, b & {0,1}
fori<+ 1toq:
k; « A(pk,c1,...,ci—1) € K:={0,1}"
c¢; «+ Enc(pk, k;), @ «+ QU {c;}
ky, ki < A(cy,...,¢cq) €K
c* < Enc(pk, k)
if * = CCA:
fori<« 1toq":
¢k + A(pk,c1,...,cq, ¢ K, K)
k! < Dec(sk, c}), Q < QU {c}}
V' A(pk,ci, ... cq, ¢ Kk, k)
else:
v« A(pk,ci,...,cq,C%)
if ¥ =b AND c¢* ¢ Q return 1, else return 0

Experiment 4: IND-CPA and IND-CCA security experiments for KEM.

The KEM scheme is PPT, QPT or HPT IND-CPA and/or IND-CCA secure if for all respec-

tive PPT, QPT or HPT adversaries A, the advantages Adv{yE]?\fjA(/@) and /or AdV?EDM?EA(Ii)
are negligible in the security parameter x. As a formal inequality, Adv{yE?\fEA(n) <

neglkem,IND-cPA (k) and/or Adv{?ﬁfﬁ A(k) < neglkenm IND-CCA (k).

The KEM CPA security is not used for the rest of this paper and only the CCA security is
relevant. However, the experiment is presented because Definition 16 makes use of it.

Definition 13. (Message Authentication Codes - M ACs). MACs are composed by
three PPT algorithms MAC = {KeyGen, Auth, Ver}, with an associated key set K and bit
string set M, defined as:

- KeyGen(k) — sk: The algorithm takes as input a security parameter £ and outputs
a secret key sk € K :={0,1}".

- Auth(sk, m) — 7: The algorithm takes as input a secret key sk € KC and a bit string
m € M and outputs an authentication tag 7.

- Ver(sk, m, 7) — {0,1}: The algorithm takes as input a secret key sk € I, a bit string
m € M and an authentication tag 7 and outputs a bit € {0, 1}.

MAC is correct if for all (sk, pk) < KeyGen(x) and 7 <— Auth(sk, m) given any security
parameter x € N and bit string m € M, then Ver(sk, m 7) = 1:

11

Pr [Ver(sk, m, Auth(sk,m)) = 1] =1

Definition 14. (EUF-CMA security of MAC). For a HPT adversary A, the advan-
tage function for existential unforgeability under chosen message attacks (EUF-CMA) of
MAC is:

AdviaGa (k) = Pr [Expyiaca ™ (k) = 1]

Where the experiment Expﬁ%%&MA(/{) is defined in Experiment 5.

EUF-CMA
EXPMAC,A (K):

sk < KeyGen(k), Q «
fori<+ 1toq:
m; < ./4(’7’1,... ,7’2‘71) e M
7; < Auth(sk, m;), @ < QU {m;}
(m*, 7*) A(71,...,74)
if Ver(sk, m*, 7*) =1 AND m* ¢ Q return 1, else return 0

Experiment 5: EUF-CMA security experiment for MAC.

The MAC scheme is PPT, QPT or HPT EUF-CMA secure if for all respective PPT, QPT
or HPT adversaries A, the advantage Advﬁ%%&MA(ﬂ) is negligible in the security parameter

k. As a formal inequality, Adv]f,&%&MA(/@) < neglvac, EUF-cMA (K).

An ITS MAC is a MAC that is secure for all unbounded adversaries A: the advantage

Advﬁ%%&MA(ﬁ) is negligible in the security parameter k.

Definition 15. (Authenticated Encryption with Associated Data - AEAD). An
AEAD scheme is composed of three PPT algorithms AEAD = {KeyGen, Enc, Dec}, with
an associated key space K, message space M, associated data space AD, and ciphertext
space C, defined as follows:

- KeyGen(k) — k: The algorithm takes as input a security parameter x and outputs a
key k € KC chosen uniformly at random.

- Enc(k, A, m) — c: The encryption algorithm takes as input a key k € I, associated
data A € AD, and a message m € M, and outputs a ciphertext ¢ € C.

- Dec(k, A, ¢) — {m, L}: The decryption algorithm takes as input a key k € K,
associated data A € AD, and a ciphertext ¢ € C, and outputs the corresponding
message m € M if ¢ is valid, L otherwise.

The AEAD scheme is said to be correct if for all keys k output by KeyGen(k), for all m €
M and A € AD, it holds that:

Dec(k, A, Enc(k, A, m)) =m

Definition 16. (IND-CPA and INT-CTXT Security of AEAD). For any HPT
adversary A, the advantage functions for indistinguishability under chosen plaintext attacks
(IND-CPA) and for ciphertext integrity (INT-CTXT) of an AEAD scheme are defined as:

12

1
Advﬂ\gig%(n) = |Pr [Expﬂ\‘ﬁgfﬁ(n) = 1] ~3

AdvREAD.A (8) = Pr [BxpRiab 4 (k) = 1]

The experiment Expg\gggﬁf(m) is the same as Experiment 4 but there is no public key

involved. The Epr\IE&SB(T(/@) Experiment is defined in Experiment 6.

INT-CTXT
Expiiap 4 () :

k + KeyGen(k), Q « 0
for i < 1 to q:
(Ai7 ml) — A(Al,ml,cl, e A, my Ci—l)
C; — Enc(k, A, ml-), Q<+ QU {(AZ,CZ)}
(A*, C*) — A(Al,ml,cl, R ,Aq,mq,cq) e AD xC
m* < Dec(k, A*, c*)
if m* #1 and (A*, ¢*) ¢ Q return 1, else return 0.

Experiment 6: INT-CTXT security experiment for AEAD.

An AEAD scheme is PPT, QPT or HPT IND-CPA secure, and INT-CTXT secure, if for

all respective PPT, QPT or HPT adversaries A, the advantage Adv}i\gggfﬁ(ﬂ), and the ad-

vantage Advﬂ\‘E&S?}T(n), are negligible in the security parameter x. As a formal inequality,

AdvREXETR (K) < neglapap,vp-cpa (k) and AdvREAE AT (k) < neglapap,vr-crxr (k).

Note that if an AEAD algorithm is both IND-CPA secure and INT-CTXT secure then the
AEAD algorithm is also IND-CCA secure. Note that IND-CCA security implies IND-CPA
security but not INT-CTXT security [29)].

In the next section, useful assumptions on the PQC algorithms used to authenticate QKD
are presented.

4 Post-quantum cryptography and assumptions made in this
paper
4.1 Post-quantum security

Post-quantum cryptographic algorithms are designed to be secure against HPT adversaries
and are believed to withstand attacks from any classical, quantum or hybrid algorithm that
can run in polynomial time. Practically, this means there is no known classical or quantum
algorithm that can break a PQC algorithm within a feasible time frame, typically considered
to be at least 30 years.

Post-quantum secure signatures, KEMs and other asymmetric cryptographic algorithms,
often referred to as PQC algorithms, are relatively recent technologies undergoing stan-
dardization by relevant organizations such as NIST [8]. As mentioned earlier, they are
believed to be HPT secure. PQC can rely on public key infrastructure (PKI) to manage
keys and certificates delivered by a certificate authority (CA), specially for authentication
purposes. In the schemes presented in this paper, PQC is used to authenticate honest par-
ties, relying on PKI and post-quantum CAs. The topic of creating a post-quantum secure
CA is out of scope.

13

PRFs, MACs and other symmetric cryptographic PPT algorithms are considered to be
quantum resistant. However, they are not typically included when discussing PQC. The
primary quantum algorithm found so far that decreases the security of these algorithms, in
this case quadratically, is Grover’s algorithm [30]. To maintain the security of the symmetric
cryptographic PPT algorithms against Grover’s algorithm, the size of the secret material
must be at least doubled. For the rest of this paper, symmetric cryptographic algorithms
are assumed to be HPT secure.

4.2 Practical security

Before discussing why PQC is suitable for authenticating QKD users, it is important to note
that PQC and QKD encompass a wide variety of protocols that offer different methods for
establishing secure communications between honest parties. Both technologies should com-
plement each other, rather than displace one another. Furthermore, classical cryptography,
known to be not post-quantum, can be integrated with PQC and QKD to provide redun-
dant security. Although this topic is out of scope of this paper, examples of hybridization
involving QKD, PQC and classical cryptography can be found in the Muckle series [15-18].

As the security of PQC algorithms relies on the belief that the hardness of certain math-
ematical problems holds against both classical and quantum adversaries, there is no proof
that this will remain true for the future. There is always uncertainty about when a clas-
sical, quantum, or hybrid algorithm might be developed that could break the hardness of
the mathematical problems underlying PQC algorithms. An example of this happening
in the past is Shor’s algorithm, which, along with advancements in quantum computing
technology, motivated the standardization of PQC algorithms.

However, since PQC is built on the assumed hardness of certain mathematical problems,
there is a potential gap that could be exploited by honest parties to perform cryptographic
operations, such as using PQC for authentication in QKD. The argument relies on the
premise that if honest parties can perform their authentication operations and exchanges
faster than an HPT adversary can compromise the secret material used in the PQC algo-
rithms by targeting and processing the public material, such as public keys and ciphers,
then the honest parties can be assured that no malicious activity targeting authentication
has been effectuated by any HPT adversary. The secret keys obtained through a QKD pro-
tocol, where the authentication of the classical channel is secured through a PQC protocol,
are ITS and (eqrp + 85&5)-secure if honest parties are sure that no successful efficient
attack by any HPT adversary has been possible within the time required to authenticate
the classical information needed to distill the QKD keys.

A general and conservative runtime condition for the honest parties to be sure that no attack
targeting authentication obtained through a PQC protocol has been possible is presented
in equation 1.

Ta+ T+ Ty < Tupr (1)

Where T4 and Tp are the runtimes required for honest parties A and B to perform the
computational operations involving the authentication PQC protocol, Tt is the time ac-
counting for transmission, network delays and other non-trivial times, and T pr is the time
required for an HPT adversary to break the PQC algorithm in question. Note that fractions
of T4, Tp and/or T7 may overlap and such overlap is not taken in account. Tgpr is the
time required for the adversary to obtain a non-negligible advantage function, defined by

14

the corresponding security experiments/games, which accounts for the fact that the adver-
saries gain some (negligible or non-negligible) information about the secret material after
every query. The adversary time T g pp starts counting once any kind of public information
generated by the PQC algorithms from the honest parties is obtained.

While the runtimes from the left side of equation 1, T 4, T g and T, are more or less feasible
to estimate via benchmarking, time complexity theory and risk assessments, the adversary
runtime Typr is far from being trivial for several reasons. Omne reason is that honest
parties have no clue when an adversary has taken possession of any public information
computed through PQC algorithms by them. Another reason is that the runtime Tgpp
may be overestimated, as the more public information the HPT adversary is capable of
gathering, the more resources it has to break the PQC algorithms faster than predicted.
Furthermore, it is hard to know exactly what the computational capacities of the adversary
are. Unpredictable advancements in classical and quantum computation fields, as well as
unknown attacks, further complicate the task of characterizing the adversary runtime. After
characterization of the HPT adversary runtime T gp7, this could be expressed in T gpp-
term CAs that would revoke provided certificates once their lifetime surpasses a bound,
dependent on an estimation of the HPT adversary runtime T g p7p.

However, since PQC (or rather hybrid classical and PQC schemes) are becoming the norm
of modern PPT cryptography, it is with the same legitimacy that the assumption that
equation 1 holds for some justified HPT runtime Tyrp, a time that could range from
seconds to days. After that time has passed, a new pair of secret and public keys would
need to be generated along with a Typp-term certificate to validate the identity of the
honest parties behind them.

Thus, the PQC algorithms used in the following sections are considered to be T pp-term
HPT secure, according to equation 1 and Definition 17 given below.

Definition 17. (Tgypr-term HPT security). An algorithm is Typp-term HPT se-
cure (or Typp-term secure) if the advantage function, as defined by the corresponding
experiments/games, remains negligible in the relevant security parameter against a HPT
adversary for a specified time T, T < Tgpr. Said advantage function becomes no longer
negligible once T ~ Typr.

Additionally, the symmetric algorithms and the dual PRF used in the following sections are
considered to be long-term HPT secure according to the Definition 18.

Definition 18. (Long-term HPT security). An algorithm is long-term HPT secure
if the advantage function, as defined by the corresponding experiments/games, remains
negligible in the relevant security parameter against a HPT adversary for an arbitrarily
long time, typically ranging from 10 to 30 years. Note that if Ty pr is estimated to be large
enough, Definition 17 and Definition 18 are equivalent.

To prevent the threat from Grover’s algorithm [30], the secret keys used inside the long-term
HPT secure symmetric primitives, namely dual PRF, AEAD and MAC, have to be at least
doubled compared to the usual sizes that resist a non-quantum search threat. For example,
to have a bit security close to 256 bits, the secret input length of the PRF has to be 512
bits or more.

15

5 PQC authentication for QKD

A crucial component that ensures QKD is ITS and (eqkp + €auth)-secure is the presence of
authenticated channels. Specifically, it is essential that honest parties can authenticate the
classical traffic used to distill QKD keys.

As shown in the security proof, in section 8, if the authentication algorithms are Tz pp-term
HPT secure, following Definition 17, honest parties have a time window, strictly smaller
than Tgpr, during which they are confident that no adversary can execute any attack
targeting authentication and integrity. Consequently, as shown in section 8, the following
PQC authentication protocols for QKD would remain secure as long as Definition 17 holds,
ensuring that the distilled QKD keys are ITS, (eqkp + agﬁg)-secure, and shared by honest
parties.

Stronger security for authentication can be adopted once the PQC authentication for QKD
protocols have been executed at least once. Given that honest parties will share a secret at
that point, ITS authentication can then be achieved using the commonly employed Carter-
Wegman MAC construction, which is based on strongly universal hash functions [6, 7, 31,
32]. A practical, lightweight implementation can be constructed following [7], where the
type of MAC is defined and optimized to require a minimal amount of secret key material
for authentication in each QKD iteration, given an arbitrary authentication security agf’h.
ITS authentication is not the scope of this work and the topic is mostly omitted in the

following sections.

This section discusses the general case where PQC primitives, alongside symmetric prim-
itives, are used to provide authentication, confidentiality and integrity to QKD. Some ex-
amples of PQC authentication for QKD are given. The security of the protocols presented
is discussed in the subsequent section.

5.1 General case

One of the most used authentication mechanisms for key exchange at the time of writing
this paper is the Transport Layer Security (TLS) protocol. The latest version, TLS 1.3 [14],
implements Diffie-Hellman (DH) exchanges, with authentication inspired from the SIGMA
protocol, using digital certificates. The authenticated key exchange (AKE) steps from
TLS 1.3 and SIGMA may be generalized as the creation of an authenticated key and the
authentication step as shown in figure 1 (left).

The first step of an AKE corresponds to the creation of an unauthenticated key between
two parties, often referred as an ephemeral key since its generation and usage is typically
attributed to a specific task making them have a short lifespan. The ephemeral key may
be computed through different methods such as a DH exchange, elliptic-curve DH protocol,
KEM exchange, among other protocols. The second step of the AKE is to verify the enti-
ties behind the key exchange while keeping confidentiality and the integrity of the traded
messages. This is often achieved by relying on cryptographic primitives such as signatures,
MACs and/or KEMs, along with related tools like pre-shared key (PSK) material or certifi-
cates. Specifically, if honest parties have PSK material, authentication typically relies on
symmetric primitives such as MACs, which can be designed to be ITS if desired [6, 25, 32].
Otherwise, parties have to rely on asymmetric cryptography, such as signatures and KEMs,
and trust-based mechanisms, such as public key infrastructure (PKI) along with certificate
authorities (CA), which bind public keys to entities.

This AKE architecture can be used to authenticate classical information to make a QKD

16

AKE

Unauthenticated
Key Exchange

(DH, KEM., ...)

A.C.I1. with
crypto primitives
and other tools

(sign, MAC, KEM,

QKD

Auth. QKD

Unauthenticated

QKD

case

A.C.I. with
PQC primitives
and other tools

(sign, MAC, KEM,

Examples

Unauth. QKD

PQC sign + MAC

Unauth. QKD

certificates, PSK, ...) PQC KEM + MAC

i} i} i})

Authenticated secret keys

certificates, PSK, ...)

Figure 1: Authenticated key exchange general steps (left); Post-quantum AKE applied
to QKD (center); Examples of AKE based on QKD (right). A.C.I. = Authentication,
Confidentiality and Integrity.

protocol and the corresponding distilled keys secure, by replacing the traditional unauthen-
ticated key exchange by an unauthenticated QKD key obtained through an unauthenticated
QKD protocol following Definition 5 (Figure 1, center). A QKD protocol can be executed
by two parties without really needing to immediately authenticate the public information
required to distill a secret QKD key, the post-processing information. Certainly, this would
open the person-in-the-middle vulnerability if no authentication process occurs after an
unauthenticated QKD protocol is finalized. The idea behind the authentication is to rely
on PKI, along with CA and certificates, and T g pp-term HPT secure primitives (equivalent
to Tgpp-term secure PQC), such as signatures and KEMs. The information utilized by
the honest parties to distill a QKD key through an unauthenticated QKD protocol, such
as the post-processing information, is authenticated during the authentication step with
an 651%? scheme and by Definition 6, the QKD keys become (eqkp + 651%?)-secure. The
process of authenticating the required information at the end of a scheme is known as
“mono-authentication”, and is also found in [7] and [10], for the QKD case.

The other properties of interest are confidentiality and integrity. By using the ephemeral
keys, along with the derived classical keys through the AKE scheme, honest parties derive
key material to encrypt and decrypt the messages exchanged between them, often relying on
symmetric algorithms such as the Authenticated Encryption with Associated Data (AEAD)
primitive [33], on deriving keys to compute MAC tags to keep in check the integrity of the
traded messages. Confidentiality over the entities’ information is often called entity pro-
tection. The goal of entity protection is to encrypt and conceal the exchanged information
between honest parties, such as certificates and ciphers, so that adversaries or eavesdroppers
cannot determine the identities behind the traded messages. The entity protection feature
within the AKE schemes can be optional by giving up on confidentiality.

The entity protection feature usually provides security against passive adversaries for both
parties, and against active adversaries for one of the parties. A passive adversary is limited
to eavesdropping on the communications between honest parties, whereas an active adver-
sary can interact with the traded data and actively engage in communications by sending
and receiving information. Once an AKE protocol with the entity protection feature is suc-
cessfully completed between honest parties, it is safe to assume that the concerned entities
are protected with the same security as the underlying symmetric protocol used to hide the

17

entities (and/or tags), regardless of whether the adversaries are passive or active.

