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Abstract 

Steganalysis methods based on deep learning (DL) often struggle with computational complexity and challenges in generalizing 
across different datasets. Incorporating a graph neural network (GNN) into steganalysis schemes enables the leveraging of rela- 
tional data for improved detection accuracy and adaptability. This paper presents the first application of a Graph Neural Network 
(GNN), specifically the GraphSAGE architecture, for steganalysis of compressed voice-over-IP (VoIP) speech streams. The method 
involves straightforward graph construction from VoIP streams and employs GraphSAGE to capture hierarchical steganalysis infor- 
mation, including both fine-grained details and high-level patterns, thereby achieving high detection accuracy. Experimental results 
demonstrate that the developed approach performs well in uncovering quantization index modulation (QIM)-based steganographic 
patterns in VoIP signals. It achieves detection accuracy exceeding 98% even for short 0.5-second samples, and 95.17% accuracy 
under challenging conditions with low embedding rates, representing an improvement of 2.8% over the best-performing state-of- 
the-art methods. Furthermore, the model exhibits superior efficiency, with an average detection time as low as 0.016 seconds for 
0.5-second samples—an improvement of 0.003 seconds. This makes it efficient for online steganalysis tasks, providing a superior 
balance between detection accuracy and efficiency under the constraint of short samples with low embedding rates. 

Keywords: Steganalysis, Steganography, Quantization Index Modulation, Graph Neural Network, GraphSAGE, VoIP speech 
stream. 

 

 

1. Introduction 

Data hiding has garnered significant attention from researchers 
in recent years, spanning various disciplines. On the one hand, 
it serves to verify integrity and ensure information remains un- 
altered during transmission, as seen in watermarking [1, 2]. On 
the other hand, it can be utilized to conceal confidential infor- 
mation through unconventional means, exemplified by steganog- 
raphy [3, 4]. Steganography and steganalysis are two comple- 
mentary aspects of covert communication. While steganogra- 
phy involves concealing secret information within apparently 
benign carriers such as images [5], text [6], and speech [3], ste- 
ganalysis is focused on detecting and unveiling such concealed 
communication [7]. Over the years, the proliferation of Inter- 
net services has facilitated the transmission of multimedia data 
over digital networks. Among these services, voice over in- 
ternet protocol (VoIP) has emerged as a prominent means of 
enabling real-time voice communication over the Internet. This 
increased reliance on VoIP, driven by the success of platforms 
like Skype, WhatsApp, and Zoom, has made it an attractive 
choice for concealing and transmitting hidden information [8]. 
The ubiquity and high-volume nature of VoIP traffic make it an 
appealing vector for steganographic purposes, presenting both 
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opportunities for clandestine communication and challenges for 
cybersecurity professionals. 

In VoIP communications, speech is typically compressed 
using codecs, such as G.722, G.723, and G.729, to reduce band- 
width requirements. This compression process, which involves 
the quantization of speech parameters, inadvertently creates po- 
tential vulnerabilities that can be exploited for steganographic 
purposes. Malicious actors, including cybercriminals and ex- 
tremist groups, may exploit these vulnerabilities by manipulat- 
ing VoIP software to facilitate covert communications. This 
scenario presents a significant challenge to communication mon- 
itoring and network security. Steganography for VoIP can occur 
both in network protocol fields and payload data [9, 10]. How- 
ever, while the former approach may provide some degree of 
concealment, it is the latter that takes precedence [11–15]. This 
distinction arises from the fact that the practice of concealing 
information within network protocol fields, which encompass 
many layers of the open systems interconnection (OSI) model, 
ultimately provides less robust concealment capabilities. These 
protocol fields are typically public, and their data tends to re- 
main fixed under most ordinary circumstances, rendering them 
less secure for covert communication [16]. On the contrary, the 
method of embedding data within payload data, characterized 
by its dynamic nature and temporal variations, offers a substan- 
tially higher degree of concealment. This dynamism makes it 
considerably more challenging to detect covert practices within 
VoIP streams, reinforcing its position as the preferred choice for 



2  

steganographic endeavors [16, 17]. Additionally, as steganog- 
raphy methods become more sophisticated, particularly with 
the advent of AI-generated content, advanced steganalysis tech- 
niques are necessary to keep pace [18]. 

As a result, there is a compelling need to develop effective 
steganalysis methods tailored specifically for VoIP steganogra- 
phy. These methods can address several critical concerns, in- 
cluding: (i) For national security agencies, detecting and pre- 
venting the covert exchange of sensitive information via VoIP 
is crucial to national security; (ii) businesses depend on ste- 
ganalysis to safeguard against intellectual property theft and 
unauthorized data exfiltration through VoIP channels, protect- 
ing their proprietary information and maintaining a competitive 
advantage; (iii) many industries are required to monitor and 
secure their communications to comply with regulatory stan- 
dards, making VoIP steganalysis essential for ensuring compli- 
ance with legal and industry-specific requirements. 

An effective steganalysis in the context of VoIP streams 
should meet two crucial requirements [19, 20]. Firstly, it should 
operate in real-time, ensuring that the time required for detec- 
tion is minimized due to the need for swift action against po- 
tential malicious activities. Secondly, the steganalysis method 
must be capable of detecting short samples of VoIP streams, as 
covert information may be hidden within brief segments of the 
communication. Adding to these two requirements, it should 
be sensitive enough to detect low embedding rates, as some 
covert data may be hidden with minimal changes to the host 
signal. Meeting these stringent requirements represents a sig- 
nificant and persistent challenge in developing practical and re- 
liable VoIP steganalysis methods, which is essential to ensure 
their successful integration into real-world applications [9, 19]. 
In this work, we address the core research problem of design- 
ing a steganalysis approach for VoIP that can achieve real-time 
detection performance, maintain high accuracy on short speech 
segments, and remain effective under low embedding rates. 

1.1. Motivation 
The steganalysis process generally involves a two-step pro- 

cess: first, identifying distinguishing features from the carrier 
signal, and then classifying whether it contains steganographic 
content. Feature extraction involves identifying and selecting 
key pieces of data from the carrier, such as patterns or anoma- 
lies, that can indicate the presence of steganography. Tradi- 
tional methods rely on handcrafted statistical features, designed 
based on expert knowledge, to detect significant changes intro- 
duced by steganographic embedding. However, these methods 
face limitations in the context of VoIP due to the minimal ad- 
ditional distortion introduced by steganography in compressed 
speech, making it challenging to extract suitable features for 
steganalysis. 

With the rapid advancement of deep learning (DL), recent 
methods have leveraged deep models to automatically learn dis- 
criminative features. Various neural network architectures, pri- 
marily leveraging convolutional neural network (CNN)- and re- 
current neural network (RNN)-based designs [17, 19, 21, 22], 
have been explored in VoIP steganalysis. These models are 
specifically designed to capture distinct codeword correlation 

features between cover and stego VoIP streams, achieving state- 
of-the-art (SOTA) detection outcomes. While effective in cap- 
turing sequential (RNNs) or local spatial (CNNs) patterns, these 
traditional deep learning architectures face inherent limitations 
when dealing with the relational structure of compressed VoIP 
data affected by steganography. QIM steganography, in particu- 
lar, subtly alters the dependencies and correlations between line 
spectral frequency (LSF) codewords across frames and within 
their neighborhoods. CNNs, designed for grid-like data, strug- 
gle to explicitly model these non-Euclidean, inter-frame rela- 
tionships. RNNs, while adept at sequences, might not effi- 
ciently capture the graph-like dependencies that extend beyond 
simple linear order or local windows, especially when the cru- 
cial information lies in the way codewords relate to each other 
rather than just their individual values or linear sequence. 

Recently, significant attention has been directed toward adapt- 
ing DL methods for graph-structured data, giving rise to the the 
emergence of graph neural networks (GNNs) as a prominent 
topic [23]. GNNs are uniquely suited for modeling complex 
relationships within non-Euclidean data by explicitly learning 
from graph structures, where nodes represent entities (e.g., LSF 
codeword frames) and edges represent their relationships (e.g., 
temporal dependencies). This intrinsic capability allows GNNs 
to capture both fine-grained local dependencies and high-level 
global patterns by aggregating information from connected neigh- 
borhoods. GNNs have demonstrated efficiency in representing 
and analyzing graph data across various computer vision fields, 
including action recognition [24], object tracking [25], and nat- 
ural language processing, such as text classification [26]. How- 
ever, there have been limited efforts in applying GNNs to ste- 
ganalysis, primarily in the domains of images, as in [27, 28], 
and text, as in [29, 30]. This highlights a significant gap where 
GNNs’ relational modeling power could be particularly advan- 
tageous for VoIP steganalysis. 
 
1.2. Contribution and paper structure 

DL-based steganalysis commonly encounter trade-offs be- 
tween performance and processing complexity. This study in- 
troduces the application of a GraphSAGE GNN network to de- 
sign an effective approach that meets the essential requirements 
of VoIP steganalysis systems. The key contributions of this 
study can be outlined as follows: 

• Propose, according to the literature reviewed, the first appli- 
cation of GNNs in the context of VoIP steganalysis, marking 
a significant advancement in quantization index modulation 
(QIM)-based steganalysis methodologies. 

• Introduce a simple and efficient approach for constructing 
graphs from input VoIP streams, resulting in a lightweight 
and simplified graph structure that reduces computational com- 
plexity while preserving the capability for excellent feature 
extraction, crucial for identifying patterns indicative of steganog- 
raphy. 

• Propose a GNN architecture based on the GraphSAGE model, 
specifically designed to hierarchically extract steganalysis in- 
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formation. This architecture, for the first time, effectively uti- 
lizes LSF codewords from VoIP codecs notably G.723 and 
G.729 to capture both fine-grained details and high-level pat- 
terns, resulting in high detection accuracy. 

• Prove, through experiments, that the suggested GNN-based 
speech steganalysis technique achieves competitive detection 
accuracy in the challenging scenario. Specifically, it attains 
detection accuracy exceeding 98% even for short 0.5-second 
samples, and 95.17% accuracy under challenging conditions 
with low embedding rates, representing an improvement of 
2.8% over the best-performing state-of-the-art methods. Fur- 
thermore, the model exhibits superior efficiency, with an av- 
erage detection time as low as 0.016 seconds for 0.5-second 
samples—an improvement of 0.003 seconds. These results 
highlight the model’s suitability for real-time deployment, 
offering a robust trade-off between detection accuracy and 
computational efficiency. 

