arXiv:2507.21640v1 [cs.CR] 29 Jul 2025

GUARD-CAN: Graph-Understanding and
Recurrent Architecture for CAN Anomaly
Detection

Hyeong Seon Kim and Huy Kang Kim

School of Cybersecurity, Korea University, Republic of Korea
{ccloseon, cenda}@korea.ac.kr

Abstract. Modern in-vehicle networks face various cyber threats due to
the lack of encryption and authentication in the Controller Area Network
(CAN). To address this security issue, this paper presents GUARD-
CAN, an anomaly detection framework that combines graph-based rep-
resentation learning with time-series modeling. GUARD-CAN splits
CAN messages into fixed-length windows and converts each window into
a graph that preserves message order. To detect anomalies in the time-
aware and structure-aware context at the same window, GUARD-CAN
takes advantage of the overcomplete Autoencoder (AE) and Graph Con-
volutional Network (GCN) to generate graph embedding vectors. The
model groups these vectors into sequences and feeds them into the Gated
Recurrent Unit (GRU) to detect temporal anomaly patterns across the
graphs. GUARD-CAN performs anomaly detection at both the se-
quence level and the window level, and this allows multi-perspective per-
formance evaluation. The model also verifies the importance of window
size selection through an analysis based on Shannon entropy. As a result,
GUARD-CAN shows that the proposed model detects four types of
CAN attacks (flooding, fuzzing, replay and spoofing attacks) effectively
without relying on complex feature engineering.

Keywords: Controller Area Network - Graph Convolutional Network -
Intrusion Detection System.

1 Introduction

Recent vehicle systems focus on automation, electrification, and connectivity.
This trend increases the complexity and importance of in-vehicle networks. A
representative example is the Controller Area Network (CAN) [I], which is widely
used based on its real-time performance and lightweight protocol.

However, from a security perspective, CAN lacks encryption and authenti-
cation functions, making it vulnerable to various cyberattacks [2]. In July 2015,
Miller et al. disclosed a remote hacking case involving a Jeep Cherokee [3]. They
showed that a real vehicle could be controlled through network intrusion, which
raised strong awareness of vehicle security in both academia and industry. In

https://arxiv.org/abs/2507.21640v1

2 H. S. Kim and H. K. Kim

addition, Tencent Keen Security Lab proved remote hacking by injecting mali-
cious messages into the CAN bus of Tesla Model S and Model X vehicles through
wireless (Wi-Fi/cellular) networks [4]. As vehicles are transforming from simple
means of transportation into complex cyber-physical systems, the importance
of CAN-based anomaly detection and real-time security systems continues to
grow. Given these trends, various intrusion detection systems (IDSs) have been
proposed to detect security threats in CAN. Statistical, machine learning-based,
and deep learning-based methods have been used, but existing studies often re-
quire domain knowledge of the CAN bus and have the limitation of requiring
additional feature engineering.

This paper proposes GUARD-CAN, which detects temporal anomalous
patterns in CAN bus attacks. GUARD-CAN divides CAN messages into fixed-
size windows and converts each window into a graph. It combines overcomplete
Autoencoder (AE) and Graph Convolutional Network (GCN) to encode patterns
embedded in the data. The encoded graph embedding vectors are formed into
a sequence and input into Gated Recurrent Unit (GRU) to learn and detect
anomalous patterns in the temporal context. The main contributions of this
study are as follows:

— Arbitration ID independent algorithm: GUARD-CAN only uses DLC
and Data field as graph node features. That means GUARD-CAN does
not need a full description of DBC, which is regarded as a private intellectual
property.

— Structure-aware graph embedding with GCN: We combine overcom-
plete AE with GCN to encode each graph into a graph embedding vector.
This process extracts structural and temporal patterns from the data.

— Temporal context learning with GRU over graph sequences: We
group graph embedding vectors by sequence length and use them as input to
GRU. This enables anomaly detection that reflects temporal characteristics
across graphs.