In the context of a new user wanting to join an existing quantum network, one could argue
that it is best to provide entity protection against active adversaries to the existing network
user, rather than to the new user. In this way, active adversaries are unable to identify the
entities within the network. However, if an adversary knows that a new user is attempting
to join the network, the adversary could potentially identify the entity behind the new
user and do so for every user joining the network, thereby revealing the entities within the
network as it grows. A potential solution for this issue is to provide entity protection against
active adversaries to the new user and use a generic entity name for the users within the
network. Once the new user is within the network, the real identities can be exchanged by
following subsequent procedures that are not commented in this work.

The presented protocols in this work provide entity protection in the same way that SIGMA
or TLS does [13, 14]. This relates to the known traffic secrets that TLS and similar protocols
such the Muckle series present. The symmetric encryption of “message information” using
primitives such as AEAD with a key “key”, mainly used to provide entity protection (and
tag protection), is noted as {message information}se, within the protocols. Note that the
messages “m;” within the digest H(m;) correspond to the message before encryption if
“{message information}.,” is sent, or decrypted if {message information}y., is received,
“message information” rather than the entire encrypted bit string {message information } ., .
For example, given an exchanged message m;: {message information}., between parties,
H(m) = H(message information) is used, rather than H({message information}.,). Note
that “message information” may contain optional traffic other than that presented in the
protocol, but the security of the protocol is not affected by this optional traffic.

Examples of authentication methods for QKD, which are described in more detail below,
are Typp-term HPT secure PQC signatures and MAC, or Typp-term HPT secure KEM
and MAC (figure 1, right). The signature then MAC is similar to the SIGMA protocol (and
closely related to TLS 1.3) but using an ephemeral key obtained through unauthenticated
QKD, while the KEM then MAC process is similar to the KEMTLS protocol [19] but with
the same ephemeral unauthenticated QKD key.

The presented schemes assume that honest parties start interacting with each other without
any pre-shared keys. To secure the first iteration of QKD, PQC is used for authentication
at least for the initial QKD iteration. Once sufficient QKD key material has been obtained
and authenticated using PQC, the authentication for QKD can rely on HPT-secure MAC
or even ITS-MAC, as mentioned before. However, the presented PQC authentication for
QKD examples can be used successively by keeping continuity of the secret state parameter,
denoted SecState in the protocols.

5.2 QKD authenticated with signature then MAC

Despite the wide variety of QKD protocols [4, 5], all can rely on PQC for authentication for
the first instantiation. An unauthenticated QKD may be seen as a black box that outputs
unauthenticated ephemeral keys that have been obtained through some public information
that must be authenticated at some point to make the whole QKD scheme secure, following
Definitions 3, 5 and 6. Regarding the QKD black box, special care has to be taken in
terms of the order of exchange of the encoding and decoding bases to sift the raw QKD
keys. The initiator sends its encoding bases only when the already used decoding bases
from the responder have been received: this is to avoid attacks where quantum memories
are involved. The order of the exchanged public information needed to distill a QKD key
must follow the steps as if the classical channel was authenticated. The QKD protocol used

18

and how the unauthenticated QKD key is distilled are not discussed in this paper, as the
authentication (PQC), confidentiality, (PRF and AEAD) and integrity (PQC and/or MAC)

approaches are agnostic regarding this matter.

For the rest of this paper, the QKD protocols are seen as black boxes that provide an
unauthenticated shared secret Korxp = ssQip,|| - --|/SsQr D, ||sSrest and the traded public
information to be authenticated mgxp, as specified in Definitions 3 and 5. If the bit
length of the key Kqxp is not sufficient to run the HPT primitives given by the protocols,
honest parties can perform QKD again to produce K ’Q xp and the corresponding classical
traffic m’Q xp- The authentication algorithms will authenticate both transcripts, mgx p and
m’Q Kk p» to make the individual keys, Kgxp and Ké xp- Since this would make the epsilon
security of the concatenated key more complex, let us assume that the QKD protocols
always produce keys long enough to run the HPT primitives. This assumption is realistic
because honest parties have a prior estimate of the minimum key length required to be
extracted from QKD in order to authenticate, and even to store for further applications.
In this case, the QKD keys are always egxp(x). The intention of honest parties is to
derive more key material than what is used in the authentication process, hence they will
perform authentication only after distilling enough unauthenticated QKD keys/bits, which
is feasible as QKD typically post-processes blocks of 10° bits or more.

Within the figures below, the QKD exchange is illustrated by a black double-headed arrow
that connects the QKD initiator Alice and the QKD responder Bob. For the rest of the
paper, Alice is set as the initiator, whereas Bob is the responder. The authentication
provided by the signature then MAC scheme is illustrated in figure 2. As typical in the
current state of the art, the single headed arrows correspond to the transmission of classical
information through a public and non-authenticated channel.

Step by step. The steps for the signature then MAC protocol are presented below. The
security analysis is presented in section 8.

0: Before starting the protocol, the initiator Alice and the responder Bob have known
parameters. Alice and Bob have their corresponding T gppr-term HPT secret key, sk4 or
skp, from the PQC signature algorithm and the corresponding public key, pka or pkp,
within a digital certificate, cert 4 or certp, provided by a legitimate CA. Entity parameters
such as certificates are placed inside the parameters A and B for Alice and Bob, respectively.
Both parties also share the secret state, SecState, that is updated at the end of each
execution of the protocol and carry on from one application of the protocol to another.
This secret parameter, SecState, is initialized to an arbitrary value: it could be initialized
at 0 or even take the value given by PRF(ssqxp, label||H()) with some bit string that
composes the label, for example. Note that the secret keys, sk4 and skp, are revealed to no
one, including honest parties. The entity parameters, A and B, may be public in the case
that entity concealment is not required, otherwise they are secret and only traded following
the presented protocol. As discussed in section 5.1, the entity protection feature is secure
against passive adversaries for both parties, and secure against active adversaries for one of
the parties.

1: The protocol starts with the initiator Alice and the responder Bob performing an unau-
thenticated QKD protocol following Definition 5. Both parties obtain the QKD traffic to
authenticate, mgg p, which is public information, and the corresponding unauthenticated
QKD bit string Kgrxp = ssQi p|[SSrest, Which is secret data. In this example of a protocol,
the first key, ssox p, acts as an ephemeral key.

If the unauthenticated QKD is badly performed between honest parties, the condition un-

19

0: Alice Bob
" ska, A: (certalpkal, ...), SecState skp, B: (certp[pkg], ...), SecState

Unauthenticated QKD

Kokp = ssQkrD||sSrest, morp «—— QKD.KeyGen(k, *)

mi: ng & {0,1}"

my: np & {0,1}"

3: 4
4: KO — PRF(SSQKD, 10HH(H1QKD||H11HIH2))
5: K, +— PRF(SecState, ;|| Ky)
6: Krs, «—— PRF (K, Irg, [[H(mgk p||m1|[m2))
7: Krsy +—— PRF(K1, Irs, |[H(mgx pllm |[ms))
8: Kyac, «—— PRE(K1, lyacy, [[H(mgx pljmi[[m2))
9: Kyracy +—— PRE(K1, Ivacs, [[H(mgrp|jmi |[m2))
m3: {B}x,g,
10: 4
11: Verify identity B op +— X.Sign(skp, Ly, |[H(mgk p||m1||msz||msz))
my: {oB}Krs,
12: €
?
13: ¥.Ver(pkp, ls,|[H(mgx p||mi||ma||jms), op) = 1
14: TB — MAC.Auth(K]y[AcB, 1MACB2||H(mQKD||m1|| - Hm4))
ms: {78} Ky,
15: €
?
16: MAC.VGI'(KMACB, IJV[ACBQHH(mQKDHmlH e ||m4), TB) =1
mG: {A}KTSA
17:)
18: 04 +—— X.Sign(ska, Ly, |[[H(mgoxp||m|] ... ||ms)) Verify identity A
m7: {04}y,
19: >
?
20: Y. Ver(pka, I, [[H(mgrp||lmi]|...|/ms), ca) =1
21: TA <— MAC.Auth(K]y[AcA, IMACAQHH(mQKDHmlH .. ||m7))
mg: {TA}KTSA
22: >
?
23: MAC.Ver(Knrac,, Irac, |[H(mgrp||mi|| ... ||jm7), 74) =1
24: SecState «—— PRF(K1, lgecstate|[H(mox p||mil] . . . [|mg))
25: Shared Secret Key Pool «—— SSpest

Figure 2: Example of QKD mono-authenticated with PQC signature then MAC.

bounded adversary is able to obtain a non-negligible amount of information of the unau-
thenticated QKD bit string, Kgrxp = $sQk D||sSrest, out of the public QKD traffic mgxp.
By consequence, the final QKD keys do not hold the promised egxp security, even if au-

20

thentication is successful, and thus are not secure.

2, 3: Parties exchange random and unique nonces, n4 and npg. The nonces are required to
prevent replay attacks, misbinding attacks, and to avoid derived vulnerabilities [13].

4: Parties derive key material from the QKD material ssgxp thanks to a dual PRF. The
derived key K¢ binds the unauthenticated QKD key ssgx p to the public information mgg p
and the exchanged nonces. A hash function H is applied to the classical information to
compress large bit strings into sizes that fit the dual PRF’s input requirements. This
adds another potential layer of vulnerability, as an adversary/Eve could tamper with the
classical messages such as to arrange that the public information that Alice has, mgxp,,
and the public information that Bob has, mgxp,, do not match, but their digests do, for
example, Hmgg p ,||m1||m2) = H(mgg p,||m1|/m2). The tampering would allow the HPT
adversary to gain some information about intermediate keys of the protocols, the output of
the protocol or even the output Kgxp of the QKD protocol. This potential vulnerability
is discussed further in the security analysis, section 8. The considered hash function H
follows Definition 8 and does not require a secret key to work. On the same note, if the
HPT adversary is passive and does not obtain the shared secret ssox p, a guess of the PRF
output or a tentative forgery is the only way to obtain the intermediate key Kj, since the
secret ssgx p is not known, as also discussed in the security proof.

The labels 1;, ¢ € {0,1,7S4,TSp, MAC a1, MACp1, 54,55, MAC g9, M ACpa, SecState},
presented inside the cryptographic primitives, correspond to unique (from each other) bit
strings that are public information. The labels allow for domain separation for each inter-
mediate key, provide security against reuse attacks and bind context to the derived keys,
as commented in this NIST recommendation strongly related to PRFs [34].

5: The obtained key Kj is combined with the secret state SecState using dual PRFs
to derive the intermediate key K7. The adversary would require to know both of the
parameters, SecState and Ky, to be able to derive K7, otherwise a forgery or a guess is the
only way to obtain it, for which the success probability is low since PRFs are assumed to
be long-term HPT secure (Definition 18).

The parameter SecState is known at the first iteration of authentication and gets updated
at the very end of the protocol, once the authentication gets accepted by both parties. The
inclusion and update of the secret state parameter SecState provides a weak form of post-
compromise security, in the sense that if an active adversary learns all secrets of a session,
security can be recovered only if honest parties complete at least one session in which the
adversary has become passive.

6, 7: If entity protection or traffic protection is enabled, the traffic secrets, K7s, and Krg,,
are derived from K;. The HPT adversary requires to know K in order to derive the traffic
secrets.

Traffic protection, which includes entity protection, against passive attackers is achieved for
the initiator and responder at all times. If the secret state SecState is a known value to an
eavesdropper, either at the initialization step or because it was leaked, and depending on
how messages are traded between the initiator and the responder, entity protection against
active attacks is achieved for either the initiator or the responder, but not both. In this case,
traffic protection against active adversaries for both honest parties is not possible to achieve,
as the first traffic protection encryption is always performed with an unauthenticated key,
and the parameter SecState is known by the adversary: anyone impersonating can compute
K if the shared parameter SecState is not secret.

21

The presented protocol 2 achieves active entity protection only for the initiator, but this can
be changed to the responder if the order of who reveals their identity first is reversed. An
eavesdropper/adversary Eve would be required to have QKD equipment in order to realize
an active attack and learn the identity of one of the parties: her presence would be noticed
afterwards, when parties require the PQC secret keys to execute PQC algorithms and the
protocol would be aborted by the honest party. In the case that the shared parameter
SecState is secret, then entity protection against active adversaries is achieved by both
honest parties.

8, 9: The MAC keys, Kyac, and Kpracy, are derived from K. These keys are used to
create and verify MAC tags. The HPT adversary requires to know Kj in order to derive
the MAC keys.

10: If entity protection is enabled, the responder Bob AEAD encrypts the entity information
B with the key Krg, and the output, {B}KTSB, is sent to the initiator Alice. Otherwise,
the entity information B is public knowledge.

11: The initiator Alice verifies the identity B thanks to public information, such as the
public key from the responder Bob’s certificate. The responder Bob computes the signature
tag op by signing the public information I, ||H(mgx p|/m;|/mz||/m3) with the secret key
skp. Note that the HPT adversary would have a negligible chance to create such tag, and
thus be detected by Alice in the verification step.

12: If traffic protection is enabled, the responder Bob AEAD encrypts op with the key Krg,
and sends the output, {op} Krsy» 10 the initiator Alice. Otherwise, o is sent directly.

13: The initiator Alice (decrypts the received output with the corresponding traffic secret
and) verifies the received signature tag with public information 1, || H(mgx p||/m; ||msg||ms)
and the responder Bob’s public key pkp. Here is where Alice detects HPT adversaries that
have tried to forge a signature tag pretending to be Bob. Furthermore, this verification
step is what provided entity protection against active adversaries since Alice will abort if
the verification is not successful, thus never sending her identity.

14: The responder Bob computes the authentication tag 7p of the public information
Iviacg, [|Hmor p||lmi|| ... ||ms) with the derived secret key Karacy,.

15: If traffic protection is enabled, the responder Bob AEAD encrypts 75 with the traffic
secret Krg, and sends the output, {75} Krsy» 1O the initiator Alice. Otherwise, Tg is sent
directly.

16: The initiator Alice (decrypts the received output with the corresponding traffic se-
cret and) verifies the received authentication tag, 75, with the public information 1yracy,
[|H(mgorp|lmi||...||ms) and the derived secret key Kprac,. If the adversary does not
know Kjsacy, then any forgery attempt of 7p is detected here with high chance, as taken
in account within the security proof.

17: If the verification of the responder Bob’s identity, the received signature and the re-
ceived authentication tag are successful, then the initiator Alice AEAD encrypts the entity
information A with the key Krg,, in the case that entity protection is enabled. The out-
put {A} Krs is sent to the responder Bob. If entity protection is not enabled, the entity
information A is sent directly.

18: The responder Bob (decrypts the received output with the corresponding traffic secret
and) verifies the identity A, utilizing public information such as the public key from the
initiator Alice’s certificate. The initiator Alice computes the signature tag o4 by signing

22

the public information 1, ||H(mgx p||mi]|...|/ms) with the secret key sks. Note that the
HPT adversary would have a negligible chance to create such tag, and thus be detected by
Bob in the verification step.

19: If traffic protection is enabled, the initiator Alice AEAD encrypts o4 with the key Krg,
and sends the output, {o4} Krs o 1O the responder Bob. Otherwise, o 4 is sent directly.

20: The responder Bob (decrypts the received output with the corresponding traffic secret
and) verifies the received signature tag with public information s, ||H(mgxp||m]]...|/ms)
and the initiator Alice’s public key pk4. Here is where Bob detects HPT adversaries that
have tried to forge a signature tag pretending to be Alice.

21: The initiator Alice computes the authentication tag 74 of the public information
Ivraca, | H(morp||lmi| ... |jm7) with the derived secret key Karac,-

22: If traffic protection is enabled, the initiator Alice AEAD encrypts 74 with the key Krg,
and sends the output {74} Krs o 1O the responder Bob. Otherwise, 74 is sent directly.

23: The responder Bob (decrypts the received output with the corresponding traffic se-
cret and) verifies the received authentication tag with the public information lpsac,, ||
H(mggp||mil|...|/m7) and the derived secret key Kpsac,. If the adversary does not know
Kurac,, then any forgery attempt of 74 is detected here with high chance, as taken in
account within the security proof of section 8.

Once both authentication tags have been verified (step 23), the PQC secrets, sky and
skp, can be revealed to any HPT adversary without compromising the security of the now
authenticated QKD material ss,est, SSQrp, or the concealment of traffic, including the
information of entities.

Alice does not have feedback on Bob’s final MAC verification as the protocol is. Thus,
denial of service of the final interaction would force Alice to update the final keys whereas
Bob would have the precedent values. This could be prevented by adding an authenticated
acknowledgment message along with a timeout mechanism. The guarantee of liveness (i.e.
the protocol finalizes with honest parties having the same values, despite an adversary
interference) will not be discussed further in this work.

After this step 23 is successful, parties can derive session secrets out of the intermediate K3
to be used in other cryptographic purposes, similar to in TLS [14] or Muckle [15, 17, 18],
following the same approach the secret state SecState is updated, by using more unique
labels. This is not explicitly written down in the protocol, since the goal is to provide
authentication, confidentiality, and integrity to the classical traffic of QKD protocols in
order to obtain keys given by QKD. These final keys are I'TS with an epsilon security to be
calculated according to the QKD and authentication security levels. The final security of
the keys is given within the security proof of section 8.

24: Both parties update the secret state SecState by deriving it from the intermediate key
K, and the classical traffic traded so far, using a PRF.

25: Honest parties keep the unused QKD bits, ssyest, in a pre-agreed shared secret key pool.

Once the protocol is finalized, the authenticated key ss,est is ready to be used in other
cryptographic applications or can even be used to derive additional secret key material.

If authentication is secure, the quantum nature of QKD provides naturally forward security,
i.e. compromising all the secrets of a session, including the T ppr-term PQC secrets, ska
and skp, the secret state, SecState, and the kept shared bits, ss,¢s, does not compromise

23

the rest of the keys that are stored inside the shared secret key pool in the previous iterations
of the protocol.