It achieves detection accuracy exceeding 98% even for short 
0.5-second samples, and 95.17% accuracy under challeng- 
ing conditions with low embedding rates, representing an 
improvement of 2.8% over the best-performing state-of-the- 
art methods. Furthermore, the model exhibits superior effi- 
ciency, with an average detection time as low as 0.016 sec- 
onds for 0.5-second samples—an improvement of 0.003 sec- 
onds. 

• Demonstrate practical implications by enabling real-time de- 
tection of covert communications in VoIP streams for real- 
world scenarios. This includes enhanced cybersecurity and 
network monitoring, support for law enforcement in identi- 
fying hidden transmissions, and applications in digital rights 
management and IoT security, thanks to the method’s high 
detection accuracy and efficiency. 

The remainder of this paper is structured as follows: Sec- 
tion 2 delves into related works. Section 3 offers an overview 
of the background. Section 4 introduces the proposed proposed 
GNN-based steganalysis framework. Section 5 presents exper- 
imental results and offers an in-depth examination of the re- 
sults. Section 6 outlines the key limitations and shortcomings 
of the approach, suggests possible enhancements, and discusses 
the applicability of the proposed scheme in several real-world 
scenarios. Finally, section 8 presents conclusive remarks and 
outlines future directions. 

 
2. Related work 

Vocoders, such as G.723 and G.729, are widely applied in 
VoIP communication with the aim of lowering decoding errors 
via the analysis-by-synthesis (AbS) approach, maintaining ex- 
cellent speech quality while achieving high compression ratios. 
In contrast to conventional steganographic methods typically 
used for images or text, low bit-rate (LBR) VoIP streams, char- 
acterized by the AbS linear predictive coding technique, pose a 
unique challenge due to their minimal redundancy within the 
encoded speech. To address this, researchers have explored 

two distinct categories of data hiding techniques, each linked 
to different stages in the encoding process. The first category 
involves altering specific elements in the compressed speech 
stream, often utilizing methods like least significant bit (LSB) 
replacement, such as in [10]. However, this is complicated due 
to the limited data-hiding space in LBR speech. The second cat- 
egory focuses on embedding covert information during encod- 
ing, by altering encoding features, notably the linear predictive 
coding (LPC) [31], fixed codebook (FCB) [32], and adaptive 
codebook (ACB) [33]. 

In the second category, QIM-based steganography is most 
commonly employed, especially within LPC domains. QIM 
steganography, originally developed by Chen et al. [34], is 
widely used in literature. It conceals steganograms by alter- 
ing the quantization vector within the speech code, introducing 
minimal unperceptible distortion and offering high data hiding 
capabilities. Thus, when it comes to embedding information in 
VoIP streams, QIM emerges as a suitable scheme that poses a 
significant challenge for detection. 

On the one hand, research into QIM steganography detec- 
tion methods has primarily concentrated on image carriers [35]. 
Subsequently, a limited number of research studies have been 
proposed in the field of steganalysis, particularly focusing on 
QIM-based steganography in VoIP, such as in [16, 36]. Due 
to the distinct characteristics of VoIP streams, the detection 
methods proposed for use in images cannot be directly applied 
within the VoIP context. Moreover, classical audio steganalysis 
methods based on statistical feature extraction in the uncom- 
pressed domain are inapplicable to VoIP. This is due to the min- 
imal additional distortion introduced by VoIP QIM steganogra- 
phy in decoded speech signals, making it challenging to ex- 
tract suitable features for steganalysis [37]. To address this is- 
sue, some research in the VoIP field has proposed the use of 
handcrafted statistical features to detect significant changes in 
codewords used in LBR speech codec streams caused by QIM 
steganography. For instance, Li et al. [38] examined the impact 
of QIM steganography on G.729, where it altered the quan- 
tization index of the LPC filter. They employed a statistical 
model to capture codeword distribution characteristics and, in 
conjunction with a support vector machine (SVM), formulated 
an efficient system for steganographic detection. In a related 
study, Li et al. [39] developed the index distribution charac- 
teristics (IDC) steganalysis method, employing codeword dis- 
tribution histograms and first-order Markov chain-derived state 
transition probabilities as correlation features. These features, 
integrated with SVM, were utilized to classify steganographic 
samples with a focus on inter-frame transition probabilities. Ex- 
panding upon this concept, the studies by Li et al. [40] and Wu 
et al. [41] aim to detect steganograms embedded using QIM 
techniques. Both works employ principal component analy- 
sis (PCA) for reducing feature dimensionality and SVM for 
classification. Notably, Li et al. [40] focus on state transi- 
tion probabilities of intra-frame codewords as features, while 
Wu et al. [41] suggested extracting features from the original 
speech signal by analyzing its distribution patterns and trans- 
mission likelihoods. Meanwhile, Yang et al. [42] employed 
temporal dependencies between codewords across frames to 
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model a Codeword Bayesian Network (CBN), where the pa- 
rameter learning process was guided by a Dirichlet prior. Yang 
et al. [43] proposed a fast steganalysis which involved map- 
ping vector quantization codewords to a semantic space, fol- 
lowed by feature extraction using a hidden layer input into a 
softmax classifier. Such methods require meticulous feature 
design to align with the characteristics of speech data and spe- 
cific information hiding techniques. Consequently, they strug- 
gle to effectively address generative steganography that pro- 
duces high-quality stego speech. On the other hand, the pro- 
posed GraphSAGE-based algorithm addresses these challenges 
by utilizing relational data through GNNs and efficiently man- 
aging the minimal distortion and short sample lengths typical 
of VoIP streams. 

Besides, recent advancements in DL have led to improved 
robustness and effectiveness in steganalysis methods, which can 
be broadly categorized into two main categories: general ste- 
ganalysis approaches and specific steganalysis approaches. In 
the first category, several methods have been introduced to de- 
tect a range of steganographic techniques. For example, Hu et 
al. [44] addressed heterogeneous parallel steganography (HPS) 
by introducing the steganalysis feature fusion network (SFFN). 
The architecture of SFFN comprises three core modules: a net- 
work for feature extraction, a component for feature integra- 
tion, and a classification unit, effectively extracting and com- 
bining steganalysis features from HPS methods for dependable 
predictions. Building upon this, Wang et al. [45] proposed a 
fast and efficient steganalysis method which leveraged atten- 
tion mechanisms. Their suggested method adeptly extracts key 
characteristics related to steganography exceptions and fuses 
these features targeting multiple steganography techniques uti- 
lized in HPS. Li et al. [46] introduced a unified detection frame- 
work, termed CBCA, which leverages codeword embedding 
along with bidirectional long short-term memory (Bi-LSTM) 
and CNN-based attention mechanisms. This approach is capa- 
ble of identifying three distinct steganographic techniques con- 
currently. Wang et al. [47] proposed a steganalysis method 
aimed at identifying various steganographic schemes within com- 
pressed speech signals. Their framework introduces a codeword- 
distributed embedding component designed to generate com- 
pact representations from compressed codewords. To capture 
dependencies across different contexts, it employs two correla- 
tion extraction modules: a global-guided unit that incorporates 
Bi-LSTM and multi-head self-attention, and a local-guided unit 
built using the convolutional block Attention module (CBAM), 
enabling the modeling of both global and local correlations be- 
fore and after data hiding. Detection is accomplished through 
fully connected layers, ensuring accurate identification. Li et al. 
[18] introduced a generic frame-level steganalysis approach for 
LBR steganography, utilizing dual-domain feature representa- 
tion and a Transformer-based model named Stegaformer. The 
proposed method consists of two modules, dual-domain repre- 
sentation and Stegaformer. Li et al. [48] introduced SANet, 
an independent steganalysis network for speech encoding and 
steganography. This approach unifies compressed speech out- 
puts from various codecs by converting them into a common 
uncompressed-domain format, introducing an intermediate rep- 

resentation. A Bi-LSTM neural network is developed to ex- 
tract steganography-sensitive characteristics through collabora- 
tive correlation features. This approach achieves SOTA detec- 
tion performance for various steganography algorithms across 
different speech encoders. Recently, Wang et al. [49] pro- 
posed E-SWAN, a deep learning-based sliding window analysis 
network that combines LSTM and convolutional modules for 
real-time VoIP speech steganalysis. The model demonstrates 
competitive performance in detecting two steganography meth- 
ods. Similarly, Lin et al. [50] introduced a steganalysis ap- 
proach that integrates Bi-LSTM, 3D convolution and attention 
mechanisms to detect two QIM-based steganography variants 
in VoIP streams. Although these algorithms offer some capa- 
bility for broad steganalysis applications, their performance of- 
ten falters when confronted with specific steganographic tech- 
niques, particularly QIM. In such specialized scenarios, these 
general methods typically exhibit lower accuracy, highlighting 
the need for more targeted approaches. 

Consequently, several researchers prefer to exploit the power 
of DL to design specialized steganalysis algorithms, particu- 
larly geared toward QIM-based steganography. For example, 
Lin et al. [19] identified four robust codeword correlation pat- 
terns and introduced a steganalysis model based on RNN for 
improved detection accuracy. Nonetheless, their model, RNN- 
SM, centred on global contextual information, utilizing a two- 
layer LSTM. Yang et al. [37] proposed a novel approach to 
enhance local representations that combined RNN and CNN, 
resulting in the CNN-LSTM model, which outperformed RNN- 
SM in the detection of QIM-based steganography. Yang et 
al. [16] incorporated an attention mechanism within a hier- 
archical convolutional structure, further enhancing steganaly- 
sis results. In a subsequent study [51], the same authors pre- 
sented a lightweight neural architecture called the fast corre- 
lation extract model (FCEM), which integrates positional en- 
coding and multi-head attention to capture correlation features. 
Qiu et al. [21] developed an efficient steganalysis that incor- 
porates a codeword embedding layer to capture dense repre- 
sentations, employs a bidirectional LSTM layer and incorpo- 
rates a gated attention module to model contextual feature dis- 
tributions. Yang et al. [17] designed a multi-channel convo- 
lutional sliding window mechanism to capture inter-frame de- 
pendencies between a target frame and its adjacent frames. Re- 
cently, the utilization of a transformer encoder [52] and feder- 
ated learning [53] has been implemented for the detection of 
QIM-based steganography in G.729 speech encoders. These 
two approaches demonstrated SOTA detection performance. Zhang 
et al. [54] tackled the challenge of identifying payload locations 
in QIM-based VoIP steganography by proposing an LSTM-based 
steganalysis method named SPM. 