2 Background

2.1 Controller Area Network (CAN)

CAN is an in-vehicle communication protocol widely used in modern vehicles.
Based on its durability and efficiency, it supports real-time data transmission
and reception between various Electronic Control Units (ECUs) [I]. However,
CAN lacks message authentication and does not apply message encryption. Fur-
thermore, as all ECUs are connected to a common network and communicate
via broadcast, they are exposed to many security threats [2]. The dataset used
in this study [5] includes a total of four types of CAN bus attacks, which are as
follows:

— Flooding: Transmits an excessive number of messages to overwhelm the
CAN bus and exhaust its communication bandwidth.

GUARD-CAN 3

— Fuzzing: Randomly injects arbitrary messages to cause system malfunc-
tions.

— Replay: Reuses previously recorded normal CAN messages to disguise ma-
licious activity as legitimate traffic.

— Spoofing: Alters specific CAN IDs and data based on traffic analysis to
manipulate vehicle functions.

2.2 Graph Convolutional Network (GCN)

GCN [6] is a neural network model designed to effectively process graph data
with irregular structures. It extends the concept of Convolutional Neural Net-
works, which are primarily used in image processing, to the graph domain. GCN
integrates not only the features of each node but also the features of neighboring
nodes and their connection structure. GCN performs convolution operations on
the graph at each layer and updates the node feature representations accordingly.
In particular, GCN learns meaningful patterns from data without complex fea-
ture engineering by aggregating information from directly connected neighboring
nodes.

In this study, we combine overcomplete AE and GCN. This model extracts
graph embedding vectors that effectively capture the structural and temporal
features in CAN bus graph data. Thereby, GCN contributes to the stability and
performance improvement of anomaly detection.

3 Related Work

Existing IDS for CAN studies can be classified into statistical anomaly detection,
machine learning-based detection, and deep learning-based detection. Song et
al. [7] proposed a lightweight IDS for CAN by analyzing the time interval be-
tween CAN messages. Lee et al. [§] proposed an IDS that detects attacks on
CAN networks through response pattern analysis based on remote frames. The
authors used the offset and time interval between request and response messages
as key features. Song et al. [9] proposed an IDS for CAN based on a deep con-
volutional neural network with a lightweight Inception-ResNet structure. This
method achieved high performance by extracting meaningful patterns from CAN
traffic data without complex feature engineering.

Ye et al. [I0] proposed three graph-based features (time difference, between-
ness centrality, and graph density) that can be applied to intrusion detection.
They used these features to perform anomaly detection using Classification and
Regression Trees. Song et al. [II] introduced DGIDS, which builds a dynamic
graph based on the arrival order of messages. Instead of using a fixed-length win-
dow, they used the message cycle of a base ID as the window. The system runs
both offline and online phases simultaneously and detects anomalies by using
multiple features. Devnath proposed GCNIDS [12], a GCN-based IDS designed
to detect mixed attacks in CAN bus data. The method constructs graphs us-
ing Arbitration IDs within each window and uses only the maximum in-degree

4 H. S. Kim and H. K. Kim

and out-degree as node features. GCN extracts node embeddings and performs
graph-level binary classification.

However, existing studies [7I8/TO/TT] require domain knowledge of CAN bus
data and may have limitations in learning complex patterns embedded in the
data. This study considers these points and allows GCN to learn meaningful pat-
terns without complex feature engineering. In addition, the existing method [12]
only analyzes graphs from individual time steps without considering temporal
continuity. This study addresses this by using sequences to reflect temporal char-
acteristics between graphs.

4 Methodology

This section presents the overall methodology of GUARD-CAN. The proposed
framework consists of four main steps, and the overall pipeline is illustrated in

Fig. [

Normal CAN Mixed CAN 2. Initial Graph Generator | hy:1x32 |
raw data raw data
[by |
1. Data Preprocessing +« The number Graph Embedding :
of windows
Data field padding [[m (m = the number of window) |

Graph

Sliding window-based

Splitting the Data field .
sequencing

(8 columns for each packet)

/\ GCN Train
(Input = 9dim)

Byte column DLC column 4. Anomaly Detection

Normalization | | Normalization
GRU
S . Train/Validation/Test
: H Sigmoid

wisr;g:w m M EU U § U 9 Sequence Window Window
I I 116 16 : 16 level level (Mean) level (Max)
-, 32 32 32 .