As shown in the security analysis, in section 8, the secret material returned by the PQC
authentication protocol 2, namely SecState and ss;.st, are known only to the authenticated
parties (with high probability, 1 - a negligible quantity determined in the security proof),
the initiator Alice and the responder Bob, if the Typpr-term HPT security assumption
(Definition 17) applied to the PQC algorithm holds while the authentication protocol is
in an active state against an HPT adversary. In this case, Definition 6 makes the initial
QKD key Kgkp and its segments ITS and (eqkp + 6533}?)-secure. Because the assumption
that AEAD is long-term HPT (Definition 18) secure holds, the traffic protection tags are
long-term HPT secure as well. This implies that an unbounded adversary would be able
to compromise the traffic secrets, K7g, and Krg,, and trace back until compromising the
old, already used, secret state SecState (step 0) and ssgxp from K; and Ky, respectively.
Additionally, this compromises the updated secret state SecState as well (step 24). In other
words, after the protocol is finalized, the key material ssgxp, Ko, K1 and all derived keys,
including the secret state SecState, are not ITS but rather long-term HPT-secure. Note
that this does not affect the ITS security of the final keys derived in the present and past
sessions, stored inside the shared secret key pool (step 25).

The PQC signature authentication process shown in figure 2 requires 1.5 round-trip times
(RTT) and could be initiated within the last interactions of the post-processing procedure,
within the unauthenticated QKD step, depending on which party has to send the certificate
first, which is pre-agreed according to who needs the most entity protection against active
adversaries.

Additionally, the presented protocol could be modified to cover the case where both parties
have knowledge of the certificates, or when only one party needs to authenticate, as is the
case for some client-server interactions.

Since the protocol takes as input the ephemeral key ssgx p, the minimum QKD key length
required to execute 2 is exactly the size of the PRF input. On the other hand, if ITS
MAC authentication is desired, some shared secret key pool of considerable size should be
anticipated and kept, as ITS MAC consumes key material every time an authentication tag
has to be sent, on top of having enough keys to not exhaust the key pool in case of denial
of service attack.

Additional redundant protection may be added, for example by initiating the protocol with
an ephemeral PQC key obtained through a PQC KEM exchange. The ephemeral PQC
key can be used to provide an additional layer of confidentiality to the traded QKD public
information, in the same way traffic protection works within the authentication protocol
from figure 2. If PQC redundancy is added, an eavesdropper would need to execute PQC
algorithms, possess QKD equipment, and know the secret state parameter, SecState, to
carry out an active attack on the entity protection feature and identify the vulnerable party.
Eventually, the active attacker would be detected with high probability by the honest party,
once the PQC secret material is required to perform authentication.

The next subsection provides an example of authentication that does not rely on signatures.

5.3 QKD authenticated with KEM then MAC

Previous implementations have found that PQC HAKE protocols based on certain KEM
algorithms run with fewer computational cycles and with lower memory requirements, com-
pared to the signature-based protocols, but with the additional cost of an extra RTT [18,

24

19]. Following the same motivation, this subsection presents an alternative approach to
mono-authenticate QKD with PQC KEM. Note that KEM and signature protocols could
be combined to achieve redundant protection where both of the PQC algorithms used to
authenticate are built on different mathematical problems [8].

The PQC KEM-based authentication protocol follows a similar structure to the sign then
MAC protocol from figure 2. The authentication mechanism relies on Tgpp-term HPT
secure KEM algorithms, rather than signatures. The protocol is presented in figure 3.

Step by step. The steps for the KEM then MAC protocol are presented below. The
security analysis is presented in section 8.

0, 1,2, 3, 4,5, 6,7, 8 Same as steps 0, 1, 2, 3, 4, 5, 6, 7, 10, respectively, from the
signature then MAC case (figure 2). In this case, the Ty pp-term HPT secret keys, sk4 and
skp, are associated with a PQC KEM algorithm. Alice and Bob can have two different KEM
algorithms, denoted as KEM 4 and KEMp in figure 3. The choice of the KEMs is arbitrary
and depends on the needs of the honest parties, including security levels, diversification of
PQC algorithms, performance efficiency or memory requirements.

The labels li, 1 € {O, 1, TSAl, jﬂSBl7 2, TSA27 TSBQ, 3, MACAl, MACBl, MACA27
M ACpy} presented inside the PRFs, correspond to unique bit strings that are public infor-
mation. The labels allow for domain separation for each intermediate key, provides security
against reuse attacks and binds context to the derived keys, as commented in this NIST
recommendation strongly related to PRF's [34].

9: The initiator Alice verifies the identity B using public information, such as the public
key from the responder Bob’s certificate. If the verification is successful, the initiator Alice
computes the encapsulation cg of a random key kg by using the encapsulation algorithm
KEMpg.Enc along with the responder Bob’s public key pkp.

10: If traffic protection is enabled, the initiator Alice AEAD encrypts c¢p with the key Krg,,
and sends the output, {cg} Krs,,» 1O the responder Bob. Otherwise, cp is sent directly.

11: The responder Bob (decrypts the received output with the corresponding traffic secret
and) decapsulates the random secret kp from the encapsulation cipher cp using the decap-
sulation algorithm KEMp.Dec along with the secret key skp. Without the knowledge of
the secret key skp, an HPT adversary is not able to decapsulate the random secret kg with
high probability as taken into account within the security proof.

12: The shared key kp is combined with the intermediate key K; using a dual PRF to
obtain the intermediate key K5. An adversary without kg has negligible probability of
forging K.

13, 14: If the entity protection feature is enabled, the entity protection keys, Krg,, and
Krs,,, are derived from K». An adversary without Ko has negligible probability of forging
both.

15: If entity protection is enabled, the initiator Alice AEAD encrypts the entity information
A with the key Krg,, and sends the output, {A} Krs 0 1O the responder Bob. Otherwise,
the entity information A is public knowledge.

16: The responder Bob (decrypts the received output with the corresponding traffic secret
and) verifies the identity A using public information, such as the public key from the
initiator Alice’s certificate. If the verification is successful, the responder Bob computes
the encapsulation c4 of a random key k4 using the encapsulation algorithm KEM 4.Enc

25

0: Alice Bob
" ska, A: (certg[pkal, ...), SecState skp, B: (certg[pkp], ...), SecState

Unauthenticated QKD

Kqkp = ssQK D|[sSrest: morp +—— QKD.KeyGen(k,)

mi: na & {0,1}"

my: np & {0,1}"

3: 4
4: KO — PRF(SSQKD, IOHH(mQKDHmleQ))
5: K, «— PRF(SecState, ;|| Ky)
6: Krg,, +—— PRF(Kj, 1T5A1‘|H(mQKD||m1||m2))
T KTSBl A— PRF(Kl? 1TSB1HH<mQKD||m1||m2))
m3: {B}KTSBl
8: €
9: Verify identity B, (kp, cg) +— KEMpg.Enc(pkp)
my: {cp}rrs,,
10: >
11: kg +—— KEMB.DGC(SkB, CB)
12: K2 — PRF(Kl, 12||kB)
13: Ky, «— PRE(Ky, Iz, H(mqxpllma]| .. [m))
14: K155, +—— PRE(Ky, Ingp,|[Hmekpljmi]]. . . |[my))
m5: {A}KTSA2
15: >
16: Verify identity A, (ka, cq4) «—— KEM4.Enc(pk4)
mg: {CA}KTSB2
17: €
18: kg +— KEM4.Dec(sky4, c4)
19: Kg — PRF(KQ, 13||kA)
20: Kyvac, < PRF(K3, luacy, [[H(mgxpl[mi]]. .. [|ms))
21: Kyacy +—— PRE(K3, Ivacy, [[H(merp|[m1]| .. . [[ms))
22: TB <—— MAC.Auth(KMACB, 1]\4ACBQ||H(mQKD||m1|| e Hmﬁ))
mry: {TB}KTSBQ
23: €
?
24: MAC.VeI“(KMACB, IMACBQHH(mQKDHmlH ce Hmﬁ), TB) =1
25: TA &—— MAC.Auth(KMACA, IJVIACAQHH(mQKDHmlH L. ||m7))
msg: {TA}KTSA2
26: >
?
27: MAC.VGF(KMACA, lMACA2||H(mQKD||m1|| e ||m7), TA) =1
28: SecState «—— PRF(K3, lgecstate|[H(mox p||mil] . . . [|mg))
29: Shared Secret Key Pool «—— SSpest

Figure 3: Example of QKD mono-authentication with PQC KEM then MAC.

along with the initiator Alice’s public key pk4. Note that in the case Eve/adversary is
impersonating Bob, since K5 has negligible chance to be forged, so is the traffic secret

26

Krs,,, giving the entity protection against active adversaries, discussed in section 5.1.

17: If traffic protection is enabled, the responder Bob AEAD encrypts c4 with the key
Krs,,, and sends the output, {CA}KTSAQ, to the initiator Alice. Otherwise, c4 is sent
directly.

18: The initiator Alice (decrypts the received output with the corresponding traffic secret
and) decapsulates the random secret k4 from the encapsulation cipher ¢4 using the decap-
sulation algorithm KEM 4.Dec along with the secret key sky. Without the knowledge of
the secret key sk 4, an HPT adversary is not able to decapsulate the random secret k4 with
high probability, as taken into account within the security proof.

19: The shared key k4 is combined with the intermediate key Ky using a dual PRF to
obtain the intermediate key K3. An adversary without k, has negligible probability of
forging K3.

20, 21: The MAC keys, Kyrac, and Kpyracy, are derived from Ks3. An adversary without
K3 has negligible probability of forging both.

22: The responder Bob computes the authentication tag 7p of the public information
Iviacg, [|Hmor p||lmi|| ... ||mg) with the derived secret key Karacy,.

23: If traffic protection is enabled, the responder Bob AEAD encrypts 7p with the key
Krsy, and sends the output, {7}k, , to the initiator Alice. Otherwise, 75 is sent
directly.

24: The initiator Alice (decrypts the received output with the corresponding traffic se-
cret and) verifies the received authentication tag with the public information lyracy, ||
H(mggp||mil|...|/ms) and the derived secret key Karac,. If an HPT adversary tried
to forge the MAC tag, Alice would detect this within the verification step with a high
probability, as taken into account within the security proof.

25: The initiator Alice computes the authentication tag 74 of the public information
Iviac, | H(morp||lmi|| ... |jm7) with the derived secret key Knrac,-

26: If traffic protection is enabled, the initiator Alice AEAD encrypts 74 with the key Krg,,
and sends the output, {74} Krs o 1O the responder Bob. Otherwise, 74 is sent directly.

27: The responder Bob (decrypts the received output with the corresponding traffic secret
and) verifies the received authentication tag with the public information lysac ,, ||H(morp
||mi]|...||m7) and the derived secret key Kprac,. If an HPT adversary tried to forge the
MAC tag, Bob would detect this within the verification step with a high probability, as
taken into account within the security proof.

28: Both parties update the secret state SecState by deriving it from the intermediate key
K3 and the classical traffic traded so far.

29: Honest parties keep the unused QKD bits, ss,est, in a pre-agreed shared secret key pool.

Entity protection is provided in the same way as in the signature-based protocol. The
comments specified inside the signature then MAC version also apply here, since they are
agnostic of which PQC algorithm is used to authenticate.

As shown in the security analysis, in section 8, the secret material returned by the PQC
authentication protocol 2, namely SecState, and ss,egst, are known only to the authenticated
parties (with high probability), the initiator Alice and the responder Bob, if the Ty pp-
term HPT security assumption (Definition 17) applied to the PQC algorithm holds while

27

the authentication protocol is in an active state against HPT adversaries, as shown in the
security proof, section 8. In this case, Definition 6 makes the initial QKD key and its
segments ITS and (eqkp + 8;3}?)-secure. Given the assumption that AEAD is long-term
HPT (Definition 18) secure holds, the entity protection tags are long-term HPT secure. This
implies that an unbounded adversary would be able to compromise the entity protection
keys, Krs,, and Krgy,,, and trace back until compromising the old, already used, secret
state SecState (step 0) and ssgx p from K; and Ko, respectively. In other words, after the
protocol is finalized, the QKD key ssgx p, and the secret state SecState (step 0), are not
ITS but rather long-term HPT-secure. The remaining intermediate keys, Ko and K3, are
long-term HPT secure whereas the PQC secrets k4 and kp are Typpr-term HPT secure.
Since the intermediate key K3 is long-term secure, the derived secret state SecState (step
28) is long-term secure too. Note that this does not affect the ITS security of the final keys
derived in the present and past sessions, stored inside the shared secret key pool (step 29).

Similarly with the signature protocol, if ITS MAC authentication is desired for the next
QKD iterations, the shared secret key pool has to be filled according to some agreed size
between the honest parties. Indeed, once the shared secret key pool is filled sufficiently,
(ITS or non-ITS) authentication without relying on PQC in posterior QKD iterations may
be undertaken.

Since this work focuses rather on non-ITS primitives, the next section provides an example
on how to achieve authentication using a non-ITS MAC algorithm by taking a strong
inspiration from the original Muckle protocol [15].

6 Further QKD iterations: shared key scenario

Once parties have performed PQC authentication for QKD in the first iteration success-
fully, authentication can stop relying on asymmetric cryptography since the shared secret
key pool contains some ITS and (eqp + Eauth)-secure keys stored inside. Authentication
relying on symmetric but non-ITS, long-term HPT-secure, primitives such as most MAC
functions is possible. In the same way, authentication relying on I'TS primitives such as I'TS-
MAC algorithms is achievable. This section discusses an example for long-term HPT-secure
authentication (non-ITS).

Theorem 23, obtained after performing the security analysis, in section 8, shows that the
security of QKD keys, that are stored within the shared secret key pool, decreases in a
polynomial manner with the number of parties, sessions and iterations. This implies that
the keys generated in previous QKD iterations have an advantage to be used for further
authentication steps regarding the keys generated in later QKD iterations.

Further QKD iterations can be mono-authenticated securely thanks to the now non-empty
shared secret key pool and the long-term HPT-secure MAC algorithms. An example pro-
tocol is presented in figure 4.

Step by step. The steps for the shared key-based mono-authentication for QKD using
long-term HPT-secure MAC are presented below. The security analysis is presented in
section 8.

0: The initiator Alice and the responder Bob hold a non-empty e-secure I'TS shared secret
key pool, where ¢ is estimated in previous steps, and the secret state parameter SecState,
given by previous iterations, or initialized at a known, and public, value with the condi-
tion that the shared secret key pool has enough key material to run the presented MAC

28

0: Alice Bob
" Shared Secret Key Pool, SecState, ctr Shared Secret Key Pool, SecState, ctr

Unauthenticated QKD

KQkp = SSrest; mgrp «— QKD
Ky «— Shared Secret Key Pool
K, < PRF(SecState, 11||ctr||Ko)

KTSA — PRF(Kl, 1T5A||CtT||H(mQKD))
Krsy +— PRF(Kl, ITSBHCtrHH(mQKD))
(
(

Kyac, «— PRF(Ky, lyac,, ||ctr||[H(mgxp))
K]V[ACB +— PRF(Kj, lMACBlHCt?"HH(mQKD))

8: TA +—— MAC.Auth(KMACA, IMACA2||CtT||H(mQKD))

my: {TA}KTSA

9: >
?
10: MAC.Ver(KMACA, 1MA(}A2||CtT||H(mQKD), TA) =1
11: TB +—— MAC.Ach(KMACB, 1]y[,4032||Ct7’||H(mQKD||m1))
ma: {78} Ky,
12: €
?

13: MAC.V@I‘(KMACB, LMACBQ||Ct7“||H(mQKD||m1), TB) =1
14: SecState +—— PRF(K1, lsecstate||ctr|[H(mgx p||jm1||ms))
15: ctr «——ctr +1
16: Shared Secret Key Pool <—— SSrest

Figure 4: Example of shared key-based long-term HPT-secure mono-authentication for
QKD.

protocol. They also share a public counter ctr, initialized at 0. In this occasion public key
infrastructure is not required since honest parties share secrets that no adversary has (with
negligible probability), hence there is no need to have certificates.

1: The protocol starts with the initiator Alice and the responder Bob performing an unau-
thenticated QKD protocol following Definition 5. Both parties obtain the public information
mgkp and the corresponding unauthenticated QKD bit string Kgxp = sSpest-

2: Honest parties agree on a shared secret K, taken from the shared secret key pool. Each
key has a security level associated and most likely an unique ID to differentiate them easily.
Earlier QKD keys present a better security than the ones distilled in later QKD iterations:
this could be a selection criteria.

3: The obtained key Kj is combined with the secret state SecState using dual PRFs to
derive the intermediate keys K;. An HPT adversary without the key Ky has negligible
probability to forge the intermediate key Kj.

The labels 1;, i € {1,754, TSp, MAC a1, MACp1, M AC 42, M ACp3, SecState}, presented
inside the cryptographic primitives, correspond to unique (with each other) bit strings that
are public information. The labels, combined with the counter ctr, allow for domain sepa-
ration for each intermediate key, provide security against reuse attacks and bind context to

29

the derived keys, as commented in this NIST recommendation strongly related to PRFs [34].

4, 5: If traffic protection is enabled, the traffic secrets, Krg, and Krg,, are derived from
Ki. An HPT adversary without the intermediate key K has negligible probability to forge
both traffic secrets.

Traffic secrets are needed when honest parties want confidentiality regarding the message
structure or metadata. Otherwise, the derivation of traffic secrets is optional as the MAC
tags, 74 and 7p, along with the shared keys, Ky and K7, are sufficient to provide integrity
and authenticity.

Traffic protection is maintained against active HP'T adversaries for both honest parties since
knowledge of Ky and the secret state parameter is required to be able to forge the traffic
secrets.

6, 7: The MAC keys, Kyac, and Kpracy, are derived from K;. An HPT adversary
without the intermediate key K7 has negligible probability to forge both MAC secrets.

8: The initiator Alice computes the long-term HPT-secure authentication tag 74 of the
public information Iyrac,,||ctr|| H(mgx p) with the derived secret key Kprac,. An HPT
adversary without the MAC key Kjsac, has negligible probability to forge the MAC tag.

9: If traffic protection is enabled, the initiator Alice AEAD encrypts 74 with the key Krg,
and sends the output, {74} Krs o 1O the responder Bob. Otherwise, 74 is sent directly.

10: The responder Bob (decrypts the received output with the corresponding traffic se-
cret and) verifies the received authentication tag with the public information lysac ,,||ctr
||H(mgxp) and the derived secret key Kprac,. An impersonation from an HPT adversary
that tried to forge the MAC tag 74 is detected with high probability, as taken into account
within the security proof.

11: The responder Bob computes the long-term HPT-secure authentication tag 75 of the
public information lyacy,||ctr||H(mgx p||m;) with the derived secret key Kprac,. An
HPT adversary without the MAC key Kjrac, has negligible probability to forge the MAC
tag.

