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Abstract

Automated vulnerability detection research has made substantial

progress, yet its real-world impact remains limited. Current vul-

nerability datasets suffer from issues including label inaccuracy

rates of 20-71%, extensive duplication, and poor coverage of critical

Common Weakness Enumeration (CWE) types. These issues create

a significant “generalization gap” where models achieve misleading

self-testing accuracies (i.e., accuracy measured on held-out data

from the same dataset used for training) by exploiting spurious

correlations rather than learning true vulnerability patterns. Our

analysis reveals that many models experience substantial perfor-

mance drops of up to 40.6% when evaluated on independent data,

underperforming random guessing.

To address these limitations, we present a comprehensive three-

part solution. First, we introduce a manually curated test dataset,

BenchVul, covering theMITRE Top 25Most Dangerous CWEs [17].

Second, we construct a high-quality training dataset, TitanVul,

comprising 35,045 functions by aggregating seven public sources

and applying rigorous deduplication and validation using a novel

multi-agent LLM framework. Third, we propose a Realistic Vulnera-

bility Generation (RVG) framework, which synthesizes context-

aware vulnerability examples for underrepresented but critical

CWE types through simulated development workflows.

Our evaluation highlights the strengths of each component in

closing the generalization gap. First, BenchVul shows the limita-

tions of self-testing: models trained on existing datasets, such as

BigVul and PrimeVul, experience performance drops on BenchVul

(e.g., from 0.776 to 0.519 and from 0.567 to 0.337, respectively).

Second, training models on TitanVul demonstrates improved gen-

eralization, with model performance increasing from 0.584 when

evaluated on the same dataset (self-testing) to 0.767 when tested on

BenchVul. Third, supplementing TitanVul with RVG-generated

data yields further gains, increasing model performance by 14.0%

to 0.874. Code and data are available at: https://github.com/yikun-

li/TitanVul-BenchVul.

1 Introduction

Automated vulnerability detection is a popular area of software

engineering research [2, 5, 9]. A recent survey reported that 88% of

studies in machine learning for vulnerability detection (ML4VD)

approach the problem as function-level classification: given a func-

tion’s source code, the task is to determine whether it contains a

vulnerability [4, 16, 23]. However, prior work has identified sig-

nificant data quality issues in widely used vulnerability datasets,

including high rates of label inaccuracy (20-71%) and extensive data

duplication [3–5, 5, 16, 23]. In addition, as shown in Section 2, avail-

able datasets are highly fragmented, imbalanced, and often contain

outdated or incorrect CWE labels. Moreover, many so-called vul-

nerable functions are not self-contained; their vulnerability can only

be understood by analyzing the external context, which is absent

in function-level analysis [23].

Such dataset issues artificially inflate model performance when

evaluations rely on self-testing, i.e., assessments using subsets of

the same datasets used in training. Inflated accuracy arises from

models capturing dataset-specific biases rather than learning gen-

uine vulnerability patterns [23], causing a significant gap between

reported accuracy and real-world effectiveness. This generalization

gap undermines reliable model comparisons and assessments of

dataset quality. We notice three challenges:

Challenge I: Unreliable Evaluation Due to Overfitting Cur-

rently, researchers rely primarily on self-testing evaluations, which

use test samples drawn from the same datasets used for training. As

these datasets often contain duplicated samples and labeling issues,

models may achieve high self-testing accuracies by memorizing

dataset-specific artifacts rather than learning generalizable vulner-

ability patterns. Consequently, the actual capability of models to

detect vulnerabilities in realistic scenarios remains uncertain [23].

Challenge II: Poor-Quality Training Data at Scale Widely-

used vulnerability datasets suffer from low data quality, including

high rates of noise, irrelevant code changes, refactoring, and non-

security-related fixes [4, 23]. Although these datasets are large, they
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often lack vulnerabilities and their corresponding fixes that are self-

contained at the function level. This limitation prevents models

from learning robust and generalizable vulnerability patterns.

Challenge III: Scarcity of Critical Vulnerability Examples

Many critical CWEs, particularly among the MITRE Top 25 Most

Dangerous CWEs [17], are underrepresented in existing datasets.

This severe imbalance limits the effectiveness of trained models in

identifying rare but high-risk vulnerabilities.

Summary of Solutions To address these challenges, this paper

introduces several solutions, including BenchVul for benchmark-

ing and TitanVul for training vulnerability detection models.

Our Solution: BenchVul To address Challenge I, we introduce

BenchVul, a manually curated benchmark focused on the MITRE

Top 25 Most Dangerous CWEs [17] (hereafter, “Top 25 CWEs”). To

construct it, we first aggregated seven publicly available datasets,

performed comprehensive intra- and cross-dataset deduplication,

and standardized CWE annotations based on updated NVD records.

Due to the large volume of initial data, we applied an initial LLM-

based filtering step to remove unrelated or non-security-related

code changes. To ensure sufficient complexity, we aimed to curate a

balanced benchmarkwith exactly 50 verified vulnerable samples per

CWE category for the Top 25 CWEs. This is important because un-

derrepresented vulnerabilities do not indicate lower danger levels,

such as Hard-Coded Credentials (CWE-798) or Command Injec-

tion (CWE-77), which appear infrequently (see Figure 3) but can

have catastrophic consequences. In cases where real-world data

was insufficient, we introduced the Realistic Vulnerability Gener-

ation (RVG) framework, which addresses Challenge III. The RVG

framework utilizes a multi-agent LLM workflow that simulates

realistic development and security audit processes: (1) Context &

Threat Modeler designs practical attack scenarios; (2) Vulnerable

Implementer creates corresponding self-contained vulnerable code;

(3) Security Auditor identifies and remediates the vulnerability; and

(4) Security Reviewer independently validates both the presence and

correct remediation of the target CWE. This process ensures that

the synthesized samples are both realistic and targeted to under-

represented but critical CWEs. Finally, to ensure the highest data

quality, we conducted a manual analysis of all candidate samples.

Following this initial review, we recruited seven researchers to

further evaluate each sample against the following criteria: (1) it

represents a genuine vulnerability, (2) it is self-contained at the

function level, and (3) it is correctly labeled with the intended CWE.

We refer to the proportion of samples meeting all three criteria

as the benchmark’s correctness. This validation process resulted

in a correctness rate of 92%, yielding a high-quality, balanced, and

self-contained benchmark covering the Top 25 CWEs.

Our Solution: TitanVul While BenchVul provides a high-

quality and reliable evaluation resource, its size is insufficient for

training robust machine learning models, motivating the need for

a larger and high-quality training dataset. To solve Challenge II,

we first aggregated and merged seven publicly available vulnera-

bility datasets and conducted extensive deduplication. To ensure

data quality at scale, we applied a novel multi-agent LLM-based

framework that automatically analyzed and validated each vulnera-

bility–fix pair. Specifically, this framework consists of independent

agents acting as Auditor, Critic, and Consensus: the Auditor reviews

the evidence for each fix, the Critic challenges and verifies the

auditor’s assessment, and the Consensus agent synthesizes these

judgments to filter out noisy or irrelevant samples. To prevent data

leakage and ensure evaluation integrity, we further removed any

overlapping samples between BenchVul and TitanVul. Through

this multi-stage process, the initial set of 305,692 candidate func-

tions was reduced to a final dataset of 35,045 validated vulnerable

functions with corresponding fixes suitable for training vulnerabil-

ity detection models. Given the scarcity of critical vulnerabilities

in real-world data, we further explore the feasibility of augmenting

TitanVul with realistic synthesized vulnerabilities generated by

the RVG framework, to assess whether this augmentation improves

model performance. Notably, there is no duplication between the

synthesized vulnerabilities used for augmentation and those in

BenchVul, ensuring evaluation integrity.

