
POLARIS: Explainable Artificial Intelligence for
Mitigating Power Side-Channel Leakage

Tanzim Mahfuz1, Sudipta Paria2, Tasneem Suha1, Swarup Bhunia2, and Prabuddha Chakraborty1

1Department of Electrical & Computer Engineering, University of Maine, Orono, ME, USA
2Department of Electrical & Computer Engineering, University of Florida, Gainesville, FL, USA

Abstract—Microelectronic systems are widely used in many
sensitive applications (e.g., manufacturing, energy, defense).
These systems increasingly handle sensitive data (e.g., encryption
key) and are vulnerable to diverse threats, such as, power side-
channel attacks, which infer sensitive data through dynamic
power profile. In this paper, we present a novel framework,
POLARIS for mitigating power side channel leakage using an Ex-
plainable Artificial Intelligence (XAI) guided masking approach.
POLARIS uses an unsupervised process to automatically build a
tailored training dataset and utilize it to train a masking model.
The POLARIS framework outperforms state-of-the-art mitiga-
tion solutions (e.g., VALIANT) in terms of leakage reduction,
execution time, and overhead across large designs.

Index Terms—Power side-channel Analysis and Mitigation,
Hardware Security, Explainable Artificial Intelligence.

I. INTRODUCTION

Edge computing devices in Internet-of-Things (IoT) ap-
plications are increasingly used in diverse applications from
domains, such as, Industry 4.0, surveillance, smart cities,
defense, healthcare, and aerospace. These devices often record
and process sensitive data and hence become a target for
diverse attacks from malicious entities. A malicious entity
can attempt to leak sensitive information from these devices
through various means, such as timing side-channel attacks,
power side-channel attacks, and fault-injection attacks.

In this work, we focus on mitigating power side-channel
attacks [1], [2], which involve measuring and analyzing the
power consumption traces of a system to infer the values
of sensitive data. This inference is possible because dif-
ferent computing instructions consume different amount of
power while running on an unprotected/unmasked electronic
hardware. Wide array of techniques have been developed to
mitigate this concern, which include:

1) Quantifying Power Side Channel Leakage: Techniques
such as Test Vector Leakage Assessment (TVLA) were
developed to estimate power side channel leakage at a
gate level for a certain number of traces [3].

2) Masking Gates: Composite logic gates were developed
to replace traditional gates to provide better power side
channel leakage camouflaging [4], [5].

3) Efficient Utilization of Masking Gates: Brute force
replacement of all gates using composite masking gates
can lead to very high design overheads (area, power,
delay). Hence, techniques such as VALIANT [6] were

developed to perform selective masking to obtain a good
masking effect at a lower overhead.

Existing power side-channel countermeasures, such as, [6],
[7], [8], which relies on fixed heuristics (static algorithm), may
not perform well for diverse designs. Additionally, relying
on TVLA (a simulation-based approach) analysis makes it
highly time-consuming to operate on large designs. DL [9] and
LLM-based [10] leakage estimation techniques are proposed
but are inadequate in leakage mitigation due to their high
training times and lack of synthetic data support or explain-
ability features. To mitigate these shortcomings, we present
a novel Explainable AI based Design-for-Security framework
POLARIS (POwer Side-Channel LeAkage Reduction using
Explainable AI Solution), that utilizes a search process to
automatically learn how to most optimally insert masking
gates to achieve high power side channel leakage reduction
at low overhead. We implement POLARIS with training data
generated using smaller open-source designs and extensively
evaluated its effectiveness across various designs with varying
complexities. POLARIS is able to outperform VALIANT
[6] in terms of performance (execution time), effectiveness
(overall leakage reduction), and design overhead (area, power,
delay). POLARIS does not rely on TVLA for leakage estima-
tion and mitigation through masking and is approximately 6x
faster than VALIANT, making it scalable for larger designs.
In summary, we make the following key contributions:

1) Developed a novel explainable design-for-security (DFS)
framework (POLARIS) for mitigating power side-channel
vulnerabilities in electronic systems.