12: If traffic protection is enabled, the responder Bob AEAD encrypts 75 with the key Krg,
and sends the output, {75} Krpsp» 1O the initiator Alice. Otherwise, 7 is sent directly.

13: The initiator Alice (decrypts the received output with the corresponding traffic se-
cret and) verifies the received authentication tag with the public information 1yracy,||ctr||
H(mggp|jm;) and the derived secret key Kprac,. An impersonation from an HPT ad-
versary that tried to forge the MAC tag 7p is detected with high probability, as taken in
account within the security proof.

14: Both parties update the secret state SecState by deriving it from the intermediate key
K7 and the classical traffic traded so far.

15: The counter ctr is updated with ctr + 1.

Since the key extracted from the shared secret key pool provides randomness, uniqueness
has to be included to avoid replay attacks. The counter ctr provides the uniqueness required,
S0 nonces are not necessary in this scheme.

16: Honest parties keep the now authenticated QKD bits, sS,est, in the pre-agreed shared
secret key pool.

30

Note that in this protocol, there is no involvement of ephemeral key. Adding an ephemeral
key would add another layer of protection regarding post-compromise security. If it is
assumed that the HPT adversary Eve has knowledge of the shared secret key pool and
the secret state parameter SecState in one iteration “a”, and if she becomes passive for at
least an iteration “b” > “a”, then the parameter SecState would be updated by the honest
parties to a value unknown to Eve, because of the ephemeral key. Thus the adversary Eve

would be detected at the MAC verification step by honest parties.

The choice of the non-ITS MAC function may depend on a security level parameter and
the secret key consumption constraint, if there is any such constraint. The obvious choice
is to use a MAC function with a time complexity that scales well with the length input,
in addition to requiring little secret key material to operate. Possible candidates would be
Hash-based MAC (HMAC) [35], Cipher-based Message Authentication Code (CMAC) [36,
37] or Galois Message Authentication Code (GMAC) [38, 39].

These MAC algorithms allow reuse of the shared secret key Ky without compromising the
security of the schemes. In that scenario, the key eventually expires, either because it has
been too long since the last update, or because it has been used too many times. Renewal
of the key is done by simply repeating step 2: a new QKD key is extracted from the shared
secret key pool. For the security proof of the non-IT'S MAC-based protocol, Ky is assumed
to be refreshed every time the protocol is run, to facilitate some post-compromise security
properties and freshness. If the shared secret key pool has insufficient bits, the PQC-based
protocol would need to be run again.

7 Hybrid Authenticated Key Exchange Framework

To show that the presented examples (Figures 2, 3 and 4) are secure, an adapted version
of the HAKE framework introduced in [15] and recalled in [17, 18] is used. This section
recalls and adapts the tools required to execute the HAKE framework in the context of
this work. The algorithmic description of the security model, Expgﬁiﬁ;gfig"‘l(m), is reused
and is not recalled within this work, however it can be found in [15], figure 5 of Appendix
C. To investigate security, the indistinguishability experiment is played between an HPT
challenger C and two adversaries A = {Ayp7, Aunbounded}, where Aypr and Aynpounded
correspond to an HPT (Definition 1) and conditioned unbounded (Definition 2) adversary,

respectively.

The presented examples do not use classical cryptography (non-PQC), however the tools to
deal with classical primitives are also presented for completeness. Protocols that combine
classical cryptography with different PQC algorithms follow a practice to prevent that if
one of the algorithms believed to be secure is found to be compromised, then said com-
bined protocol’s security would still hold. This is useful, especially nowadays where PQC
algorithms are under intense scrutiny and testing to check their practical security.

7.1 Secret Key Generation

Recall and adaptation of the HAKE framework. The HAKE framework categorizes
secret key generation into long-term and ephemeral. Long-term keys are generated once
and reused in every execution of a protocol, while ephemeral keys are freshly generated
at certain stages within each protocol execution. Furthermore, these are divided into the
following sub-categories:

e Post-quantum asymmetric secret generation. This includes all public-secret key pair

31

generation given by any PQC algorithm. The algorithm that generates these se-
crets for a long-term manner is denoted as LQKeyGen, while EQKeyGen denotes the
ephemeral version.

e Classical asymmetric secret generation. This includes all public-secret key pair gen-
eration given by any classical algorithm, known to be insecure against quantum algo-
rithms. The algorithm that generates these secrets for a long-term manner is denoted
as LCKeyGen, while ECKeyGen denotes the ephemeral version.

e Symmetric secrets. This includes pre-shared keys and keys distilled from an already
working QKD network. The algorithm that generates these secrets for a long-term
manner is denoted as LSKeyGen, while ESKeyGen denotes the ephemeral version.

The set of algorithms that produces the key material are denoted as:

e XYKeyGen(k) LA (pk, sk), where X € {L,E}, Y € {Q,C}, pk is public key, sk is
secret key and k is a security parameter.

o XSKeyGen(k) 3, (ss, ssid), where X € {L,E}, ss is shared secret (or symmetric
secret), ssid is the identity parameter of the shared secret ss and k is a security
parameter.

Adaptations, added conditions and comments. Long-term Post-Quantum secret
key generation is indirectly replaced by T ppp-term Post-Quantum secret key generation,
following Definition 17. This distinction evokes that the security of the PQC algorithm
secrets has a temporal bound T g7pr that relates to the bounded resources of the considered
HPT adversaries, required to make the QKD iterations secure. Additionally, the presented
protocols do not use ephemeral Post-Quantum secrets, thus EQKeyGen is never executed (or
returns |). However, ephemeral asymmetric post-quantum algorithms can be implemented
to achieve redundant security properties, similarly to the approach in the Muckle series [15—
18].

Furthermore, classical asymmetric secret generation is never used within the presented
protocols, thus LCKeyGen and ECKeyGen are never executed (or return L). However,
classical asymmetric algorithms can be added to provide redundant security properties, as
discussed at the start of this section.

The unauthenticated QKD keys from the first steps of the PQC-based protocols are consid-
ered symmetric ephemeral keys, thus, if ephemeral QKD keys are involved, then ESKeyGen
is executed via QKD.KeyGen in the presented protocols.

Since the protocols presented here are designed to require no pre-shared key, LSKeyGen
is not executed (or returns L). Once any of the presented protocols (Figures 1, 2, 3 and
4) are securely finalized, parties obtain a non empty shared secret key pool given by the
unused QKD bits. These QKD bits stored inside the shared secret key pool are considered
to be equivalent to session keys. Additionally, if the session keys are used to perform the
MAC-based protocol, the used keys are no longer considered as session keys, but rather as
a different element (shared secret key pool keys), with the condition that the session keys
were securely derived.

Next, the HAKE execution environment is recalled and adapted.

32

7.2 Execution Environment

Recall and adaptation of the HAKE framework. The environment is composed of
np parties Pi,..., P,, capable of interacting with each other. Each party is able to run
ng sessions of a general key-exchange protocol denoted by II. Each session consists of
np stages: i.e., for a new stage, the protocol II is run once again while maintaining the
per-session parameters from the previous stage.

The per-session parameters are denoted as m and described as:
e p € {init,resp}: The role of the party in the current session, i.e., initiator or responder.

e pid € {1,...,np,x}: The intended communication partner, where x denotes unspeci-
fied. For the unspecified case, the parameter can be updated once to a specified party

e{l,...,np}.
e stid € [np|: The current or most recently completed stage of the session.
e « € {active, accept, reject, L }: The status of the session, initialized with L.

o my[stid] € {0,1}* U{L}, i € {s,r}: Array of the concatenation of messages sent (if
i = s) or received (if i = r) by the session in each stage. Initialized with 1 and
indexed by the stage identifier stid.

o k[stid] € {0,1}* U {L}: Array of the session keys from each stage. The used session
keys k[i] to run the MAC-based protocol IIjr4c are removed and deleted, where the
index ¢ is the closest and non-used integer to stid such that ¢ < stid. Initialized with
1 and indexed by the stage identifier stid.

o gk[stid] € {0,1}* U{L}: Array of the Typpr-term post-quantum secrets. Initialized
with | and indexed by the stage identifier stid

o cxk[stid] € {0,1}* U{L}, = € {q,¢,s}: Array of the ephemeral post-quantum (if
x = q), classical (if = ¢) and symmetric (if z = s) secret keys used by the session in
each stage. Initialized with 1 and indexed by the stage identifier stid.

o pss[stid] € {0,1}* U {L}: Per-stage secret state (SecState) that is established during
protocol execution for use in the following stage. Initialized at an arbitrary, and
public, value and indexed by the stage identifier stid.

o sskp[stid] € {0,1}*U{L}: Array of the keys extracted from k[i] to run the MAC-based
protocol (ITpsac, defined below), where the index i is the closest and non-used integer
to stid such that ¢ < stid. Initialized with | and indexed by the stage identifier stid.

o st[stid] € {0,1}*: Any additional state used by the session in each stage. Indexed by
the stage identifier stid.

The identifier of the s-th instance of the protocol II being run by party P;, and the collection
of per-session variables maintained for the s-th instance of the protocol II being run by party
P;, are both denoted by 7 in the following.

In the context of this work, three examples of protocols can be run in an alternative manner.
The signature-based, the KEM-based and the MAC-based protocols from figures 2, 3 and 4
respectively, are denoted as Iy, Il x gy and Ilps4c respectively. In the following discussion,
IT corresponds to any element of the set {IIx, [Ixgar, [Ipac}. Note that the first iteration
of QKD has to be run with a PQC-based protocol, since the shared secret key pool is empty,
thus rendering insecure the usage of the MAC-based protocol.

33

The key-exchange protocol II is represented as a tuple of algorithms (f, FQKeyGen,
ECKeyGen, ESKeyGen, LQKeyGen, LCKeyGen, LSKeyGen), where:

e f(k, pk, sk;, ssid;, ss;, m, m) — (m/, ©’) is a probabilistic algorithm that takes a
security parameter k, the set of long-term asymmetric key pairs pk;, sk; of the party
P;, a collection of per-session variables 7 and an arbitrary bit string m € {0,1}* U {0}
as input, and then outputs a response m’ € {0,1}* U {0} and an updated per-session
state 7/, behaving as an honest protocol implementation.

e The KeyGen algorithms are the ones described in subsection 7.1.

To investigate security, the challenger C runs a total number of np times the pertinent secret
key generation algorithms, to generate public-secret key pairs (pk;, sk;) and/or symmetric
keys with the corresponding identifiers (ss, ssid), for each party P; € {Py,..., P,,}. All the
public keys and symmetric key identifiers, pk; and ssid, are shared with the adversary A.

The challenger C then samples a random bit b & {0,1} and interacts with the adversary
following the adversarial queries defined below. After terminating, the adversary A out-
puts a guess d of the challenger bit b. The adversary wins the HAKE indistinguishability
experiment, defined in Figure 5 of the Appendix C of [15], if d = b, and if the test session
7 satisfies a cleanness predicate, also recalled below.

Since the PQC secrets are T pr-term secure, the challenger is allowed to run LQKeyGen
again when required to obtain new PQC secret key material. Additionally, the adversaries
are allowed to ask for the PQC secrets once the sessions are not in an active status. The
challenger eventually only runs II with certain PQC secrets if CorruptQK, defined in sub-
section 7.3, has not been issued before reaching an accept status.

Furthermore, the challenger C manages a set of corruption registers that keeps track of
which secrets have been corrupted. Most of the registers are formally defined in Appendix
C of [15] and new ones would follow the same structure.

Adaptations, added conditions and comments. In the context of the protocols pre-
sented in this paper, the session parameter k[stid] (the array containing the session keys)
corresponds to the QKD bits that are stored in the shared secret key pool once the protocols
end without aborting. Note that once Il ;4¢ is run, the extracted session keys, Ky, are
moved to a different array, sskp[stid] to prove some post-compromise security property and
to avoid re-usage of the same key.

The array gk[stid] is also added, to express not only the idea that the PQC secrets are
Ty pr-term secure, but also that the adversaries are allowed to request the PQC secrets
once the test sessions reach the accept status. Eventually, the challenger creates new PQC
secret material when required before making the sessions to start a new stage.

In the same way, the arrays containing the ephemeral secret keys, exk[stid], update depend-
ing on which protocols have been executed for the different stages:

e If the signature-based protocol (Figure 2) is executed in stage stid, esk[stid] is updated
with the symmetric ephemeral QKD key ssgx p.

e If the KEM-based protocol (Figure 3) is executed in stage stid, eqk[stid] is updated
with the post-quantum ephemeral keys, k4 and kp, and esk[stid] is updated with the
symmetric ephemeral QKD key ssgr p.

o If the MAC-based protocol (Figure 4) is executed in stage stid, exk[stid] is updated
with some character that specifies that there is no ephemeral key computed in stage

34

stid. This is because the provided example does not use ephemeral keys, however,
as mentioned before, an ephemeral QKD key ssgxp may be derived to provide a
stronger version of post-compromise security.

The session parameter st[stid] is used to contain the information regarding which protocol
has been run in stage stid; either Iy, g gy or Ilpsac in this case. If IIj;4¢ is run in
stage stid, this session parameter also provides information to determine which key Kj
from k[stid] was extracted to execute the protocol: this could be done by storing some key
identity parameter. This array is not relevant to the security proof and is assumed to be
known by all adversaries A.

Now that the execution environment has been recalled and adapted, the adversarial inter-
actions are recalled and adapted next.

7.3 Adversarial Interaction

The considered adversary able to interact with the execution environment is an HPT adver-
sary. Additionally, the conditioned unbounded adversary is allowed to interact in a limited
way with both the execution environment and the HPT adversary.

Recall and adaptation of the HAKE framework. The adversaries A = {Aypr,
Aynbounded} are allowed to act as stated in Definitions 1 and 2. That is, the HPT adversary
has complete control of the classical and quantum communication network, able to modify,
inject, delete or delay classical or quantum messages/signals at all times. The unbounded
adversary has complete control of the quantum communication network, able to modify,
inject, delete or delay quantum signals at all times. Additionally, the unbounded adversary
is able to only read and delay the classical traffic.

Following these conditions, the HPT adversary Ay p7 can interact with the challenger C
following the queries:

e Create(i, j,role) — {(s), L}: The adversary initializes a new session owned by party
P;, with role role, and intended partner party P;. If a session 7 has already been
created, the challenger returns L. Otherwise (s) is returned.

e Send(i,s,m) — {m/,L}: The adversary sends a message m to an active session
(mf.a = active) for protocol execution and receives the honest output m’ from the
challenger, computed with II. f(k, pk;, sk;, ssid;, ss;, m, m). The previous local (chal-
lenger side) information of the session 7} is updated to 7Tf,.

e Reveal(i, s, t): The adversary has access to the session keys computed in session 7
(7 .k[t]) where the targeted session is in the accepted state (77.cc = accept). Otherwise
the challenger returns L. The challenger updates the corruption registers accordingly.

o Test(i,s,t) — {ky, L}: The adversary is provided by the challenger with the real
session key (b = 1) or a random session key (b = 0), where the targeted session is in
the accepted state (7f.a = accept). Otherwise the challenger returns L.

e CorruptXY (i, s,t) — {key, L}: The adversary is provided by the challenger with the
long-term XY € {SK, QK, CK} keys from party P;,. The parameters s and stage ¢
are indicated only for XY = QK. If the keys have been corrupted previously, then L
is returned. Specifically:

— CorruptSK(i): Reveals the long-term symmetric secrets (if available) of party
P;. This also affects the peer party of P;.

35

— CorruptQK(i, s,t): Reveals the post-quantum T g pp-term keys used in stage ¢,
mP.qk[t] (if available).

— CorruptCK(i): Reveals the classical long-term keys (if available) of party P;.

e CompromiseXY (i, s,t) — {key, L}: The adversary is provided by the challenger with
the ephemeral XY € {QK, CK, SK, SS, K P} keys created during the session 7 prior
to stage t. If the ephemeral key has already been compromised, then L is returned.
Specifically:

— CompromiseQK(i, s,t): Reveals the ephemeral post-quantum keys, 77.eqk[t] (if
available).

— CompromiseCK(i, s,t): Reveals the ephemeral classical keys, 77.eck[t] (if avail-
able).

— CompromiseSK(i, s,t): Reveals the ephemeral symmetric keys, 77.esk[t] (if avail-
able).

— CompromiseSS(7, s, t): Reveals the per-session state, 7.pss[t] (SecState).

— CompromiseKP(i, s,t): Reveals the symmetric secret extracted from the session
keys (shared secret key pool) to execute Iysac, 7f.sskp(t] (Ko).

Additionally, when the Test query is issued, the HPT adversary A interacts with the con-
ditioned unbounded adversary Ayunpounded With the following query:

e ReveallTS(i, s,t) — {Reveal(i, s, t), L}: If the conditioned unbounded adversary finds
a way to compromise the QKD key Kggp, distilled in session 7 at stage ¢, the
conditioned unbounded (or the HPT, does not matter) adversary A is allowed to
issue the Reveal(i, s,t) query to the challenger C. Otherwise, L is returned.

The algorithmic description of ReveallTS is an if statement that activates the Reveal query
in the case the conditioned unbounded adversary compromises the I'TS security of the QKD
keys; else nothing is returned. This ReveallTS query gives virtual access to unbounded
resources for the HPT adversary in order to test the ITS security of the final QKD keys,
also named as the session keys in this context.

The query ReveallTS returns the session keys if the QKD step has failed in the egxp(k)
sense. In other words, the probability that ReveallTS returns the session keys is egx p (k).
Furthermore, if the unauthenticated has been bad implemented, ReveallTS reveals always
the session keys (QKD keys). Note that the conditioned unbounded adversary is able
to interact with the quantum channel and with the public QKD traffic but not with the
authentication steps.

Furthermore, the probability that the QKD keys are not I'TS is equivalent to the probability
that authentication is not secure (named e4,41,) or QKD fails (named egx p), giving equation
2.

Pr(QKD keys not ITS) = equth + €QKD — €authEQKD < Equth + EQKD (2)

Where €44, is indirectly estimated in the security analysis, in section 8, and egx p is defined
in Definition 4.

Note that there is not a single way to test the I'TS security of the final QKD keys. For
example, the unbounded adversary could be replaced by the challenger itself who is honest

36

regarding the ITS security. In that case, the query ReveallTS would be requested to the
challenger C, rather than the conditioned unbounded adversary.

Adaptations, added conditions and comments. The traffic protection keys and the
corresponding encryption are not effective against the unbounded adversary, because the
confidentiality property of the presented protocols is not ITS, but is effective against
bounded HPT adversaries. Since authentication, confidentiality and integrity are being
tested against HPT adversaries, the conditioned unbounded adversary does not provide
with the trivially compromised HPT-secure keys to the HPT adversary once the ReveallTS
query is issued.