The mentioned studies underscore the adoption of DL-based 
methods as the benchmark for real-time VoIP steganalysis, demon- 
strating superior detection capabilities and efficiency in com- 
parison to handcrafted features. The integration of DL with 
graph data has led to the widespread adoption of GNNs. These 
DL-based models, specialized for graph domains, are crafted to 
capture representations of graph data adeptly, proficiently han- 
dling tasks centred on both individual nodes and entire graphs. 
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GNNs capture relationships within graphs by exchanging mes- 
sages among nodes and maintaining a state that encodes infor- 
mation from any connected neighborhood through edges [55]. 
Furthermore, GNNs exhibit an enhanced capability to lever- 
age global information, contributing to their compelling perfor- 
mance. While GNNs have been recently employed in various 
studies for image [27, 28] and text steganalysis [29, 30, 56], 
there is a noticeable gap in research focusing on steganalysis in 
the context of VoIP. 

This paper aims to investigate the potential of GNNs in 
crafting steganographic detection approaches that meet the es- 
sential requirements of VoIP steganalysis systems. Based on the 
available literature reviewed by the authors, no existing stud- 
ies have explored GNN-based VoIP steganalysis. Our work ad- 
dresses this significant gap by introducing a novel GraphSAGE- 
based algorithm tailored for VoIP streams, achieving high accu- 
racy and real-time efficiency. Consequently, this approach has 

 

 
 

Figure 1: QIM for concealing 2-bit steganograms. 
 

 

3.2. QIM-based Steganography 
In the context of QIM steganography, the process of quan- 

tizing LSFs can be modified. Each original codebook Ci, which 
is used for vector quantization, is split into two separate parts, 
C1 and C2, following the relationship: 

the potential for deployment in various real-world applications. i i 

 
3. Background 

Ci = C1 ∪ C2 
�C ∩ C = ∅ 

Developing a novel steganalysis scheme dedicated to VoIP 
security requires a foundational understanding of how hidden 
messages, embedded within the bitstream (steganogram), are 
generated in the coder’s output. Furthermore, representing the 
bitstream in a graph format necessitates prior knowledge of 
GNNs and an understanding of how speech can be effectively 
represented in a graphical form. For this purpose, this sec- 

When embedding the bit ”0”, the quantizer in the QIM scheme 
retrieves the closest match from the sub-codebook C1. Con- 
versely, when embedding the bit ”1”, the QIM method chooses 
the optimal quantization value from the sub-codebook C2. Dur- 
ing reception, the receiver can deduce the embedded bits by de- 
termining whether the received quantization index corresponds 
to sub-codebook C1 or C2. This methodology allows for the tion summarizes the principles of speech coding, QIM-based i 

i 

steganography, and GNNs. 

3.1. Speech Compression Overview 
In VoIP applications, voice signals are initially compressed 

using LBR speech encoders at the sender’s end before trans- 
mission. These encoders are based on the LPC model and op- 
erate under the AbS framework, where an LPC filter is used to 
model and reconstruct speech during both encoding and decod- 
ing stages. The LPC filter formulation is given by: 

1 

seamless integration of secret data within the quantization. In 
the context of QIM, it is possible to enhance concealment ca- 
pacity by subdividing the codebook into 2n sub-codebooks, al- 
lowing the simultaneous hiding of n bits. The process of em- 
bedding and extracting a hidden message with 2 bits length 
using the QIM technique is depicted in Figure 1. This func- 
tionality is accomplished by partitioning Ci into sub-codebooks 
C1, C2, C3, and C4, as illustrated in the figure. 

The challenge in QIM steganography arises from increased 
distortion resulting from the use of a reduced codeword set 
in the quantization procedure. The fundamental issue lies in 

A(z) = 1 − l:n 
aiz−i ,  (1) how to partition the original codebook Ci into multiple sub- 

i=1 

Where A(z) is the transfer function of the LPC filter, z is 
a complex variable that represents the frequency domain, n is 
the order of the LPC filter, and ai represents the i-th order co- 
efficient of the LPC filter. Since speech exhibits short-term sta- 
tionarity, it is processed in frames, and LPC coefficients are de- 
rived individually for each frame. Due to the high sensitivity of 
LPC coefficients to quantization noise, they are typically trans- 
formed into line spectrum frequencies (LSF), which are easier 
to quantize to maintain coding stability. LSFs from each frame 
are quantized using several codebooks based on the minimum 

codebooks. Researchers have proposed various methods in- 
cluding matrix encoding QIM (ME-QIM) [8], complementary 
neighbour vertices QIM (CNV-QIM) [57], and others. 
 
3.3. GNN Overview 

GNNs are a specialized class of neural networks tailored 
for learning from graph-structured data. In such data struc- 
tures, nodes denote entities, while edges capture the relation- 
ships or interactions between them. The basic propagation rule 
in a GNN can be expressed as follows: 

mean square error criterion. This quantization aims to select 
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the optimal codeword that reduces the discrepancy between the 
original and reconstructed speech signals. In particular, G.723 
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is symbolized as N(v), and wk−1 represents the weight associ- 
ated to the edge connecting u and v in the (k−1)th layer. The 
function F is a non-linear activation function. The update rule 
essentially aggregates information from neighbouring nodes to 
refine the current node’s hidden state. 

A widely adopted family of GNN models includes graph 
convolutional networks (GCNs) [58], gated graph neural net- 
works (GGNNs) [59], graph sample and aggregation (Graph- 
SAGE) [60], and more. These architectures often involve vari- 
ations of the basic propagation rule to capture more complex 
relationships within the graph. 

 
4. Proposed Framework 

Building upon the foundational concepts of speech coding, 
QIM steganography, and GNN discussed in Section 3, we now 
present the detailed architecture and components of our pro- 
posed steganalysis system. Specifically, this section describes 
an efficient method designed to uncover QIM steganography 
within compressed, LBR VoIP streams. Our approach is specif- 
ically tailored to work with speech compressed using the G.729A 
codec, which is widely used in VoIP communications. Fig- 
ure 2 illustrates the structure of our proposed VoIP steganalysis, 
while Algorithm 1 outlines the steps involved. The current sec- 
tion provides a detailed explanation of the proposed approach, 
which includes codewords correlation analysis, graph construc- 
tion, and network architecture. 

4.1. Codewords correlation analysis 

As previously explained, the QIM steganography process 

 
 

Algorithm 1 Proposed steganalysis approach.  

Input: VoIP speech stream 
Output: Classification (Cover or Stego) 

1: Codewords Extraction: 
2: Apply sliding detection window of size T frames to collect 

continuous packets 
3: for each frame fi do 
4: Extract 3 LSF codewords c1,i, c2,i, c3,i 
5: end for 

c1,1 c1,2 . . .    c1,T 

6: Form QIS matrix: C = c2,1 c2,2 . . .    c2,T 
c3,1 c3,2 . . .    c3,T 

 

7: Graph Construction: G = (V, E) 
8: Create nodes: Each frame fi becomes a node vi 
9: Set node features: Use codewords c1,i, c2,i, c3,i as 3D feature 

vector xi for each node vi 
10: Create edges: Connect adjacent frames (nodes vi and vi+1 ) 

with directed edges v j 
11: Construct adjacency matrix A: 
12: – Ai,i = 0 (no self-loops) 
13: – Ai,i+1 = 1 (connect successive nodes) 

14: GraphSAGE Network: 
15: Graph Updating: 
16: for layer k: 1 to K = 3 do 
17: for node v ∈ V do 
18: Set initial attribute of v : h0 = xi 
19: Sample neighborhood N(v) 
20: Aggregate information: 

involves making changes to the quantization of LSFs, affecting the LSF codewords denoted as c . Thus, all the necessary infor- 
k 
N(v) = AGGk({hk−1, ∀u ∈ N(v)}) 

i 
mation for steganalysis is contained within these codewords. 

22: Update node embedding: 
23: hk = F (Wk · CONCAT (hk−1, hk )) 

To perform steganalysis, a sliding detection window col- 
v 

24: end for 
v N(v) 

lects one or several continuous packets of compressed speech. 
This process allows for the construction of a sequence of quan- 
tized LSF codewords for analysis. The G.723 and G.729 com- 
pression processes operate in frames with durations of 10ms 
and 30ms, respectively. Assuming that the detection window 
size is denoted as T frames, and its frames can be represented as 
a set F = [ f1, f2, . . . , fT ]. The quantized LSF codewords, also 
known as the quantization index sequence (QIS), are expressed 
as C = [ci,1, ci,2, . . . , ci,T ], where ci, j is the ith codeword at frame 
j in the sequence. For G.729 and G.723, where i ∈ [1, 3], the 
QIS can be expressed in matrix form as: 

�
c1,1 c1,2 . . .    c1,T 

� 

 

c3,1 c3,2 . . .    c3,T 

In the case where all codewords are uncorrelated, their occur- 
rences become independent. As a result, it is expressed as: 

P(ci, j, ck,l) = P(ci, j) · P(ck,l),  (5) 

25: Compute graph-level representation at layer k: zk = 
k 1 K 

 

v V v 

26: end for 
27: Hierarchical Pooling: 
28: Compute final graph-level representation zG by summing 

all layer representations: zG = 
l:

k zk 

29: Classification: 
30: Apply dropout to zG 
31: Feed to fully connected layer 
32: Compute class probabilities using softmax 
33: Determine final classification (Cover or Stego) 

34: Training: 
35: Use CrossEntropyLoss as the loss function 
36: Backpropagate and update model parameters. 

 

 
range of 1 to 3, and j and l in the range of 1 to T . Inequality 

where P(ci, j codewords , ck,l ) represents the joint probability of observing 
between the two sides implies a correlation between ci, j and ck,l. 

Due to the repeating patterns in human speech sounds (es- 
ci, j and ck,l, and P(ci, j), P(ck,l) denote their individ- 

ual probabilities. This expression is valid for all i and k in the 
pecially vowels and voiced consonants), the vocal signal ex- 

21: h 
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i=1 j=1 

 
 

Figure 2: The overall structure of the proposed approach. 

 

hibits stability over limited durations, approximately the frame {vi}T is the set of T nodes, and E = {e j}T−1 is the set of all 
length. Consequently, the codewords exhibit correlations within 
the same frame. Furthermore, speech signals have local peri- 
odicity, meaning that codewords have similar values in differ- 
ent frames. As a result, there are four types of inter-codeword 
correlations, namely: intra-frame correlation, successive frame 
correlation, cross-frame correlation, and cross-word correlation 
[19]. Local features are characterized by the first two correla- 
tions, while global ones are reflected by the latter two. 

The QIM steganography process has a direct impact on the 
correlations between these codewords, thereby altering their 
statistical distribution. Earlier VoIP steganalysis approaches 
aimed to extract correlation features to uncover steganograms, 
as in [40, 42]. 