Evaluation To assess model generalization, we trained state-

of-the-art models on a range of public datasets (including Titan-

Vul) and evaluated their performance on our manually verified

BenchVul benchmark. Notably, there is no data overlap between

BenchVul and any training datasets, ensuring the integrity of the

evaluation. Our results reveal a substantial generalization gap: mod-

els often achieve high self-testing accuracy when trained and tested

on the same dataset but experience severe performance drops when

evaluated on BenchVul. For example, UniXcoder achieves a self-

testing accuracy of 0.776 on BigVul, but this falls by 33% to 0.519 on

BenchVul. Comparable declines are observed with other datasets,

such as CVEfixes (0.713 to 0.607), PrimeVul (0.567 to 0.337), and

DiverseVul (0.641 to 0.402), indicating widespread overfitting to

dataset-specific artifacts.

In contrast, models trained on our high-quality TitanVul dataset

demonstrate superior generalization performance, achieving an

accuracy of 0.767 on BenchVul despite a modest self-testing accu-

racy of 0.584. This improvement is attributable to the multi-agent

LLM validation framework used in constructing TitanVul, which

ensures that each vulnerability–fix pair is both genuine and self-

contained at the function level. Moreover, augmenting TitanVul

with realistic synthesized data from our RVG framework further

enhances performance, increasing accuracy to 0.874 (a 14.0% im-

provement).

Main Contributions Our main contributions are:

• BenchVul, the first comprehensive, manually verified bench-

mark covering the Top 25 CWEs, with 50 vulnerable functions

and their corresponding fixes per weakness (100 samples per

weakness), yielding a total of over 1,000 verified vulnerable func-

tions.

• TitanVul, a large-scale (35,045 functions), high-quality train-

ing dataset curated from seven public sources using rigorous

deduplication and a novel multi-agent LLM verification frame-

work to ensure high quality.

• Realistic Vulnerability Generation (RVG) framework, a multi-

agent approach to synthesize realistic, context-aware data for

underrepresented CWEs. We used RVG to generate synthetic
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and realistic samples for BenchVul, specifically targeting Top

25 CWEs with insufficient representation.

• A large-scale empirical study that systematically quantifies intra-

and cross-dataset duplication and CWE coverage across major

public vulnerability datasets, revealing fundamental issues in

current resources.

The remainder of this paper is organized as follows: Section 2

presents an empirical analysis of existing vulnerability datasets.

Section 3 and Section 4 describe the construction of BenchVul and

TitanVul. Section 5 and Section 6 show the experimental setup

and results. Section 7 discusses key implications. Section 8 reviews

related literature, and Section 9 concludes the paper.

2 Empirical Study

In this section, we study the characteristics of seven publicly avail-

able function-level vulnerability datasets that we selected for anal-

ysis: BigVul [7], CleanVul [15], CVEfixes [1], DiverseVul [3], Prime-

Vul [5], SafeCoder [14], and VulnPatchPairs [22]. We specifically

focus on the intra-dataset duplications, cross-dataset duplication,

and distributions of CWE types across these datasets. This anal-

ysis helps us understand the limitations of the publicly available

vulnerability datasets and provides the foundation for our unified

benchmark construction.

Table 1: Vulnerability Deduplication Analysis.

Dataset

Complete Pair Duplication Self-Identical Duplication Cross-Matched Conflict

Initial After Removed (%) Remain After Removed (%) Remain After Removed (%)

BigVul 188,635 188,474 161 (0.08%) 188,474 10,632 177,842 (94.36%) 10,632 10,281 351 (3.30%)

CleanVul 43,029 43,029 0 (0.00%) 43,029 43,029 0 (0.00%) 43,029 43,029 0 (0.00%)

CVEfixes 41,829 19,247 22,582 (53.99%) 19,247 17,743 1,504 (7.81%) 17,743 17,249 494 (2.78%)

DiverseVul 14,484 14,476 8 (0.06%) 14,476 13,974 502 (3.47%) 13,974 13,964 10 (0.07%)

PrimeVul 4,704 4,704 0 (0.00%) 4,704 4,704 0 (0.00%) 4,704 4,704 0 (0.00%)

SafeCoder 1,268 1,252 16 (1.26%) 1,252 1,242 10 (0.80%) 1,242 1,241 1 (0.08%)

VulnPatchPairs 11,743 11,743 0 (0.00%) 11,743 11,377 366 (3.12%) 11,377 11,260 117 (1.03%)

Total 305,692 282,925 22,767 (7.45%) 282,925 102,701 180,224 (63.70%) 102,701 101,728 973 (0.95%)

2.1 Intra-Dataset Duplications

Duplication presents a significant challenge in vulnerability datasets,

potentially skewing analysis results and model performance [5]. We

examined duplication rates across the seven datasets, identifying

three distinct types: 1) Complete pair duplication (entire vulnerable-

fixed code pairs appearing multiple times), 2) Self-identical du-

plication (vulnerable code identical to its fixed version), and 3)

Cross-matched conflict (vulnerable code identical to fixed code

from different pairs). For duplication detection, code normalization

was performed by removing all whitespace characters (spaces, tabs,

newlines, etc.). The results are presented in Table 1.

Widespread Duplication Across Datasets Our analysis reveals

that duplication is a widespread issue across publicly available vul-

nerability datasets. In total, 22,767 redundant pairs (7.45%) were

removed, with the highest duplication rate observed in CVEfixes

(53.99%). The second filtering stage eliminated 180,224 self-identical

pairs (63.70% of the remaining corpus), primarily from BigVul

(94.36% of its pairs). A third step identified and removed 973 cross-

matching conflicts (0.95%). After these three rounds of duplication

removal, the number of vulnerable–fixed pairs was reduced from

305,692 to 102,701, a reduction of 66.4%. These results indicate

that intra-dataset duplication is both widespread and unevenly

distributed, underscoring the need for rigorous data validation in

vulnerability research.

Datasets SafeC. CleanV. PrimeV. CVEfix. BigVul DiverseV. VulnPP.

SafeC.

CleanV.

PrimeV.

CVEfix.

BigVul

DiverseV.

VulnPP.

- 12.57% - 22.08% 16.12% - 0.08%

0.36% - - 5.16% 2.20% - 0.01%

- - - - - 69.77% -

1.59% 12.86% - - 7.71% - 0.05%

1.95% 9.22% - 12.95% - - 0.08%

- - 23.50% - - - -

0.01% 0.04% - 0.07% 0.07% - -

Figure 1: Vulnerability Duplication Matrix Across Datasets.