2) Designed an unsupervised algorithm to automatically
generate training data for POLARIS using a search
approach and an AI algorithm for efficiently masking a
given digital design.

3) Implemented the POLARIS framework as a parameter-
ized tool & integrated it into the ASIC design flow.

4) Extensively evaluated POLARIS (different settings) and
compared it with VALIANT [6], a state-of-the-art alter-
native solution, using more than 10 large digital designs.

The rest of the paper is organized as follows: Section II
describes the brief background and related work, followed
by the motivation behind this work in Section III. Section
IV outlines the methodology, and Section V demonstrates the
experimental results. We conclude the paper in Section VI.

© This paper has been accepted at the 62nd Design Automation Conference (DAC), 2025

ar
X

iv
:2

50
7.

22
17

7v
1

 [
cs

.C
R

]
 2

9
Ju

l 2
02

5

https://arxiv.org/abs/2507.22177v1

II. BACKGROUND

A. Test Vector Leakage Assessment (TVLA)

TVLA [3] is a widely recognized method for power side-
channel analysis based on Welch’s t-test. The approach cap-
tures the DUT’s leakage behavior under varied inputs to detect
any differences. Mathematically, let us denote two sets of data
by Q0 and Q1, their cardinality by n0 and n1, respectively. Let
also µ0 (resp. µ1) and s20 (resp. s21) denote sample mean and
sample variance of the set Q0 (resp. Q1). The t-test statistic
and the degree of freedom v are computed as:

t =
µ0 − µ1√
(
s20
n0

) + (
s21
n1

)
v =

(
s20
n0

+
s21
n1

)
2

(
s20
n0

)
2

n0−1 +
(
s21
n1

)
2

n1−1

(1)

The t-statistic is typically assessed with a threshold of ± 4.5
for distinguishability. This threshold ensures that for |t| > 4.5
and v > 1000, the p-value drops below 0.00001, indicating
over 99.999% confidence against the null hypothesis [11]. A
crypto implementation is considered protected with 99.999%
confidence if |t| ≤ 4.5; otherwise, it may indicate leakage [6].
The test can be performed in two ways: (i) Fixed-vs-Fixed
(using known intermediate values) or (ii) Fixed-vs-Random
(using fixed and random input patterns) [12].

The naive algorithm to compute variance (s20, s
2
1) followed

by the respective standard deviation (ρ0, ρ1) is inefficient
as it involves processing full trace points twice due to the
dependency on mean (µ0, µ1) values for the computation. The
evaluation for ρ0 is given as:

ρ0 =

∑
i (xi − µ0)

2

n0
, where xi ∈ Q0 (2)

TVLA trace collection is slow due to repeated mean and
variance calculations. To accelerate it, [11] proposed an effi-
cient one-pass method for raw and central moments computa-
tion during trace acquisition. The raw moment (sample mean)
and central moment (variance) of order d = 1 for an expanded
set Q′ = Q∪ y with n elements are calculated as:

MQ′

1 = MQ
1 +

∆

n
, where ∆ = y −MQ

1 (3)

µ = M1 and s2 = CM2, where CM2 = M2 −M2
1 (4)

This method can be extended to compute the central mo-
ments at any d > 1 using the equations as given in [11].

B. Masking

Masking is a well-known countermeasure for mitigating
side-channel attacks [13]. Masking randomizes sensitive data
in cryptographic operations using a secret sharing scheme at
the logic level. To achieve d-th order security, each variable
x is split randomly into (d + 1) shares, such that x =
x(1) ⊕ x(2) ⊕ · · · ⊕ x(d+1), where x(i) denotes ith share of
x and ⊕ denotes XOR operation. This provides significant
protection since that adversary would need to recover all d+1
shares to obtain the actual value of x, which requires statistical
analysis up to dth order. Authors in [4], [5] proposed efficient
masking schemes for block cipher implementations against

DPA attacks. As example, the Masked AND and OR operation
proposed by [4] is demonstrated in Fig. 1 and described below:

If xi and yj denote the bits that mask the ‘real’ bits ai
and bj then we denote masked bits as â = (ai ⊕ xi) and
b̂ = (bj ⊕ yj) correspondingly. We introduce a random bit, z,
as a new mask for computing a masked AND operation as:
M(a · b) = ((â · b̂)⊕ ((xi · b̂)⊕ ((xi · yj)⊕ z)))⊕ (yj · â) (5)

Fig. 1: AND and OR operation on masked data.