In the proposed steganalysis approach, the power of GNNs, 
specifically the GraphSAGE model, is leveraged to capture these 
crucial correlations for steganalysis. GNNs have proven to be 
highly effective in modelling complex relationships and depen- 
dencies within graph-structured data, making them an ideal choice 
for understanding the intricate correlations between codewords 
in LBR VoIP streams. By representing the relationships be- 
tween codewords as a graph and employing GraphSAGE, lo- 
cal and global connections can be effectively analyzed, thereby 
identifying patterns and changes induced by QIM steganogra- 
phy. This approach allows for the extraction of meaningful fea- 
tures that are instrumental in detecting steganographic content, 
thereby enhancing the accuracy and efficiency of the steganaly- 
sis process. 

4.2. Graph construction 

As GNNs require data in the form of a graph for process- 
ing during training, it is essential to transform the QIS matrix 
representation of the compressed speech stream into a graph 
structure. This transformation enables the GNN to leverage the 
inherent relationships and patterns within the speech data for 
effective steganalysis. 

Taking the QIS matrix as input, the objective of this step 
is to construct a corresponding graph G = (V, E), where V = 

edges between the nodes. 
QIM-based steganography induces significant changes, prin- 

cipally in the correlation of adjacent frame codewords, i.e., edges 
between codewords of adjacent frames [17, 19, 39, 40, 42]. 
Consequently, each of the T frames in the speech signal is rep- 
resented as a node, forming a graph G composed of T nodes: 

• Each node vi is assigned a feature vector xi ∈ R3 that encap- 
sulates the three codewords from the corresponding frame: 
xi = [c1,i, c2,i, c3,i]. 

• The edges e j, which link the nodes vi and vi+1, are direc- 
tional and symbolize the transitions between two successive 
frames. This choice of directed edges is crucial for cap- 
turing the temporal sequence and dependencies inherent in 
speech signals, allowing the model to learn how information 
flows and changes over time, particularly between consec- 
utive frames. This design choice aligns with prior studies 
in speech processing, where directed relationships are com- 
monly employed to model temporal dependencies and im- 
prove learning performance [61, 62]. 

The graph generated from these procedures is a directed 
acyclic graph (DAG) used to represent the temporal dependen- 
cies between frames in the compressed speech. Due to its di- 
rected configuration, the graph ensures that information flows 
in one direction, mirroring the progression of time in speech 
signals. This unidirectional flow is essential for capturing the 
temporal dependencies that may be altered by steganographic 
embedding. The acyclic property of the graph prevents loops, 
ensuring that the model doesn’t incorrectly assume circular de- 
pendencies between frames. This is crucial for maintaining the 
integrity of the temporal sequence and avoiding spurious corre- 
lations. 

The proposed graph construction process is depicted in Fig- 
ure 3. 

The adjacency matrix of G is indicated by A ∈ RT×T , with 
(A)i j indicating the connection weight between nodes vi and v j, 
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Figure 3: Speech-to-graph construction process. 
 

 

as illustrated in Equation 6. The off-diagonal elements, signify 
the presence of edges between nodes, with a value of 1 indicat- 
ing their connectivity. The diagonal elements, by contrast, are 
all set to 0, as nodes are not self-connected in this context. 

0  1 0 · · · 0 

�1 0 1 · · · 0� 

4.3. Network architecture 

Given a collection of graphs {G1, . . . , GN }, derived from 
speech samples, along with their corresponding true labels {y1, . . . , yN }, 
the objective is centred around graph classification. The aim is 
to differentiate between graphs corresponding to cover data and 
those indicating the presence of QIM steganography. 

To accomplish this, the generated graphs are passed through 
a GraphSAGE network for representation learning. This pro- 
cess produces a feature vector that captures the most relevant in- 
formation indicating the presence of QIM steganography, which 
is then used in the final classification step. The network archi- 
tecture, as depicted in Figure 4, comprises two sub-networks: 
GraphSAGE Network and Classification Network. 
 
4.3.1. GraphSAGE network 

In this architectural framework, the GraphSAGE Network 
consists of two key phases: graph updating and readout (pool- 
ing). The objective of this network is to extract a vector of the 
most relevant features for steganalysis. 

During the graph updating phase, the node embeddings within 
the graph undergo a series of operations aimed at refining and 
modifying them. This process is crucial for extracting essential 
features in steganalysis. In our architecture, three GraphSAGE 
convolution layers are employed to progressively extract more 
abstract features from the input graph data. The GraphSAGE 
algorithm, suggested by Hamilton et al. [60], is instrumental in 
this process. 

Starting with the input graph G = (V, E) including all fea- 
ture vectors corresponding to the graph nodes {xv, ∀v ∈ V}, the 
GraphSAGE algorithm is determined by how many graph con- 
volutional layers K are employed, which in our design is set 
to 3. This determines the number of hops used for aggregat- 
ing node information. Furthermore, differentiable aggregator 

0  1 0 · · · 0 
� (6) functions AGGk, ∀k ∈ {1, . . . , K} are employed to combine in- 

�
0 0 · · · 1 0

� 

The construction of a simple graph structure in this con- 
text is well-justified due to several essential factors. First and 
foremost, simplicity in the graph structure reduces the computa- 
tional complexity and resource requirements during the training 
phase, particularly in scenarios involving large datasets. This 
efficiency is valuable not only during training but also in the 
testing phases, as it allows for the rapid analysis of a signif- 
icant number of speech segments without excessive resource 
consumption. Moreover, the straightforward graph structure 
aligns perfectly with the nature of the information under ex- 
amination. In QIM-affected speech data steganalysis, the crit- 
ical alterations predominantly occur in the transitions between 
adjacent frames, as already mentioned. Consequently, this ap- 
proach effectively captures these local temporal dependencies. 
Furthermore, despite the graph’s simplicity, the GraphSAGE 
model excels at feature extraction, effectively aggregating local 
neighbourhood information to reveal the vital temporal depen- 
dencies critical for accurate steganalysis. 

gorithm collects information from a node’s neighbours, their 
neighbours, and so on. 

Each iteration involves sampling nearby nodes and summa- 
rizing their features into a consolidated vector. At the kth layer, 
the combined features for a node v based on the sampled neigh- 
borhood N(v), hk , is described in Equation 7: 

hk  = AGGk({hk−1, ∀u ∈ N(v)}),  (7) 

where hk−1 corresponds to the output of node u from the previ- 
ous layer. The embeddings of all nodes u within the neighbour- 
hood of node v are collectively merged to form the embedding 
of node v at layer k. In Equation 7, various aggregation func- 
tions such as mean, pooling, graph convolution, or LSTM can 
be applied. Within the scope of our model, the LSTM architec- 
ture achieved superior performance, as proved later in experi- 
ments. 

The LSTM aggregator processes the set of neighbor repre- 
sentations as a sequence through an LSTM. For each node v: 

hk = LSTM(hk−1, hk−1, . . . , hk−1) (8) 
N(v) u1 u2 um 
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Figure 4: The proposed GraphSAGE-based network architecture. 

 

where (u1, u2, . . . , um) is a random permutation of N(v). The 
final hidden state of the LSTM sequence processing is used as 
the aggregated vector hk . 

The neighbourhood information, represented by the aggre- 

where subtle changes in different parts of the graph can collec- 
tively indicate the presence of hidden information. Common 
options for pooling methods in graph analysis include mean 
pooling, max pooling, and sum pooling. In our QIM steganaly- 

gated embeddings hk , is combined with the previous layer’s sis context, the use of mean pooling was found to be especially 

embedding of the node v, hk−1, through concatenation. This 
concatenated vector is then transformed by the trainable weight 
matrix Wk and passed through a non-linear activation function 
F (e.g., rectified linear unit (ReLU)). The outcome yields the 
updated node representation at layer k, as described in Equa- tion 9: 

effective, as it averages the features at each layer, enabling the 
capture of collective characteristics crucial for QIM steganog- 
raphy detection. The graph-level representation at each layer k, 
zk , is defined as in Equation 11: 

zk = MeanPool
 n

hk, v ∈ V
o 

= 
 1  X 

hK
 
,    ∀k ∈ {1, . . . , K} 

 
hk = F

 
Wk · CONCAT(hk−1, hk 

G 

 

)
 

(9) 

v |V| v 

v∈V  
(11) 

The final representation of node v, denoted as zv, is obtained 
from the node’s embedding at the last layer K, i.e., hK, as for- 
mulated in Equation 10. The procedure of node embedding 
through two GraphSAGE layers is depicted in Figure 5. 

zv = hK, ∀v ∈ V (10) 

The objective is graph classification, where graphs are aimed 
to be categorized into two classes: stego and cover. This task 
differs from the more common objective of classifying nodes 
or edges within a graph. To achieve this, a graph-level repre- 
sentation zG ∈ RQ needs to be generated from the node em- 
beddings. This is generally accomplished by applying a pool- 
ing operation over the final-layer node embeddings zv. Instead 
of this, a hierarchical pooling approach has been introduced 

representations. Mean pooling preserves the collective statistics 
and the overall distribution of features across nodes, which is 
crucial for detecting subtle patterns introduced by QIM steganog- 
raphy in compressed speech streams. In contrast, max pool- 
ing may discard valuable information by focusing only on the 
strongest activation, making it less effective when the signal 
differences are minimal and widely distributed. This observa- 
tion is supported by the results presented in Section 5.4, which 
show that using max pooling instead of mean pooling leads to 
a notable drop in detection accuracy. 

The final vector representing the entire graph, zG, is con- 
structed by summing all the hierarchically pooled representa- 
tions zk , as expressed in Equation 12. 

K 

by pooling the node-level embeddings at each layer hk, ∀k ∈ 
{1, . . . , K}. This approach allows for capturing features at dif- 

zG 
k 

k 

(12) 

ferent levels of abstraction. By aggregating information hierar- 
chically, a comprehensive graph-level representation is created 
that encompasses both fine-grained details and high-level pat- 
terns. This proves particularly valuable in steganalysis tasks, 

This global representation encapsulates the most relevant 
features for steganalysis. Additionally, it acts as the input for 
the subsequent classification layer, allowing the model to make 
predictions about the presence of steganography in the input 
data. 
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where MeanPool is the pooling operation that averages the node 
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Figure 5: A two-layer node embedding process. h0 denotes the initial attribute of node v. In this illustration, node embedding is shown for the target node A. 
Notably, the embedding of other nodes occurs in parallel. 

 

4.3.2. Classification task 
After obtaining the comprehensive graph-level representa- 

tion zG, the model proceeds to the classification stage. The pri- 
mary purpose of this stage is to differentiate between regular 

activation and a negative log-likelihood loss. The function is 
defined as: 

speech (cover data) and speech samples with embedded QIM 
steganography (stego speech). The classification incorporates 
two key layers: a dropout layer and a linear classification layer, 

Loss = − 
N 

 

N 
i=1 

"

yi log 

 exp(yˆi)  
l: 

j exp(y ĵ) 
+(1 − yi) log 

1 −  exp(yˆi) 
!# 

(15) 
referred to as the fully connected layer. 