2.2 Cross-Dataset Duplications

In addition to intra-dataset duplication, cross-dataset duplication

can impact the validity and uniqueness of datasets. Overlapping

samples between different datasets can artificially inflate evalua-

tion results and reduce the generalizability of vulnerability detec-

tion models. As shown in Figure 1, duplication rates vary widely:

PrimeVul and DiverseVul share 69.77% of samples, while CVEfixes

overlaps with SafeCoder (22.68%) and CleanVul (12.86%). By con-

trast, many other pairs have less than 1% overlap, indicating some

datasets remain largely distinct.

2.3 Distribution of CWE Types

Understanding the distribution of CWE types in each dataset is

essential for both training and evaluation: if a model is trained or

tested on a dataset skewed toward certain vulnerabilities, its abil-

ity to generalize to real-world threats or underrepresented CWEs

will be limited. A clear view of dataset focus and coverage also

guides effective benchmark design and model interpretation. Fig-

ure 2 presents the distribution of labeled CWE types across six

major vulnerability datasets. VulnPatchPair is not included because

it does not provide CWE information. Each subplot displays the

frequency of each CWE, sorted in descending order. CWEs classi-

fied among the MITRE Top 25 [17] are highlighted in green to

indicate their prevalence.

Significant Imbalances and Dataset-Specific Biases Our anal-

ysis reveals substantial imbalances across all datasets, with the top

5-10 CWE types typically comprising 55-80% of all samples. The

frequency ratios between the most and least common CWEs range

from 11:1 (DiverseVul) to 155:1 (CleanVul), indicating severe class

imbalance that could bias model training and evaluation. More

critically, each dataset exhibits distinct vulnerability type biases

that reflect their origins and intended use cases. Memory-related

vulnerabilities dominate BigVul and PrimeVul (CWE-119, CWE-

125, CWE-787). Conversely, CleanVul and SafeCoder are heavily

skewed toward web application vulnerabilities (CWE-79 and CWE-

89). CVEfixes shows concentration in SQL injection vulnerabili-

ties, while DiverseVul demonstrates the most balanced distribution

amongmajor CWE types. These dataset-specific biases create signif-

icant challenges for training and evaluating vulnerability detection

models, as models trained on one dataset may fail to generalize

effectively to vulnerabilities prevalent in others.

Challenges of Severe CWE Imbalance Given the varied and

dataset-specific biases observed in individual vulnerability datasets,

we merged all datasets to examine a broader, unified perspective
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Figure 2: Distribution of CWE Types Across Six Major Vulnerability Datasets.

of CWE distribution. Figure 3 presents the resulting distribution

of MITRE Top 25 most dangerous CWEs across this consolidated

vulnerability dataset. Notably, there is substantial imbalance, with

the frequency ratio between the most common CWE-20 and the

least common CWE-798 reaching 166:1. This severe skew in data

distribution underscores significant challenges for machine learn-

ing models in accurately detecting and generalizing across a wide

spectrum of vulnerability types. Moreover, it is challenging to use

these datasets as benchmarks, since many most dangerous CWE

types are severely underrepresented. Addressing this imbalance

through targeted dataset augmentation and careful benchmark de-

sign is therefore crucial for developing more comprehensive and

robust vulnerability detection systems.
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Figure 3: Distribution ofMITRETop 25Most Dangerous CWE

Across the Consolidated Vulnerability Dataset.

3 BenchVul: A Benchmark for the Top 25 Most

Dangerous CWEWeaknesses

The construction of BenchVul, a comprehensive benchmark for

evaluating vulnerability detection approaches across the MITRE

Top 25 Most Dangerous CWEs [17], follows a multi-stage approach,

as illustrated in Figure 4. We detail each stage of this process below.

3.1 Data Integration

Wefirst aggregatedmultiple publicly available vulnerability datasets,

including BigVul [7], CleanVul [15], CVEfixes [1], DiverseVul [3],

PrimeVul [5], SafeCoder [14], and VulnPatchPairs [22]. To ensure

the benchmark’s diversity and reliability, we standardized these

datasets into a unified format suitable for integrated analysis. Man-

ual inspection of the aggregated datasets revealed inconsistencies

in CWE labeling compared to the National Vulnerability Database

(NVD), largely due to outdated or missing annotations. To address

these discrepancies, we updated each vulnerability’s CWE informa-

tion by retrieving the latest annotations from the NVD based on

CVE identifiers. We observed that initially, only 74.83% of PrimeVul,

43.01% of DiverseVul, and 70.97% of BigVul samples matched the

NVD’s CWE annotations. Across all datasets, 12,127 vulnerability

instances had inconsistent CWE labels, all of which were corrected

using updated NVD records. Additionally, datasets lacking CWE an-

notations, such as CVEfixes, were supplemented by deriving CWE

identifiers directly from their corresponding CVE records. This

normalization resulted in a consolidated dataset containing a total

of 305,692 vulnerability-fix pairs. We then applied intra-dataset

deduplication (Section 2.1), removing complete pair, self-identity,

and cross-identity duplicates, reducing the set to 101,728 pairs.

Next, we merged the cleaned datasets and performed cross-dataset

deduplication (Section 2.2) to obtain a unified vulnerability dataset.

3.2 LLM-Based Filtering

To construct a high-quality, function-level benchmark covering

the MITRE Top 25 Most Dangerous CWEs [17], each vulnerability-

fixing pair must be manually verified. Specifically, we aim to ensure

that each pair accurately represents a genuine vulnerability fix and

is self-contained, meaning the vulnerability fix can be fully under-

stood by examining only the code within a single function [23].

However, manually validating every pair is impractical due to the

large volume of samples available for some CWEs (e.g., over 3,000

instances as shown in Figure 3). Furthermore, prior studies indicate

that a significant portion of labeled vulnerabilities do not genuinely

address security flaws but rather represent unrelated bug fixes,

refactoring, or other code changes [3, 5]. To efficiently address

these challenges, we first leverage LLMs to filter out unrelated code

changes, substantially reducing the number of candidate samples
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Figure 4: Overview of the BenchVul construction pipeline for the MITRE Top 25 Most Dangerous CWEs. Vulnerability data

from seven public datasets and NVD CWE labels are integrated and deduplicated. LLM-based filtering andmanual review ensure

genuine, self-contained vulnerability-fix pairs. For underrepresented CWEs, the multi-agent RVG framework synthesizes

realistic code pairs, which undergo cross-model validation. All benchmark samples receive human verification.

requiring manual verification [15]. Although LLM-based filtering

can occasionally introduce false positives or negatives, we miti-

gate this risk through subsequent structured manual reviews (see

Section 3.5), where each remaining sample is carefully checked to

confirm it represents a genuine and self-contained vulnerability fix.

This combined approach ensures the final benchmark maintains

high accuracy while significantly improving validation efficiency.

3.3 Realistic Vulnerability Generation

To construct a robust benchmark with at least 50 vulnerable and 50

corresponding fixed functions per CWE type, sufficient real-world

examples of self-contained vulnerabilities are necessary. However,

some CWE categories lack adequate real-world examples, making

it necessary to synthesize additional realistic vulnerability-fixing

pairs. To address this challenge, we propose theRealistic Vulnera-

bility Generation (RVG) framework, a multi-agent LLM approach

illustrated in Figure 4. The RVG framework comprises four inter-

related roles: Context & Threat Modeler, Vulnerable Implementer,

Security Auditor, and Security Reviewer. Each role contributes to

generating realistic, validated vulnerability pairs, detailed as fol-

lows. Due to space constraints, the full prompts and scripts are

provided in the replication package
1
.