.....

Fig. 1. Overview of GUARD-CAN.

4.1 Data Preprocessing

In this study, we applied a series of preprocessing steps to convert raw CAN data
into a form suitable for model training. A raw CAN packet typically consists of
the Timestamp, the Arbitration ID, the Data Length Code (DLC), and the Data
field.

In the first step of preprocessing, we add 0x00 bytes to the end of the data
field when its length is shorter than 8 bytes. After padding, we split each data
field into eight columns from bytel to byte8. Then, we convert each byte value

GUARD-CAN 5

from hexadecimal to decimal and normalize it to a real value in the range [0, 1].
The DLC value is normalized in the same manner. This normalization process
mitigates the scale differences between the integer-based DLC field and the byte-
based Data field. This aims to prevent potential instability in model training.

Following feature transformation, we segment the CAN messages into fixed-
size windows using a non-overlapping windowing strategy based on a predefined
window size. If the last window contains fewer packets than the specified win-
dow size, it is discarded. For example, with a window size of 100, a final window
containing only 79 packets would not be used in training or evaluation. Simul-
taneously, we assign labels to each window. If any packet within a window is
labeled as an attack, the entire window is marked as abnormal.

4.2 Initial Graph Generator

The Initial Graph Generator takes the preprocessed windows and converts each
window into a graph. The model uses these graphs as input to GCN and learns
the structural characteristics of the CAN data flow. It constructs edges by se-
quentially connecting packets based on their timestamps and preserves the tem-
poral order of message transmissions within each window. This edge design helps
the model capture the temporal dependencies among consecutive CAN messages.

The node features consist of the normalized DLC (DLC_norm) and the nor-
malized values of the CAN payload (bytel-byte8) obtained during preprocessing.
At this point, we convert the processed CAN payload values into integers before
using them as the node features. This design prevents unnecessary increases in
the dimensionality of GCN. With these features, the model can effectively iden-
tify anomalous data values that deviate from the normal message flow, thereby
improving anomaly detection performance. By leveraging these two types of
node-level features, GUARD-CAN eliminates the need for manual domain-
specific feature engineering.

4.3 GCN Encoder

GCN takes each window-level graph as input and performs encoding to generate
a graph embedding vector. GUARD-CAN uses only normal data to train GCN
and applies the trained GCN to encode graphs that contain both normal and
attack data. In this study, we combine overcomplete AE with GCN to improve
its training effectiveness. GUARD-CAN does not rely on complex feature en-
gineering. Instead, it extracts features that reflect both temporal and structural
characteristics within the graph using reconstruction loss from the AE. By us-
ing this structure, the model produces more generalized representations and
improves training stability compared to using GCN alone.

First, we use the node features (DLC _norm, binarized bytel to byte8) as
input to the AE encoder. The encoder consists of two linear layers and applies
ReLU activation function after each layer. It takes a 9-dimensional input and
embeds it into a 16-dimensional latent space. AE encoder transforms the input
features into expressive vectors. During this process, it extracts a latent vector

6 H. S. Kim and H. K. Kim

that reflects the characteristics of each node and helps GCN learn more effec-
tively.

The embedding vectors extracted from the AE encoder are used as inputs to
GCN. GCN counsists of three GCNConv layers, each followed by ReLLU. All three
layers output 32-dimensional embedding vectors. Through the graph structure,
each node updates its latent vector by aggregating features from itself and its
neighboring nodes. Additionally, the edge connections based on temporal order
allow GCN to indirectly capture sequential patterns. This process enables the
generation of graph-level representations that incorporate the overall context of
the graph.

Finally, AE decoder takes the graph embedding vector from GCN as input
and reconstructs it into the original input feature space. It consists of two linear
layers. The first layer converts a 32-dimensional to 16-dimensional. After apply-
ing ReLU, the final layer transforms the 16-dimensional vector into the original
input dimension of 9. This process trains the model to reconstruct the original
node features. The model evaluates reconstruction accuracy using Mean Squared
Error (MSE) loss.