The first step is to apply dropout to zG to prevent overfitting. 
To prevent overfitting, dropout randomly sets a portion p of 
input activations to zero during training updates. The dropout 
layer can be formulated as: 

zD = D(zG, p),  (13) 

where D denotes the dropout function, and zD is the resulting 
vector after applying this fucntion. 

The result from the dropout layer is subsequently passed to 
the fully connected layer to perform the final classification. The 
latter layer maps the representation to the output space for bi- 
nary classification, with output neurons equal to the number of 
target classes (two in our case: ”cover” and ”stego”). Mathe- 
matically, the final classification yˆ can be expressed as follows: 

yˆ = WFCzD + bFC,  (14) 

where WFC and bFC represent the weights and biases of the fully 
connected layer, respectively. The output yˆ corresponds to the 
raw logits for each class. 

The model employs CrossEntropyLoss as its loss function 
for the binary classification task, which combines a softmax 

where Loss is the loss value to be minimized, yi is the true label, 
yˆi are the logits for the i-th sample, and N is the number of 
samples in the dataset. j exp(yˆj) represents the sum of the 
exponentials of logits across all classes, used for normalization 
in the softmax function. 

The proposed architecture, consisting of graph construc- 
tion, the GraphSAGE network, and the classification module, 
is implemented and evaluated under various experimental con- 
figurations, as detailed in the next section. 

 
5. Experiments and discussion 

The efficacy of the suggested steganalysis technique is as- 
sessed through various experiments, focusing on factors such 
as the embedding rate, duration of the speech sample, and time 
consumption. 
 
5.1. Experiment setup 

The experiments were conducted using a dataset described 
in [19] and available on the Github1 platform. This dataset 
includes 72 hours of English speech and 41 hours of Chinese 

 
1https://github.com/fjxmlzn/RNN-SM 
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Table 1: Dataset description 

 
 

Feature Description 
 

 

Total Duration 113 hours (72 hours English, 
41 hours Chinese) 

Number of Recordings 320 recordings in 16-bit PCM 
format 

Speakers Various male and female 
speakers (sourced from the 
Internet) 

Codec G.729A LBR speech codec 
Steganography Method   CNV-QIM embedding during 

G.729A encoding 
Embedding Rates Tested 20%, 40%, 60%, 80%, 100% 
Segment Lengths (Ls) 0.5s, 1s, 3s, 5s, 7s, 10s 
Train/Validation/Test Split 70% / 15% / 15% (random- 

ized) 
Cover/Stego Ratio 1:1 in each subset 

 
 

 
speech, totalling 320 recordings in 16-bit PCM format. The 
speech samples were sourced from the internet and included 
contributions from various male and female speakers. In our 
methodology, the G.729A LBR speech codec was employed to 
encode the original speech samples, forming the basis of our 
cover speech dataset. To create the stego samples, the CNV- 
QIM [57] steganography method was used, inserting secret bits 
during the G.729A encoding phase. 

To assess the robustness of our detection technique under 
different conditions, stego samples were generated at varying 
embedding rates ranging from 20% to 100% with a step size 
of 20%. Moreover, the algorithm’s ability to detect samples of 
varied lengths was assessed by segmenting entries in both the 
cover and stego speech datasets into sample lengths Ls of 0.5s, 
1s, 3s, 5s, 7s, and 10s. For each test, samples were chosen from 
the stego and cover datasets based on the designated embedding 
rate and duration. For example, for the training set with 10s 
segments and an embedding rate of 100%, there were 10,552 
cover samples and 10,552 stego samples. The speech data were 
partitioned into three subsets — 70% for training, 15% for val- 
idation, and 15% for testing — using a randomized split while 
maintaining a 1:1 cover-to-stego ratio within each subset to en- 
sure balanced and unbiased evaluation. The validation subset 
was employed to fine-tune the model’s parameters, whereas the 
testing portion served to assess the model’s effectiveness. A 
comprehensive summary of the dataset characteristics is pro- 
vided in Table 1. 

The process of training and testing our model is depicted in 
Figure 6 (left-hand process). 

The proposed steganalysis model was trained on the Kaggle 
platform using a P100 GPU. The model was implemented with 
the PyTorch and PyTorch Geometric frameworks, using Adam 
as the optimizer, configured with a learning rate of 0.003 for 
efficient convergence. A batch size of 32 was employed during 
data preprocessing and model training, spanning 150 epochs 
to improve the proposed GNN-based steganalysis model’s per- 

Table 2: Summary of hyperparameters used for model training 
 

Hyperparameter Value 
 

Optimizer Adam 
Learning rate 0.003 
Batch size 32 
Number of epochs 150 
Dropout rate 0.3 
GNN layers GraphSAGE 
Number of layers 3 
Hidden chanels 64 
Aggregation function LSTM 
Pooling Method Mean 
Activation function ReLU 
Loss function Binary Cross-Entropy 

 

 
formance. The key hyperparameters used during training and 
model configuration are summarized in Table 2. These param- 
eters were selected empirically through iterative experimenta- 
tion to achieve the best detection accuracy and generalization 
performance 
 
5.2. Evaluation metrics 

The proposed model is assessed using key performance in- 
dicators, namely detection accuracy, precision, recall, F1-score, 
detection time, and computational complexity. 

The classification-related measures (accuracy, precision, re- 
call, and F1-score) are computed based on the results of binary 
classification, which are summarized through four categories in 
the confusion matrix: 

• True Positive (TP): Instances that are actually stego and are 
correctly predicted as stego. 

• True Negative (TN): Instances that are actually cover and 
are correctly predicted as cover. 

• False Positive (FP): Instances that are actually cover but are 
incorrectly predicted as stego. 

• False Negative (FN): Instances that are actually stego but 
are incorrectly predicted as cover. 

The evaluation metrics are defined as follows: 
Detection accuracy: This metric measures the proportion of 
correctly identified instances of steganography compared to the 
overall instances. It is calculated as: 
 

Accuracy =  
TP + TN 

(16) 
TP + TN + FP + FN 

Detection accuracy is a key metric in our case as the dataset 
is evenly distributed, containing the same number of positive 
(stego) and negative (cover) samples. In a balanced dataset, the 
number of instances in each class is approximately equal, mak- 
ing accuracy a reliable indicator of the model’s performance. 
High detection accuracy reflects the model’s ability to effec- 
tively distinguish between stego and non-stego signals, making 
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Figure 6: Process of training, testing and detection. 

 

it a suitable metric for evaluating performance in this balanced 
setting. 
Precision: Measures the accuracy of positive predictions made 
by the model. It quantifies the proportion of correctly identi- 
fied stego samples out of all samples that the model predicted 
as stego. High precision indicates a low rate of false positives, 

F1-score: The F1-score is the harmonic mean of Precision and 
Recall, providing a single metric that balances both. It is par- 
ticularly useful when dealing with imbalanced datasets (though 
less critical for our balanced dataset) or when both false posi- 
tives and false negatives carry significant costs. It is calculated 
as: 

which is important to avoid incorrectly flagging legitimate com- Precision × Recall  2 × TP  
munication as covert. It is calculated as: 

Precision = 
  TP  

TP + FP 

 

 
(17) 

F1-score = 2 × 
Precision + Recall 

= 
2 × TP + FP + FN 

(19) 

 
Detection time (DT): Evaluates the time required for the model 

Recall (Sensitivity): Measures the model’s ability to find all 
positive instances. It quantifies the proportion of correctly iden- 
tified stego samples out of all actual stego samples present in 
the dataset. High recall indicates a low rate of false negatives, 
which is crucial for not missing any covert communications. It 

to process and classify an input sample. DT is critical for as- 
sessing the efficiency of the model, especially in real-time or 
online steganalysis scenarios. A shorter DT reflects the model’s 
capability to perform analysis swiftly, making it suitable for 
time-sensitive applications.  Since the training phase is per- 

is calculated as:  
Recall = 

  TP  
(18) 

TP + FN 

formed offline and does not impact real-time detection perfor- 
mance, which is the primary objectif of our work, we focus 
solely on the detection time for evaluating runtime efficiency. 
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Computational Complexity: This metric provides insight into 
the model’s inherent resource requirements, indirectly indicat- 
ing its memory footprint, model size, and raw computational 
load. It is quantified in terms of: 

• Parameters: The total number of adjustable values within the 
model’s architecture or its underlying algorithms, which are 
determined during the training phase. For neural networks, 
these are the trainable weights and biases; for traditional ma- 
chine learning methods, these may include coefficients of sta- 
tistical models or support vectors of classifiers. This directly 
correlates with model size and memory usage. 

• Floating Point Operations (FLOPs): The number of arith- 
metic operations (additions, multiplications, etc.) required 
for a single inference pass. FLOPs indicate the raw compu- 
tational intensity of the model, which influences execution 
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5.3. Detection performance 

This section presents the evaluation results of the proposed 
approach under various scenarios, encompassing different sam- 
ple lengths and embedding rates. The assessment begins by 
examining the impact of embedding rates on the system. In 
real-world scenarios, attackers often disperse secret informa- 
tion over an extended period to lower the average embedding 
rate, intending to enhance communication concealment. Con- 
sequently, effectively detecting steganographic VoIP signals at 
low embedding rates remains an open and difficult problem in 
the research community. 

(a) Performance results under varying embedding rates: 

A preliminary assessment of the degree of difficulty faced 
by the proposed GNN scheme in uncovering the CNV-QIM 
steganographic method, particularly at low embedding rates, 
was conducted using statistical analysis by comparing cover 
and stego datasets. Figure 7 presents this analysis using 
boxplots, contrasting cover and stego datasets across vari- 
ous embedding rates. The results demonstrate that CNV- 
QIM maintains consistent mean values across different sce- 
narios, with only slight variations in the first (Q1) and third 
(Q3) quartiles as embedding rates increase. This stability 
indicates that CNV-QIM is a challenging steganographic 
method. The evaluation of the proposed steganalysis tech- 
nique under different embedding rates for 10-second sam- 
ple segments, as presented in Table 3, reveals nuanced per- 
formance characteristics. Notably, the detection capability, 
as measured across all metrics (Accuracy, Precision, Re- 
call, F1-score), exhibits a slight decreasing trend with lower 
embedding rates. This is attributed to the fact that higher 
embedding rates induce more pronounced changes in code- 
words, providing a more discernible pattern for steganal- 
ysis. It is noteworthy that even at a low embedding rate 
of 20%, our approach maintains high accuracy, registering 
at 95.17%, and demonstrates strong, balanced performance 
across the other metrics, with Precision at 95.43%, Recall 
at 94.95%, F1-score at 95.19%, and AUC at 95.20%. 