Context & Threat Modeler Given a CWE ID and name as in-

puts, this agent initiates the RVG process by creating a realistic

application context and identifying a corresponding attack vector.

To maximize diversity and realism, this agent selects a distinct

programming language, technology stack, user roles, and function-

alities for each scenario. It also maintains uniqueness by tracking

previously generated contexts, employing a first-in-first-out (FIFO)

approach to prevent repetition.

Vulnerable Implementer This agent generates a realistic and

self-contained vulnerable code snippet based explicitly on the con-

text and attack vector defined by the previous agent. The code

incorporates subtle but exploitable vulnerabilities, accompanied by

comments describing the intended functionality without indicating

1
https://github.com/yikun-li/TitanVul-BenchVul

vulnerabilities. This approach closely mimics real-world develop-

ment scenarios.

Security Auditor The Security Auditor analyzes the vulnerable

code snippet to identify security flaws and subsequently produces

a secure, production-ready version of the same code. Each code

modification is documented through comments, clearly indicating

the original vulnerability and the rationale behind each remediation,

following established security best practices.

Security Reviewer This agent performs a comparative evalua-

tion of the vulnerable and remediated code snippets. It objectively

verifies whether the identified CWE-related vulnerability is present

in the vulnerable snippet and properly mitigated in the remediated

snippet. The Security Reviewer provides a concise assessment of

the effectiveness of the remediation.

3.4 Cross-Model Validation

To strengthen the robustness of synthesized vulnerability data, we

conducted cross-model validation using different state-of-the-art

LLMs. Specifically, we utilized Claude 3.7 Sonnet for initial syn-

thesis tasks and GPT-4o for validation purposes. Each synthesized

vulnerability-fix pair generated by Claude 3.7 was independently as-

sessed by GPT-4o, verifying whether the vulnerability was correctly

implemented and effectively remediated.

3.5 Manual Review

After the automated filtering and synthesis stages, all remaining

vulnerability–fix pairs underwent a structured human review. We

first manually verified that every pair (1) represents a genuine

vulnerability, (2) is self-contained at the function level, and (3) is

correctly labeled with the intended CWE. Where real-world data

were insufficient, synthesized pairs produced by the RVG frame-

work were reviewed with the same criteria. This procedure yielded

exactly 50 validated vulnerable functions and 50 corresponding

remediations for each of the MITRE Top 25 Most Dangerous CWEs

[17], producing a final benchmark with over 1,000 vulnerability–fix

pairs. To assess benchmark quality, seven independent researchers

with experience in vulnerability analysis participated in the review.

https://github.com/yikun-li/TitanVul-BenchVul
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Each researcher was assigned a random sample of the benchmark

and asked to evaluate whether the vulnerabilities met the afore-

mentioned criteria. Of 275 reviewed pairs, 253 were judged correct,

corresponding to an overall correctness rate of 92%.While the bench-

mark labels are not perfect, achieving a correctness rate above 90%

is widely considered sufficient for reliable evaluation in empirical

software engineering research [21], providing confidence that our

benchmark effectively supports rigorous vulnerability detection

studies. These results demonstrate that the curated benchmark pro-

vides both high label accuracy and comprehensive coverage of the

Top 25 CWE weaknesses.

4 TitanVul: A Large-Scale and High-Quality

Vulnerability Dataset

Vulnerability detection models require not only evaluation bench-

marks, but also large, high-quality training datasets for training.

While BenchVul offers manually verified data for evaluation, its

limited scale and the cost of manual validation make it impracti-

cal for training machine learning models. Thus, scalable methods

are needed to curate function-level vulnerability data for effective

model training. Existing vulnerability datasets vary widely in qual-

ity. Prior studies report that only a fraction of samples in several

popular datasets represent valid vulnerability fixes, where validity

is defined as correctly identifying all code changes associated with

a vulnerability fix (e.g., only the relevant changes, without unre-

lated modifications) [3, 5]: BigVul (25.0%), VulnPatchPairs (36.0%),

CVEfixes (51.7%), and DiverseVul (60.0%). In contrast, CleanVul and

PrimeVul achieve higher validity rates of 90.6% and 86.0%, respec-

tively. However, high validity alone does not ensure that the vulner-

ability and its fix can be clearly understood (self-contained) from

the CWE label, commit message, and code diff. If this context is

missing, such samples are unlikely to help models learn true vulner-

ability detection at the function level. While BenchVul provides a

high-quality, manually verified set of over 1,000 vulnerability–fix

pairs, its limited size and the resource-intensive nature of manual

validationmake it impractical to use as a large-scale training dataset.

To develop robust and generalizable vulnerability detection models,

there is a clear need for larger, high-quality datasets that are both

reliable and scalable. To address this challenge, we re-examined

the consolidated dataset (Section 2), removing noise and excluding

vulnerability–fix pairs that were not self-contained. We automated

this process using a multi-agent framework leveraging LLMs for

comprehensive analysis, verification, and validation of security

vulnerabilities. The architecture of the framework is illustrated in

Figure 8, comprising three key components: Vulnerability Auditor,

Vulnerability Critic, and Vulnerability Consensus.

Vulnerability Auditor This agent serves as the initial evalua-

tor, analyzing code diffs, commit messages, and associated CWE

information. Its primary role is to determine whether the submitted

changes represent genuine security vulnerability fixes. The Auditor

provides detailed evidence by identifying the type of vulnerability

addressed, highlighting relevant code snippets, and incorporating

insights from commit messages or CWE hints. This agent ensures

that its assessments are grounded in concrete observations from

the codebase.
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Figure 5: Overview of themulti-agent LLMverification frame-

work used to construct TitanVul, a large-scale, high-quality

vulnerability dataset. The Vulnerability Auditor initially as-

sesses code diffs, commit messages, and CWE labels to iden-

tify vulnerability fixes, providing structured evidence. The

Vulnerability Critic reviews the Auditor’s assessment, identi-

fying overlooked issues or inaccuracies. Finally, the Vulner-

ability Consensus synthesizes these perspectives and assigns

a possibility score reflecting the likelihood that the code

change fixes a security vulnerability.

Vulnerability Critic This agent performs a secondary review,

scrutinizing the Auditor’s findings for accuracy, completeness, and

robustness. It identifies any overlooked issues, incorrect reasoning,

or weak evidence in the Auditor’s analysis. By providing construc-

tive feedback and corrections, the Critic ensures a thorough and

reliable evaluation of each vulnerability fix.

Vulnerability Consensus This agent synthesizes the analyses

from the Auditor and Critic to produce a unified and justified assess-

ment. It assigns a possibility score (ranging from 0 to 3) indicating

the likelihood that the code change genuinely addresses a security

vulnerability. This consensus-building process carefully considers

both agreement and disagreement points among previous analyses,

prioritizing concrete evidence and clearly articulating its reasoning.