When embedding mixed data, the model loads the saved parameters and uses
only AE encoder and GCN. AE encoder maps node features into 16-dimensional
vectors, and GCN updates these vectors based on graph context. Then it ap-
plies global mean pooling to generate a 1x32 graph embedding vector for each
window. The anomaly detection model takes these graph embedding vectors as
input.

4.4 Anomaly Detection

Creating Sequences This study aims to reflect the temporal characteristics
and patterns among graph embedding vectors in anomaly detection. For this pur-
pose, we organize graph embedding vectors into fixed-length sequences and feed
them into the GRU-based anomaly detection model. GUARD-CAN constructs
the sequences using a method similar to a sliding window. For example, when
the sequence length is 3, the sequences are generated as follows: Sy = [ho, h1, ha],
Sy = [h1,ha, h3], -+, Sp = [hm-2), A(m—1), hm], Where S, represents the n-th
sequence and h,, denotes the graph embedding vector encoded by GCN. The
variable m indicates the total number of windows. The model assigns a label to
each sequence based on the labels of all the graphs that form the sequence. If
the sequence includes even one graph labeled as an attack, the model treats that
sequence as anomalous.

GRU Model Configuration The GRU model receives input in the form of
[batch_size, sequence length, feature dim|. batch_size denotes the number of
sequences; sequence_ length indicates the number of windows in each sequence;
and feature_ dim represents the dimension of the graph embedding vector gen-
erated for each window. We set the feature dim to 32 because the graph em-
bedding vector extracted by GCN has a shape of 1x32.

GUARD-CAN 7

The model uses two GRU layers to learn temporal dependencies within each
sequence. We set the hidden dimension of GRU to 64 and apply a dropout rate of
0.3 to prevent overfitting. The GRU output passes through two fully connected
(FC) layers to produce the final prediction. The first FC layer compresses the
GRU output into a 32-dimensional representation, and the second FC layer gen-
erates binary classification probabilities for each sequence. We apply sigmoid
activation function to obtain the final probability values.

This study evaluates anomaly detection performance at both the sequence-
level and the window-level. Sequence-level detection captures anomalies by con-
sidering the temporal flow between graphs, while window-level detection focuses
on identifying anomalies within each graph. In this study, optimization is per-
formed using Binary Cross Entropy (BCE) loss based on the sequence-level pre-
dictions.

Sequence-level Anomaly Detection A sequence consists of a set of graph
embedding vectors, and we regard each sequence as an independent unit. The
sequence-level anomaly probability output by GRU ranges between 0 and 1. We
apply a threshold of 0.5 to determine whether an anomaly is detected. As a
result, the final output of the sequence-level anomaly detection is returned as a
binary value of 0 or 1.

Window-level Anomaly Detection A window refers to a group of CAN pack-
ets, and each window forms a single graph. This study also evaluates anomaly
detection performance at the window-level, which is a finer unit than the se-
quence. Through this approach, we analyze how the temporal characteristics
between graphs affect detection performance. Window-level anomaly detection
is performed based on the window-level anomaly probability output from the
GRU model. Each sequence uses overlapping graph embedding vectors, so a
single window can appear in multiple sequences. Therefore, we perform window-
level anomaly detection using two approaches.

The first approach determines anomalies based on the average of all pre-
dicted values for each graph embedding vector h. The second approach deter-
mines anomalies based on the maximum predicted value for each h. For both
approaches, the anomaly detection threshold is set to 0.5, and the final output
for each window is a binary value of 0 or 1.

5 Experiment

This section evaluates the performance of GUARD-CAN. We first describe
the dataset used in the experiments and then evaluate the performance based on
changes in window size and sequence length. Experiments are performed on MS
Windows 10, Intel(R) Core(TM) i7-10700K CPU @ 3.80 GHz, 64.0 GB RAM,
NVIDIA GeForce RTX 3080 Ti (12GB). And we implement GUARD-CAN
using Python 3.12.2, torch 2.4.1, and torch-geometric 2.6.1.