The Corrupt and Compromise queries can be called for the three presented protocols Ily,
i ey and Iy 40, yielding the following:

o Iy :

— CorruptQK reveals the Ty pp-term secrets of the PQC signature.

— CorruptSK and CorruptCK reveal nothing.

— CompromiseSK reveals the ephemeral QKD key.

— CompromiseSS reveals the SecState parameter.

— CompromiseQK, CompromiseSK and CompromiseKP reveal nothing.
o Ilxpnm:

— CorruptQK reveals the T pp-term secrets of the PQC KEMs.

— CorruptSK and CorruptCK reveal nothing.

— CompromiseSK reveals the ephemeral QKD key.

— CompromiseSS reveals the SecState parameter.

— CompromiseQK, CompromiseSK and CompromiseKP reveal nothing.
o Ilyac:

— CorruptQK, CorruptSK and CorruptCK reveal nothing.

— CompromiseKP reveals the symmetric secret Kjy.

— CompromiseSS reveals the SecState parameter.

— CompromiseSK, CompromiseQK and CompromiseKP reveal nothing.

When the CompromiseSK query cannot be issued to the challenger C caused by a cleanness
predicate condition, the HPT adversary Axp7 is allowed to interact with the conditioned
unbounded adversary once the unauthenticated QKD step has finalized, as stated in Defi-
nition 2, and obtain the ephemeral QKD keys with egx p(x) probability.

Note that the query CorruptQK is always successfully issued after waiting the estimated
time THPT-

If the Test and Reveal queries are issued together at any time, then the adversary trivially
compromises the security of the protocol, as that is equivalent to explicit issue of the shared
secret key pool. To avoid this kind of trivial compromise, the cleanness predicates are
defined in subsection 7.5, after recalling the definitions regarding partnering.

37

7.4 Partnering Definition

The matching sessions [40] and origin session [41] definitions are recalled. This defines how
sessions are partnered.

Definition 19. (Matching sessions). Let 7 and 77 be two sessions such that m7.pid =
Jj, mj.pid =i and 7}.p # m;.p. Session 7] matches session 7 in stage ¢ if 7;}.m, [t] = 77.m;|t]
and m7.ms[t] = 77.m,[t], where m}.m[t] and m;.m,[t] correspond to the concatenation of all
messages sent and received by the session 7} in stage ¢, respectively.

Additionally, the session 77 prefix-matches session 7} in stage t if 77.ms[t] = 77 .m,[t],
where 7¢.m,.[t]" is 7f.m, [t] truncated to the length of m}.m[t].

Note that w7 having a matching or prefix-matching session with T s equivalent to !
undertaking a matching or prefix-matching session with 7. If the sessions 7} and 7} are
matching, then the sessions are also prefix-matching.

Definition 20. (Origin sessions). Let 7} and 7737 be two sessions such that 7;.pid = j,
mipid = i and 77.p # 7i.p. Session m; has an origin session with 77 if 77 matches or
prefix-matches session with 77;’.

A session 7 that has an origin session with i implies that 77 has received the messages
that 77 intended to send. However, that does not imply that 7} is undertaking an origin
session with 77. Additionally, the sessions match if all messages sent and received by both
sessions are identical: for this case, both sessions are undertaking an origin session with
each other. The origin session distinction is necessary to include the case scenarios where
an adversary starts injecting, deleting, or substituting the classical traffic for at least one
of the sessions, where both sessions were matching beforehand.

The cleanness predicates are defined next.

7.5 Cleanness Predicates

The cleanness predicates define the conditions for which an adversary A does not break
the security of II. The main goal is to show that the presented examples of protocols
are secure against an HPT adversary. Furthermore, once any of the protocols are in an
accept state (or failed state, different from active state), the HPT adversary is allowed to
issue ReveallTS to an unbounded adversary, to verify that the obtained QKD keys are ITS
secure, where the unbounded adversary was able to interfere with the unauthenticated QKD
step and only observe the authentication steps. Note that if an adversary is permanently
unbounded, the presented algorithms are not secure: the only viable way of making QKD
secure in this case would be to properly use ITS-MACs with pre-shared key. Thus, the
unbounded adversary is defined such as being able to read all classical data and returns
either the Reveal and CompromiseSK queries, or nothing, without revealing more to the
HPT adversary, in function of if the sessions keys are I'TS or not.

In this case, the cleanness predicates can be reduced to “if authentication is secure, then the
session keys are secure”. Thus, secrecy of at least one of the secrets involving authentication
has to be guaranteed for when a protocol II is in an active state.

The cleanness predicates also capture perfect forward secrecy. The nature of a secure QKD
protocol implies direct perfect forward secrecy, since the last post-processing step of QKD,
privacy amplification, ensures that the individual QKD bits contain a min-entropy close to
unity. Thus, revealing all the secrets but the actual QKD bits (and the QKD secrets such as

38

the raw data encoded and decoded by respectively Alice and Bob) does not reveal the QKD
bits distilled from previous stages, i.e. the protocols have perfect forward secrecy, secure
against unbounded adversaries that interact with the public material once the protocols
are finalized (in an accepted state). This is expressed in the condition 3 (below) of the
cleanness predicate, by allowing the adversary to compromise all of the secret keys once the
test sessions reach an accept state.

Post-compromise security is also achieved for all HPT adversaries in the sense that the
adversary can compromise all ephemeral secrets of a particular stage without compromising
the security of the protocols, as long as there exists some previous stage that has not had
the QKD ephemeral secret compromised and the adversary has been passive in all stages
between the “Test” stage and the previous “clean” stage [42], expressed in condition 3 of
the cleanness predicate definition below as well.

Definition 21. (cleanypr). Let 7}[t] be a Il € {IIs, I xrnm, Iy ac} session in stage ¢
such that }.aft] = accept and 7}.pid = j. The II session 7} in stage t is cleanypr against
an HPT adversary if all of the following conditions hold:

1. Reveal(i, s,t) has not been issued.

2. For all (j,7,t) € np X ng x ny such that 77 matches 77 in stage t, Reveal(j,r,t) has

not been issued.

3. If there exists no (j,r,t) € np X ng X np such that m; is an origin session of w7 in stage
t, then one of the following set of queries has not been issued before 7}.a[t] < accept:

e CorruptQK(i, s,t) and CorruptQK(j, r, t).
e CompromiseKP (i, s,t) and CompromiseKP(j,r,t).

e CompromiseSK(i, s,t'), CompromiseSK(j, r,t") or CompromiseKP (i, s,t'),
CompromiseKP(j,r,t') and CompromiseSS(, s, u), CompromiseSS(j, 7, u), with

t' <w < t, and 7§ matches 7 in stages u.

If there exists a (j,r,t) € np X ng x ny such that m; is an origin session of 77 in stage
t, then one of the following set of queries has not been issued before 7’.at] < accept:

j
e CorruptQK(i, s,t) and CorruptQK(j,r,t).
e CompromiseKP (i, s,t) and CompromiseKP(j,r,t).

e CompromiseSK(i, s,t'), CompromiseSK(j, r,t") or CompromiseKP (i, s,t'),
CompromiseKP (4, r,t') and CompromiseSS(7, s, u), CompromiseSS(j, 7, u), with
t' <wu < t, and 7§ matches 77 in stages u.

4. The protocol Il 4c¢ is run only when 7).k has enough key material to extract Ko,
where 77 is a matching session of 7} in stages ' <t and 7;.k[t'] = 7} k[t'].
Condition 1. prevents the session keys being revealed to the considered adversary via the

Reveal query, since this trivially compromises the security of any protocol 1I.

Condition 2. additionally prevents that the session keys of the matching session are targeted
by the Reveal query as well, since matching sessions share the same session keys at the end
of the accepted protocols.

Conditions 1. and 2. impose that the challenger C never issues the Reveal query to the
HPT adversary A. However, note that the query ReveallTS can still be issued by the HPT

39

adversary to the unbounded adversary, bypassing conditions 1. and 2., making the session
77 [t] not clean in the case that QKD keys are not ITS in the first place.

(2

Condition 3. ensures that at least one of the secrets used to authenticate within the pro-
tocols is not known to the HPT adversary .A. This makes authentication secure against
substitution and impersonation attacks. Recall that after the physical time Tgypr has
elapsed, the Typp-term PQC secrets are revealed by the challenger C, which is equivalent
to the HPT adversary A issuing a CorruptQK query. If CorruptQK is issued once the
sessions reach accept status, the parties generate new PQC material in order to proceed to
the next stage.

Condition 4. ensures that the protocol IIjs4¢ is run only when the shared secret key pool
has enough key material to extract the key Ky. Since the shared secret key pool is empty
for stage t, a PQC-based protocol (IIy;, or Il gas) has to be realized until the shared secret
key pool has enough key material to realize successfully I1y;ac. If the adversary decides
to perform Denial of Service (DoS) attacks, this could exhaust the shared secret key pool
from session 77, since Ky is assumed to be fresh every time the protocol Il s 4¢ is executed.
In that case, the PQC-based protocol has to be run again to replenish the key pool once
again. If the goal is to rely as little as possible on PQC, then ideally it would be desirable
to have sufficient distilled key at stage ¢t = 1, i.e. at the first QKD iteration, to essentially
prevent DoS attacks. Once Ilj;4¢ is finalized, more keys are stored inside the key pool that
can in turn be used to execute Il 4c again. The party behind session 7} would also need
to communicate to its peer 7; to delete the used keys from the shared secret key pool. This
could be done by exchanging authenticated identity parameters of the used keys that now
have to be discarded. Despite being an extensive subject, no more discussion is provided
regarding the DoS attack in this paper.

Now that the cleanness predicate cleangax g is defined, it is convenient to recall the ad-
vantage of an algorithm A in winning the HAKE key indistinguishability experiment:

Definition 22. (HAKE key indistinguishability). Let II by a key-exchange protocol,
and np, ng, ny € N. For a particular given predicate clean, and an algorithm A, the
advantage of A in the HAKE key-indistinguishability is defined as:

1
Pr [EXpHAKE,Clean,A(H) _ 1] 1

HAKE,clean, A _
Ad (K:) =2 IInp,ng,nr 2

ILinp,ng,nr ’

where the experiment Expﬁéﬁ%ﬁfﬁ"‘l(m) is defined in Appendix C, figure 5 of the Muckle

paper [15] and & is a security parameter, and where ReveallTS, defined in this work, also
enters in play to test ITS security of the session keys. II is HPT HAKE-secure if, for all
HPT adversaries A, AdvﬁiKE’dean’A(n) is negligible in the security parameter x.

yp,ns,nT

As the HPT adversaries have access to the ReveallTS query in the presented framework, if
IT is HPT HAKE-secure, then the session keys (QKD keys) are ITS too.

8 Security Analysis

The security of the presented protocols II € {IIx, IIx gar, prac} is evaluated through the
cleanness predicate cleanypr and Definition 22.

Furthermore, the confidentiality property given by the traffic keys and AEAD is also taken
into account. The advantages for the HAKE key-indistinguishability game and the advan-

40

tages related to confidentiality are summed as given by the union bound. The following
theorem 23 accounts for both properties.

Theorem 0. The multi-stage and dynamic II € {IIx, [l g, asac} key exchange pro-
tocol is HAKE-secure with cleanness predicate cleanypr, and confidential secure, where
unauthenticated QKD follows Definition 5, PRF is a dual PRF algorithm (Definition 7), H
is a weak collision resistant hash function (Definition 8), ¥ is a EUF-CMA secure signature
algorithm (Definitions 9 and 10), KEM is IND-CCA secure KEM algorithm (Definitions 11
and 12) and MAC is a EUC-CMA secure MAC algorithm (Definition 13 and 14). That is,
for any adversary A (Definitions 1 and 2) against the HAKE key-indistinguishability game

(Definition 22), Advﬁiﬁ%{?fﬁ” P T’A(Ii) is negligible in the security parameter x, where:

HAKE,cleany pr,A
AdVH,nP,ns,nT (’{) <

Qn%nSnTZ [Advggf'CMA(/@) + 6AdVH7A(/-$)}
Qn%n%n%z [eQKD(,%) + AdViFI)lngual7A(K)

(1 + n7y) {5AdvEp 4 (k) + AdVAEXD 4 (1)
AdVRERDA (k) + AVAGA ™ () + 6Advi a(k) }]

2n%;n SNTx s [Adv%EDM?EA (k) + AdVgII%qual A (k)

AAAVERE 4(K) + AAVRERDLA (K) + AdVAEaD 4 ()
AdvEIAGA™ (k) + 5AdvE, 4 (k)]

2n%n%n%KEM [EQKD(KZ) + AdvglgF(luaIA(n)

(1 + 17y) { AdVBRE 4 (k) + 2AdVALXT A ()
2AdVREAD A | (k) + Advigac A (k) + 5Advi a(k)]

+ o+ o+ o+ o+ o+

HAKE,cleang p7,A (/g)
II,np,ng,(n/;|Ko derivation stage)

QH%DWSWTMAC [Adv
Advgﬁqual’A(ﬂ) + 3AdVERp A(K) + AdVREXDA ()
AdVINTSTRT (k) + AdvEUGMA ()

2n%n%n2 [AdVHAKE,CleaanT,.A)(,‘i)

Tamac II,np,ng,(n/|Ko derivation stage
ind ind IND-CPA
Advpppava 4 (%) + 4AdviRp A(k) + Advapap 4 (K)

INT-CTXT EUF-CMA
Advagap.a (k) + Advyaca (k)

ind -CPA
NTyrac {5AdVPRF,A(’€) + AdVIANE%D,P.A (k)

AdvRERDA (k) + AdviiAGA " () }]

+ 4+ + + + + o+

npngnr [2Advipas 4 (k) + ok p(K)]

2,2 IND-CPA
NpNSgNTy gy 2AdvAEAD,.A (“)

+ o+

Proof. As performed in the Muckle series, the proof regarding the HAKE key-indistinguishability
game is divided into three separate cases where the query Test(i, s, t) has been issued:

1. The session 7} (where 7}.p = init) has no origin session in stage ¢.

2. The session 7} (where 77.p = resp) has no origin session in stage t.

41

3. The session 7} in stage ¢ has a matching session.

Cases 1 and 2 verify that Il remains secure against attacks that force sessions to remain
unmatched. Both cases encapsulate the idea of an active adversary substituting, deleting
or injecting messages. Case 3 ensures that II is secure for sessions where the transcripts
fully match or prefix-match. This case takes into account a passive adversary that is only
reading the traffic. The three cases together cover all adversarial scenarios relevant to the
protocol, protecting against a wide variety of attacks, including both impersonation and
substitution attacks, and thus provide comprehensive security guarantees for the scheme.

Additionally, since II could involve three different protocols, Ils, Ilx gy and Il a0, the
security proof has to take into account the fact that a session can choose between one of
the three algorithms at any time (with the conditions that at stage ¢ = 1 and condition 4.
from cleangpp, Iprac is not run). This implies that the security of the three protocols
have to be evaluated individually at some point of the proof. This is done by dividing the
number of stages nr into nyy,, N7y, and nry, ., where ngy, +nr. ., + 11,40 = nr. This
division takes into account the number of stages where each protocol has been executed.
Hence, each case out of the three cases that decomposes the HAKE key-indistinguishability
game present three more sub-cases: one for each protocol in II.

It follows that:

AdVHAKE’CleanHPT’A(I{)

HAKE,cleany p7,A,C1
IIinp,ng,nr Adv (K)

np,ng,nr

HAKE,cleany p7,A,C3
+ AdVH,nP,ns,nT (K)

HAKE,cleany pr,A,C2
+ Ad Iinp,ng,nr (

=

HAKE,cl .
Where Advnmpﬂ;gfs;lHPT’A’C# (k) corresponds to the advantage of the HPT adversary A in

winning the key-indistinguishability game in case #. Furthermore,

HAKE,cleang pr,A,Cx

HAKE,clean JAC
ILnp,ng,nr (k) . * (k)

ILnp,ng,nry,

Adv = Adv

HAKE,cleany p7,A,Cy (I{)
ILnp,ns Ny gy,

HAKE,cleany p7,A,Cy
II,np,ng,

+ Adv

+ Adv (k)

NThrac

In total, nine advantages have to be evaluated (three cases, for each of three protocols).
However, since case 1 and case 2 present the same bounds given a protocol and case 3 can
be easily treated in the same way for the three protocols, four total advantages are actually
evaluated (one case for three protocols and one case for one protocol).

Here is an example of how to evaluate the advantages for different protocols. Assume that
two parties are running a session with four stages where they decided to run the protocols
g er, Uprac, Iy and a0 in stages 1, 2, 3 and 4 respectively. The total security levels
for the different stages are:

. HAKE,cleany pr,A _ HAKE,cleany pr,A
e Stage 1: Advy, 25 7 (k) = Ade,nP=2,ns=LnTKEM=1(’%)

. HAKE,cleany pr,A _ HAKE,cleany pr,A
e Stage 2: Advy, 5 (k) = Ade,nP=2,ns=LnTKEM=1(’%)

HAKE,cleany pr,A
+AdVH7nP:2,ns:1,nTMAC:1(“)

42

. HAKE,cleany pr,A o HAKE,cleany pr,A
i Stage 3: AdVH7np:2,nS:17nT:3(’%) - AdVH7np:2,nS:17nTKEM:1(ﬂ)

HAKE,clean VA HAKE,clean VA
+AdVH,nP:2,nsfll,)rfTMAC:1(“) + AdVH,np:QmS:Hl],JrfTE:l(K)
. HAKE,clean VA _ HAKE,clean VA
e Stage 4: AdVH,nP=2,ns=HIIXT=4(”) = AdemP:Q,nSZHfXTKEM:l(/@)
HAKE,clean VA HAKE,clean VA
+Ad H,np:2,ngé{11?5TA1AC:2(H) + AdVH,np:ZnS:Hl},D?ZTE:l(H)
The security proof is performed by starting with the original HAKE security game (the
presented protocols as they are) and aiming for an unwinnable game (by modifying little
by little the presented protocols with sound replacements), reached by game-hopping [43,
44], whilst making sure that the session is cleangypr according to the defined cleanness
predicates. This is typically done by stating what key material can be compromised and
then evaluate the chance of the defined adversary to win the modified games by replacing
the non-compromised key material by uniformly random bit strings; the capacity of an
adversary to differentiate between Games is given by the defined cryptographic primitives
advantages, given in the Definitions section 3. Additionally, confidentiality of the traffic is
also evaluated and included within the security parameters.

