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Abstract—System and network event logs are essential for
security analytics, threat detection, and operational monitoring.
However, these logs often contain Personally Identifiable Infor-
mation (PII), raising significant privacy concerns when shared
or analyzed. A key challenge in log anonymization is balancing
privacy protection with the retention of sufficient structure
for meaningful analysis. Overly aggressive anonymization can
destroy contextual integrity, while weak techniques risk re-
identification through linkage or inference attacks. This paper
introduces novel field-specific anonymization methods that ad-
dress this trade-off. For IP addresses, we propose a salt-based
hashing technique applied at the per-octet level, preserving both
subnet and host structure to enable correlation across various
log entries while ensuring non-reversibility. For port numbers,
full-value hashing with range mapping maintains interpretability.
We also present an order-preserving timestamp anonymization
scheme using adaptive noise injection, which obfuscates exact
times without disrupting event sequences. An open-source tool
implementing these techniques has been released to support prac-
tical deployment and reproducible research. Evaluations using
entropy metrics, collision rates, and residual leakage analysis
demonstrate that the proposed approach effectively protects
privacy while preserving analytical utility.

I. INTRODUCTION

A. Motivation and Context

System and network event logs play a pivotal role in
cybersecurity, system diagnostics, compliance auditing, and
behavioral analytics. These logs capture granular records of
interactions between users, applications, and infrastructure
components, often containing Personally Identifiable Informa-
tion (PII) such as IP addresses, timestamps, usernames, and
port numbers [1], [2]. While the analytical value of such logs
is high, their use is severely constrained by privacy concerns
and regulatory obligations such as the GDPR, CCPA, HIPAA,
and India’s Digital Personal Data Protection Act [3]–[6].

Anonymization serves as a crucial step in making these logs
shareable and analyzable without compromising user or orga-

nizational privacy [7]. However, conventional anonymization
methods often present a trade-off between privacy and utility.
Techniques that aggressively generalize or redact sensitive
fields may preserve privacy but render the data analytically
useless. Conversely, lightweight pseudonymization methods
may retain analytical richness but expose the data to re-
identification attacks through linkage, inference, or fingerprint-
ing [8].

B. Challenges in Existing Log Anonymization Techniques

While anonymization is central to privacy-preserving log
sharing, current techniques often fall short in practice due to
two critical issues: vulnerability to re-identification attacks and
loss of analytical utility [9].

Many existing techniques in Table I, III rely on basic
pseudonymization, prefix-preserving encryption, or random
replacement strategies [10]. However, such methods can be
susceptible to various types of attacks. One common threat
is dictionary and reverse lookup attacks, especially when
salting is not applied or the same salt is reused across multiple
datasets. Additionally, fingerprinting and inference attacks
may occur when consistent patterns in fields such as IP ad-
dresses, port numbers, or timestamps are preserved, allowing
adversaries to infer user identities or behaviors [1]. Another
major concern is linkage attacks, where anonymized data can
be correlated with external datasets to re-identify individuals
or systems [7].

Moreover, overly randomized approaches—such as uncon-
trolled noise injection or complete redaction—can destroy
temporal or structural context essential for meaningful analy-
sis [11]. For example, full IP randomization inhibits detection
of repeated access attempts, and naive timestamp obfuscation
breaks event sequencing.

The key challenge is thus to strike a balance between
privacy and analytical value as shown in Fig. 1. Excessive
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obfuscation undermines security monitoring, while insufficient
protection risks privacy breaches. This paper aims to address
this challenge through structured, field-aware anonymization.
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Extreme Randomization / Generalization
(e.g., full redaction, heavy noise)

Low Utility
Weak correlation,
unusable for forensics

Field-Aware Anonymization (Proposed)
Moderate Utility
Preserves structure,
ensures unlinkability

Weak Hashing / Pseudonymization without salt
High Utility
High risk of
re-identification

Fig. 1. Privacy–utility spectrum for anonymization techniques

C. Our Contribution

This paper proposes a set of novel anonymization techniques
specifically designed for field-aware protection of system and
network event logs. Key contributions include:

• A salt-based hashing mechanism for IP anonymization
applied at the octet level, preserving both subnet and host
structure to support cross-entry correlation within a log
file.

• A temporal anonymization technique using adaptive
noise injection to retain event order while masking precise
timestamps.

• An open-source log anonymization tool released on
GitHub, supporting multiple log formats and customiz-
able field-specific transformations.

• A comprehensive evaluation framework based on en-
tropy, collision analysis, and residual leakage to assess
privacy-utility trade-offs.

D. Structure of This Paper

The remainder of this paper is organized as follows: Sec-
tion II reviews existing anonymization techniques and their
limitations. Section III introduces the field-specific methods
used in our framework. Section IV-A describes the adaptive
noise-based timestamp anonymization scheme.Section IV-B
presents the salt-based IP anonymization approach and its
security properties. Section V provides experimental results
and analysis.Section VI discusses the implementation of the
open-source tool and its integration with real-world logs.
Finally, Section VII concludes the paper and outlines future
work.