Figure 7: Statistical analysis of cover and stego speeches at different embedding 
rates. 

 
Table 3: Detection performance metrics across varied embedding rates for 10s 
samples. 

 

Embedding rate (%) 20 40 60 80 100 

Accuracy (%) 95.17 99.68 99.94 100 100 
Precision (%) 95.43 99.68 99.94 100 100 
Recall (%) 94.95 99.68 99.94 100 100 
F1-score (%) 95.19 99.68 99.94 100 100 

 
 

To further illustrate this robust performance in the challeng- 
ing low-embedding-rate scenario, Figure 8 presents the de- 
tailed confusion matrix for the 20% embedding rate. Out of 
a total of 3166 test samples (comprising 1583 actual stego 
and 1583 actual cover samples), the model successfully iden- 
tified 1503 TP (correctly classified stego) and 1511 TN (cor- 
rectly classified cover). Critically, the false classifications 
were minimal, with only 72 FP (cover incorrectly flagged 
as stego) and 80 FN (stego samples missed). This granular 
breakdown underscores the model’s effectiveness in mini- 
mizing both false alarms and missed detections, which are 
crucial for practical steganalysis applications. The proposed 
steganalysis approach consistently achieves high detection 
rates despite the inherent challenge posed by the resilience 
of CNV-QIM, showcasing its strong discriminative power 
even under subtle embedding. 

(b) Performance results under varying speech segment lengths: 
In VoIP steganalysis, the length of speech segments is also 
a crucial factor influencing detection accuracy. A success- 
ful approach must achieve a sufficiently high level of ac- 
curacy within a limited time detection window. Table 4 
explores the impact of sample length on various detection 
performance metrics, focusing on a fixed embedding rate of 
100%. The findings reveal that longer sample lengths lead 
to a steady and significant improvement across all perfor- 
mance metrics: Accuracy, Precision, Recall, and F1-score. 
This improvement is rapid, with performance reaching near- 

Cover Stego 
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Figure 8: Confusion matrix under 20% embedding rate. 70 

perfect levels (e.g., 99.97% accuracy at 3 seconds) and achiev- 
ing a perfect 100% across all metrics from 7-second sam- 
ples onwards. This can be attributed to the larger sample 
length providing more data for steganalysis, allowing the 
algorithm to learn richer patterns and longer-range depen- 
dencies. Crucially, even with short 0.5-second segments, 
the approach we propose attains exceptionally high detec- 
tion performance, with Accuracy, Precision, Recall, and F1- 
score all exceeding 98%. The remarkable consistency across 
these metrics for each sample length highlights the model’s 
robust and balanced performance, demonstrating its ability 
to minimize both false positives and false negatives. The 
method therefore enables effective detection of QIM steganog- 
raphy even for very short segments of monitored VoIP traf- 
fic, which is vital for real-world scenarios where covert data 
might be dispersed in brief bursts. 

Table 4: Detection performance metrics across varied sample lengths at 100% 
embedding rate. 

 

 
65 
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Figure 9: Detection accuracy across varying embedding rates and sample 
length. 

 

 

To further substantiate the discriminative capabilities of our 
approach, t-distributed stochastic neighbour embedding (t-SNE) 
was exploited to visualize the graph-level representation vectors 
(Equation 12), before and after training, utilizing a set of 2000 
graphs selected from the training dataset. Figure 10 presents 
snapshots of the distribution of graph-level representation vec- 
tors at different embedding rates while utilizing a fixed sample 
length of 0.5 seconds. The colour-coded representation illus- 
trates the gradual separation of stego and cover graphs in the 
vector space of features post-training. The overlap diminishes 
as the embedding rate increases, reaching almost complete sep- 
aration at a 100% embedding rate. These visualizations intu- 
itively showcase the model’s efficacy in extracting and analyz- 

  ing steganographic speech features across various embedding 
rates. As a result, the combination of sensitivity to various em- 
bedding rates and effectiveness with short samples suggests that 
our method is versatile and applicable across a wide range of 
steganographic scenarios, from high-capacity hidden messages 
to more subtle, security-conscious embeddings. These charac- 
teristics position our approach as a powerful tool in the ongoing 
challenge of audio steganalysis, capable of adapting to different 
steganographic strategies while maintaining high detection ac- 

(c) Performance results with varying speech segment lengths 
and embedding rate: Figure 9 provides the results of de- 
tection accuracy with varying embedding rates for sample 
segments of different lengths. The results reaffirm the method’s 
reliability, with a general upward trend in accuracy as the 
embedding rate and sample length increase. It is evident 
that achieving accurate detection under low embedding rates 
with short segments poses a challenge, yet our approach 
maintains an acceptable accuracy exceeding 70%. This chal- 
lenging scenario represents the Achilles’ heel of our ap- 
proach, signalling potential areas for further investigation 
and model enhancements. 

curacy. These findings provide valuable insights into how the 
model can be applied in practical VoIP security systems, as dis- 
cussed in the following section. Moreover, these findings offer 
valuable insights into the practical applicability of our model 
in real-world VoIP security systems, which will be further ex- 
plored in the section 6. 
 
5.4. Comparison with different model variants 

The purpose of this section is to demonstrate the effective- 
ness of the suggested GraphSAGE-based architecture by com- 
paring it with several of its variants. Six variant architectures, 
indexed from #2 to #7, were considered in the experiment, each 
with components slightly different from our complete proposed 
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length (s) 0.5 1 3 5 7 10 

Accuracy (%) 98.26 99.47 99.97 99.98 100 100 
Precision (%) 98.27 99.43 99.97 99.98 100 100 
Recall (%) 98.27 99.49 99.97 99.98 100 100 
F1-score (%) 98.24 99.46 99.97 99.98 100 100 
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(a) Before Training 

(Embedding rate=20%) 
 

 
(d) After Training 

(Embedding rate=60%) 

(b) After Training 
(Embedding rate=20%) 

 

 
(e) After Training 

(Embedding rate=80%) 

(c) After Training 
(Embedding rate=40%) 

 

(f) After Training 
(Embedding rate=100%) 

 
Figure 10: Distribution of graph-level representation vectors before and after training of the proposed model in statistical space across different embedding rates 
while utilizing a fixed sample length of 0.5 seconds. 

 

network #1. The experiment focused on a speech length of 10 
seconds and an embedding rate of 20% 

Table 5 presents the results of the experiment, showing the 
detection accuracy for each architecture variant. The results 
highlight the significance of various components in the pro- 
posed architecture. It is obvious that the complete model (#1) 
yields the highest level of accuracy, demonstrating the effec- 
tiveness of our GraphSAGE for steganalysis. Variant #2, which 
removes the first and second max-pooling layers, experiences a 
significant drop in accuracy, emphasizing the importance of us- 
ing the hierarchical pooling approach in capturing fine-grained 
details and high-level patterns. This is particularly beneficial in 
scenarios with low embedding rates where changes produced 
by steganography are minimal. In variant #3, the use of a mean 
aggregator instead of LSTM highlights the importance of the 
latter in our approach. The LSTM aggregator captures sequen- 
tial dependencies and temporal patterns in the input data, which 
is crucial for steganalysis tasks dealing with speech segments. 
By leveraging LSTM, the model can effectively learn inter- 
frame relationships and sequential context, allowing for more 
effective detection of subtle changes introduced by QIM steganog- 
raphy. Variant #4, using max pooling instead of mean pooling, 
also leads to an accuracy of 85%, significantly inferior to the 
complete model. A possible explanation is that max-pooling 
selects the maximum value from each layer, discarding the in- 

formation about the overall distribution of features within the 
layer. In the context of QIM steganalysis, where capturing col- 
lective characteristics is crucial for effective detection, this loss 
of information makes it harder for the model to notice subtle 
patterns that indicate steganographic content. Mean pooling, 
on the other hand, averages the features at each layer, providing 
a more comprehensive representation of the layer’s characteris- 
tics and proving to be more effective for our specific steganal- 
ysis task. Furthermore, variant #5, where GraphSAGE layers 
are replaced with GCN, exhibits a notable decrease in accu- 
racy, suggesting that the specific architecture of GraphSAGE 
contributes significantly to the model’s performance. Similarly, 
when GraphSAGE layers are replaced with graph attention net- 
work (GAT) layers (Variant #6), while performance is strong 
(91.63%), it remains lower than our proposed GraphSAGE model. 
This indicates that for this specific VoIP steganalysis task, the 
fixed aggregation approach of GraphSAGE, which comprehen- 
sively samples and aggregates features from a fixed neighbor- 
hood, provides a more effective representation for QIM-induced 
subtle changes than the attention-based weighting of GAT lay- 
ers. Finally, in variants #7 and #8, the first reduces the number 
of GraphSAGE layers by one, while the second adds one ex- 
tra GraphSAGE layer. Both configurations result in a decrease 
in terms of accuracy, consequently supporting the suitability of 
employing three layers in our model architecture. Generally, a 

Cover Stego 
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Table 5: Detection performance under various model configurations. 

Index Architecture variant Accuracy (%) 

#1 The complete proposed model  95.17 

with a cover-to-stego ratio of 1:1. On the other hand, RNN-SM 
and CNN-LSTM were evaluated using the same dataset em- 
ployed in our proposed approach. 

Table 6 presents a detailed comparison of detection accu- 

#2  Consider only the last mean pool- 
ing layer (delete the first and sec- 
ond mean pooling) 

#3  Replace LSTM aggregator with 
Mean aggregator 

#4 Replace Mean pooling with Max 
pooling 

#5  Replace the GraphSAGE layers 
with GCN Layers 

#6  Replace the GraphSAGE layers 
with GAT Layers 

52.56 
 
 

86.70 
 

85.25 
 

68.37 
 

91.63 

racy between the proposed model and SOTA approaches across 
various speech segment lengths and embedding rate settings. 
The results reveal that our approach and CNN-LSTM exhibit 
superior accuracy. Our model demonstrates competitive perfor- 
mance in 0.5-second and 5-second speech segments, compared 
to RNN-SM and SS-QCCN, respectively. In comparison to IDC 
and SS-QCCN, our approach significantly outperforms these 
methods, notably in cases where embedding rates are low and 
segments are short. When compared to RNN-SM, our approach 
demonstrates a notable disparity, especially at low embedding 
rates (20% and 40%). However, in the context of 0.5-second 

#7 Use 2 GraphSAGE layers 94.38 
#8 Use 4 GraphSAGE layers 93.25 

 

 
deeper network has the potential to capture more intricate fea- 
tures within the input data. Variant #8’s performance highlights 
a crucial observation – the depth of the network does not nec- 
essarily correlate with improved model performance. Deeper 
networks, as seen in variant #8, may face challenges such as 
overfitting and vanishing gradient problems, emphasizing the 
importance of striking a balance between network depth and ef- 
fective steganalysis. The optimal configuration should not only 
capture relevant features but also mitigate potential issues asso- 
ciated with increased model complexity. 