Since the unauthenticated QKD step is assumed to follow Definition 5, i.e. the unauthenti-
cated QKD protocol is the same as a regular QKD protocol that has a secure authenticated
channel, it suffices to show that authentication is £,,-secure to make the final QKD keys
ITS and (equtn + €@k p)-secure, according to Definition 6. Additionally, €4y¢, contains the
security that keeps confidentiality and integrity intact, as given by the traffic protection
keys and the MAC tags, respectively.

A reminder that the PQC secrets are used when the physical time is less than an estimation
of Tipr. Once the physical time has surpassed Tgpr or the CorruptQK query has been
issued when the test sessions reach the accept state, new PQC secrets have to be generated.

In all cases and sub-cases, the game-hopping proof starts with the same Game 0 defined as:

Game 0: This is the original HAKE security game.

AdviphXiaenir T A () = Pr(break)

8.1 Case 1: Test init session without origin session

As performed the in Muckle series, the game hops will converge to a game that takes all the
potential vulnerabilities of the cryptographic primitives used, where the adversary A has a
negligible chance to win, to afterwards hop to a final unwinnable game, where the challenger
C always reject, regardless of the correctness of the cryptographic primitives. Specifically,
Case 1 (and Case 2) security analysis shows that A has negligible chance in causing the test
sessions 77 (or m; respectively) to reach an accept state without an origin session. Both
Cases take into account substitution, injection and deleting attacks, meaning that the test
sessions 77 may or may not already have started undertaking a matching session with an
intended partner session 77 at stage t' < t, but in stage ¢ the adversary stops the matching
session by interacting with the traffic such that the test sessions no longer have an origin

session.

Game 1 is the same for all of the sub-cases for Case 1 and Case 2, unless mentioned otherwise:

43

Game 1: The indices (i, s,t), corresponding to the test session 7, the stage stage ¢, and
the intended partner j are guessed. If the query Test(i', s', ") is issued to a session 7Tf//, where
7Tf,, pid = j', and if (i,s,t,7) # (¢, ', t',j), then the game aborts, yielding the following in
the worst case scenario:

Pr(breaky) < nbngnrPr(break;)

This game takes into account not only the scenarios where the adversary wants to imper-
sonate party j from the start, but also replay and substitution attacks. This is because the
security against the mentioned attacks relies solely on the cryptographic primitives and not
on the timing of the adversarial attack. The collision resistance probability is also taken
into account for all sub-cases but the MAC case, since the MAC input presents a counter
that provides uniqueness for the input of the cryptographic primitives. Furthermore, entity
protection and cipher protection are also taken in account, regardless of if this compromises
or not the final session key (QKD keys).

8.1.1 Case 1: Sub-case ¥, CorruptQK is not issued at stage t before accept

The security of the IIs; protocol is evaluated in the case that the CorruptQK query has not
been issued.

Games 0 and 1: Defined right before and right after subsection 8.1 respectively.

Game 2: If the targeted test sessions reach the reject state, 7;.a[t] = reject, then this
game aborts. In Game 1, if the targeted test sessions reach a reject state, then L is returned
by the Test query, making Game 1 and Game 2 equivalent. Since the adversary A gains no
additional advantage compared to Game 1, it yields that:

Pr(break,) = Pr(breaks)

Game 3: If the targeted sessions reach the accept state, w7.a[t] = accept, then this game
aborts. Note that the probability of winning Game 3 is exactly zero since the Test query
always returns |, caused by the constant abortion. Furthermore, Game 2 and Game 3 are
identical when the adversary A fails to successfully forge or distinguish any of the cryp-
tographic primitives or key material, thus by the Difference Lemma (Lemma 1 from [43]),
this yields:

|Pr(breaks) — Pr(breaks)| < Pr(abort)
= Pr(breaks) < Pr(abort)

where Pr(breaks) = 0 and Pr(abort) is the probability that the session aborts, i.e. 7f.aft] =
accept. The following Game(s) replace(s) the vulnerable primitives or key material by
uniformly random and independent values to upper-bound Pr(abort). On this occasion,
only the signature tag is targeted since the rest of the primitives and tags are trivially
vulnerable since the HPT adversary Ayp7 is allowed to issue the pertinent queries while
keeping the test session clean.

44

Game 4: The Tpypr-term secret skp is replaced with a uniformly random and indepen-
dent value, skp, of the same length. The signature tag op is then computed with X.Sign(skp,
I, ||H(mgr p|jmy)). Since skp is itself uniformly random and independent, and the HPT
adversary A has not issued either CorruptQK(i, j) or CorruptQK(j,4) queries, this change
is a sound replacement. If the session 7} reaches the accept state, then the adversary
must have forged a valid signature tag op (following Experiment 3 from Definition 10).
Additionally, the adversary is allowed to reuse requested signature tags but changing the
message to be authenticated, to try to bypass the burden of finding the secret key skp. In
that case, if the session 7} reaches the accept state, then a hash collision must has been
found. Actually, the adversary can target six different digests: H(m’Q K D> M1 to m;), where
m’Q xp corresponds to the QKD traffic created by the authenticated interaction between
the test party and the adversary and ¢ € {2,3,4,6,7,8}. To prevent any attack that targets
the digests, a conservative bound is taken where all lines involving the hash function are
considered. According to Definitions 8 and 10 and the union bound, it follows that:

Pr(abort) < Advggf'CMA(n)

Pr(breaky) < n%gnsnT2 [Advggf'CMA(n) + 6Ade7A(n)]

The conditioned unbounded adversary cannot interact (replace or substitute) with the
nonces since this is not part of the unauthenticated QKD step. Additionally, if the nonces
are concatenated to the labels, instead of putting them inside the hash function, the collision
vulnerability becomes nonexistent.

Note that the adversaries A can issue the query CorruptQK at any time, as long as the
test sessions reach the accept state. Since the PQC secrets are used to authenticate the
QKD traffic without affecting the QKD step itself, issuing CorruptQK under the accept
state condition does not affect the final advantage of winning the HAKE security game.

8.1.2 Case 1: Sub-case X, CompromiseSK are not issued at stage t' and Com-
promiseSS are not issued at stages u, t' <u <t

Game 0: Defined immediately before subsection 8.1.

Game 1: Same as Game 1 defined immediately after subsection 8.1, but the adver-

sary has to additionally guess the session 7 in which the test session w7 has matched

in stages u, and taking into account the guessed stage t’ where the adversary A has

not issued CompromiseSK(, s,t") or CompromiseSK(j,7,t’'), and CompromiseSS(i, s, u) or

CompromiseSS(j, 7, u) have been issued, where the test session 77 matches session 7 in
stages u, where t' < u < t:

Pr(breaky) < n%n%n%z Pr(break)

Games 2 and 3: Same as sub-case Y, CorruptQK is not issued at stage ¢t before accept,
section 8.1.1.

Pr(break,) < Pr(breaks) < Pr(abort)

45

Game 4: The ephemeral QKD key is replaced with a uniformly random and independent
value, s%, of the same length. The replacement is performed with an unauthenticated
QKD challenger that replaces the public traffic mgxp with m’Q xp» Which is used to distill
s%. Since m matches session m; in stage t’', the replaced traffic m’QKD is received
by both sessions without modification. The detection of this replacement by A implies
having an efficient distinguishing algorithm against the indistinguishability security of the
unauthenticated QKD, where the algorithm does not target authentication.

Pr(abort) < eqrp(k) + Pr(breaks)

Game 5: The intermediate key Ko < PRF(ssqxp, lo||H(m) is replaced with a uniformly
random and independent value, I?o, of the same length. The replacement is performed with
a PRF challenger after querying lo||H(m), where m and H are the pertinent public data.
Since S% is uniformly random and independent by Game 4, this is a sound replacement.
The detection of this replacement by Ay p7 implies having an efficient HPT distinguishing
algorithm against the indistinguishability security of the PRF, thus:

Pr(breaky) < AdviﬁlﬁRA(/{) + Pr(breaks)

Game 6: The intermediate key K <— PRF(SecState, [| |I?0) is replaced with a uniformly
random and independent value, I?l, of the same length. The replacement is performed with
a dual PRF challenger after querying SecState and l;. Since Ky is uniformly random and
independent by Game 5, this is a sound replacement. The detection of this replacement by
Agp implies having an efficient HPT distinguishing algorithm against the indistinguisha-
bility security of the dual PRF, thus:

Pr(breaks) < Advig,ﬁqual (k) + Pr(breaks)

Games 7 and 8: The traffic key Krg, + PRF(IA(;, Irs,||H(m) and the MAC key Kpracy
+— PRF(K,1 MACy||[H(m) are replaced with uniformly random and independent values,
I?T\:q; and ng, of the same length, respectively. These replacements are performed
with a PRF challenger after querying lrg,||H(m) and lprac,||H(m), where m and H are
the pertinent public data. Since Ifa is uniformly random and independent by Game 6, these
are sound replacements. The detection of these replacements by Ay p7 implies having an
efficient HPT distinguishing algorithm against the indistinguishability security of the PRF,
thus:

Pr(breaks) < 2AdViPI)11%F7A(/€) + Pr(breaks)

Since confidentiality is also desired, the AEAD advantages regarding IND-CPA are taken
into account. Additionally, the adversary not only has to forge what is inside the AEAD
ciphertext, but also has to generate a valid AEAD ciphertext that the decryption process
accepts (related to INT-CTXT security).

46

Game 9: Same as Game 7 but with the traffic key Krg,.

Pr(breaks) < AdviﬁlﬁRA(n) + Pr(breaky)

Games 10 and 11: The AEAD ciphers {B,O‘B,TB}KTSB and {A,O‘A,TA}KTSA are re-

placed with uniformly random and independent values, {B, o5, 75} krs,, and {A, 04, Ta} k1, »
of the same length, respectively. The replacement of {A 04,74} Krg, 18 performed with a
IND-CPA AEAD challenger with query A, o 4, 74, whereas the replacement of {B,op, 75} Krs,

is performed with a INT-CTXT AEAD challenger with query B,op,7p. Since Krg, and

Krg, are uniformly random and independent by Games 7 and 8, respectively, these are
sound replacements. The detection of these replacements by Ayp7 implies having an ef-
ficient HPT distinguishing algorithm against the INT-CTXT or IND-CPA security of the
AEAD algorithm, thus:

Pr(breakq) < Advﬂ%&%%(ﬂ) + AdVR\IETXSB(T(n) + Pr(breaki;)

Game 12: If the targeted session 7] accepts without an origin session in stage ¢, then
this game aborts. The abortion condition is met once the final MAC tag given by no honest
session 7737 is accepted by m7. The accept condition occurs when a EUF-CMA MAC chal-

lenger computes the MAC tag 75 + MAC.Auth(KmB, Ipmacy|[H(m)) for ¥ by querying
the pertinent message m. Since Kjsacy is uniformly random and independent by Game
8, this is a sound replacement. The detection of this replacement by Ay p7 implies having
an efficient HPT forging algorithm against the EUF-CMA security of the MAC algorithm,
thus:

Pr(breaki;) < Adv%&%&MA(/@) + Pr(breaki2)

Game 13: The secret state SecState PRF(E, ISecsState||H(m)) is replaced with a uni-
formly random and independent value, Se?%te, of the same length. The replacement is
performed with a PRF challenger after querying lsecstate||H(m), where m and H are the
pertinent public data. Since I?l is uniformly random and independent by Game 6, this is a
sound replacement. The detection of this replacement by Ay p7 implies having an efficient
HPT distinguishing algorithm against the indistinguishability security of the PRF, thus:

Pr(breakys) < Advilﬁlf%RA(n) + Pr(breakss)

The next game hops involving the secret state SecState are repeated (¢t —t’) times in each
consecutive stage u where ' < u < t. Recall that there is a matching session m; with 7} for
all the stages following stage t'.

Game 14: The intermediate key K; PRF(Se/c%te,hHKo) is replaced with a uni-
formly random and independent value, I?l, of the same lengwhe replacement is per-
formed with a PRF challenger after querying /;||K(. Since SecState is uniformly random
and independent by the previous game, this is a sound replacement. The detection of this
replacement by Ay p7 implies having an efficient HPT distinguishing algorithm against the
indistinguishability security of the PRF, thus:

47

Pr(breakis) < nT{AdviﬁlﬁlF,A(/{) + Pr(breakis) }

Games 15 to 21 : Same as Games 7 to 13 respectively.

Pr(breakys) < 4Adviip 4(k) + AdvREADA (k) + AdvREAD 4 (k) + Adviiac o (k)

To include potential attacks where collision of the digests could be exploited, as done in
the sub-case ¥, CorruptQK is not issued at stage t before accept, section 8.1.1, the union
bonds of the advantages related to the collision probability are also included. That is:

Pr(breakis) < 6Advy 4(k) + Advi}?ﬁF,A(/ﬁ) + Pr(breaki4)
Pr(breaks;) < 6Advy, 4(k)

Since there are no more primitives or key material that the adversary can target, the final
advantage is bounded.

Through combining all the inequalities together, inequality 3 follows.

Advﬁiﬁ%gffgspﬂ""cl (k) < n%;.nsnTE [Adv%}f'CMA(/@) + 6AdVH7A(/-$)}
+ npnénty [eqrp (k) + AdVEE a4 (k) (3)
+ (14 n7y) {5AdVERE (k) + AdVRERD A ()
+ Advipan - (8) + AdviAGAT (k) + 6Advi a(k) }]

The sub-case for Il g is treated next.

8.1.3 Case 1: Sub-case KEM, CorruptQK is not issued at stage ¢t before accept

The security analysis follows analogously to what has been performed with the signature
case.

Games 0 and 1: Defined immediately before and immediately after subsection 8.1, re-
spectively.

Pr(breaky) < nbngnry,.,,, Pr(break:)

Games 2 and 3: Same as sub-case 3, CorruptQK is not issued at stage t before accept,
section 8.1.1, respectively.

Pr(break;) < Pr(breaks) < Pr(abort)

48

Game 4: The Tpypr-term secret kp is replaced with a uniformly random and independent
value, kp, of the same length. The replacement is performed with a IND-CCA KEM
challenger where the challenger’s public key pk/; and the cipher output ¢y takes the place
of the public key pkp and cipher cg in messages m3 and my, respectively. If the session 7}
reaches the accept state, then the adversary must have successfully decapsulated l;;;. As the
queries CorruptQK(7, j) or CorruptQK(j,7) have not been issued, it follows that (following
Experiment 4 from Definition 12):

Pr(abort) < AdviyE]?\;[,CfA(n) + Pr(breaky)

Game 5: The intermediate key Ko <— PRF (K7, l2||125) is replaced with a uniformly ran-
dom and independent value, I?g, of the same length. The replacement is performed with a
dual PRF challenger after querying K; and ls. Since kp is uniformly random and indepen-
dent by the previous game, this is a sound replacement. The detection of this replacement
by Ayp7 implies having an efficient HPT distinguishing algorithm against the indistin-
guishability security of the dual PRF, thus:

Pr(breaky) < Adv}?&qual (k) + Pr(breaks)

Games 6 and 7: The traffic keys Krg ,, < PRF (K1, Irs,,|[H(m)) and Krg,, + PRF (K],

Irsy, ||H(m)) are replaced with uniformly random and independent value, Krg ,, and Krg,,,
of the same length, respectively. The replacements are performed with a PRF challenger
after querying lrg,,||H(m) and lrs,,||H(m), where m and H are the pertinent public data.

Since K is uniformly random and independent by the previous game, this is a sound re-
placement. The detection of this replacement by Ayp7 implies having an efficient HPT
distinguishing algorithm against the indistinguishability security of the PRF, thus:

Pr(breaks) < 2Adv§1§F7A(/<;) + Pr(breakr)

Games 8 and 9: The AEAD ciphers {c4, TB}KTSM and {cp, TA}KTSA2 are replaced with

uniformly random and independent values, {ca, 75} Krsp, and {cp, 7} Krs 1y of the same
length, respectively. The replacement of {cp,74} Krs ,, is performed with a IND-CPA
AEAD challenger with query cpg, 74, whereas the replacement of {(:,4,7'3}KTSB2 is per-

——~—

formed with a INT-CTXT AEAD challenger with query ca,7p. Since Krg,, and Krg,,
are uniformly random and independent by Games 6 and 7, this is a sound replacement. The
detection of these replacements by Axyp7 implies having an efficient HPT distinguishing
algorithm against the INT-CTXT or IND-CPA security of the AEAD algorithm, thus:

Pr(breakr) < Advﬂ%&%%(m) + AdvR\IE&gB(T(K) + Pr(breaky)

Game 10: The intermediate key K3 <« PRF(E,Z;;HI{A) is replaced with a uniformly
random and independent value, 1?3, of the same length. The replacement is performed with
a PRF challenger after querying l3||k4. Since K> is uniformly random and independent by
the previous game, this is a sound replacement. The detection of this replacement by Ayp7
implies having an efficient HPT distinguishing algorithm against the indistinguishability
security of the PRF, thus:

49

Pr(breaky) < Advgﬁ%RA(/i) + Pr(breakio)

Game 11: The MAC key Kpracy < PRF(I?;,, Ipracy, ||[H(m)) is replaced with a uniformly
random and independent value, K/]\EEB, of the same length. The replacement is performed
with a PRF challenger after querying lyacy, ||H(m). Since 1?3 is uniformly random and
independent by the previous game, this is a sound replacement. The detection of this
replacement by Ay p7 implies having an efficient HPT distinguishing algorithm against the
indistinguishability security of the PRF, thus:

Pr(breakqp) < AdviﬁlﬁRA(n) + Pr(breaksy)

Game 12: If the targeted session 7] accepts without an origin session in stage ¢, then
this game aborts. The abortion condition is met once the final MAC tag given by no

honest session 7'(';- is accepted by 7. The accept condition occurs when a EUF-CMA MAC

challenger computes the MAC tag 75 <+ MAC.Auth(K;[Z(;BQ,lM acg||H(m)) for =7 by
querying the pertinent message m. Since Kjs4cyp, is uniformly random and independent by
Game 8, this is a sound replacement. The detection of this replacement by Ayp7 implies
having an efficient HPT forging algorithm against the EUF-CMA security of the MAC
algorithm, thus:

Pr(breaki;) < Advﬁ%%&MA(/@) + Pr(breaki2)

Where Pr(break;2) = 0 since there are no more components to target that would allow
the test session to reach the accept state or abort caused by the MAC verification failure.
Additionally, as performed with the signature case, the hash collision advantage is also
taken into account for all traded messages, to take into account potential attacks in regard
of that. Hence:

Pr(breaky) < nHnsnTep,, [Adv?EDM?EA(/@) + AdvglngualvA(m)
+ AAdvpip a(k) + AVREXDA (k) + AdVREAD A ()

+ ARG (k) + 5Advi ()]

8.1.4 Case 1: Sub-case KEM, CompromiseSK are not issued at stage t' and
CompromiseSS are not issued at stages u, t’' <u <t

Game 0: Defined immediately before subsection 8.1.

