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Abstract

Applications that use Large Language Mod-
els (LLMs) are becoming widespread, making
the identification of system vulnerabilities in-
creasingly important. Automated Red Team-
ing accelerates this effort by using an LLM
to generate and execute attacks against target
systems. Attack generators are evaluated us-
ing the Attack Success Rate (ASR) — the sam-
ple mean calculated over the judgment of suc-
cess for each attack. In this paper, we intro-
duce a method for optimizing attack generator
prompts that applies ASR to individual attacks.
By repeating each attack multiple times against
a randomly seeded target, we measure an at-
tack’s discoverability — the expectation of the
individual attack success. This approach re-
veals exploitable patterns that inform prompt
optimization, ultimately enabling more robust
evaluation and refinement of generators.

1 Introduction

Systems that apply Large Language Models
(LLMs), collectively referred to as LLM applica-
tions, have demonstrated remarkable capabilities
across various domains (Brown et al., 2020). How-
ever, like other forms of deep learning, these sys-
tems (fargets) are susceptible to adversarial inputs
(attacks). To address this, Red Teaming identifies
critical vulnerabilities that malicious actors might
exploit in real-world scenarios. This process re-
veals potential weaknesses and risks of LLM appli-
cation misuse leading to liability for organizations
encompassing social, moral, and legal dimensions
(Yao et al., 2024). Consequently, addressing these
issues at scale through rigorous evaluation and opti-
mization is paramount to ensuring scalability, align-
ment, safety, and security (Vashney, 2022).

Automated Red Teaming has emerged as a scal-
able approach to tackle this challenge (Perez and
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Ribeiro, 2022). In this practice, adversarial inputs
are automatically generated by a prompted LLM
(an attack generator) and systematically evaluated.
Common examples of attacks include prompt in-
jections and data exfiltration attempts (Dong et al.,
2024). These attacks are deployed against a target
and assigned a binary success feature (0 for failure,
1 for success), and the generator’s Attack Success
Rate (ASR) is calculated as the sample mean of
these features (Yang and Wang, 2023).

One of our contributions (see Figure 1) is the appli-
cation of ASR to individual attacks, replacing bi-
nary success with a numeric feature calculated over
repeated trials of each attack against a randomly
seeded target. This new set of features forms an
ASR distribution that captures more information
about a given attack generator. Our main contri-
bution is providing a method to optimize the at-
tack generator through Optimization by PROmpt-
ing (OPRO) (Yang et al., 2024). The in-context data
for our OPRO procedure is formed by selecting se-
mantically similar attacks that have a difference in
ASR above a set threshold. These contrastive pairs
exhibit subtle differences that can guide an LLM
to produce more successful attack generators.

In the following sections we detail our methodol-
ogy, present experimental results, and discuss the
implications of our findings for the broader field of
LLM safety and robustness.

2 Related Work

2.1 Automated Red Teaming for LLM
Applications

Automated red teaming for Large Language Mod-
els (LLMs) has emerged as a critical area of re-
search, with recent work establishing methods for
systematically testing model safety and robustness.
Early approaches focused primarily on gradient-
based attack optimization (Bai et al., 2022), but the
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Figure 1: Flowchart depicting the calculation of an empirical ASR distribution

field has rapidly evolved to encompass a broader
range of techniques including automated discrete
prompt-based methods (Perez et al., 2022; Ganguli
et al., 2022), evolutionary algorithms (Choulde-
chova et al., 2023), and hybrid approaches (Lin
etal., 2024).

Recent taxonomies help organize these diverse ap-
proaches. Perez et al. (2022) introduced a method
for using one LLLM to generate test cases for an-
other demonstrating the potential of automated red
teaming. Ganguli et al. (2022) expanded on this
work, providing insights into scaling behaviors and
lessons learned from extensive red teaming efforts.
These studies laid the groundwork for more sophis-
ticated approaches.

In terms of implementation strategies, continuous
optimization in embedding space has shown par-
ticular promise for generating nuanced adversarial
inputs (Bai et al., 2022). These gradient-based ap-
proaches operate in token embedding, hidden state,
and output logit spaces, offering different trade-
offs between attack power and computational com-
plexity. However, discrete prompt-based methods
remain dominant due to their universal applicabil-
ity and interpretability (Perez et al., 2022; Ganguli
et al., 2022). Furthermore, gradient-based exploits
rely on access to powerful computational resources;
for those using third-party services (e.g. OpenAl),
these methods are off the table.