TitanVul We begin by performing comprehensive deduplication

and merging of datasets, updating CWE labels. Next, we employ

our multi-agent framework to further enhance data quality, ensur-

ing that each security vulnerability fix included in TitanVul is

rigorously validated and accurately represented. To prevent any

potential data leakage, we then remove duplicate samples between
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BenchVul and other sources in the finalized dataset. The result-

ing dataset comprises 35,045 vulnerable functions along with their

corresponding fixes, establishing TitanVul as a reliable resource

for vulnerability-related research and applications. Due to space

limitations, the detailed prompts and scripts used in our framework

are provided in the replication package
1
.

5 Experimental Setup

5.1 Research Questions

We formulate the following research questions (RQs):

RQ1: How well can models trained on vulnerability datasets

detect the Top 25 Most Dangerous CWEs? Due to the lack of

vulnerability benchmarks, most prior studies evaluate models on

the same datasets used for training, making it difficult to assess true

generalization [23]. Given the widespread issues of overfitting and

dataset bias, it is critical to rigorously evaluate whether models can

actually identify the Top 25 CWE weaknesses on an independent

and high-quality benchmark (BenchVul).

RQ2: How does the choice of training dataset affect model

performance across CWE categories? Our analysis reveals that

publicly available datasets differ widely in their CWE distribution

and quality, with each exhibiting distinct biases toward certain vul-

nerability types (e.g., memory safety, web security). Understanding

how these differences impact model performance can illuminate

the strengths and weaknesses of popular datasets and inform future

dataset construction and model development.

RQ3: Does adding synthesized data improve detection of the

Top 25Most Dangerous CWEs? Since many of the most danger-

ous CWEs are rare in real-world datasets, models may lack sufficient

examples to learn robust patterns. Synthetic data generation offers

a potential solution by augmenting scarce categories and improving

model coverage. Evaluating the actual benefit of synthesized data

for detecting critical weaknesses is thus important for advancing

practical ML-based vulnerability detection.

5.2 Models

We evaluate a diverse set of state-of-the-art languagemodels for vul-

nerability detection, including encoder-only models (CodeBERT [8],

GraphCodeBERT [12]), the unified encoder–decoder model UniX-

coder [11], and decoder-only models (GPT-2 [20], Llama-3.2-3B

[10], DeepSeek-Coder-1.3B [13]). This selection enables a compre-

hensive comparison of architectural styles and model scales in the

context of vulnerability detection.

5.3 Evaluation Metrics

We evaluate model performance using four standard metrics: ac-

curacy, precision, recall, and F1-score. Accuracy reflects the

proportion of correctly classified samples in our balanced dataset.

Precision and recall measure, respectively, how many predicted

vulnerabilities are correct and how many actual vulnerabilities are

detected. The F1-score, the harmonic mean of precision and recall,

provides an overall balance between these two metrics.

5.4 Implementation Details

For training, the dataset is split into training (70%), validation (15%),

and test (15%) sets using random stratified sampling. Training is

conducted for up to 50 epochs, and the best-performing checkpoints

are retained for evaluation. All experiments are run on NVIDIA

H100 GPUs with an Intel Xeon Platinum 8480C CPU.

6 Results

6.1 RQ1: Dataset Performance on Top 25 CWEs

We evaluated the effectiveness of language models trained on var-

ious vulnerability datasets in detecting the MITRE Top 25 Most

Dangerous CWEs [17] using our curated benchmark, BenchVul.

Table 2 presents comprehensive results across eight datasets and six

model architectures, revealing critical insights about generalization

capabilities in vulnerability detection. We primarily use accuracy

as the evaluation metric because BenchVul contains a balanced

number of vulnerable and non-vulnerable samples for each CWE,

making accuracy straightforward to interpret and directly compa-

rable to the random guessing baseline (0.5). In contrast, metrics

such as F1-score can sometimes be misleading. For instance, a naive

model that predicts all samples as vulnerable would achieve perfect

recall (1.0), precision of 0.5, and thus an inflated F1-score of 0.667,

despite performing no better than random guessing.

The Generalization Gap: Self-Testing vs. Cross-Dataset Per-

formance Our analysis reveals a pattern of poor generalization

across existing vulnerability datasets. UniXcoder, which consis-

tently achieves the strongest performance across datasets, exempli-

fies this trend. When trained on BigVul, it achieves an impressive

self-testing accuracy of 0.776 but suffers a 33% performance drop to

0.519 on BenchVul — barely above random chance. This pattern

persists across popular datasets: CVEfixes (0.713→ 0.607), Prime-

Vul (0.567 → 0.337), and most severely, DiverseVul (0.641 → 0.402).

The magnitude of these performance gaps suggests that existing

datasets may promotememorization rather than genuine vulnerabil-

ity pattern recognition. Models appear to overfit to dataset-specific

characteristics, failing to capture generalizable vulnerability signa-

tures.

TitanVul: Prioritizing Generalization Over Self-Testing Per-

formance Our TitanVul demonstrates a fundamentally differ-

ent trade-off between self-testing and generalization performance.

While UniXcoder achieves a modest self-testing accuracy of 0.584,

lower than most competing datasets, it delivers exceptional cross-

dataset performance of 0.767 on BenchVul, representing the high-

est generalization capability across all evaluated datasets. This per-

formance inversion is particularly evident when comparing Titan-

Vul to datasets like BigVul and DiverseVul, which achieve high

self-testing scores but fail catastrophically on independent evalua-

tion. The pattern holds across multiple models: DeepSeek-Coder-

1.3B trained on TitanVul achieves 0.788 cross-dataset accuracy,

substantially outperforming its 0.583 self-testing performance.

Consistency of Findings on C/C++ Specific Benchmarking

To further validate our findings in a controlled setting, we con-

ducted additional experiments focusing exclusively on C/C++ sam-

ples from BenchVul, recognizing that some vulnerability datasets
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Table 2: Performance Comparison of Language Models Trained on Different Vulnerability Datasets and Tested on BenchVul.

Model

Trained on BigVul Trained on CVEfixes Trained on CleanVul Trained on DiverseVul

Self Acc Pre Rec F1 Self Acc Pre Rec F1 Self Acc Pre Rec F1 Self Acc Pre Rec F1

CodeBERT 0.691 0.530 0.518 0.886 0.650 0.616 0.552 0.538 0.427 0.397 0.561 0.566 0.561 0.859 0.663 0.500 0.500 0.500 1.000 0.667

GraphCodeBERT 0.699 0.576 0.559 0.767 0.642 0.599 0.555 0.553 0.837 0.650 0.615 0.664 0.677 0.676 0.665 0.549 0.394 0.387 0.371 0.364

GPT2 0.661 0.521 0.518 0.657 0.571 0.663 0.542 0.539 0.605 0.568 0.556 0.538 0.537 0.608 0.568 0.531 0.498 0.499 0.508 0.500

UniXcoder 0.776 0.519 0.511 0.912 0.651 0.713 0.607 0.589 0.743 0.652 0.665 0.695 0.681 0.780 0.719 0.641 0.402 0.309 0.137 0.184

DeepSeek-Coder-1.3B 0.744 0.516 0.510 0.906 0.650 0.670 0.555 0.540 0.788 0.639 0.638 0.684 0.643 0.897 0.745 0.588 0.403 0.369 0.284 0.315