II. BACKGROUND AND REVIEW OF LOG ANONYMIZATION
TECHNIQUES

Anonymization involves removal/modifying of data to pre-
vent re-identification. In our use case we need the anonymiza-
tion techniques to make it impossible to trace the logs back to
the system which generated it at the same time retain enough
information and structure for analysis.

1) Review of key Anonymization Techniques:
• Prefix-Preserving Encryption (PPE): This involves

anonymizing IP addresses while preserving their subnet
relationships, making it useful for subnet based analysis.
A similar approach is format-preserving anonymiza-
tion, which maintains the structure of data but alters the
values [12], [13].

• Differential Privacy: This involves adding random noise
based on some function to data values or data clusters.
This method ensures that individual entries do not signifi-
cantly affect the output. It can be combined with k-means
clustering and PPE to increase anonymity and structure.
Can be used for timestamps [9], [14].

• Truncation and Filtering: This involves generalizing or
completely removing specific fields. Eg. Black Marker
technique, which replaces sensitive values like IP ad-
dresses with fixed constants (e.g., 0.0.0.0).

• Random Permutation and Replacement: These tech-
niques permute or randomly replace values in fields to
hide patterns. For textual data, predefined terms may be
substituted with arbitrary strings, which can be of same
length to preserve format. Each unique information can
be mapped to a specified format enumerated data and
then the mapping can be hidden.

• Enumeration: This method is particularly useful in sce-
narios where maintaining the original order of data is
important, but the actual values must be concealed. It
works by replacing sensitive information with sequential
identifiers, thereby preserving the sequence while ensur-
ing privacy. Additionally, placeholders can be employed
to obscure metadata without disrupting the structural
integrity of the data.

• Hashing (with Salting): Cryptographic hash functions
(e.g., SHA-256, MD5) can anonymize fields irreversibly.
Adding a secret salt increases resistance to brute-force or
dictionary attacks. This provided inspiration for the tech-
niques we will recommend. This salt can be randomised
and deleted to make things irreversible but deterministic
after salt generation.

• Time shift: Adding a random shift across all timestamps
to prevent use of publicly known information to back-
trace.

A. Field-Specific Anonymization Strategies and Tools

An effective anonymization pipeline requires field-specific
strategies, particularly for network log attributes considered
personally identifiable information (PII). The key PII elements
identified include IP addresses, MAC addresses, timestamps,
payloads (in certain cases), port numbers, and TCP sequence
numbers. Table I outlines suitable anonymization techniques
and tools for these fields [15].

While tools such as Logstash and LogLicker offer built-in
support for log anonymization, they often require substantial
configuration and may not provide the flexibility needed for
fine-grained control. Custom scripting, on the other hand, al-
lows for more adaptable and context-sensitive anonymization.



To provide further context, Table II presents a timeline
of key anonymization tools, and Table III compares their
flexibility and privacy capabilities [16].

TABLE I
FIELD-SPECIFIC TECHNIQUES AND TOOLS

Field Techniques Tools

IP Address PPE, random permutation, clustering + hashing CryptoPan, TCPDpriv, FLAIM

MAC Address Hashing, vendor-prefix preservation FLAIM, custom scripts

Timestamps Noise injection, rounding, randomisation Python, PCAPLib

Payload Suppression, tokenization, random substitution Wireshark, PCAPLib

Port Numbers Classify, substitute, reuse of IP techniques Scapy, FLAIM

TCP Seq. Numbers Permutation, hashing, Randomisation CryptoPan, custom tools

TABLE II
TIMELINE OF KEY ANONYMIZATION TOOLS

Tool Description

TCPdpriv Early tool using prefix-preserving anonymization; relies on static lookup tables which
limit scalability.

Crypto-PAn AES-based prefix-preserving encryption; supports consistent anonymization and is
memory efficient.

PktAnon Supports parsing and replacement based on protocol in packet

PCAPLib Uses Wireshark dissectors to anonymize application-layer fields.

TraceWrangler GUI-based tool supporting protocol tunneling and sanitization of PCAP/PCAPng files.

LogLicker Tool for system/application log anonymization using rule-based(regex) redaction and
hashing.

Logstash Modern, flexible pipeline tool with plugin and scripting support for anonymization.

Custom Script Custom anonymization logic using salted hashes, prefix-preserving transformations, and
differential privacy.

TABLE III
FEATURE COMPARISON OF ANONYMIZATION TOOLS

Tool Flexibility Privacy Features

TCPdpriv Low Prefix-preserving only

Crypto-PAn Moderate AES-based prefix-preserving encryption

PktAnon High Modular, protocol-specific anonymization

PCAPLib Moderate Application-layer awareness using dissectors

TraceWrangler High GUI-based tool supporting protocol tunneling

LogLicker Low Rule-based redaction and hashing

Logstash Very High Plugin-based scripting for flexible anonymization

Custom Script High Salted hashing, prefix-preserving, differential privacy

B. Overview of ARX Framework and Tool

ARX is a data anonymization framework designed to ad-
dress the challenges of protecting sensitive information in
datasets. Its architecture and feature set enable it to implement
a variety of privacy models, ensuring a balance between
privacy protection and data utility [17], [18].