A significant advancement in automated red team-
ing has been the development of mutation-based
approaches. These methods employ evolutionary
algorithms where successful prompts are iteratively
modified and selected based on their effectiveness
(Chouldechova et al., 2023). Advanced mutation
techniques incorporate linguistic knowledge and

adaptive mutation rates, while balancing effective-
ness with attack diversity (Lin et al., 2024).

2.2 Attack Success Rate

The evaluation of red teaming effectiveness has
coalesced around Attack Success Rate (ASR) as a
primary metric, though its definition and applica-
tion may vary across studies. ASR typically mea-
sures the proportion of attempts that successfully
breach a model’s safeguards (Hui, 2023), but recent
work has highlighted the need for more nuanced
interpretations.

Dong et al. (2024) propose a multi-dimensional
view of ASR that considers not only the binary suc-
cess outcome but also the severity of the violation
and the naturalness of the attack. This approach
has been further refined by incorporating semantic
preservation scores to ensure that successful attacks
maintain their intended meaning while achieving
their objectives (Lin et al., 2024).

The importance of considering ASR in the context
of attack diversity has been emphasized in recent
literature. Some researchers have demonstrated
that high ASR values may mask a lack of diversity
in successful attacks, leading to potential overesti-
mation of vulnerability (Chouldechova et al., 2023).
This has led to the introduction of metrics like the
Attack Diversity Index (ADI) that should be consid-
ered alongside ASR when evaluating red teaming
effectiveness.

As the field of LLM red teaming continues to
evolve, there is a growing recognition of the need
for standardized benchmarks and evaluation frame-
works (Mazeika et al., 2024).



2.3 Optimization by Prompting (OPRO)

Recent research has explored the potential of LLMs
not just as generators of text or solvers of specific
tasks, but as general-purpose optimizers. Yang et al.
(2024) introduced the concept of "Optimization by
PROmpting" (OPRO), a novel approach that lever-
ages the reasoning capabilities of LLMs to solve
optimization problems across various domains.

OPRO represents a significant shift in how we uti-
lize LLLMs, moving beyond manual prompt engi-
neering to employ these models as iterative opti-
mizers. The core idea is to frame optimization prob-
lems as natural language tasks, allowing the LLM
to propose, evaluate, and refine solutions through a
series of prompted interactions.

The OPRO framework consists of several key com-
ponents:

1. Problem Formulation: The optimization task
is expressed in natural language, including the
objective function and any constraints.

2. Solution Generation: The LLM proposes can-
didate solutions based on the problem descrip-
tion and previous iterations.

3. Evaluation: The proposed solutions are eval-
uated using the specified objective function,
often by an external system or LLM judges.

4. Feedback and Iteration: The evaluation results
are fed back to the LLM, which then reasons
about how to improve the solution in the next
iteration.

Yang et al. demonstrated the effectiveness of
OPRO on a diverse set of problems, including lin-
ear regression, traveling salesman problems, and
prompt optimization for other Al tasks. Notably,
OPRO showed competitive performance against
traditional optimization algorithms and specialized
neural network approaches, highlighting the versa-
tility of LLMs as general-purpose problem solvers.

One of the key advantages of OPRO is its ability to
use the broad knowledge and reasoning capabilities
embedded in LLMs. This allows the method to
potentially discover novel optimization strategies
that might not be apparent to human experts or
easily encoded in traditional algorithms, especially
for natural language inputs like adversarial prompts.
For the purposes of this paper we employ OPRO to
optimize attack generator prompts on the basis of

an automated judge serving as the cost function.

3 ASR Applied to Individual Attacks and
its Distribution

Recent work by Chouldechova et al. (2023) has
highlighted important theoretical considerations in
Al Red Teaming, particularly regarding the inter-
pretation and comparison of ASR across different
contexts. Building upon this foundation, we pro-
pose an approach to address the specific challenges
posed by non-deterministic LLM responses in Red
Teaming scenarios. Our contribution complements
existing work by offering a statistical method tai-
lored to the unique characteristics of LLM-based
systems.

3.1 Applying ASR to Individual Attacks

Traditional approaches to measuring attack success
often rely on what we call single-try ASR, which
uses binary success on a single try of the attack
as the feature for ASR calculations. This method
provides a point estimate that serves as a basis
of comparison between attack generators, bench-
mark datasets, and target systems (Chakraborty
et al., 2021). However, as pointed out by Choulde-
chova et al. (2023), this approach can be misleading
in practice, particularly when dealing with non-
deterministic LLM applications. Applying ASR to
individual attacks provides additional information
about the consistency and reliability of each attack
across different target seeds, revealing important
patterns that single-try measurements cannot cap-
ture.