8 H. S. Kim and H. K. Kim

5.1 Dataset

In this study, we conducted experiments using the Car Hacking: Attack & De-
fense Challenge 2020 dataset [513], provided by HCRL, Korea University. GCN
learns the temporal characteristics and graph structure of normal data during
training. For anomaly detection, we use a dataset that contains both normal
data and four types of attack data. This dataset was split into training, valida-
tion, and test sets in a 6:2:2 ratio. The composition of the raw dataset, including
the normal and four attack types, is shown in Table

Table 1. Distribution of normal and attack records by dataset.

Dataset Type Number of Records (Ratio)
GOCN training Normal 179,346 (100%)
Anomaly detection Normal 1,799,046 (89.92%)
Anomaly detection Flooding 96,559 (4.83%)
Anomaly detection Fuzzing 44,770 (2.24%)
Anomaly detection Replay 37,869 (1.89%)
Anomaly detection Spoofing 22,489 (1.12%)

5.2 Window Size Analysis

In this study, we divide each packet according to the designated window size
during the data preprocessing step. Then, using the initial graph generator, we
convert each window into a graph based on the order of messages. Therefore,
the window size serves as a key parameter that defines the unit of the graph. If
the window size is too small, the graph lacks sufficient information, which limits
what GCN can learn. In contrast, if the window size is too large, the graph may
include excessive and diluted information, which can negatively affect model
training.

Therefore, we analyze the entropy of each window to determine an appropri-
ate window size. In general, when the IDs appear more evenly within a window,
the entropy value increases. This implies that the information is evenly dis-
tributed across the window. Selecting a proper window size helps GCN extract
meaningful features and ultimately improves anomaly detection performance.
To support this process, we perform an analysis using Shannon entropy about
window sizes ranging from 10 to 400.

We calculated the following statistical values for each window divided by the
designated size: mean, median, minimum, maximum, and standard deviation of
entropy. Based on these statistics, we also analyzed the entropy growth rate by
window size. Fig. 2] shows the average entropy values and growth rate trends for
each window size.

As shown in Fig. [2| when the window size is less than 50, the entropy in-
creases rapidly. In cases where the amount of information increases sharply, the

GUARD-CAN 9

/'//._,—o———’—"_’_'_' o

wu
N
x

8

o
o
>

Growth Rate

—e— Mean Entropy
--x-- Entropy Growth Rate

o
o
e

Mean Entropy
> » IS »
N N PS P

.\fo*-——-“_._.__.
,Xfx‘ \‘\
¥
)
¥
i
¥
x
¥
|
|
i
X
2
f
*
4
o
o
N

¢ 0.00

50 100 150 200 250 300 350 400
Window Size

Fig. 2. Entropy average and growth rate by window size. This graph shows the values
between window sizes 20 and 400, excluding window size 10 for which the growth rate
cannot be calculated.

graph may still lack enough information for GCN to learn effectively. In addi-
tion, it can be observed that for window sizes over 150, the growth rate nearly
converges to zero. Therefore, this study conducted performance evaluations of
the proposed model using five window sizes: 50, 75, 100, 125, and 150. In ad-
dition, the sequence length determines the temporal context that GRU can use
to detect anomalies. Short sequences help capture local anomalies, and long se-
quences provide broader context but may dilute the influence of recent abnormal
patterns. To evaluate performance under different levels of temporal dependency,
we selected sequence lengths of 30, 50, 100, 120, and 150 for the experiments.

This evaluation uses the following performance metrics: accuracy, precision,
recall, Fl-score, and Area Under the Curve (AUC). Fig. [3| presents the overall
performance of GUARD-CAN proposed in this paper.

In addition, the best performance result for each window size is shown in
Table 2] Win and Seq columns represent window size and sequence length, re-
spectively. In addition, the Type column indicates three methods for anomaly
detection: sequence, mean and max.