Its architecture supports multiple privacy models includ-
ing δ-presence, β-likeness, differential privacy, and (κ,ϵ)-
anonymity [19], all of them have mathematically grounded
proofs which guarantees protection against different disclosure
risks. This allows users to implement privacy models to protect
their data and also comply with regulatory bodies.

For network log anonymization, ARX tool can be used with
specialized techniques like prefix-preserving IP anonymiza-
tion, temporal degradation of timestamps, and consistent

pseudonymization of entity identifiers. By implementing pri-
vacy models like k-anonymity [20] to make each field indis-
tinguishable from others, differential privacy to protect against
inference attacks, and t-closeness [21] to protect sensitive
attributes, organizations can effectively anonymize network
logs while preserving sufficient information for meaningful
analysis of traffic patterns, attack signatures, and temporal
activity.

1) Supported Privacy Models: ARX brings together a range
of privacy models, each designed to tackle different types
of disclosure risks. The δ-presence model ensures that the
likelihood of any individual being part of the anonymized
dataset stays within a defined range—between δmin and
δmax—though it requires access to the full population and
can be computationally demanding. The β-likeness model
controls how much the probability of a sensitive value can shift
between the overall data and any anonymized group, offering
an intuitive way to assess disclosure risk, though sometimes
requiring broad generalization when dealing with outliers or
multiple sensitive attributes. Differential privacy, supported in
both its strict ϵ form and the relaxed (ϵ, δ) version, protects
individual records by adding carefully calibrated noise, usually
via the Laplace mechanism. This approach provides strong
theoretical guarantees, but choosing the right ϵ remains critical
to maintaining a balance between privacy and data usefulness.
Lastly, the (k, ϵ)-anonymity model combines the strengths of
k-anonymity and differential privacy by ensuring each group
has at least k records while also bounding the likelihood
of sensitive value disclosure, thus offering both group-level
anonymity and individual-level protection.

2) Limitations: While ARX offers many advantages, it
also comes with some challenges. To use the δ-presence
model, users need access to the full population dataset, which
is often not available in real-world situations. Some tech-
niques—such as running checks for δ-presence or fine-tuning
(k, ϵ)-anonymity—can also be computationally expensive, es-
pecially when dealing with large or complex datasets. Another
key issue is the trade-off between privacy and data usefulness:
tighter privacy settings, like smaller values of δmax, ϵ, or
β, usually lead to more data being generalized or removed,
which can reduce its value for analysis. Lastly, picking the
right settings isn’t always straightforward. It requires a good
understanding of the data and the specific goals of the project,
making it hard to define one-size-fits-all recommendations.

III. EXISTING IP ANONYMIZATION ALGORITHMS

Numerous anonymization algorithms have been proposed
to address the challenges of preserving privacy in IP address
data. These methods vary widely in complexity, effectiveness,
and suitability for analytical tasks. In this section, we review
some of the key existing approaches that have been explored
for anonymizing IP addresses, along with their underlying
principles and known limitations.



A. Data Anonymization -Condensation with differential pri-
vacy and Its Analytical Limitations

The condensation-based anonymization technique, proposed
by Aggarwal and Yu [22], balances privacy and data utility
by preserving statistical characteristics while anonymizing
sensitive details. The method involves the following key steps:

1) Clustering: Data is grouped into clusters of at least k
entries to satisfy k-anonymity.

2) IP Address Anonymization: A prefix-preserving per-
mutation is applied to the network portion of each IP, to
maintain hierarchical structure.The remaining portion is
anonymized by clustering similar IPs and replacing with
the cluster mean.

3) Non-IP Features: Network features such as payload
size information are anonymized using k-means clus-
tering to preserve the importance of value/quantity.

4) Differential Privacy: Laplace noise is added to the
above steps to increase privacy:

η ∼ Lap
(

sensitivity
ϵ

)
Analytical Limitation: This combined approach provides
strong privacy protection but makes data analysis difficult. The
prefix-preserving method hides individual host identities while
keeping network groups intact. However, the clustering and
mean substitution steps remove differences between individ-
ual hosts within each cluster. When k-anonymity averaging
is combined with differential privacy noise, the data qual-
ity becomes severely degraded. This two-part anonymization
process makes statistical analysis (e.g., host-level behavior
analysis, anomaly detection, and traffic pattern analysis) in-
effective because the original data patterns are hidden by
both the averaging from k-anonymity and the noise added by
differential privacy.

B. Logical Group-Based Mapping for Anonymization of IP
Another anonymization approach maps each IP address

based on its logical function in the network. It has a 3
step process which provides privacy but reduces granular IP
analysis. This limits its use case given our objectives but is an
interesting technique.
Step 1: Defining Logical Roles, Network administrators define
logical host groups (e.g., Users, Servers, External). Hosts are
mapped to groups using range of IP addresses.
Step 2: Two-Function Anonymization, Each IP address A
undergoes two mappings:

• Host Identity Mapping: A randomized pseudonym
p = h(A) is generated using a Random Oracle. It is
irreversible and unlinkable to the original IP.

• Group Identity Mapping: The address is also mapped to
a logical group g(A) for consistent anonymization within
group ranges.