We claim that attack quality is at least partially
characterized by this reapplied ASR calculation.
Our primary justification follows from attacker eco-
nomics: attackers operate under constraints of lim-
ited time and resources (or equivalently, limited
tokens), making discoverability of success an im-
portant part of overall quality (Chouldechova et al.,
2023). When attempting to uncover vulnerabili-
ties, any repetition of previously executed attacks
necessarily reduces the set of unique attacks tested
within a fixed budget of trials. Consequently, at-
tackers must balance between breadth and depth.

Targets typically operate with a random seed to
maintain flexible and dynamic responses. Conse-
quently, an identical attack executed multiple times
may produce target outputs that vary, yielding some
proportion of successes and failures that are not



accounted for in single-try ASR. This observation
aligns with the measurement theory concerns raised
in previous work (Chouldechova et al.) and moti-
vates the application of ASR to individual attacks.

We suggest the following pipeline:
1. Generate n attacks from the attack generator.

2. For each unique attack, run the attack against
the target (with no chat history) m times.

3. Collate the binary vector of m successes and
failures produced by the judge with its corre-
sponding attack and calculate the ASR (sam-
ple mean) of this vector.

This approach replaces the typical binary qual-
ity metric with a numeric one, enabling a more
informed assessment of generator quality based
on the proportion of successes an attack achieved
against a target (Yang and Wang, 2023).

Given these considerations, our primary research
goal is to demonstrate the utility of applying ASR
to individual attacks and to show that its distribu-
tion provides valuable information about generator
quality. We address this by exploiting the ASR
distribution for generator prompt optimization.

3.2 The ASR Distribution and Its Implications

The ASR distribution provides critical information
for evaluating and improving attack generators by
revealing patterns that are invisible to single-try
ASR. Specifically, this distribution:

* Captures attack success discoverability across
random target seeds

» Reveals clusters of particularly successful or
unsuccessful attacks

* Enables identification of minimal linguistic
differences between high and low-performing
attacks

¢ Provides a statistical foundation for more ro-
bust generator optimization

To empirically compute the ASR distribution, we
use GPT-40 (2024-05-13) for all three components
of our pipeline: (1) the attack generator that creates
adversarial prompts, (2) the target system that sim-
ulates an LLM-based application being attacked,
and (3) the judge that evaluates whether each at-
tack attempt succeeded. Each component oper-
ated with temperature=1 and random seeds to emu-
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Figure 2: Example ASR Distribution

late realistic non-deterministic behavior. We gen-
erated n = 384 unique attacks and evaluated each
m = 50 times against the target (see Appendix A
for sample size justification).

For the examined generator, we calculate an em-
pirical distribution (Figure 2). This distribution
is characterized by one mode near the origin, re-
flecting the effectiveness of the target’s security
measures, and additional mass higher on the ASR
scale, representing a sample of relatively successful
attacks.

To model this distribution, we suggest the use of
a Beta mixture where the number of Beta distri-
butions is equal to the number of modes present
in the empirical distribution. This modeling ap-
proach serves several purposes: it provides a com-
pact mathematical representation of the complex
ASR patterns, enables statistical comparison be-
tween different attack generators, and facilitates
simulation of attack success scenarios. Most impor-
tantly, it helps bridge empirical observations with
theoretical understanding of attack quality, allow-
ing researchers to make more informed predictions
about generator performance in various contexts.

The ASR distribution provides richer information
for comparing generators than the traditional single-
try ASR. While single-try ASR compares genera-
tors based on the probability that a randomly gen-
erated attack will succeed against the target on a
single attempt, the ASR distribution is sensitive to
settings where multiple tries are afforded to each



attack. This distinction is crucial in practical red
teaming scenarios as it integrates attack success
discoverability.

Mathematically, the ASR distribution represents a
distribution over Bernoulli parameters, with each
attack’s ASR serving as the # parameter for its cor-
responding Bernoulli distribution. Thus, a set of
single-try attempts across multiple attacks effec-
tively samples from a mixture of these Bernoullis.
Accordingly, the mean of the ASR distribution con-
verges to the single-try ASR due to the fact that
the ASR distribution ranges over a set of attack
expectations. While two ASR distributions with
equal means are equivalent on this basis, the one
with more mass concentrated higher on the ASR
scale would produce attacks whose success is more
discoverable on the whole. This makes the ASR
distribution a valuable tool for comparison when-
ever attack success discoverability is important.

In settings where the goal is exploiting a specific
vulnerability, repeated trials of a set of attacks may
be more desirable than trying a larger set of distinct
attacks a single time each. The ASR distribution
captures the nuance required for this assessment.
Moreover, it highlights the noisy nature of binary
success as a feature—low-ASR attacks may occa-
sionally succeed on a single attempt while high-
ASR attacks may fail, leading to potentially mis-
leading classifications when using single-try met-
rics alone.