5.3 Result Analysis

Table 2] shows that the performance of GUARD-CAN tends to decrease as the
window size increases. In the experiments, the model achieved 0.9702 accuracy
and 0.9930 AUC when the window size was 50 and the sequence length was
50. This result supports our earlier analysis. A larger window size causes the
information within each graph to become diluted, which prevents GCN from
extracting meaningful features. Meanwhile, window sizes of 100 and 150 showed
their best performance when the sequence length was relatively long. However,
the performance remained lower than that of experiments using smaller window
and sequence settings. In addition, Fig. [3] further shows that shorter sequence

10 H. S. Kim and H. K. Kim

Window Size = 50 Window Size = 75 Window Size = 100
1.0 tE(: 1.0 — 1.0)
2] ‘mg._,\‘
0.9 0.9 &\:74‘ 0.9
008 008 008
=] =) =]
< < <
0.7 0.7 0.7
—e— Sequence
0.6 Window (Mean) 0.6 0.6
—e— Window (Max)
03 50 100 150 05 50 100 150 05 50 100 150
Sequence Length Sequence Length Sequence Length
Window Size = 125 Window Size = 150
1.0 1.0
/\/\‘)
—r— 7 F<__
0.9 0.9
008 008
=] =]
< <
0.7 0.7
0.6 0.6
05 50 100 150 05 50 100 150
Sequence Length Sequence Length

Fig. 3. AUC variation by sequence length for each window size. The figure shows the
anomaly detection results (AUC) for each sequence length with five window size values,
including sequence-level, window-level (mean), and window-level (max).

Table 2. Performance comparison of the best results by window size.

Win|Seq Type Accuracy | Precision Recall Fl-score AUC
50 | 50 | sequence 0.9702 0.9902 0.9559 0.9727 0.9930
mean 0.8682 0.9867 0.7571 0.8544 0.9877
max 0.9279 0.9557 0.9064 0.9258 0.9803
75 | 50 | sequence 0.9588 0.9904 0.9372 0.9630 0.9864
mean 0.9342 0.9759 0.8958 0.9340 0.9867
max 0.9513 0.9389 0.9696 0.9540 0.9697
100 [120| sequence 0.9578 0.9964 0.9400 0.9673 0.9917
mean 0.8870 0.9256 0.8552 0.8854 0.9693
max 0.8937 0.8874 0.9239 0.9019 0.9509
125 | 50 | sequence 0.9645 0.9881 0.9532 0.9700 0.9895
mean 0.9035 0.9628 0.8482 0.8987 0.9758
max 0.9160 0.9483 0.8886 0.9145 0.9713
150 [120| sequence 0.8762 0.9604 0.8631 0.9079 0.9402
mean 0.7542 0.9523 0.5759 0.6066 0.9703
max 0.8756 0.8713 0.9054 0.8821 0.9309

GUARD-CAN 11

lengths tend to reduce the variation across the three anomaly detection metrics
for each window size. These findings indicate that GUARD-CAN can extract
more meaningful features and achieve more stable training when using smaller
window sizes and sequence lengths.

We also compare model performance when using normalized byte values (float
values in the range [0, 1]) and when using binarized byte values (integer values of
0 or 1) as node features. Tablepresents the top 3 sequence-level anomaly detec-
tion results of GUARD-CAN using normalized byte values. The results show
that using binarized byte values leads to higher anomaly detection performance.

Using normalized byte values causes confusion for overcomplete AE and GCN
because the value distribution becomes highly dense. In particular, the small
differences among normal messages increase the reconstruction error and lead
to false positives (FP). In addition, when attack messages such as replay and
spoofing resemble the distribution of normal messages, the model can produce
false negatives (FN). In addition, normal messages account for the majority of
the dataset used in the experiments. This data imbalance remains a major cause
of FP and FN even when using binarized byte values. To address this issue, future
work will expand the research by applying oversampling techniques focused on
anomalous data.

Table 3. Sequence-level anomaly detection performance with normalized byte values.
This result shows that the overall performance when normalizing byte values is rela-
tively lower than the case of binarized byte encoding.

Win|Seq Type Accuracy | Precision Recall F1-score AUC
50 |30 | sequence 0.8256 0.9254 0.7407 0.8194 0.9225
50 | 50 | sequence 0.8095 0.9331 0.7055 0.8031 0.9145
50 |150| sequence 0.8040 0.8820 0.7992 0.8339 0.8650

6 Conclusion

In this paper, we proposed GUARD-CAN, a CAN anomaly detection frame-
work that combines graph-based learning and time-series modeling. The pro-
posed model divides CAN messages into windows and converts each window
into a graph. After embedding the graphs through GCN, a GRU-based time-
series model detects anomalies while reflecting temporal patterns.