Step 3: Final Address Computation, The final anonymized
IP A′ is computed using the group-based range and the
pseudonym:

A′ = G[i]0 + (p mod (G[i]1 −G[i]0))

where:
• G[i]0 is the starting IP of the anonymized range for group

i.
• G[i]1 is the ending IP of the anonymized range.
• p is the pseudonym derived from h(A).

Pseudonymization ensures non reversibility and group
anonymizations masks identity.

Analysis Trade-off : Although the mapping preserves group-
level semantics, it disrupts prefix and host structure. This
makes analysis such as traffic analysis, detecting subnet-
specific behavior ineffective, reducing the analytical value.

IV. ANONYMIZATION MODELS FOR NETWORK LOGS

Network logs contain detailed information about network
activities including IP addresses, timestamps, user identifiers,
and protocol usage patterns. This information can reveal user
behavior, system vulnerabilities, and organizational network
structures. Before such logs can be shared with external parties
or analyzed by third-party systems, robust anonymization tech-
niques must be applied to protect individual privacy without
compromising data usefulness.

The main purpose of log anonymization is to enable analysis
through Security Information and Event Management (SIEM)
solutions while maintaining privacy protection. SIEM systems
depend on log data to identify suspicious activities and gener-
ate security alerts, but sharing raw logs creates privacy risks.

A critical requirement for practical log anonymization is
format preservation. In order to avoid custom decoders for new
formats of logs, it is convenient to maintain the original format
of logs [23]. This ensures that existing SIEM tools can process
anonymized logs without requiring additional configuration.
The challenge lies in balancing privacy protection, data utility,
and format compatibility without changing log structure or
removing essential fields.

To address these challenges, we propose two anonymization
methods: Order-Preserving Timestamp Anonymization with
Adaptive Noise and IP and Port Anonymization via Salt-Based
Hashing.

A. Order-Preserving Timestamp Anonymization with Adap-
tive Noise

Temporal information in log data presents unique
anonymization challenges as timestamps often contain sen-
sitive patterns that can reveal user behavior, system usage
patterns, or operational schedules. Traditional anonymization
approaches either completely remove temporal data or ap-
ply uniform noise that can disrupt chronological ordering,
making subsequent analysis ineffective. The preservation of
event sequence is critical for many analytical tasks including
anomaly detection, workflow analysis, and performance mon-
itoring. Therefore, an anonymization technique that maintains
chronological integrity while protecting temporal privacy is es-
sential for practical log anonymization systems. To anonymize
timestamps we propose an adaptive noise-based approach.
Unlike fixed-range noise, this method adjusts the allowable
perturbation for each timestamp based on the distance to its



neighboring events, ensuring that the relative order is never
violated. This method is explained in detail in Fig. 2.The
process begins by sorting all events chronologically. For each
timestamp Ti (where 1 < i < n), we calculate a maximum
allowable noise range as follows:

∆i = min

(
Ti+1 − Ti

2
,
Ti − Ti−1

2

)

Fig. 2. Order-Preserving Timestamp Anonymization with Adaptive Noise

A random noise value δi is then sampled uniformly from
the interval [−∆i,+∆i], and the timestamp is perturbed
accordingly:

T ′
i = Ti + δi

For edge cases, such as the first and last timestamps, the
range is computed using only the adjacent value:

δ1 ∈
[
0,

T2 − T1

2

]
δn ∈

[
−Tn − Tn−1

2
, 0

]
This approach guarantees that the anonymized timestamps

T ′
i maintain their original ordering:

T ′
1 < T ′

2 < · · · < T ′
n

To further increase privacy, a constant global offset C which
can be randomly generated can be added to all timestamps:

T ′′
i = T ′

i + C

This additional step ensures that the anonymized log is tem-
porally decoupled from the original event timeline, preventing
correlation attacks.

This adaptive approach achieves an optimal trade-off be-
tween data utility and privacy protection by maintaining
chronological sequence integrity while preventing temporal in-
ference attacks. The locally adaptive noise mechanism ensures
that privacy protection scales with event density - sparse events
receive broader anonymization ranges while densely packed

sequences maintain sufficient obfuscation without violating
ordering constraints. By combining order preservation with
adaptive perturbation and global offset techniques, the method
effectively counters both direct timestamp correlation attacks
and indirect inference through inter-event timing analysis.
The technique is most effective for applications that analyze
event sequences rather than exact timing, including workflow
analysis, system behavior monitoring, and log-based security
investigations.

1) Security Analysis Against Temporal Attacks: The pro-
posed order-preserving timestamp anonymization technique
provides robust protection against several categories of tem-
poral attacks that commonly target log data systems. Back-
dating attacks occur when malicious actors manipulate system
clocks to make activities appear as though they occurred at
earlier times, often to cover up unauthorized access or illegal
activities. Similarly, replay attacks [24] involve adversaries
intercepting legitimate timestamp tokens and reusing them
for unauthorized access. The adaptive noise technique cre-
ates protection against both attacks by introducing temporal
uncertainty into event timing, making it impossible to deter-
mine precise original timestamps and effectively neutralizing
attempts to manipulate time-based evidence while preserving
chronological sequence for legitimate analysis.