By leveraging this distributional understanding of
generator quality, we can develop more effective
strategies for both evaluating and improving attack
generators. In the following section, we demon-
strate how this information can be exploited to op-
timize generator prompts.

4 Application: Attack Generator
Optimization

4.1 ASR-Delta Pair Mining

The ASR distribution reveals a diversity of attack
quality that is not captured by single-try ASR. With-
out considering the ASR distribution, it is possible
to overlook prompt patterns that correlate with the
success of an attack. To demonstrate the practical
utility of the ASR distribution, we explore an appli-
cation to Automated Red Teaming using Optimiza-
tion by PROmpting (OPRO), which is summarized
in Figure 3.

This approach is formalized in Algorithm 1 which
employs a technique we term ASR-delta pair min-
ing. This procedure selects similar attacks based
on a chosen similarity measure (S). For S we apply
cosine similarity to attack embeddings produced
by OpenAl’s text-embedding-3-large. We select
attack pairs with an ASR difference exceeding a
threshold A. By setting an appropriate A, this pro-
cedure can reveal critical and minimal contrasts
between high and low-ASR attacks which prove
effective for improving attack generator prompts
against a given target.

The core idea behind this approach is to provide
semantic nearest neighbors with differing ASRs
to an OPRO prompt, thereby highlighting which
characteristics to emulate. The optimizer prompt
is designed to produce text that, when added to
our generator’s system prompt, transforms it into a
more effective generator against the target.

In our experiments, we use GPT-40 (2024-05-13)
with temperature=1 for both the generator and the
optimizer. We produce 10 possible prompt addi-
tions to the original generator and keep the one that
yields the highest ASR distribution mean. This ap-
proach was chosen due to specific constraints in the
prompt that are required to get attack generation to
work, which can unintentionally be written out of
a generator during optimization.

The result is demonstrated in Figure 4 and Figure 5,
which compares ASR distributions before and after
the application of this method. The improvement
in attack performance is evident in the rightward
shift of density in the distribution, accompanied
by a corresponding increase in the distribution’s
mean. This shift indicates that the optimized gen-
erator produces a higher proportion of high-ASR
attacks using information from the original genera-
tor’s ASR distribution. This approach:

e Utilizes information about attack success dis-
coverability from the ASR distribution

* Provides a systematic method for identifying
and emulating successful attack characteris-
tics

* Enables the continuous improvement of gen-
erators through iterative application

* Offers insights into the factors that contribute
to attack success

However, it is crucial to consider potential limita-
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Figure 3: Flowchart depicting ASR delta pair mining

Algorithm 1 ASR-Delta Pair Mining and Generator OPRO

Require: Set of distinct attacks A generated by G 4 with ASR(A) ~ D4, similarity metric S, threshold

A > 0, optimizer prompt O

1: Form set P of semantically similar pairs (a,b) where a,b € A, a # b, and

Va' € A: S(a,b) > S(d',b)
2: Filter to pairs with significant ASR difference:

P' = {(a,b) € P | |ASR(a)— ASR(b)| > A}

W

: Order each pair such that ASR(a) > ASR(b) for all (a,b) € P’
: Produce optimized generator G’y = O(G 4, P'), where O prompts for an addition

to (G4 that favors completions similar to high-ASR attacks a rather than low-ASR

attacks b

tions and areas for future research:

* The generalizability of this method across dif-
ferent target systems needs further investiga-
tion

* The choice of similarity measure (S) and
threshold (A) may significantly impact results
and thus require careful tuning

* The long-term effectiveness of this approach
in the face of evolving defenses remains to be
studied

By demonstrating the value of the ASR distribu-
tion as a source of information about attack quality,
this work opens new avenues for research in auto-
mated red-teaming and LLM security. Future work
could explore more sophisticated optimization tech-
niques, investigate the transferability of learned im-
provements across different types of LLM-based
systems, and develop methods to anticipate and
counteract these optimized attack strategies.

4.2 Method Comparison: Single-Try Attack
Pair Mining

To validate that the improvements observed in our

optimized generator’s ASR distribution stem from

the information contained within the original gen-

erator’s ASR distribution rather than from the act

of OPRO itself, we conduct a comparative analysis.

We compare ASR-delta pair mining OPRO against
what we term single-try OPRO (ST-OPRO).