Llama-3.2-3B 0.735 0.514 0.508 0.914 0.651 0.666 0.473 0.474 0.486 0.477 0.605 0.683 0.656 0.824 0.726 0.565 0.574 0.557 0.735 0.632

Model

Trained on TitanVul Trained on PrimeVul Trained on SafeCoder Trained on VulnPatchPair

Self Acc Pre Rec F1 Self Acc Pre Rec F1 Self Acc Pre Rec F1 Self Acc Pre Rec F1

CodeBERT 0.513 0.504 0.610 0.024 0.046 0.524 0.409 0.384 0.381 0.343 0.637 0.604 0.597 0.761 0.655 0.503 0.507 0.489 0.586 0.432

GraphCodeBERT 0.515 0.560 0.600 0.420 0.494 0.517 0.424 0.426 0.676 0.504 0.666 0.648 0.650 0.656 0.648 0.546 0.585 0.584 0.700 0.626

GPT2 0.538 0.600 0.752 0.297 0.426 0.519 0.452 0.453 0.435 0.439 0.582 0.553 0.560 0.396 0.454 0.538 0.507 0.506 0.592 0.540

UniXcoder 0.584 0.767 0.805 0.706 0.752 0.567 0.337 0.290 0.186 0.217 0.713 0.716 0.730 0.736 0.723 0.595 0.523 0.516 0.878 0.646

DeepSeek-Coder-1.3B 0.583 0.788 0.826 0.729 0.774 0.531 0.393 0.349 0.225 0.266 0.681 0.671 0.658 0.739 0.688 0.589 0.542 0.546 0.544 0.526

Llama-3.2-3B 0.583 0.654 0.682 0.576 0.625 0.508 0.523 0.542 0.370 0.421 0.664 0.683 0.656 0.824 0.726 0.550 0.484 0.483 0.545 0.497

Note: "Self" refers to the accuracy of training and testing on the same dataset, while other metrics (Acc, Pre, Rec, F1) represent performance when training on

the respective dataset and testing on BenchVul. The highest accuracy and F1-score values in each column are shown in bold and highlighted in dark green .

Other accuracy values above 0.6 and F1-scores above 0.7 are highlighted in green . Accuracy values below 0.4 and F1-scores below 0.3 are highlighted in red .

(BigVul, DiverseVul, PrimeVul, and VulnPatchPair) are predomi-

nantly composed of C/C++ code. Table 3 presents the performance

of UniXcoder trained on different datasets when evaluated specifi-

cally on 230 vulnerable C/C++ pair samples from BenchVul. The

results confirm our observations from the multi-lingual evaluation,

demonstrating that the generalization challenges persist even when

restricting evaluation to the same programming language domain

as the training data. Notably, TitanVul continues to demonstrate

superior cross-dataset performance (0.730 accuracy) compared to

traditional C/C++ focused datasets like BigVul (0.552) and Diver-

seVul (0.387). The consistency between these C/C++ specific re-

sults and our broader multi-lingual findings reinforces that existing

datasets’ limitations stem from fundamental issues in data quality

rather than language-specific factors.

Table 3: Performance of UniXcoder Trained on Different

Datasets and Evaluated on C/C++ Samples from BenchVul.

Dataset Self Acc Pre Rec F1

BigVul 0.776 0.552 0.528 0.987 0.687

CVEfixes 0.713 0.621 0.619 0.635 0.627

CleanVul 0.665 0.674 0.660 0.717 0.688

DiverseVul 0.641 0.387 0.309 0.183 0.230

TitanVul 0.584 0.730 0.853 0.557 0.674

PrimeVul 0.567 0.343 0.329 0.300 0.314

SafeCoder 0.713 0.676 0.671 0.691 0.681

VulnPatchPair 0.595 0.517 0.514 0.648 0.573

Model Complexity and Dataset Quality Interactions The

relationship between model size and performance reveals impor-

tant insights into dataset quality. Across most existing datasets,

the smaller UniXcoder model consistently outperforms the larger

DeepSeek-Coder-1.3B. For instance, on CleanVul and SafeCoder,

UniXcoder achieves 0.695 and 0.716 cross-dataset accuracy, while

the larger model only reaches 0.684 and 0.671. It suggests that ex-

isting datasets may lack the complexity or quality necessary to

benefit from larger model capacity, or that their inherent biases can

be exploited equally well by smaller, more efficient architectures.

To further disentangle the effects of dataset size versus quality,

we trained UniXcoder on the combined, deduplicated union of all

public datasets. This experiment in maximizing data quantity over

quality yielded a model with a self-testing accuracy of 0.556 and a

generalization accuracy of 0.647 on BenchVul (F1-score of 0.673).

This result is lower than the 0.767 accuracy achieved by training

on our curated TitanVul, demonstrating that sheer volume of

mixed-quality data cannot replace high-quality data.

TitanVul, with its rigorous multi-agent verification, provides

a clear counter-example where data quality allows larger models

to excel. DeepSeek-Coder-1.3B achieves good performance on Ti-

tanVul (0.788 cross-dataset accuracy), outperforming UniXcoder

(0.767). Notably, UniXcoder’s relatively modest self-testing per-

formance (0.584) on TitanVul suggests the model struggles to

fully capture the dataset’s complex patterns during training, yet

still achieves strong generalization. This indicates that TitanVul’s

quality enables even partially-fitted models to learn robust vulner-

ability representations. In contrast, larger models appear to require

high-quality, complex datasets to justify their computational over-

head. They do not provide benefits when trained on smaller or

lower-quality datasets that can be adequately handled by more

efficient architectures.

RQ1: High self-testing accuracy does not translate to reli-

able generalization on independent benchmarks. Results show

thatmost existing datasets lead to overfitting rather than

true vulnerability detection. For example, UniXcoder’s accu-

racy drops by 33% for BigVul, 15% for CVEfixes, 41% for PrimeVul,

and 37% for DiverseVul when evaluated on BenchVul. In contrast,

training on TitanVul increases accuracy by 31% (0.584 to

0.767), highlighting the effectiveness our approach in improve

dataset quality.

6.2 RQ2: Effect of Training Data Across CWEs

We conduct a detailed comparison of model performance across

individual CWE categories to assess the impact of training datasets.
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This analysis demonstrates that the selection of training dataset

substantially influences generalization performance on a per-CWE

basis. Results indicate that datasets can be stratified into high-,

moderate-, and low-performing groups according to their perfor-

mance on BenchVul, as shown in Figure 6 and Figure 7.

High-Performing Datasets: Achieving Robust and Generaliz-

able Detection The top tier includes TitanVul, SafeCoder, and

CleanVul, which produce models with high cross-dataset accura-

cies and consistently strong performance across the CWE spectrum.