Correlation attacks exploit timing patterns to map net-
work behaviors or identify user activities within anonymized
datasets, with attackers conducting systematic probing using
patterns they can later identify in captured logs. The adaptive
noise approach disrupts these attempts by introducing variable
perturbations that prevent matching probe patterns with log
entries. The randomized noise ensures identical actions have
different temporal signatures while preserving chronological
order for legitimate analysis [25], making it computationally
infeasible for attackers to establish reliable correlations be-
tween their known activities and anonymized log data.

Profiling attacks attempt to link records across datasets from
different time periods by establishing temporal connections
between data points to build comprehensive user or system
profiles. The combination of adaptive noise and global offset
creates robust defense against both correlation and profiling
attempts by making it computationally impractical to estab-
lish temporal bridges between datasets. The global offset
component creates temporal disconnection between original
and anonymized data, preventing attackers from correlating
intercepted timestamps with anonymized entries, while the
obfuscated timestamps eliminate time-based fingerprints that
these sophisticated attacks depend upon.



B. IP and Port Anonymization via Salt-Based Hashing:
We propose a new anonymization technique specifically

tailored for IP addresses and port number fields. The primary
objective is to maintain file-level consistency, ensuring that
the same input value is consistently mapped to the same
anonymized value within a particular log file. This is better
than just plain hashing as it is susceptible to brute force
attacks. The advantage this method gives over the above
mentioned methods is that it retains the relation between the
IPs as each repeated IP in the file gets mapped to the same IP
after anonymization. It also incorporates retention of subnet
relation to some extent.

Our method uses salt-based hashing, where a random salt
is generated once per file(can be extended to a group of
files processed together). Traditional encryption or hashing
techniques often produce large or irregular values that do not
follow the expected format of IP addresses. To address this,
we split each IP address into its four octets and apply the
salt-based hash function individually to each octet.

The resulting hash values are then mapped to integers in
the range 0–255—either through a modulus operation or via
a deterministic mapping (e.g., enumeration/permutation with
stored lookup). This process aims to preserve the subnet
structure to some extent while still anonymizing the original
IPs as explained in Fig. 3. Importantly, the same original IP
will always be mapped to the same anonymized IP within the
file.

A similar approach is used for port numbers, where hashed
values are mapped into the range 0–65535, preserving the valid
port number space.

1) Problem Formulation and Mathematical Foundation:
Given a dataset D containing potentially sensitive IPv4 ad-
dresses, we seek to construct a privacy-preserving transforma-
tion Φ that maintains analytical utility while ensuring compu-
tational anonymity. The transformation must preserve network
topology characteristics, maintain consistency across identical
inputs, and provide cryptographic security guarantees.

The IPv4 address space is defined as A = [0, 255]4 ∩ Z4,
where each address α ∈ A is represented as a 4-tuple
α = (α1, α2, α3, α4) with octets αi ∈ [0, 255] ∩ Z. An IP
dataset is a multiset D = {α1,α2, . . . ,αn} where αi ∈ A
and duplicate addresses are permitted to reflect real-world
network traffic patterns. Let H : {0, 1}∗ → {0, 1}256
denote the SHA-256 cryptographic hash function satisfying
standard cryptographic properties: preimage resistance, sec-
ond preimage resistance, and collision resistance. For each
octet position i ∈ {1, 2, 3, 4}, define a mapping function
Mi : [0, 255] → [0, 255] that deterministically transforms
octets while preserving the valid IPv4 range.

The anonymization function Φ exhibits deterministic be-
havior for any fixed cryptographic salt s and IP dataset D.
This fundamental property ensures that identical IP addresses
consistently produce identical anonymized results, formally
expressed as:

∀αi,αj ∈ D : αi = αj =⇒ Φ(αi) = Φ(αj) (1)

Fig. 3. IP Address Anonymization with Subnet Preservation for Multiple
Addresses

This consistency stems from the deterministic nature of the
underlying cryptographic hash function H, which produces
constant outputs for identical input pairs (octet, s). Combined
with the deterministic modulo operation and position-specific
mappings Mi, this ensures reproducible anonymization results
across multiple executions of the algorithm on the same
dataset.

The algorithm also explained in Fig. 4 exhibits optimal
computational efficiency with time complexity O(n+k) where
n = |D| represents the total number of IP addresses in the
dataset and k =

∑4
i=1 |Ui| denotes the aggregate number

of unique octets across all positions. The algorithm pro-
cesses each IP address exactly once, contributing O(n) to the
complexity. Hash computations occur only for unique octets,
bounded by k, with each SHA-256 computation requiring
O(1) time for fixed-size inputs. The space complexity is O(k),
representing the storage requirements for the four position-
specific mapping tables that store the anonymized values for
each unique octet at each position.

Fig. 4. Control flow



2) Algorithmic Framework: The proposed anonymization framework operates through four distinct computational phases:
initialization, cryptographic mapping generation, systematic anonymization, and dataset reconstruction.