ST-OPRO replaces the use of individual attack
ASR with the single-try binary success met-
ric—selecting semantic nearest neighbors so long
as one is successful and the other unsuccessful on
a single try. This modification was specifically
designed to provide the closest possible compari-
son to ASR-delta pair mining, differing only in the
mechanism for distinguishing between high and
low-quality attacks.

As in ASR-delta OPRO, we use GPT-40 (2024-
05-13) with temperature=1 for both the generator
and optimizer. We produce 10 possible prompt
additions to the original generator and select the
generator with the highest ASR distribution mean.

While ST-OPRO does yield improvements over the
original unoptimized generator (see Figure 4 and
Figure 5), these improvements are demonstrably
smaller than those achieved through the ASR-delta
method.

The superior performance of ASR-delta pair min-
ing suggests that the ASR distribution provides
a better source of information for the optimiza-
tion process than single-try success. This finding
supports our hypothesis that the ASR distribution
contains valuable information about attack qual-
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ity that can be effectively leveraged for generator
improvement.

5 Conclusion

This work demonstrates that single-try ASR, while
useful as a point estimate for comparing attack
generators, fails to capture potentially exploitable
distributional information. We argue that binary
success does not align as effectively with attack
quality—defined through the lens of attacker eco-
nomics—as our proposed application of ASR. This
finding has implications for classification tasks, op-

timization procedures, and evaluation of genera-
tors.

Our results demonstrate that the ASR distribution
serves as a reliable guide for identifying contrastive
pairs for use with OPRO. By selecting semantic
nearest neighbors with large ASR differences, we
can isolate near-minimal contrasts in attack lan-
guage that have disproportionate impacts on attack
efficacy. This approach provides a method for un-
derstanding and improving attack generator per-
formance, as evidenced by the superior results of
ASR-delta pair mining compared to ST-OPRO.

These findings open several promising avenues for
future research:

1. Optimization of system prompts for more ef-
fective red teaming

2. Generation of new insights about prompt en-
gineering in security contexts

3. Study of attack robustness across different
LLM-based systems

4. Development of more sophisticated defense
mechanisms based on ASR distribution analy-
sis

Furthermore, this work suggests that the evaluation
and optimization of LLM-based security systems
benefit from more nuanced metrics of attack quality.
The ASR distribution offers a more comprehensive
view of attack success, enables more accurate pre-
dictions when attacks are repeated, and provides a
method for evaluating and optimizing generators
that is sensitive to attack success discoverability.

Limitations

While our approach demonstrates promising results
for optimizing attack generators, several limitations
should be acknowledged:

1. Our experiments were conducted using a specific
model (GPT-40) and may not generalize to all LLM
architectures.

2. The effectiveness of ASR-delta pair mining de-
pends on the quality and diversity of the initial
attack generator output.

3. The computational cost of repeatedly testing
each attack multiple times may be prohibitive in
some contexts, especially with limited API access
or computational resources.



4. The proposed method focuses on optimizing for
attack success rate but doesn’t necessarily account
for other important aspects such as attack stealth,
naturalness, or transferability.

5. As defense mechanisms evolve, the effectiveness
of optimized attack generators may diminish over
time, necessitating continuous refinement.
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A Computational Considerations for
Sample Sizes

In this study, we employed n = 384 unique at-
tacks, each evaluated m = 50 times against the
target. These sample sizes were selected based on
both statistical considerations and computational
feasibility.

A.1 Determining the Number of Attacks (n)

For the number of unique attacks n, we applied
the standard sample size formula for estimating a
population proportion with a specified margin of
erTor:

Where:

* 2z is the z-score corresponding to the desired
confidence level (1.96 for 95% confidence)

* pis the estimated proportion (we used p = 0.5
to maximize the required sample size)

* e is the desired margin of error (0.05 or 5%)

Substituting these values:

1.962-0.5-0.5  0.9604

= = 384.16
0.052 0.0025

This calculation yields n ~ 384, ensuring that our
estimate of the overall ASR has a margin of error
no greater than 5% with 95% confidence.

A.2 Determining the Number of Repetitions
(m)

For the number of repetitions m per attack, we
selected m = 50 primarily for computational effi-
ciency. A full evaluation would require n X n =
384 x 384 = 147,456 total attack evaluations,
which would be computationally prohibitive. Our
approach with m = 50 required only 384 x 50 =
19, 200 evaluations, representing an 87% reduction
in computational load.

Importantly, we observed convergence in our ASR
estimates at m = 50. Additional repetitions be-
yond this point produced negligible changes in the
estimated ASR values for individual attacks, sug-
gesting that 50 repetitions adequately captured the
success probability distribution while maintaining
computational tractability.
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