C. Related Work

Existing power side-channel leakage evaluation/mitigation
approaches like CASCADE [7], Karna [8], VALIANT [6] in-
corporate TVLA analysis and hence suffers from high runtime
and scalability issues. AI-based methods like DL-LA [9] and
Netlist Whisperer [10] are often limited by the lack of training
data and are vulnerable to adversarial attacks due to reliance
on external training data [14], [15], [16], [17].
POLARIS stands out by using a synthetic data genera-

tion approach for creating its own training data, ensuring
improved performance and resilience against adversarial at-
tacks. POLARIS also incorporates XAI-based rules generation
for efficient power side channel mitigation through masking.
Table I provides a comparative analysis between the existing
solutions and the proposed framework.

III. MOTIVATION

A. Can Explainable AI Generate Custom DFS Rules/Models
for Power Side Channel Mitigation?

Power side channel mitigation techniques such as Karna and
VALIANT rely on static algorithms, in other words, a fixed
set of hand-crafted rules. This is a limiting factor and prevents
optimal operation on a diverse set of designs. We hypothesize
that an Explainable AI (XAI) framework might be able to
generate custom rules/models (to mitigate power side channel
leakage) based on a given type of design, making the process
more autonomous and adaptive.

B. Can We Bypass TVLA using AI?

Most of the prevalent power side channel mitigation frame-
works (e.g., Karna, VALIANT) rely on TVLA for estimating

Fig. 2: Overview of the POLARIS framework.

power leakage. TVLA has major scalability concerns particu-
larly for large industry-grade designs that in turn hampers the
scalability of frameworks such as Karna and VALIANT. We
hypothesize, AI techniques might be able to predict the leakage
(directly or in an integrated way) associated with individual
gates faster and with a linear time complexity (with respect to
design size).

C. Can We Generate the Training Data?

Training data is a major limiting factor for AI frameworks
in the hardware security domain. Techniques such as DL-LA
[9] and Netlist Whisperer [10] require a very high amount
of data making it almost infeasible to effectively scale across
different design types. If we can develop a framework that can
leverage synthetic training data automatically generated via
an unsupervised technique, then it would be highly scalable
across diverse design types.

IV. METHODOLOGY

We build on the motivations presented in Sec. III to design
a framework that can: (1) Leverage XAI for creating custom
power side channel mitigation rules/models; (2) Bypass TVLA
using an AI approach; (3) Utilize automatically generated
synthetic data for model training. The overall framework,

shown in Fig. 2 operates in three major stages: (i) Knowledge
extraction, data generation, and building the ML model; (ii)
Interpreting the model using the explainable SHAP [18] frame-
work; and (iii) Masking against side-channel vulnerabilities.

A. Knowledge Extraction and ML Model Development

Obtaining a large dataset for training AI models is a
major concern particularly in the domain of hardware secu-
rity and EDA. To address this concern, POLARIS utilizes
a novel unsupervised approach to generate a large database
for AI model training. As shown in Fig. 2, the framework
POLARIS converts any digital design represented as gate-level
netlist (D) into a graph (Gr) such that Gr = (V,E) where, V :
gates and E: interconnections and randomly inserts masking
gates based on mask size (Msize). Then, POLARIS calculates
leakage values (LG) using TVLA analysis and compares it
to the original leakage values. If the difference exceeds a
threshold (θr), the masking is labeled ‘good’ (1); otherwise,
‘bad’ (0) and appended to {X data, Y data}. These labels
are linked to structural features used for knowledge extraction.
The framework employs local structural features for training
and evaluation, similar to [19],[20]. The structural features
of a gate include information such as their local placement
and interconnections. In a sub-design graph, gate connectivity

TABLE I: Comparing POLARIS with existing solutions for power side-channel leakage assessment and mitigation.