1 Require: IP dataset D = {ip1, ip2, . . . , ipn} where ipi ∈ A ∪ A⊥

2 Require: Cryptographic salt σ ∈ {0, 1}∗
3 Require: Cryptographic hash function H : {0, 1}∗ → {0, 1}256
4 Ensure: Anonymized dataset D′ = {ip′

1, ip
′
2, . . . , ip

′
n}

5

6 Phase I: Initialization
7 Tj ← ∅ for j ∈ {1, 2, 3, 4} // Initialize position-specific transformation tables
8 D′ ← ∅ // Initialize anonymized dataset
9

10 Phase II: Main Processing Loop
11 for k = 1 to |D| do
12 ipk ← D[k] // Extract current IP address from dataset
13 if ipk ∈ A then // Process valid IPv4 addresses
14 Parse ipk = ⟨o1, o2, o3, o4⟩ where oi ∈ O // Decompose IP into octets
15 for j = 1 to 4 do // Transform each octet with position-specific mapping
16 if oj /∈ dom(Tj) then // Generate new cryptographic mapping
17 ξ ← σ ∥ enc(oj) ∥ enc(j) // Construct salted input with position encoding
18 δ ←H(ξ) // Apply SHA-256 cryptographic hash
19 Tj [oj ]← bin2int(δ) mod 256 // Store mapping in valid octet range
20 end if
21 o′j ← Tj [oj ] // Retrieve transformed octet from mapping table

22 end for
23 ip′

k ← ⟨o′1, o′2, o′3, o′4⟩ // Reconstruct anonymized IP address from octets
24 else
25 ip′

k ← ipk // Preserve malformed IP addresses unchanged
26 end if
27 D′ ← D′ ∪ {ip′

k} // Append transformed IP to anonymized dataset
28 end for
29

30 Phase III: Finalization and Output
31 Verify |D′| = |D| // Ensure dataset cardinality is preserved
32 Output D′ // Complete anonymized dataset with preserved structural relationships

Listing 1. Cryptographic Salt-Based IP Address Anonymization with Position-Preserving Transformations
3) Notation Summary:
Description Symbol

Valid IPv4 address space A = {(o1, o2, o3, o4) : oi ∈ [0, 255] ∩ Z}
Malformed IP address space A⊥ = {invalid IP representations}
Octet domain O = [0, 255] ∩ Z
Individual octet at position j oj ∈ O
Transformed octet o′j ∈ O
IP address vector ip = ⟨o1, o2, o3, o4⟩
Anonymized IP address vector ip′ = ⟨o′1, o′2, o′3, o′4⟩
Cryptographic salt σ ∈ {0, 1}∗
SHA-256 hash function H : {0, 1}∗ → {0, 1}256
Position-specific transformation table Tj : O→ O for j ∈ {1, 2, 3, 4}
Concatenated hash input ξ ∈ {0, 1}∗
Hash digest δ ∈ {0, 1}256
String concatenation operator ∥
String encoding function enc
Binary-to-integer conversion bin2int
Function domain dom(f)



V. SECURITY ANALYSIS AND DEMONSTRATION OF THE
PROPOSED SCHEME

Analysis of security of our salt-based hashing anonymiza-
tion technique for IP addresses and port numbers and provide
an example to illustrate.

Salt Generation and Secrecy:
A unique random salt is generated per file, which ensures that
even if an adversary knows the hash function (e.g., SHA-256),
they cannot precompute hash values for each possible octet.
It is important to keep this salt a secret as it can be used for
brute force if leaked. We recommend using it in memory and
then discarding it.

Cryptographic Hash Function:
The scheme uses a strong cryptographic hash function such as
SHA-256. This function is non-invertible. No preimage attacks
possible. Without the salt, recovering the original octet value
is computationally infeasible.
The random file salt along with the cryptographic hash
function makes learning based attacks infeasible. The
security foundation of the anonymization scheme rests upon
the cryptographic assumptions of SHA-256 security. Under
these assumptions, recovering the original IP address α from
its anonymized counterpart α′ without knowledge of the salt
s is computationally infeasible for any polynomially-bounded
adversary. This computational anonymity property relies on
the preimage resistance of SHA-256, where given α′ = Φ(α),
an adversary must invert the hash function for each octet
position. Without the salt s, this requires solving the preimage
problem for SHA-256, which is computationally intractable
under standard cryptographic assumptions. The cryptographic
security of the anonymization scheme is critically dependent
on the secrecy and entropy of the salt s. Compromise of s
enables complete reconstruction of the mapping tables through
exhaustive enumeration of all possible octet values and their
corresponding hash outputs.

Run Avg Collision Original Entropy Anonymized Entropy Entropy Change
0 0.2804 11.4157 11.4157 0.0000
1 0.2882 11.4157 11.4157 0.0000
2 0.2686 11.4157 11.4157 0.0000
3 0.2529 11.4157 11.4157 0.0000
4 0.2647 11.4157 11.4157 0.0000
5 0.2882 11.4157 11.4157 0.0000
6 0.2608 11.4157 11.4157 0.0000
7 0.2804 11.4157 11.4157 0.0000
8 0.2961 11.4157 11.4157 0.0000
9 0.2608 11.4157 11.4157 0.0000

TABLE IV
AVERAGE COLLISION AND ENTROPY METRICS ACROSS 10

ANONYMIZATION RUNS

Domain Reduction and Collision Risk:
Each IP address is divided into four octets. After hashing,
the values are mapped into the range 0–255. This constrained
range may lead to collisions, it is an acceptable trade-off to
preserve the subnet structure. Various ways are possible-can
take modulo 256 of the hashed value or map each hash to
some random value in 0-255. The same original octet will

give the same mapped value within a file, ensuring consistency.