Game 1: Same as the sub-case X, CompromiseSK is not issued at stage ¢ and Compro-
miseSS is not issued at stages u, t’ < u < t, section 8.1.2.

Pr(breaky) < n?gn%nngEM Pr(breaky)

50

Games 2 and 3: Same as Sub-case K EM, CorruptQK is not issued at stage t before
accept, section 8.1.3.

Pr(break,) < Pr(breaks) < Pr(abort)

Games 4 to 6: Same as Games 4 to 6, respectively, from the sub-case 3, CompromiseSK
is not issued at stage ¢ and CompromiseSS is not issued at stages u, t' < u < t, section
8.1.2 (targets ssqr p, Ko and Ki).

Pr(abort) < eqrp(k) + Advi}?ﬁlF,A(ﬂ) + Advgﬁqual (k) + Pr(breaks)

Games 7 and 8: Same as Games 6 and 7, respectively, from the sub-case K EM, Cor-
ruptQK is not issued at stage ¢ before accept, section 8.1.3, but targeting Krg,, and Krg,,

with K.

Pr(breaks) < 2 AdviﬁlﬁRA(ﬂ) + Pr(breaks)

Games 9 and 10: Same as Games 8 and 9, respectively, from the sub-case KEM,
CorruptQK is not issued at stage t before accept, section 8.1.3, but targeting {B} Krsp,

and {cp}rrs,, With Krg,, and Krgy, .

Pr(breaks) < Advg\IE%S%(K) + Advﬁ\‘ET/gS%T(n) + Pr(breakio)

Games 11 to 18: Same as Games 5 to 12, respectively, from the sub-case K EM, Cor-
ruptQK is not issued at stage ¢ before accept, section 8.1.3, but targeting Ko, Krg,,,

Krspys {BYkrsy,» {€a:TB YKy, s {€B: TA K s, K3, Kmacy and 7p with the respective
uniformly random and independent parameters and security challengers.

Pr(breakiy) < B5AdvBRp 4(k) +AdVREAS A (k) + AdVALan 4 (k)

+ Advﬁ%%&MA(n) + Pr(breakisg)

Game 19: Same as Game 13 from the sub-case ¥, CompromiseSK is not issued at stage
t' and CompromiseSS is not issued at stages u, t' < u < t, section 8.1.2, but targeting
SecState with Ks.

Pr(break;s) < AdviﬁlﬁRA(n) + Pr(breakiy)

The next game hops involving the secret state SecState are repeated (¢t —t') times in each
consecutive stage u where t’ < u < t. Recall that there is a matching session m; with 77 for
all the stages following stage t'.

Game 20: Same as Game 6 but targeting K7 with uniformly random and independent
parameter SecState, and with a PRF challenger.

Pr(breakyg) < nT{AdviﬁﬁlF,A(ﬂ) + Pr(breaksy) }

51

Games 21 to 33: Same as Games 7 to 19

Pr(breaks) < 8Adviip 4(k) + 2AdviYASA (k) + 2AdVAEAS 4 ()
+ Advijaca (%)
To include potential attacks where collision of the digests could be exploited, as done in all

of the precedent cases, the union bonds of the advantages related to the collision probability
are also included. That is:

Pr(breakis) < 5Advy (k) + Advif)ﬁF’A(/i) + Pr(breakig)
Pr(breakss) < 5Advy a(k)

Since there are no more primitives or key material that the adversary can target, the final
advantage can be estimated.

By combining all the inequalities together, the inequality 4 follows.

HAKE,cleang p7,A,Cq
Ad II,np,ng, (’k';)

IN

NS0,y [AAVIRCTA (5) + AV o ()
AAAVERE 4(K) + AAVRERDLA (K) + AdVREAD A ()
AdVENGA (k) + 5Advy, a (k)] (4)
n%n%nQTKEM [6QKD(/£) + Advglngual’A(m)

(1 + 175) {9AAVERE 4 (<) + 2AdVREXDA (#)

2AdVR\IE1;§SB(T(/€) + Advﬁ%%&MA(ﬁ) + 5AdVH,A(Ii)}]

T pMm

+ o+ o+ o+ o+

The sub-case for ITy; 4 is treated next.
8.1.5 Case 1: Sub-case M AC, CompromiseKP is not issued at stage t before
accept

Games 0 and 1: Defined immediately before and immediately after subsection 8.1, re-
spectively.

Pr(breaky) < nbngnr,, .. Pr(break:)

For this sub-case, the adversary does not have to guess the stage from which the keys K
are being taken, since honest parties follow a public convention. For example, parties could
use the last derived key session from the K derivation stage, or even extract sufficient keys
in the first QKD iteration in order not to rely on asymmetric cryptography anymore in
further QKD iterations.

Games 2 and 3: Same as sub-cases ¥ (and K EM), CorruptQK is not issued at stage t
before accept, section 8.1.1 (and 8.1.3), respectively.

Pr(break;) < Pr(breaks) < Pr(abort)

52

Game 4: The shared secret Ky is replaced with a uniformly random and independent
value, Ky, of the same length. The replacement is performed with a challenger, which has a
shared secret key pool that stores session keys from past protocols II run by the challenger
themselves, and K is a key from the challenger’s shared secret key pool. If the session
m; reaches the accept state, then the adversary must have compromised or guessed Ky
correctly. As the queries CompromiseKP (i, s,t) or CompromiseKP(j,r,¢) have not been
issued, it follows that:

Pr(abort) < AdvIAREdeansipr, A)(m) + Pr(breaky)

II,np,ng,(n/x|Ko derivation stage

Games 5 to 11: Same as Games 6 to 12, respectively, from the sub-case 3, Compromis-
eSK is not issued at stage t' and CompromiseSS is not issued at stages u, t’ < u < t, section
8.1.2.

Pr(breaks) < Adv%ﬁqual’A(n) + 3AdViI§I%F7A(I£) + Advg\g‘:g%(ﬂ)

+ Advﬂ“ﬁ%ﬁiﬁ(ﬂ) + Advﬁ%%&MA(ﬂ) + Pr(break;q)

For this long-term HPT-secure MAC authentication protocol, the hash function cannot be
used to find vulnerabilities - the attacks where an adversary plays with the digest go back
to trying to compromise the primitives that take a hash digest as input, which are already
taken into account in the described previous Games.

By combining everything together, this sub-sub case yields:

HAKE,cleany pr,A
Ad I,np,ng,(n/p|Ko derivation stage) (K;)

+ AdViPr)lPd{qua17A(/€) + 3AdV1PI)11:d{F7A(/f) + AdVIANE]?A_S’P;lA(H)

+ AdVIAEAT (8) + AdviAG L ()]

Pr(breaky) < n2PnSnTJVIAC[

8.1.6 Case 1: Sub-case M AC, CompromiseKP are not issued at stage t' and
CompromiseSS are not issued at stages u, t’' <u <t

Game 0: Defined immediately before subsection 8.1.

Game 1: Same as previous Game 1 (sub-case M AC, CompromiseKP is not issued at stage
t before accept, section 8.1.5), where the adversary has to additionally guess the session 77}7 in
which the test session 7] has matched in stages u, and taking into account the guessed stage
t" where the adversary A has not issued CompromiseKP (i, s,t') or CompromiseKP(j, r,t'),
and CompromiseSS(i, s, u) or CompromiseSS(j, r, u) have been issued, where the test session

m; matches session 77 in stages u, where t/ < wu < t:

Pr(breaky) < n%n%ngpMAcPr(breakl)

Games 2 to 11: Same as Games 2 to 11, respectively, of the sub-case M AC, Compro-
miseKP is not issued at stage t before accept, section 8.1.5:

93

2 2 9 HAKE,cleany p7,A
Pr(breako) < NpNgNTirac [AdVH,nP,ns,(n’T\Ko derivation stage)(ﬁ)

+ AP paua_y(K) + 3AAVERE (k) + AdVREXD A (+)

+ Advﬂ\ggg?}T(ﬁ) + Adv]f,&%aMA(/{) + Pr(breaki1)]

Game 12: Same as Game 13 from the sub-case ¥, CompromiseSK is not issued at stage
t' and CompromiseSS is not issued at stages u, t' < u < t, section 8.1.2, but targeting
SecState using K7).

Pr(breakqy) < AdviﬁlﬁRA(n) + Pr(break;s)

The next game hops involving the secret state SecState are repeated (¢t —t') times in each
consecutive stage u where t’ < u < t. Recall that there is a matching session m; with 77 for
all the stages following stage t'.

Game 13: Same as Game 5 from sub-case M AC, CompromiseKP is not issued at stage
t before accept, section 8.1.5, but targeting K; using a uniformly random and independent

parameter SecState and with a PRF challenger.

Pr(breakia) < nry, ¢ (Adv$§F7A(ﬂ) + Pr(breakis))

Games 14 to 20: Same as Games 6 to 12 but targeting Krs,, K1s,, Kpmacy, {TA}KTSA,
{TB}Krs,, TB and SecState) with the corresponding uniformly random material:

Pr(breakis) < AAdviRp 4(n) + AdVEEREA (%) + AdvRERETR (1)

+ Advﬁ%%aMA(n) + Pr(breaky)

For this long-term HPT-secure MAC authentication protocol, the hash function cannot be
used to find vulnerabilities - the attacks where an adversary plays with the digest go back
to trying to compromise the primitives that take a hash digest as input, which are already
taken into account.

Since there are no more primitives or key material that the adversary can target, the final
advantage can be estimated.

By combining all the inequalities together, inequality 5 follows.

o4

Ad HAKEcleaanT,.ACl()

HAKE,cl
H Ad cleany pr, A ()
PSS N Ty g

2
npNsSNTyac [11 np,ns,(nT\Ko derivation stage)
ind ind IND-CPA
Advpppaua 4 (%) + 3AdVERE a(k) + Advapap 4 (k)

AGRESTE () + AdvEREG™ (o)

IN

2 9 9 HAKE,cleang p7,A
npNsiryac [AdVH np,ng,(np|Ko derivation stage)()

AV pauar 4 (#) + 4AdVERp 4(8) + AdVEEXDA (1)
AGRESTET (9 + AEED™ (0

NTyac {5AdV1PRF (k) + AdVR\IE%S%()
AdVREXD.A T (K) + Adviaca (8) }] (5)

+ 4+ + + + + 4

8.2 Case 2: Test resp session without origin session

Case 2 follows analogously to Case 1 and is the same regarding the signature-based and
MAC-based protocols, whereas a small change is introduced for the KEM-based protocol.
8.2.1 Case 2: Sub-case X

Analogously, the advantage of Case 2 is exactly the same as the advantage of Case 1 for
the signature-based protocol, giving the inequality 6.

Ad ﬁﬁﬁgf;;fw‘ “(k) < nbngnr [AdVEULMA (k) + 6Advi a())
+ n%nSnTE (egr (k) +Advi§§qua1A(fi) (6)
+ (14 ng,){5AdvERp 4 (k) + AdviEAD A ()
+ Adviiapa (k) + Adviaca (k) + 6Advi (k) }]

8.2.2 Case 2: Sub-case KEM

Analogously, the advantage of Case 2 is exactly the same as the advantage of Case 1 for
the KEM-based protocol, giving the inequality 7.

HAKE clean 7 pr,A,C 2 IND-CCA
Ad an,n(;i%f;; 2(k) < npngnrp, [Advien g (K)+AdVPRqua1A(k)
AAAVERE A() + AdVRERDA (8) + AdVRERD A ()
Adv ﬁ%%&MA(Ii) + 5Advy a(k)] (7)

nQPn%n%KEJVI [5QKD()+ AdvFr’lRFd“al .A(K)

(1 + N7y) {9AAVERE 4 (K) + 2AdVREXD 4 (K)
2AAVREL AT (k) + AdvEAGA™ (k) + 5Advy a(k) }]

+ o+ o+ o+ o+

8.2.3 Case 2: Sub-case MAC

Analogously, the advantage of Case 2 is exactly the same as the advantage of Case 1 for
the MAC-based protocol, giving the inequality 8.

95

HAKE,cleany p7,A,C>
Adev”Pv”SvnT]\JAC (k)

IN

HAKE,cleang pr,A (I{)
II,np,ng,(n/x|Ko derivation stage)

AdV}?ﬁquag A(k) + 3AdVif>lf%F7A(“) + AdVRVE%S%(“)
AdvRERDA T (k) + Advigaca ()]

nbnin

2
NPNSNTy 40 [Adv

2 HAKE,cleang pr,A
Tvac [Ad II,np,ns,(n/x|Ko derivation stage) (ﬂ)

AdV}?ﬁquag A(k) + 4AdVif>lf%F7A(“) + AdVRVE%S%(“)
AT () + ARG)
NTrac {5AdV1PI’lP%F,A(K) + AdVR\IE%S,F;lA(K)

AdVREABA T () + AdviiAG A (%) }] (8)

+ 4+ + + + + +

8.3 Case 3: Test session with matching session

All sub-cases of Case 3 have almost the same upper bound, given by the nature of QKD
and the lack of derivation of a proper session key. If the test session 7} has a matching
session 7, then the public information that both sessions intended to send to each other
arrived at the intended destination without modification by the adversary.

The adversary can try to perform unauthenticated QKD with the test session 77 and the
matching session 77, such that the public traffic to authenticate in both cases is the same,
or the digests given by different traffics collide. In this way, the adversary would be able
to share session keys with honest parties without having to deal with the authentication
step. Due to the no-cloning theorem and the rejection given a high enough QBER, the
adversary has a negligible probability to realize such a person-in-the-middle attack without
being detected, which is taken into account within egg p: the negligible chance of success
for related attacks that target QKD itself rather than the authentication process are all

included within the security of QKD, inside the parameter egxp(k).

Game 1: The indices (i, s,t) and (j,7,t), corresponding to the targeted matching sessions
w7 and 7}, are guessed. If the query Test(i’,s,t') is issued to a session 7Tf,/, where 7'(';,/
matches 7Tf,, in stage t', and if (i,s,7,7,t) # (i',s',5',r',t'), then the game aborts, yielding

for the worst-case scenario:

Pr(breakg) < nbninpPr(break;)

The following games target the confidentiality security of the exchanged AEAD ciphers.
Since the adversary has no flexibility to forge and only targets learning what is inside the
AEAD ciphers, only the IND-CPA security for the AEAD algorithm is taken into account.

Games 2 to 5 for IIy and Il 40, Games 2 to 5 and 25 to 5pis for Ilgpas:
These indistinguishability games target the traffic keys (Krs,, Krsy) or (Krs,,, Krss,,
Krs,,, K15g,) and the AEAD ciphers ({B, 0B, TB}Kkrs,,, {4, 04, Tatkrs,)s {Blrs,,
{Atkrs,,» {ca, TBYKrs,,,» (0B, TatKrs,,) O ({Tatkrs, {TB}Krs,,) for Ils, gy and
ITps Ac, respectively, in same way as undertaken in previous Games (for example Games 7, 8,
10 and 11 from the sub-case ¥, CompromiseSK is not issued at stage ¢’ and CompromiseSS
is not issued at stages u, t’ < u < ¢, section 8.1.2).

For Iy, and I ac:

o6

Pr(break;) < 2Adv£\IE%S%(/£) + Pr(breaks)

For HKEM:

Pr(break;) < 4Adv£\IE%S%(/<;) + Pr(breaks)

Game 6: The session key ss,.st is replaced with a uniformly random and independent
value, SSyest, Of the same length. The replacement is performed with an unauthenticated
QKD challenger that replaces the public traffic mgxp with mb xp» Which is used to distill

SSrest- Since m; matches session 77 in stage ', the replaced traffic m'Q xp is received by
both sessions without modification. The detection of this replacement by A implies having
an efficient distinguishing algorithm against the indistinguishability security of the unau-
thenticated QKD, where the algorithm does not target authentication. This relates to the
ReveallTS query, in which the conditioned unbounded adversary does not compromise the
QKD keys with a small probability egx p(k), for a security parameter «:

Pr(breaks) < eqrp(k) + Pr(breaks)

Since the session keys are uniformly random and independent, Pr(breaks) is equal to zero.
Hence, the security analysis of Case 3 yields the inequality 9

9 9 IND-CPA
npngnry [2Advagap A (k) + €0k Dl

IND-CPA

Ad HAKE,cleany p7,A,C3 (I{)]
+ n%—’n%nTKEM [4AdVAEAD,A ("i + gQKD(H]
()]

Iinp,ng,nr

IN

2 2 IND-CPA
T NpNSNTyac [QAdVAEAD,A (k) +eqgrp(k

= npngnr [2Advipap 4 (k) + Qi p (k)]

IND-CPA
_Hﬁ:’n%nTKEM 2AdVAEAD VA () (9)

9 Discussion

The presented protocols in this work are comparable to those presented within the Muckle
works. Specifically, the presented signature-based, KEM-based and MAC-based protocols
are comparable with the Muckle+ [17], Muckle# [18] and Muckle [15] works, respectively.

9.1 Comparison with the Muckle protocols

The difference of the advantages given by the HAKE key-indistinguishability games for
the protocols presented here and those in the Muckle works can be explained through the
different cleanness predicates used for this work and the Muckle approaches. Furthermore,
this work takes into account the confidentiality aspect, which can be ignored in order to
compare this work with the Muckle series.

There are two main differences between the cleanness predicates presented in this work
compared to those defined in the Muckle works.

First, the cleanness predicates defined in this work regarding the existence, or not, of an
origin session 77 of m} (in stage t) have more queries that are not allowed to be issued

o7

before sessions get to an accept state. This set of prohibited queries covers every possibility
regarding authentication. Specifically, the adversary is allowed to obtain all but one of the
key materials used to authenticate and the authentication still holds. This difference in
the cleanness predicate is the cause of the additional MAC EUF-CMA advantages that this
work presents for Cases 1 and 2 - the final key confirmation step is used as a probe to detect
fraudulent attempts at authentication. The ephemeral key advantages that the protocols
from the Muckle series present are replaced in this work with the advantage given by the
ephemeral QKD keys, namely egx p. In respect to the MAC-based protocol, the advantage
of the shared material is taken into account, which is not the case for the protocol presented
within Muckle, where the shared key is assumed to be perfectly secure. And finally, the
different number of PRF and dual PRF advantages is natural, since the number of uses of
those functions depends on how the protocols are constructed.