TitanVul leads with a 0.76 accuracy, and its per-CWE scores range

from 0.58 to 0.93, indicating robust performance across all evaluated

categories. SafeCoder (0.71 accuracy) and CleanVul (0.69 accuracy)

follow, with tight performance ranges of 0.54-0.89 and 0.53-0.81,

S
e
lf

B
e
n
c
h
V
u
l

0

0.2

0.4

0.6

0.8

1

0.58

0.76

Accuracy (TitanVul)

2
2

7
7

7
9

8
9

9
4

1
2
5

7
8
7

1
9
0

2
0
0

2
6
9

3
0
6

7
9
8

3
5
2

9
1
8

4
0
0

4
1
6

4
3
4

4
7
6

5
0
2

8
6
2

8
6
3

0

0.2

0.4

0.6

0.8

1

0.84

0.93

0.85

0.93

0.82
0.80

0.84

0.70

0.75

0.66

0.73

0.60

0.73

0.86

0.76

0.58

0.74

0.78

0.73

0.79

0.74

S
e
lf

B
e
n
c
h
V
u
l

0

0.2

0.4

0.6

0.8

1

0.66

0.69

Accuracy (CleanVul)

2
2

7
7

7
9

8
9

9
4

1
2
5

7
8
7

1
9
0

2
0
0

2
6
9

3
0
6

7
9
8

3
5
2

9
1
8

4
0
0

4
1
6

4
3
4

4
7
6

5
0
2

8
6
2

8
6
3

0

0.2

0.4

0.6

0.8

1

0.81

0.59

0.77

0.55

0.81

0.72

0.68

0.73

0.70

0.62

0.74

0.59

0.73

0.80
0.81

0.53

0.76

0.59

0.66

0.74

0.69

S
e
lf

B
e
n
c
h
V
u
l

0

0.2

0.4

0.6

0.8

1

0.71 0.71

Accuracy (SafeCoder)

2
2

7
7

7
9

8
9

9
4

1
2
5

7
8
7

1
9
0

2
0
0

2
6
9

3
0
6

7
9
8

3
5
2

9
1
8

4
0
0

4
1
6

4
3
4

4
7
6

5
0
2

8
6
2

8
6
3

0

0.2

0.4

0.6

0.8

1

0.80

0.84

0.78

0.89

0.74

0.77

0.73
0.71

0.61

0.69

0.61

0.58

0.75

0.80

0.83

0.56

0.83

0.63

0.70

0.63

0.54

S
e
lf

B
e
n
c
h
V
u
l

0

0.2

0.4

0.6

0.8

1

0.71

0.61

Accuracy (CVEfixes)

2
2

7
7

7
9

8
9

9
4

1
2
5

7
8
7

1
9
0

2
0
0

2
6
9

3
0
6

7
9
8

3
5
2

9
1
8

4
0
0

4
1
6

4
3
4

4
7
6

5
0
2

8
6
2

8
6
3

0

0.2

0.4

0.6

0.8

1

0.73

0.60

0.72

0.61

0.65

0.56

0.62

0.59
0.57

0.55

0.60

0.56

0.70

0.61

0.71

0.52

0.66

0.51

0.61

0.55
0.53

Figure 6: Performance of UnixCoder Trained on Different

Datasets and Tested on BenchVul for Different CWE Types.

respectively. They excel across both memory and web-related flaws;

for example, accuracies for the critical Use CWE-416 reach 0.83

on SafeCoder and 0.81 on CleanVul. This robust performance is

attributable to their advanced curation methodologies, such as LLM-

based filtering and multi-agent verification, which minimize noise

and foster the learning of generalizable security patterns.

Moderately Performing Datasets: Consistent but Limited

Generalization In a secondary tier, datasets such as CVEfixes,

VulnPatchPairs, and BigVul produce models that fail to generalize

effectively, with performance that is unreliable and, in some cases,

only marginally better than random guessing. CVEfixes leads this

underperforming group with a 0.61 accuracy. While it shows iso-

lated peaks of performance on certain flaws like CWE-22 (0.73), its
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Figure 7: Performance of UnixCoder Trained on Different

Datasets and Tested on BenchVul for Different CWE Types.
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accuracy drops to 0.51 on others (CWE-502), demonstrating incon-

sistent and unreliable detection capabilities. The problem is more

pronounced for VulnPatchPairs and BigVul, which both yield mod-

els with an overall accuracy of just 0.52, indicating a near failure to

learn generalizable vulnerability patterns. These datasets exhibit a

narrow, niche focus; for example, VulnPatchPairs performs slightly

better on memory errors like CWE-190 (0.61), while BigVul’s peak

is on CWE-434 (0.61). However, this apparent specialization is a

critical flaw, leading models to overfit on specific patterns while fail-

ing completely on others. This is evident in their inability to detect

web flaws like CWE-89, where accuracies fall to 0.49. The domain-

specific biases and lack of rigorous noise reduction in these datasets

make them unsuitable for training broadly effective vulnerability

detection models.

Poorly Performing Datasets: Limited Generalization and

Overfitting At the lowest tier, DiverseVul and PrimeVul pro-

duce models that fail to generalize, reflected in low cross-dataset

accuracies of 0.40 and 0.34. Their performance ranges are wide and

dip to extremely low values: from a maximum of 0.50 down to 0.19

for DiverseVul, and from 0.51 down to 0.15 for PrimeVul. This fail-

ure is particularly severe on critical memory errors like CWE-190

and CWE-416. These results highlight how fundamental dataset

limitations, such as shallow coverage (DiverseVul) or a combination

of limited scale, and potentially excessive vulnerability complexity

for function-level analysis (PrimeVul), which can lead to severe

model overfitting.

RQ2: The choice of training dataset shapes model perfor-

mance across CWE categories. Models trained on TitanVul

achieve robust generalization, with per-CWE ranging from 0.58 to

0.93. In contrast, models trained on datasets, such as PrimeVul and

DiverseVul, struggle to surpass random guessing, averaging 0.34

and 0.40, and their highest per-CWE scores barely reach 0.51. This

indicates that data quality is more important than dataset

size or CWE coverage for reliable vulnerability detection.

6.3 RQ3: Impact of Synthesizing Training Data

Synthesizing vulnerability examples with LLMs offers a promising

way to augment real-world vulnerability datasets, potentially ad-

dressing data scarcity for underrepresented CWEs. Vulnerabilities

synthesized using various LLMs could improve different datasets,

helping models achieve stronger generalization across multiple

vulnerability types. To initially explore this hypothesis, we aug-

mented the TitanVul training set (containing only real-world data)

with synthesized vulnerabilities. Specifically, we added 100 new

vulnerable samples for each of the Top 25 CWE types using our

RVG approach (Section 3.3). It is noted that there is no duplication

between the synthesized data and BenchVul, ensuring evaluation

integrity. We then compared the performance of UniXcoder trained

on the original TitanVul versus this augmented dataset. As shown

in Figure 8, the inclusion of synthesized data significantly improves

performance. The model’s accuracy improves from 0.767 to 0.874

(a 14.0% increase), and its F1-score rises from 0.752 to 0.876 (a 16.5%

increase), with consistent gains across nearly all individual CWE

categories.
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Figure 8: UnixCoder Performance on TitanVul w/o. Synthe-

sized Data vs. TitanVul w. Synthesized Data.