Run Collision Octet 4 Original Entropy Anonymized Entropy
0 0.2804 7.9944 7.1373
1 0.2098 7.9944 7.3153
2 0.2804 7.9944 7.1568
3 0.2569 7.9944 7.2009
4 0.2647 7.9944 7.1792
5 0.2647 7.9944 7.1696
6 0.2647 7.9944 7.1989
7 0.2569 7.9944 7.1992
8 0.2608 7.9944 7.2097
9 0.2882 7.9944 7.1210

TABLE V
COLLISION IN OCTET 4 VS ENTROPY BEFORE AND AFTER

ANONYMIZATION

The collisions also provide some form of anonymity as
each octet is not uniquely mapped to a unique number
from 0-255. This makes inference difficult and each run
leads to collisions between different octet values making it
difficult to predict. The probability of 2 IP’s mapping to
same IP’s after anonymization is very low and hence the
shanon entropy remains nearly the same.

Determinism and Consistency:
Because the mapping is deterministic (using the file-specific
salt), the same IP address always maps to the same
anonymized IP within a log file. However, if an attacker were
to gain access to multiple files with the same salt or deduce
the salt, the deterministic nature could be exploited. So salts
need to be unique and confidential per file(or set of files in a
computation). It is chosen plain text attack secure.

a) IND-CPA Security (Sketch): Let

Es(x) =
(
SHA256(s ∥ x)

)
mod 256

with secret salt s. In the random-oracle/PRF model, SHA-256
keyed by s is a pseudorandom function, so Es is indistinguish-
able from a truly random mapping. Hence no polynomial-
time adversary with chosen-plaintext access can distinguish
or invert Es with non-negligible advantage, i.e. it is IND-CPA
secure.

Analysis of the anonymization on a column of IP of around
2000 entries was done and recorded in Table VI. The IP ranges
across a wide range with each octet having 0-255 at least once.
The average collision rate calculated as number of octets which
get mapped to already mapped anonymized octet by the total
original octets (256 in this case). The entropy of original and
anonymized remains nearly the same as there’s consistency in
the anonymization.

Another Table V generated has the similar metrics for IP’s
of the form 192.168.1.i where i goes from 0 to 255. Entropy
is bound to decrease as number of uniques IP’s is decreasing
in the anonymized due to collision but this represents that it
is much harder to reverse and gives privacy as well.



Fig. 5. Hamming distance between bitwise representation of IP and its
anonymized value

Based on the Hamming distance distribution in Figure 5,
the anonymization scheme demonstrates effectiveness through
its bell-shaped curve centered around 15-16 bits, indicating
approximately half the bits are flipped during transformation.
This symmetric distribution with low frequencies at extremes
shows the method avoids both trivial changes and excessive
alterations, achieving optimal balance between privacy protec-
tion and data utility.

VI. TOOL

A python tool has been developed which implements
the methods discussed above. The tool offers multiple
functionalities with a log parser, an anonymization module
and a log reconstructor to fill the anonymized values back
in place. There is support for custom parsing as well as
fixed format for suricata, zeek, etc. Various anonymization
techniques are available for each field. The main objective
was to make conversion of logs into anonymized logs easily
without much change in the format of the logs to make it
easier to feed it for further analysis. The PIIs it can identify
are IPs, ports, timestamps and payload data size. It can further
be modified easily based on use case. The github link is here.

https://github.com/asdf1879/Network-Log-anonymisation

TABLE VI
INFORMATION LOSS VS. RETAINED UTILITY

Field Status After Anonymization Impact on Analysis

IP Address Salt-based per-octet hash (mod 256), file-
unique salt, partial prefix preserved

Subnet-level grouping preserved; intra-log correla-
tion still possible; cannot link to real IPs externally

MAC Address Consistent one-way hash (salted) Device uniqueness preserved within file; no ven-
dor/OUI info; cross-file linking broken

Port Number Salt-based hash → mod 65536 Port-usage distributions intact; service inference still
possible; exact port identity hidden

Timestamp Order-preserving adaptive noise + global
offset

Sequence and relative intervals preserved; exact
times shifted; peak/trend analysis remains valid

Payload / URL Masked/tokenized Behavioral intent (endpoints hit) visible; sensitive
parameters removed

TCP Seq. No. Random permutation (consistent within file) Packet-ordering and flow analysis possible; exact
sequence numbers cannot be abused

User-Agent Generalized to device class (browser/OS
family). Use a placeholder or enumeration.