This ablation study reaffirms the crucial role each architec- 
tural component plays in the overall performance of our model. 
To further demonstrate the effectiveness of our approach, we 
next conduct a direct comparison against existing state-of-the- 
art methods in VoIP steganalysis. 

5.5. Comparison with SOTA methods 
To validate the performance of the proposed model, a com- 

parison was conducted with the following four SOTA methods: 
IDC [39], SS-QCCN [40], RNN-SM [19], and CNN-LSTM 
[37]. These methods were selected for several reasons. First 
and foremost, they are specifically tailored for detecting QIM 
steganography, similar to our approach. Secondly, these meth- 
ods are established SOTA approaches frequently used as bench- 
marks in various studies. Lastly, to ensure a fair and equi- 
table comparison, these approaches were reimplemented based 
on their original papers, which either provided GitHub links 
for implementation, as with [19], or were thoroughly docu- 
mented with sufficient details for independent reimplementa- 
tion, as provided in [37, 39, 40]. 

The implementations of these approaches were carried out 
in Python, adhering to the parameters specified in their respec- 
tive papers. For IDC and SS-QCCN, given their reliance on 
SVM with quadratic time complexity, it’s impractical to evalu- 
ate them using the entire stego and cover segment datasets. Fol- 
lowing the experimental settings in [40], 4,000 samples were 
randomly selected for the training set, maintaining a cover-to- 
stego ratio of 1:1, and 2,000 samples for the testing set, also 

speech length, RNN-SM performs on par or slightly better than 
our model. Overall, across all scenarios where our model does 
not achieve the highest accuracy, its performance remains close 
to the best results. 

Additionally, when the sample duration is 5 seconds and 
10 seconds, and the embedding rate surpasses 80%, the detec- 
tion accuracy of almost all models stabilizes around 99%. The 
primary challenge arises in scenarios with short speech frag- 
ments and/or low embedding rates, where our approach still 
demonstrates satisfactory performance. In terms of statistics, 
as presented in Figure 11, our method demonstrates compet- 
itive and, in certain scenarios, superior performance in terms 
of mean detection accuracy and standard deviation compared 
to other SOTA methods. At shorter sample lengths (0.5 sec- 
onds), while our mean accuracy slightly trails behind the CNN- 
LSTM method, it maintains a lower standard deviation, indi- 
cating more consistent performance across different embedding 
rates. As the sample length increases to 5 and 10 seconds, our 
method outperforms all other techniques, achieving the high- 
est mean accuracy and standard deviation. Furthermore, when 
considering the overall performance across all sample lengths, 
our method exhibits the highest mean accuracy and the most 
consistent performance. 

To further validate the approach, a detection comparative 
analysis was conducted with four recently proposed methods: 
E-SWAN [49], Bi-LSTM-3DCNN [50], TENet [52], and Fed- 
Spey [53]. These methods use the same dataset and QIM steganog- 
raphy technique as our work. Due to the complexity of the tech- 
niques and limited available information, these methods were 
not re-implemented. Consequently, the comparison is based on 
results presented in the corresponding published papers and is 
limited to scenarios common to our study. 

For the TENet approach, which is based on Transformer 
architecture, the nearest comparable scenario to our study in- 
volves embedding rates of 50% with sample lengths of 1, 5, and 
10 seconds. This closely aligns with our scenario of 60% em- 
bedding rates and identical sample lengths. TENet reports ac- 
curacies of 96%, 99%, and 99% for these respective durations. 
In comparison, our approach achieves accuracies of 95.83%, 
99.89%, and 99.94% for the same sample lengths. 

FedSpy applies federated learning to several SOTA steganal- 
ysis approaches, specifically RNN-SM. Their results focus on 



17  

Table 6: Comparison of detection accuracy with SOTA methods. 
 

Sample length (s) Method 
Embedding rate (%) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1-second sample lengths with varying embedding rates. For 
a 40% embedding rate, FedSpy achieves an accuracy of about 
95%, while our approach attains 90.98%. At a 100% embed- 
ding rate, both approaches reach near 100% accuracy. 

E-SWAN, which relies on LSTM and convolutional mod- 
ules, was evaluated using only 10-second audio samples across 
varying embedding rates. At a low embedding rate of 20%, it 
achieved an accuracy of 94.65%, while our approach reached 
95.17%. 

The Bi-LSTM-3DCNN method was tested with 10-second 
samples at different embedding rates and with 100% embedding 
at varying sample lengths. In the challenging scenarios—10 
seconds at 20% embedding and 1 second at 100% embedding— 
it achieved accuracies of 77.99% and 80.61%, respectively. In 
contrast, our approach significantly outperformed it, achieving 
95.17% and 99.47% in the same settings. 

These findings underscore the robustness and effectiveness 
of our proposed GraphSAGE-based model across diverse sce- 
narios, establishing it as an alternative and advanced solution in 
QIM steganalysis. 
 
5.6. Time efficiency and compuational complexity 

Time efficiency is a crucial consideration when assessing 
the practical applicability of a model, particularly for online 
applications. To evaluate the time efficiency of our method, the 
average DT across various sample lengths was computed. The 
detection process is depicted in Figure 6 (right-hand process). 
Furthermore, a comparative analysis was conducted with the 
four previously mentioned approaches to assess the efficiency 
of our method in relation to existing steganalysis models. The 
detection process considered in our comparison encompasses 
the phases starting with a compressed VoIP sample and con- 
cluding with the decision on whether a secret message is em- 
bedded. It is important to emphasize that all compared mod- 
els, including ours, are trained offline. During the detection 

phase, the pre-trained models are loaded into memory and used 
for inference, which reflects a realistic deployment scenario. 
This ensures a fair comparison focused solely on runtime de- 
tection performance. These experiments were implemented on 
the Kaggle platform, utilizing only CPU without any GPU ac- 
celeration. To ensure a fair comparison, the mean and standard 
deviation were computed over 200 detection tests for each sam- 
ple length Ls. Figure 12 presents the DT of our approach across 
different sample lengths. Notably, the mean DT demonstrates 
a nearly linear increase with respect to the sample length, as 
approximately modelled by Equation 20, expressed as follows: 

DT = 0.003 × Ls + 0.0145 (20) 

The standard deviation, visualized by the arrows, highlights 
the variability in DTs, particularly for longer samples. 

It is evident that our GNN model maintains a relatively con- 
sistent mean detection time, even when processing moderately 
longer speech segments. For instance, detecting steganogra- 
phy in a 10-second sample takes approximately 0.045 seconds, 
representing only 0.45% of the sample length. While detect- 
ing steganography in short segments poses a challenge, our 
approach ensures fast detection in such scenarios. Detecting 
steganography in 0.5-second samples takes about 0.016 sec- 
onds, which represents approximately 3.2% of the sample length. 
These performances are attributed to several factors. Firstly, the 
adopted GraphSAGE architecture is relatively simple, leading 
to a reduced computational load. This simplicity contributes 
to faster training and DTs. Secondly, the GraphSAGE layer 
uses graph-based operations for information aggregation. The 
method of aggregating information from neighbouring nodes 
in a graph can be computationally efficient, especially for tasks 
that involve capturing dependencies and relationships in a graph 
structure. Finally, the simplicity of the graph construction ap- 
proach reduces the computational complexity and resource re- 
quirements both in the training and detection phases. These 

 20 40 60 80 100 
 IDC [39] 59.15 73.35 81.90 89.40 94.05 
 SS-QCCN [40] 61.25 77.35 87.90 93.15 95.85 
0.5 RNN-SM [19] 70.81 84.39 93.14 96.09 97.43 
 CNN-LSTM [37] 71.78 85.52 92.69 96.76 98.29 
 Our 70.20 83.35 92.58 95.63 98.26 
 IDC [39] 68.15 84.80 95.10 98.35 99.60 
 SS-QCCN [40] 71.30 96.15 99.40 99.90 100 
5 RNN-SM [19] 67.91 88.76 96.59 98.67 99.60 
 CNN-LSTM [37] 89.98 96.80 99.66 99.81 99.87 
 Our 90.76 98.88 99.89 99.97 99.98 
 IDC [39] 64.50 85.60 95.95 99.55 99.70 
 SS-QCCN [40] 72.15 98.75 99.80 100 100 
10 RNN-SM [19] 62.41 92.74 98.32 99.65 99.93 
 CNN-LSTM [37] 92.38 99.65 99.74 99.93 99.96 
 Our 95.17 99.68 99.94 100 100 
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Figure 11: Comparison of mean detection accuracy with standard deviation for different methods across various sample lengths. 
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tor to 300. This process incurs a significant amount of time, 
contributing to the observed extended DT in this method. For 
CNN-LSTM and RNN-SM, the complicated architecture, par- 
ticularly for CNN-LSTM, which involves sequential and con- 
volutional operations, might be more computationally inten- 
sive, especially when dealing with longer sequences, leading 
to slower DTs compared to ours. These results demonstrate 
the exceptional efficiency of our proposed model, enabling near 
real-time identification of hidden data in VoIP voice transmis- 
sions. This efficiency has significant practical implications, al- 
lowing for continuous monitoring of communications and im- 
mediate detection of steganographic content. The model’s scal- 
ability across various sample lengths and its superior speed com- 
pared to SOTA methods indicate excellent adaptability and re- 
source efficiency. This performance could significantly enhance 
operational efficiency in security applications and allow for po- 

Figure 12: DT of the proposed GNN approach across various sample lengths. 
 

 

results underscore the efficiency of our suggested GNN-based 
steganalysis method, demonstrating its suitability for deploy- 
ment in online steganalysis tasks. 