Targeted Improvement forUnder-RepresentativeWeaknesses

The benefits of data synthesis are most pronounced for weaknesses

that are rare in the original dataset. A clear example is CWE-798

(Hard-Coded Credentials), for which only 21 samples existed in our

consolidated dataset (Figure 3). This data scarcity limited the base-

line model to just 0.60 accuracy; however, after augmentation, its

accuracy surged to 0.83. Conversely, for vulnerabilities where the

baseline model was already highly proficient, the gains were more

modest. For instance, CWE-94 (Code Injection), with a high baseline

accuracy of 0.96, saw only a minor increase. This demonstrates that

data synthesis is a powerful tool for compensating for data scarcity

while still offering incremental benefits for well-represented classes.

RQ3: Augmenting training data with synthesized data in-

creases overall model accuracy by 14% (0.767 to 0.874) across

the Top 25 CWEs. Gains are especially notable for underrep-

resented weaknesses, such as CWE-798, where accuracy rises

from 0.60 to 0.83 (a 38% increase).

7 Discussion

The Deception of Self-Testing Our results challenge the valid-

ity of self-testing as a meaningful performance metric. We observed

a significant generalization gap where models achieve high self-test

scores but fail on independent evaluation. For instance, UniXcoder

trained on BigVul sees its accuracy drop from 0.776 to 0.519 when

moving from self-testing to BenchVul, indicating severe overfit-

ting to dataset-specific artifacts. Notably, while UniXcoder achieves

nearly identical self-testing accuracy on both TitanVul and Prime-

Vul (0.584 and 0.567, respectively), their generalization performance

on BenchVul diverges notably: TitanVul yields a top accuracy

of 0.767, while PrimeVul plummets to 0.337, more than a twofold

difference. This result demonstrates that high self-testing scores

do not refer to real generalizability, and underscores the neces-

sity of standardized benchmarks to reliably assess a model’s true

vulnerability detection capabilities.

Rethinking Dataset Quality Beyond Validity Validity in vul-

nerability datasets is typically defined by accurately identifying

all code changes associated with a vulnerability fix (e.g., three spe-

cific code changes in a commit, with no unrelated modifications).

While this ensures that the labeled fix is technically correct, it does
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not guarantee that the vulnerability fix is understandable from the

available information. Our results show that datasets with high

reported validity, such as PrimeVul (86.0%), can still lead to poor

generalization (0.34 accuracy), while those with lower validity, like

CVEfixes (51.7%), may perform better (0.61 accuracy) [3, 5]. If hu-

man experts cannot understand the nature of the vulnerability and

its fix from the CWE label, commit message, and code diff alone,

such samples are unlikely to be useful for training models to detect

vulnerabilities at the function level. Therefore, for function-level

vulnerability detection, it is essential that vulnerability–fix pairs are

understandable (i.e., self-contained). In constructing TitanVul, we

addressed this by excluding all pairs that did not meet this criterion.

Synergy of Model Complexity and Data Quality The benefits

of complex models are contingent on the quality and complexity of

the training data. On most existing datasets, the simpler UniXcoder

model performed on par with or better than larger models like

DeepSeek-Coder-1.3B. The larger model’s advantage only emerged

when trained on our higher-quality TitanVul. This highlights a

synergistic relationship: advanced models only realize their poten-

tial when trained on large, high-quality datasets that are sufficiently

complex to demand sophisticated learning.

Threats to Validity We acknowledge several potential valid-

ity concerns and outline mitigation steps to ensure these threats

remain limited or comparable to those in prior studies. First, the

validity of our BenchVul is a key consideration. To address this,

we implemented a multi-stage validation process that included both

automated filtering and manual review. Our additional manual as-

sessment confirms a high correctness rate of 92%, demonstrating that

BenchVul is accurate for evaluating vulnerability detection models.

This approach to dataset validation is consistent with standards

adopted in related empirical software engineering studies [21]. Sec-

ond, our function-level detection focus is widely accepted in vulner-

ability detection research [16, 23]; both BenchVul and TitanVul

have been specifically constructed and validated for function-level

granularity, clearly delimiting the scope and applicability of our

findings. Taken together, these mitigation strategies ensure the

validity risks are effectively managed and comparable with best

practices in the field.

8 Related Work

Vulnerability Datasets Early large-scale datasets like BigVul [7],

created by mining vulnerability-fixing commits, suffer from signifi-

cant noise, with correctness rates as low as 25.0% [5]. Subsequent

datasets aimed to improve quality but introduced other limitations.

For instance, CVEfixes [1] offers precise mapping to CVEs but has

limited scope, while PrimeVul [5] achieves 86.0% correctness by

focusing on single-function commits, potentially sacrificing real-

ism. Similarly, DiverseVul [3] prioritizes language diversity at the

cost of correctness (60.0%). A significant advancement came with

CleanVul [15], which pioneered the use of LLMs to filter noisy com-

mits, achieving 90.6% correctness and establishing a new standard

for data quality. Our work builds on these efforts. We construct

TitanVul by applying a rigorous, multi-agent LLM verification

framework to a large, aggregated corpus, resulting in a dataset that

uniquely combines both large scale and high quality. Moreover,

there is a need for an independent benchmark to objectively assess

model generalization, rather than relying on self-evaluation, which

tend to overestimate real-world performance [23]. Thus, we intro-

duce BenchVul, the first manually-verified benchmark to provide

balanced and comprehensive coverage of the MITRE Top 25 Most

Dangerous CWEs [17]. Together, these contributions enable more

reliable evaluation and foster the development of models with true

real-world generalizability.

Vulnerability Synthesis To augment datasets, especially for un-

derrepresented weaknesses, researchers have explored automated

vulnerability synthesis. One established approach is programmatic

injection, exemplified by LAVA [6], which mutates benign code to

deterministically insert flaws, but these tend to lack realism. More

recent work [18, 19], applies neural code editing models to generate

vulnerabilities by learning edit operations from vulnerable/fixed

code pairs, producing more authentic flaws than rule-based muta-

tion. However, these methods are typically limited to C/C++ and do

not explicitly simulate the real-world development or remediation

context. In contrast, our work is the first to LLM to synthesize real-

istic, context-aware function-level vulnerability/fix pairs spanning

diverse CWE types and programming languages. By simulating a

development and security review workflow, our RVG approach en-

ables high-quality, targeted augmentation of vulnerability datasets.

9 Conclusion and Future Work

In this paper, we address an important gap in automated vulnerabil-

ity detection by introducing several novel resources and empirical

insights. We present BenchVul, a comprehensive, human-verified

benchmark for the MITRE 2024 Top 25 Most Dangerous CWEs [17],

enabling reliable evaluation of model generalization. We also con-

struct TitanVul, a large-scale, high-quality dataset, disjoint from

BenchVul, curated via a multi-agent LLM framework, and propose

the RVG framework for synthesizing realistic, context-aware vul-

nerability data to tackle data scarcity. Our empirical study exposes

fundamental weaknesses in existing datasets, such as duplication

and CWE imbalance. Experiments show that the performance of

training and testing on the same datasets is misleading: only models

trained on our high-quality TitanVul achieve robust generaliza-

tion on BenchVul, establishing a new foundation for trustworthy

ML-based vulnerability detection. In future work, we plan to ex-

tend our resources to cover a broader range of CWEs, support

inter-procedural vulnerability analysis, and assess the applicability

of our benchmarks and datasets to large-scale, real-world industrial

codebases.
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