Device fingerprinting reduced to coarse classes; use-
ful for broad client-type analytics

VII. CONCLUSION

This research tackled how to share network log data securely
without losing its value for security analysis. Through exten-

TABLE VII
RESIDUAL LEAKAGE ANALYSIS (AFTER ANONYMIZATION)

Field Residual Leakage Risk Level

IP Address Subnet sizes and active-subnet patterns can be inferred; cross-file correlation broken if salts differ Low

MAC Address Device usage frequency and “unique device” counts still visible within a file Low

Port Number Popular service ports (e.g., 80, 443) may still stand out by frequency Low

Timestamp Time-of-day patterns (e.g., business hours) remain; inter-event timing slightly perturbed Medium

Payload parameter values hidden but retains the rough value estimate Low

User-Agent Broad device class (mobile vs. desktop) still identifiable; fine-grained fingerprinting not possible Medium

sive experimentation, we created techniques that significantly
improve upon existing approaches by treating different data
types with specialized protection methods. Our main contri-
bution was developing IP and port anonymization via salt-
based hashing that keeps network relationships intact while
making addresses untraceable. Traditional methods either ran-
domize completely, breaking network analysis, or use simple
substitution that’s easily reversed. Our salt-based hashing
processes each IP octet separately with secret keys that change
per log file, letting researchers see network relationships
and track connections without determining actual addresses
or linking across datasets. For timestamps, we solved how
to hide exact timing while preserving event order. Previous
approaches scrambled sequences, changing security incident
meanings. Our adaptive noise technique adjusts perturbation
based on neighboring event distances, keeping relative order
while preventing chronological determination. The approach
maintains compatibility with existing security tools by pre-
serving log format, removing a major data sharing barrier.
Our open-source tool processes data efficiently with modular
structure for easy extension. Testing with real security data
showed essential analytical capabilities survive anonymiza-
tion. Researchers can identify attack patterns, track malicious
behavior, and develop detection methods while only losing
the ability to identify specific systems. This work enables
better cybersecurity collaboration. When organizations can
safely share quality log data, the security community becomes
more effective at detecting and stopping attacks. Our research
provides practical tools balancing privacy protection with
security effectiveness.
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APPENDIX

A. Tool Architecture

The tool consists of modular components: core pipeline (main.py, log_parser.py, log_reconstructor.py),
anonymization modules (ip_anonymizer.py, port_anonymizer.py, timestamp_anonymizer.py), privacy al-
gorithms (differential.py, l-diversity.py, t_closeness.py), and configuration (config.yaml). The tool
implements two key algorithms proposed in this paper: Order-Preserving Timestamp Anonymization with Adaptive Noise
maintains temporal ordering while adding calibrated noise to timestamps, rounding to nearest intervals and applying adaptive
noise based on traffic density to preserve privacy while maintaining sequence integrity. IP and Port Anonymization via
Salt-Based Hashing uses SHA-256 with configurable salt values for consistent one-to-one mapping, processing IP addresses
at octet-level to preserve network structure while mapping ports to non-reserved ranges (1024-65535) maintaining service
relationships.

B. Configuration Schema

log_file: input_path
log_type: [suricata|firewall|zeek]
output_log: output_path
anonymization:

ip: {method: salt }
port: {method: salt}
timestamp: {method: adaptive}

C. Usage

Configure parameters in config.yaml, execute

python main.py --config config.yaml

D. Anonymization Results

The tool processes network logs as demonstrated below:
Original Log Sample:

03/17/2025-22:48:07.698063 192.168.1.178:57621 -> 192.168.1.255:57621
03/17/2025-22:48:11.711782 192.168.2.184:57621 -> 192.168.1.255:57621
03/17/2025-22:49:19.469764 192.168.1.181:8080 -> 192.168.1.255:8080
03/17/2025-22:49:24.544901 192.168.3.204:3389 -> 192.168.1.255:3389
03/17/2025-22:49:27.132054 203.0.113.76:80 -> 192.168.1.192:36734
03/17/2025-22:49:27.684775 192.168.1.223:22 -> 192.168.1.255:22
03/17/2025-22:49:29.205681 192.168.2.82:443 -> 192.168.1.255:443
03/17/2025-22:49:38.263593 192.168.1.146:57621 -> 192.168.1.255:57621

Anonymized Log Output:

03/17/2025-21:57:50.402 129.195.79.72:63917 -> 129.195.79.250:63917
03/17/2025-21:57:52.817 129.195.247.221:63917 -> 129.195.79.250:63917
03/17/2025-21:58:59.425 129.195.79.140:54030 -> 129.195.79.250:54030
03/17/2025-21:59:06.576 129.195.164.221:27366 -> 129.195.79.250:27366
03/17/2025-21:59:08.237 63.165.104.225:57270 -> 129.195.79.129:59620
03/17/2025-21:59:08.613 129.195.79.238:40993 -> 129.195.79.250:40993
03/17/2025-21:59:09.989 129.195.247.28:55577 -> 129.195.79.250:55577
03/17/2025-21:59:19.254 129.195.79.124:63917 -> 129.195.79.250:63917

The results demonstrate consistent anonymization with preserved network relationships, temporal ordering, and service port
mappings while protecting sensitive information through salt-based hashing and adaptive noise injection.