Table 7 provides insights into the time efficiency of our 
approach compared to SOTA methods in three sample length 
scenarios (0.5 seconds, 5 seconds, and 10 seconds). The de- 
tection time is reported as the mean value [± standard devi- 
ation]. Our approach consistently demonstrates superior time 
efficiency, outperforming the SOTA methods in terms of speed 
across all sample lengths. The IDC approach presents closer 
DTs to our approach, which can be explained by the simple ar- 
chitecture adopted in IDC, focusing only on inter-frame corre- 
lation. SS-QCCN, on the other hand, yields the least favourable 
results, primarily due to its method of extracting intra- and inter- 
frame correlations and its utilization of the PCA method to re- 
duce the dimensionality of a 131,072-dimensional feature vec- 

tential seamless integration into existing VoIP infrastructure. 
While our reported DT in Table 7 and Figure 12 focuses 

on single-sample inference—a common practice in related ste- 
ganalysis works [16–19, 21, 37, 39–54] that assesses minimal 
latency for individual streams—the architecture of our proposed 
GraphSAGE-based model is inherently well-suited for batch 
processing, a critical aspect for high-throughput real-world de- 
ployments. The core operations within our GraphSAGE lay- 
ers are highly parallelizable, meaning multiple sliding windows 
(each representing a speech segment) can be grouped into batches 
and processed simultaneously. This capability, efficiently man- 
aged by modern deep learning frameworks on GPUs or multi- 
core CPUs, allows for a significant reduction in the effective de- 
tection time per sample when handling a high volume of traffic. 
Thus, the low single-sample DT provides a strong foundation 
for our system’s scalability and high throughput in large-scale, 
real-time VoIP environments. 

To further validate our system’s efficiency, we also con- 
ducted an analysis of the computational complexity for all eval- 
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Table 7: DT (s) of our approach compared to SOTA method. Results are reported as Mean [± standard deviation] 
 

Method Sample lenght (s) 

 
 
 
 
 
 
 
 

uated models, quantifying them by their number of parameters 
and floating point operations (FLOPs), as presented in Table 
8. Although our model does not have the lowest FLOPs, it 
maintains a strong balance between architectural simplicity and 
performance. It uses fewer parameters than IDC, SS-QCCN 
and CNN-LSTM while achieving a significantly faster DT. Sev- 
eral key architectural and implementation factors explain this 
outcome. While FLOPs quantify raw arithmetic operations, 
the actual execution speed is heavily influenced by factors like 
memory access patterns, instruction pipelining, and how effi- 
ciently operations can be vectorized or parallelized by the un- 
derlying hardware and software libraries (e.g., BLAS for matrix 
multiplications). IDC’s very low FLOPs (1.53 MFLOPs) stem 
from its statistical feature extraction, which involves computa- 
tions like histograms and Markov chain probabilities. These 
operations, while theoretically low in FLOPs, can involve fre- 
quent, less cache-friendly memory accesses or branch predic- 
tions that are less optimized for modern CPUs compared to 
highly parallelizable matrix multiplications typical in GNN lay- 
ers. GraphSAGE, especially with the simple directed acyclic 
graph structure we employ, might be particularly efficient for 
single-sample inference on CPUs. The aggregation and up- 
date steps, while involving more FLOPs than a direct statisti- 
cal lookup, may benefit from more optimized library calls that 
process data blocks efficiently. RNN-SM, while having fewer 
parameters and FLOPs, might be subject to the inherent sequen- 
tial bottleneck of RNNs, making it slower for CPU inference on 
single, short samples compared to our parallelizable graph op- 
erations. 

The efficiency of our model lies not just in theoretical FLOPs, 
but in the overall streamlined pipeline, the nature of its core 
computational blocks which are well-suited for modern CPU 
architectures, and its ability to capture complex relational fea- 
tures without relying on computationally expensive preliminary 
feature engineering common in some other methods. 

 
6. Real-world applications, limitations, and improvements 

In real-world applications, the proposed GraphSAGE-based 
steganalysis approach offers substantial practical benefits for 
enhancing the security of VoIP communication systems and 
safeguarding against covert communication channels. Its key 
strengths—high accuracy and efficiency—make it particularly 
well-suited for deployment in various practical scenarios. 

Table 8: Comparison of model parameters and FLOPs for all methods 
 

Model Parameters FLOPS 
 

IDC [39] 735K 1.53M 
SS-QCCN [40] 5.2M 11.63M 
RNN-SM [19] 33K 6.1M 
CNN-LSTM [37] 258K 46.2M 
Our 83K 22.8M 

 

 
• Cybersecurity and network monitoring: Internet service 

providers (ISPs) and network administrators could deploy 
this system to detect hidden communications in VoIP traf- 
fic, potentially uncovering malicious activities or data exfil- 
tration attempts. Corporate networks could use it to ensure 
compliance with data protection policies and prevent unau- 
thorized data transfers. 

• Law enforcement: Intelligence agencies could utilize this 
technology to identify covert communication channels used 
by criminal organizations or terrorist groups. Digital foren- 
sics teams could apply this method to analyze seized com- 
munication devices for hidden messages. 

• Digital rights management: Content distribution platforms 
could implement this approach to detect unauthorized water- 
marking or copyright infringement in audio streams. 

• E-learning and online examination integrity: Educational 
institutions could use this technology to ensure the authentic- 
ity of voice-based online assessments and prevent cheating 
through hidden audio cues. 

• IoT security: As voice-controlled IoT devices become more 
prevalent, this approach could be used to detect potential se- 
curity breaches or unauthorized access attempts via stegano- 
graphic commands. 

 
Although our approach demonstrates strong performance, it 

faces some limitations and challenges. Firstly, the model strug- 
gles with very short sample lengths (less than 0.5 seconds) and 
extremely low embedding rates (below 20%). This difficulty 
arises because there is limited information available in these 
cases, making it challenging to extract enough features for ac- 
curate detection. One possible solution to overcome this lim- 
itation is to integrate GAT [63] into the model. GATs are a 

 0.5 5 10 

IDC [39] 0.019 [± 0.004] 0.037 [± 0.003] 0.049 [± 0.002] 
SS-QCCN [40] 0.099 [± 0.056] 0.134 [± 0.070] 0.146 [± 0.053] 
RNN-SM [19] 0.032 [± 0.057] 0.081 [± 0.083] 0.127 [± 0.075] 
CNN-LSTM [37] 0.075 [± 0.069] 0.119 [± 0.068] 0.152 [± 0.083] 
Our 0.016 [± 0.001] 0.029 [± 0.022] 0.045 [± 0.035] 
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type of GNN that utilizes attention mechanisms to focus selec- 
tively on the most relevant connections and information within 
the graph. By assigning higher weights to connections that re- 
veal significant variations in QIM sequences, GATs ”could be” 
more effectively capture subtle changes in short samples and 
low embedding rates. 

Secondly, the current model is specifically designed for QIM- 
based steganography in G.729 compressed speech, and its ef- 
fectiveness in detecting other steganography methods used in 
VoIP streams, such as those based on ACB, FCB and LSB, 
or in different codecs (e.g., G.711, G.722), is limited. To ad- 
dress this limitation and enhance its versatility, a multi-graph 
construction approach combined with a fusion network can be 
explored. This involves constructing separate graphs for differ- 
ent parameter types (QIS, ACB, FCB, etc.) or even for repre- 
sentations derived from different codecs, and then capturing the 
unique variations introduced by each steganography method or 
codec. A fusion network, potentially implemented using LSTM 
or attention mechanisms, would then aggregate and fuse fea- 
tures extracted from these individual graphs, learning to dynam- 
ically weigh their contributions. This combined approach could 
enable the model to generalize to different steganography tech- 
niques and codecs and enhance its ability to detect a broader 
range of hidden messages within VoIP streams. 

Finaly, although the dataset is diverse in terms of speak- 
ers and language (English and Chinese), it is based on pre- 
recorded data and a specific codec/steganography pair. Real- 
world VoIP traffic can exhibit variability in network conditions, 
background noise, codec implementations, and potentially un- 
known or adaptive steganography techniques. Evaluating the 
model’s performance on live or more diverse traffic is neces- 
sary. 

 
7. Ethical considerations 

The primary objective of this research is to enhance cyber- 
security by providing a robust and efficient method for detecting 
covert communications hidden within VoIP streams. This capa- 
bility is crucial for defensive purposes, including protecting na- 
tional security, preventing intellectual property exfiltration, and 
aiding law enforcement in countering illicit activities. However, 
we acknowledge that, like many cyberscurity technologies, ste- 
ganalysis tools could potentially be misused for unauthorized 
surveillance or infringement on individual privacy. 

It is important to emphasize that our method is designed 
solely to detect the presence of steganography, not to extract, 
interpret, or monitor the content of any communication. Its re- 
sponsible deployment must be strictly governed by strong legal 
frameworks and transparent ethical guidelines to ensure that 
it is used only for legitimate purposes and in full compliance 
with privacy laws and human rights. Our contribution aims to 
empower defenders in the ongoing cyber security landscape, 
fostering a more secure digital environment where covert mali- 
cious activities can be identified, thus supporting a balance be- 
tween security needs and individual privacy. We advocate for 
the ethical application of this technology in accordance with all 
relevant regulations and principles. 

8. Conclusion 

In this article, a novel steganalysis algorithm for VoIP streams 
based on the GraphSAGE architecture was introduced. The 
proposed GNN method showcases efficient performance in de- 
tecting QIM steganography in VoIP signals. Notably, when 
compared to existing SOTA algorithms, it demonstrates a su- 
perior compromise between detection accuracy and efficiency. 
Achieving detection accuracy exceeding 98% for 0.5-second 
samples, and 95.17% under 20% embedding rate scenarios— 
representing an improvement of 2.8% over the best-performing 
SOTA approaches. Additionally, it maintains high computa- 
tional efficiency, with an average detection time as low as 0.016 
seconds (a 0.003-second improvement), which corresponds to 
less than 3% of the sample length, making it well-suited for on- 
line detection systems. Additionally, this work contributes to 
the field by introducing the use of GNNs, specifically Graph- 
SAGE, in VoIP steganalysis, showcasing its practicality and ef- 
fectiveness. 

Looking ahead, future research will concentrate on refin- 
ing the model to address its limitations as detailed in section 
6. This includes enhancing its ability to detect very short sam- 
ple lengths with very low embedding rates, handling various 
steganography methods, and accurately predicting embedding 
rates. Additionally, an important direction for future work is 
to extend the model to identify the specific positions of em- 
bedded bits within the VoIP streams. This challenging scenario 
may involve developing more granular feature extraction tech- 
niques that focus on bit-level analysis. Furthermore, investi- 
gating the robustness of GNN-based steganalysis against eva- 
sion and adversarial attacks remains an essential research av- 
enue. Incorporating adversarial training strategies could help 
improve the model’s resilience to sophisticated obfuscation at- 
tempts. Finally, extending the proposed GNN-based framework 
to multi-modal steganalysis — for example, combining VoIP 
with video streams — could broaden its applicability and im- 
pact, paving the way for more comprehensive cross-domain ste- 
ganalysis systems. 
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