The model is designed to effectively learn the structural and temporal char-
acteristics inherent in CAN traffic without complex feature engineering. We also
analyzed its performance from multiple perspectives using both sequence-level
and window-level evaluation criteria. Furthermore, we demonstrate the impor-
tance of selecting an appropriate learning unit through a window size analysis
based on Shannon entropy. As a result, GUARD-CAN achieves high detection
performance for four representative CAN attacks and especially shows the best
performance under small window sizes and short sequence lengths.

12

H. S. Kim and H. K. Kim

In future work, we plan to improve the model by applying a combined loss

function that can optimize both sequence-level and window-level detection. In
addition, we will also improve GUARD-CAN by modifying the structure to
directly use arbitration IDs as node identifiers in GCN learning.

Acknowledgments. This work was supported by a grant (UI247022TD) from
the Agency for Defense Development, South Korea.

References

1.

10.

11.

12.

13.

Rafi Ud Daula Refat, Abdulrahman Abu Elkhail, Azeem Hafeez, and Hafiz Malik.
Detecting can bus intrusion by applying machine learning method to graph based
features. In Intelligent Systems and Applications: Proceedings of the 2021 Intelli-
gent Systems Conference (IntelliSys) Volume 3, pages 730-748. Springer, 2022.

. Clinton Young, Joseph Zambreno, Habeeb Olufowobi, and Gedare Bloom. Survey

of automotive controller area network intrusion detection systems. IEEE Design
& Test, 36(6):48-55, 2019.

WIRED. Hackers remotely kill a jeep on the highway—with me in it. https://
www.wired.com/2015/07 /hackers-remotely-kill- jeep-highway/. last accessed
2025/07/24.

Sen Nie, Ling Liu, and Yuefeng Du. Free-fall: Hacking tesla from wireless to can
bus. Briefing, Black Hat USA, 25(1):16, 2017.

Hyunjae Kang, Byung Il Kwak, Young Hun Lee, Haneol Lee, Hwejae Lee, and
Huy Kang Kim. Car hacking and defense competition on in-vehicle network. In
Workshop on automotive and autonomous vehicle security (AutoSec), volume 2021,
page 25. NDSS San Diego, CA, 2021.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph con-
volutional networks. arXiv preprint arXiv:1609.02907, 2016.

Hyun Min Song, Ha Rang Kim, and Huy Kang Kim. Intrusion detection system
based on the analysis of time intervals of can messages for in-vehicle network. In
2016 International Conference on Information Networking (ICOIN), pages 63-68,
2016.

Hyunsung Lee, Seong Hoon Jeong, and Huy Kang Kim. Otids: A novel intrusion
detection system for in-vehicle network by using remote frame. In 2017 15th Annual
Conference on Privacy, Security and Trust (PST), pages 57-5709, 2017.

Hyun Min Song, Jiyoung Woo, and Huy Kang Kim. In-vehicle network intrusion
detection using deep convolutional neural network. Vehicular Communications,
21:100198, 2020.

Pengdong Ye, Yanhua Liang, Yutao Bie, Guihe Qin, Jiaru Song, Yingqing Wang,
and Wanning Liu. Gdt-ids: Graph-based decision tree intrusion detection system
for controller area network. The Journal of Supercomputing, 81(4):591, 2025.
Jiaru Song, Guihe Qin, Yanhua Liang, Jie Yan, and Minghui Sun. Dgids: Dynamic
graph-based intrusion detection system for can. Computers & Security, 147:104076,
2024.

Maloy Kumar Devnath. Genids: Graph convolutional network-based intrusion
detection system for can bus. arXiv preprint arXiv:2309.10173, 2023.

IEEE Dataport. Car hacking: Attack & defense challenge 2020 dataset. https:
//dx.doi.org/10.21227/qvr7-n418. last accessed 2025/07/24.

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://dx.doi.org/10.21227/qvr7-n418
https://dx.doi.org/10.21227/qvr7-n418

	GUARD-CAN: Graph-Understanding and Recurrent Architecture for CAN Anomaly Detection