The second main difference is the cleanness predicate regarding the matching session sce-
nario, because the session keys do not depend on the intermediate keys derived in the
protocol, nor the authentication material. The QKD keys are shown to be ITS and egxp
secure, regardless of the authentication method. This makes sense, since if the adversary is
only interacting passively with the QKD traffic (no impersonation nor substitution attacks),
QKD is secure within its security parameter.

The idea of using PQC to authenticate QKD is to only rely on PQC for the very first QKD
iteration. Afterwards, authentication can rely on non-ITS MAC, or ITS MAC. The following
part provides an example of how to manipulate the advantage inequality formula given in
theorem 23, in the case scenario where KEM-based PQC authentication is performed for
stage 1 (the first iteration of QKD) and the non-ITS MAC is used for the subsequent stages
(2nd and beyond iterations of QKD). Since the security of the QKD keys decreases as the
number of iterations increases, the first distilled QKD keys in iteration 1 may be preferred
to perform the MAC-based protocol. Nevertheless, QKD keys distilled in other iterations
can be used, as long as the security parameter given by the MAC-based protocol does not
surpass an arbitrary threshold.

9.2 Example: KEM-based in stage 1, M AC-based for rest

Let two parties perform one session to derive session keys during n stages, np = 2 and
ng = 1. They perform the KEM-based protocol in stage 1, afterwards performing the
MAC-based protocol in stages 2 to n. Since the signature-based protocol is not applied,
nr, = 0 at all times.

The security level at stage np =1 is:

HAKE,cl A _ HAKE,cl A
Ad H7nP:2C72£;n:I—Illj’7fT:1 ("i) - AdVH,np:§7ZZn:}11},D7?TKEN1:1(K;)
< S[AdngDM?EA(/{) +eqrp(k) + 2Advi§§qual’A(/{)

+22AdVESE 4 (k) + SAAVISPA (k)
+5AAVRIERSTXT (1) + BAAVERG A (k) + 15Advi a (k)]
+A[4AAVIIERR (k) + e ()]

For the following stages, it is assumed that parties have stored sufficient keys in their shared
secret key pool from stage 1 to run the rest of the stages. The MAC-based advantage, for

o8

stage 2 and the subsequent stages, takes as input the advantage where the keys were derived,
i.e. in stage np = 1 in this case.

The security level at stage t, for 2 < ¢, is:

HAKE,cleany pr,A o HAKE,cleang pr,A HAKE,cleany pr,A
AdVH,nP:Q,nS:LnT:t (k) = AdVH,np:Q,nS:LnTKEM:1(”) + AdVH,nP:Q,nS:LnTMAC:t—1(“)

HAKE,cleany pr,A
< Ad H7np:2,n5:1,nT:1(’%)

(= 1) [Advy BT (5) + AdVRpa 4 ()
+3AdVERR,4(K) + AdVIIADA (5) + AdVRERE A (k)
+AdVRAGA ()]

At = 1P [AVIEES 2 () + AdVEg pa 4 (8)
+4AAVERE A(5) + AdVRERDA (5) + AdVRERD A ()

+Adviaca (k)]
+4(t — 1) [BAdVEE 4(5) + AdvIIDSPR (k)
+AAVREREIET (k) + AdVERGAA ()]

+4(t [2AdVRIXEER (5) + e n(8)] + 2AdVRINETE ()

Once the corresponding advantage terms are known, the security level at stage ¢, which
takes into account confidentiality, integrity and secrecy, is upper bounded by a known term.

10 Conclusion

The motivating scenario for this work is authentication of QKD, when parties have no
initial shared secret material to leverage. A solution for this scenario enables new QKD
users to securely join a new (to them) already-secure network remotely. This is clearly a
very relevant and important scenario in the modern mobile world.

To address this scenario, two protocols of PQC-based authentication (signature and KEM-
based) for QKD and a non-ITS long-term secure MAC-based authentication have been
analyzed and proven to be secure, according to defined security parameters and bounded
adversaries. The T ppr-term security has been defined, along with the HPT and conditioned
unbounded adversaries. Given the security framework, honest parties can distill the ITS
QKD keys with the underlying security provided by the security analysis.

After comparison between the protocols presented in this work and those given in the Muckle
series [15, 17, 18], a practical example of the advantages to take into account, when the
first QKD iteration is authenticated using PQC KEM algorithms and authentication for
posterior QKD iterations relays only in non-ITS instead of PQC, is presented.

Neither the form of QKD, nor the PQC algorithms, are specified in this work, so it is widely
applicable across the QKD and PQC spectra. Any PQC algorithms that are secure follow-
ing the definitions from section 3 and 4 are valid PQC algorithms for use. However, using
standardized PQC algorithms, such as those from NIST, is identified as best practice [8].
The security proofs presented here also take into account the confidentiality aspect. Addi-
tionally, honest parties are free to switch between the three presented protocols. However,

99

it is always possible to instead adopt an I'TS authentication protocol starting from stage 2,
provided that the parties have derived sufficient key material in the first stage 1 iteration.

PQC can offer remote and secure authentication to QKD for the very first iteration between
new correspondents and can also be used to provide redundant security once a QKD link
is established, as shown in the Muckle series. An open question is to determine if there are
other methods to combine PQC with QKD to complement each other, or combine securities.

Acknowledgements

and Panagiotis Papanastasiou for valuable discussions. JAVG has conducted this work with
the support of EPSRC PhD studentship Grant EP/W524657/1. JAVG and TS have con-
ducted this work partially with the support of ONR Grant 62909-24-1-2002.

References

1]

[10]

Kelsey Horan and Delaram Kahrobaei. “The Hidden Subgroup Problem and Post-
quantum Group-Based Cryptography”. In: Mathematical Software — ICMS 2018. Ed.
by James H. Davenport et al. Cham: Springer International Publishing, 2018, pp. 218-
226. 1SBN: 978-3-319-96418-8.

P.W. Shor. “Algorithms for quantum computation: discrete logarithms and factoring”.
In: Proceedings 35th Annual Symposium on Foundations of Computer Science. 1994,
pp- 124-134. pOI: 10.1109/SFCS.1994.365700.

Nicolas Gisin et al. “Quantum cryptography”. In: Rev. Mod. Phys. 74 (1 Mar. 2002),
pp. 145-195. porL: 10.1103/RevModPhys.74.145. URL: https://link.aps.org/doi/
10.1103/RevModPhys.74.145.

S. Pirandola et al. “Advances in quantum cryptography”. In: Advances in Optics and
Photonics 12.4 (Dec. 2020), p. 1012. 1SSN: 1943-8206. DOI: 10. 1364/ aop . 361502.
URL: http://dx.doi.org/10.1364/A0P.361502.

Feihu Xu et al. “Secure quantum key distribution with realistic devices”. In: Reviews
of Modern Physics 92.2 (May 2020). pOI: 10.1103/revmodphys . 92.025002. URL:
https://doi.org/10.1103%2Frevmodphys.92.025002.

Mark N. Wegman and J.Lawrence Carter. “New hash functions and their use in
authentication and set equality”. In: Journal of Computer and System Sciences 22.3
(1981), pp. 265-279. 1SSN: 0022-0000. DOIL: https://doi.org/10.1016/0022~
0000(81)90033-7. URL: https://www.sciencedirect.com/science/article/pii/
0022000081900337.

Evgeniy O. Kiktenko et al. “Lightweight Authentication for Quantum Key Distribu-
tion”. In: IEEE Transactions on Information Theory 66.10 (2020), pp. 6354-6368.
DOI: 10.1109/TIT.2020.2989459.

National Institute of Standards and Technology (NIST). Post-Quantum Cryptography.
2024. URL: https://csrc.nist . gov/projects/post-quantum- cryptography
(visited on 07/03/2025).

Farshad Rahimi Ghashghaei et al. “Enhancing the Security of Classical Commu-
nication with Post-Quantum Authenticated-Encryption Schemes for the Quantum
Key Distribution”. In: Computers 13.7 (2024). 1ssN: 2073-431X. pOI: 10 . 3390/
computers13070163. URL: https://www.mdpi.com/2073-431X/13/7/163.

Hassan Termos. “Quantum Authentication Evolution: Novel Approaches for Securing
Quantum Key Distribution”. In: Entropy 26.6 (2024). 1SSN: 1099-4300. DOI: 10.3390/
€26060447. URL: https://www.mdpi.com/1099-4300/26/6/447.

60

JAVG thanks Christopher Battarbee, Ludovic Perret, Delaram Kahrobaei

[11]

[12]

[13]

[14]

[15]

[17]

[18]

[19]

[20]

[21]

Liu-Jun Wang et al. “Experimental authentication of quantum key distribution with
post-quantum cryptography”. In: npj Quantum Information 7.1 (May 2021), p. 67.
DOI: 10.1038/s41534-021-00400-7. URL: https://doi.org/10.1038/s41534~
021-00400-7.

Michele Mosca, Douglas Stebila, and Berkant Ustaoglu. “Quantum Key Distribution
in the Classical Authenticated Key Exchange Framework”. In: Post-Quantum Cryp-
tography. Ed. by Philippe Gaborit. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 136-154. 1SBN: 978-3-642-38616-9. URL: https://doi.org/10.1007/978~
3-642-38616-9_9.

Hugo Krawczyk. “SIGMA: The ‘SIGn-and-MAc’ Approach to Authenticated Diffie-
Hellman and Its Use in the IKE Protocols”. In: Advances in Cryptology - CRYPTO
2003. Ed. by Dan Boneh. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 400—
425. 1SBN: 978-3-540-45146-4.

E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446.
2018. URL: https://www.rfc-editor.org/rfc/rfc8446 (visited on 07/03/2025).
Benjamin Dowling, Torben Brandt Hansen, and Kenneth G. Paterson. “Many a Mickle
Makes a Muckle: A Framework for Provably Quantum-Secure Hybrid Key Exchange”.
In: Post-Quantum Cryptography. Ed. by Jintai Ding and Jean-Pierre Tillich. Cham:
Springer International Publishing, 2020, pp. 483-502. 1SBN: 978-3-030-44223-1.
Lydia Garms et al. “Experimental Integration of Quantum Key Distribution and Post-
Quantum Cryptography in a Hybrid Quantum-Safe Cryptosystem”. In: Advanced
Quantum Technologies 7.4 (2024), p. 2300304. DOIL: https://doi.org/10.1002/
qute.202300304. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
qute .202300304. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/
qute.202300304.

Sonja Bruckner, Sebastian Ramacher, and Christoph Striecks. “Muckle+: End-to-
End Hybrid Authenticated Key Exchanges”. In: Post-Quantum Cryptography. Ed.
by Thomas Johansson and Daniel Smith-Tone. Cham: Springer Nature Switzerland,
2023, pp. 601-633. 1SBN: 978-3-031-40003-2.

Christopher Battarbee et al. Quantum-Safe Hybrid Key Exchanges with KEM-Based
Authentication. Preprint at https://arxiv.org/abs/2411.04030. 2024. arXiv: 2411 .
04030 [cs.CR]. URL: https://arxiv.org/abs/2411.04030.

Peter Schwabe, Douglas Stebila, and Thom Wiggers. “Post-Quantum TLS Without
Handshake Signatures”. In: Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security. CCS ’20. Virtual Event, USA: Association
for Computing Machinery, 2020, pp. 1461-1480. 1SBN: 9781450370899. pDOI: 10.1145/
3372297.3423350. URL: https://doi.org/10.1145/3372297.3423350.

William K. Wootters, William K. Wootters, and Wojciech H. Zurek. “A single quan-
tum cannot be cloned”. In: Nature 299 (1982), pp. 802-803. URL: https://api.
semanticscholar.org/CorpusID:4339227.

Masanao Ozawa. “Heisenberg’s original derivation of the uncertainty principle and
its universally valid reformulations”. In: Current Science 109.11 (2015), pp. 2006—
2016. 1sSN: 00113891. URL: http://www. jstor.org/stable/24906690 (visited on
02/06/2025).

Artur K. Ekert. “Quantum cryptography based on Bell’s theorem”. In: Phys. Rewv.
Lett. 67 (6 Aug. 1991), pp. 661-663. DOI: 10 . 1103 /PhysRevLett . 67 . 661. URL:
https://link.aps.org/doi/10.1103/PhysRevlett.67.661.

Christopher Portmann and Renato Renner. “Cryptographic security of quantum key
distribution”. In: ArXiv abs/1409.3525 (2014). URL: https://api.semanticscholar.
org/CorpusID:14053576.

61

[27]

28]

[31]

[32]

[33]

[34]

[35]

[36]

Stefano Pirandola and Panagiotis Papanastasiou. “Improved composable key rates
for CV-QKD”. In: Phys. Rev. Res. 6 (2 June 2024), p. 023321. por: 10. 1103/
PhysRevResearch . 6 . 023321. URL: https://1link . aps.org/doi/10. 1103/
PhysRevResearch.6.023321.

Christopher Portmann. “Key Recycling in Authentication”. In: IEEE Transactions on
Information Theory 60.7 (2014), pp. 4383-4396. DOI: 10.1109/TIT.2014.2317312.
Aysajan Abidin and Jan-Ake Larsson. “Direct proof of security of Wegman-Carter
authentication with partially known key”. In: Quantum Information Processing 13.10
(Oct. 2014), pp. 2155-2170. 1SSN: 1573-1332. DOI: 10.1007/s11128-013-0641-6.
URL: https://doi.org/10.1007/s11128-013-0641-6.

Michael Ben-Or et al. “The Universal Composable Security of Quantum Key Distri-
bution”. In: Theory of Cryptography. Ed. by Joe Kilian. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 386-406. 1SBN: 978-3-540-30576-7.

Douglas Stinson. “Universal Hash Families and the Leftover Hash Lemma, and Appli-
cations to Cryptography and Computing”. In: Journal of Combinatorial Mathematics
and Combinatorial Computing 42 (Mar. 2001).

Mihir Bellare and Chanathip Namprempre. “Authenticated Encryption: Relations
among Notions and Analysis of the Generic Composition Paradigm”. In: Advances
in Cryptology — ASIACRYPT 2000. Ed. by Tatsuaki Okamoto. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2000, pp. 531-545. 1SBN: 978-3-540-44448-0.

Lov K. Grover. “A Fast Quantum Mechanical Algorithm for Database Search”. In:
Proceedings of the Twenty-Fighth Annual ACM Symposium on Theory of Computing.
STOC ’96. Philadelphia, Pennsylvania, USA: Association for Computing Machinery,
1996, pp. 212-219. 1sBN: 0897917855. DOI: 10.1145/237814 .237866. URL: https:
//doi.org/10.1145/237814.237866.

Dan Boneh and Mark Zhandry. “Quantum-Secure Message Authentication Codes”.
In: Advances in Cryptology — FEUROCRYPT 2013. Ed. by Thomas Johansson and
Phong Q. Nguyen. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 592—608.
ISBN: 978-3-642-38348-9.

D. R. Stinson. “Universal hashing and authentication codes”. In: Designs, Codes
and Cryptography 4.3 (July 1994), pp. 369-380. 1SsN: 1573-7586. DOIL: 10 . 1007 /
BF01388651. URL: https://doi.org/10.1007/BF01388651.

Akinori Hosoyamada et al. “A Modular Approach to the Incompressibility of Block-
Cipher-Based AEADs”. In: Advances in Cryptology — ASIACRYPT 2022. Ed. by
Shweta Agrawal and Dongdai Lin. Cham: Springer Nature Switzerland, 2022, pp. 585—
619. 1SBN: 978-3-031-22966-4.

Lily Chen. Recommendation for Key Derivation Using Pseudorandom Functions.
Tech. rep. SP 800-108r1-upd1. Final version, August 2022. National Institute of Stan-
dards and Technology, 2022. URL: https://csrc.nist.gov/pubs/sp/800/108/r1/
updl/final.

Tony Hansen and Donald E. Eastlake 3rd. US Secure Hash Algorithms (SHA and
SHA-based HMAC and HKDF). RFC 6234. May 2011. DOI: 10.17487/RFC6234. URL:
https://www.rfc-editor.org/info/rfc6234.

Morris Dworkin. Recommendation for Block Cipher Modes of Operation: the CMAC
Mode for Authentication. Tech. rep. SP 800-38B. National Institute of Standards and
Technology, 2016. URL: https://csrc.nist.gov/pubs/sp/800/38/b/updl/final.
Tetsu Iwata et al. The AES-CMAC Algorithm. RFC 4493. June 2006. DO1: 10.17487/
RFC4493. URL: https://www.rfc-editor.org/info/rfc4493.

62

[38]

[39]

Morris Dworkin. Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC. Tech. rep. SP 800-38D. National Institute of Standards and
Technology, 2007. URL: https://csrc.nist.gov/pubs/sp/800/38/d/final.

John Viega and David McGrew. The Use of Galois Message Authentication Code
(GMAC) in IPsec ESP and AH. RFC 4543. May 2006. DOI: 10.17487/RFC4543. URL:
https://www.rfc-editor.org/info/rfc4543.

Jin Li et al. “Aggregate Proxy Signature and Verifiably Encrypted Proxy Signature”.
In: Provable Security. Ed. by Willy Susilo, Joseph K. Liu, and Yi Mu. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2007, pp. 208-217. 1SBN: 978-3-540-75670-5.

Cas Cremers and Michele Feltz. “Beyond eCK: Perfect Forward Secrecy under Actor
Compromise and Ephemeral-Key Reveal”. In: Computer Security — ESORICS 2012.
Ed. by Sara Foresti, Moti Yung, and Fabio Martinelli. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 734-751. 1SBN: 978-3-642-33167-1.

Katriel Cohn-Gordon, Cas Cremers, and Luke Garratt. “On Post-compromise Secu-
rity”. In: 2016 IEEE 29th Computer Security Foundations Symposium (CSF). 2016,
pp. 164-178. DOI: 10.1109/CSF.2016. 19.

Victor Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Paper 2004/332. 2004. URL: https://eprint.iacr.org/
2004/332.

Mihir Bellare and Phillip Rogaway. “Code-Based Game-Playing Proofs and the Secu-
rity of Triple Encryption”. In: JACR Cryptol. ePrint Arch. 2004 (2004), p. 331. URL:
https://api.semanticscholar.org/CorpusID:12916996.

63