Approach Method Model Training Feature
Set

Mitigation
Support Performance Platform

CASCADE [7] TVLA N/A N/A No Slow ASIC
Karna [8] TVLA N/A N/A Limited Slow ASIC

VALIANT [6] TVLA N/A N/A Yes Slow ASIC

DL-LA [9] DL
Training Time: High

Adversarial Attacks: Possible
Explainability: No

Synthetic Data Support: No
Trace
based No Slow

ASIC/
FPGA

Netlist
Whisperer [10] LLM

Training Time: High
Adversarial Attacks: Possible

Explainability: No
Synthetic Data Support: No

ANF
equations Yes Slow ASIC

POLARIS
(This work) XAI

Training Time: Low
Adversarial Attacks: No

Explainability: Yes
Synthetic Data Support: Yes

Structural
Analysis Yes Fast

ASIC/
FPGA*

*POLARIS can be extended to FPGA design flow by re-training the model with lookup table (LUT) based FPGA netlists.

Algorithm 1: Cognition Generation
Input: D,Msize,L, itr, θr
Output: M

1 Gr ← graphify(D)
2 LG ← leak estimate(D)
3 X data, Y data← ∅; run← 0
4 Rgates ← Gr.gates
5 while Msize ≤ len(Rgates) and run ≤ itr do
6 Sgates ← random(Msize,R)
7 Dmod ← modify(Sgates,D)
8 Rgates ← Rgates − Sgates
9 Lmod

G ← leak estimate(Dmod)
10 for i in Sgates do
11 Sf ← structural features(Gr,L, i)
12 rRatio ← compare(LG[i],Lmod

G [i])
13 if rRatio ≥ θr then
14 label← 1

15 else
16 label← 0

17 X data.append(Sf)
18 Y data.append(label)

19 run← run+ 1

20 M← train data(X data,Y data)
21 return M

is encoded with an adjacency matrix and one-hot encoding.
Fig. 2 illustrates the structural feature extraction process,
showing how gates are vectorized and how the dataset is
created via feature extraction and labeling. Breadth-first search
(BFS) is employed to explore neighboring gates (Locality L)
and assign labels based on leakage comparison. The random
insertion process runs iteratively (≤ itr times) until the termi-
nation condition is met. Finally, we obtain a trained model (M)
trained using {X data, Y data} that will be used to generate
human-understandable rules through model interpretability in
the next stage. Algorithm 1 describes the sequence of steps
involved in extracting knowledge through structural features
and developing the ML model.

B. Explainable AI (XAI): Model Interpretability by SHAP

XAI enhances transparency and accountability in AI by pro-
viding methods for designing inherently interpretable models
and for analyzing decisions after training. We incorporate the
SHAP (SHapley Additive exPlanations) [18] algorithm into
our framework to analyze the trained models and extract the
underlying model rules driving the mitigation process. SHAP
leverages game theory to quantify the contribution of each
feature in model’s prediction. For an individual prediction, the
Shapley value of a feature f , is denoted as ϕf , and is computed
using Equation 6. Given h total features, there are h! possible
permutations (coalitions) of these features. Let g represent a
specific coalition that excludes feature f . The weighting factor
|g|!(h−|g|−1)!

h! accounts for the number of ways to form such
coalitions, and the term val(g ∪ {f}) − val(g) signifies the

Algorithm 2: POLARIS Masking
Input: D,M,RL,Msize,L
Output: DM

1 Gr ← graphify(D)
2 G ← Gr.gates
3 C ← ∅
4 for i in G do
5 Sf ← structural features(Gr,L, i)
6 Ppred ← inferencing(M, RL, Sf)
7 C.append(Ppred, i)

8 Ctop ← sort descending(C)
9 DM ← modify(D, Ctop,Msize)

10 Linfo ← leak estimate(DM)
11 return DM

marginal contribution of feature f to coalition g. N denotes
set of all features {1, 2, ...h}.

While there are other XAI frameworks, such as LIME [21]
and Captum [22], we focus on SHAP due to its versatil-
ity. SHAP offers both model-agnostic methods (e.g., Kernel
SHAP) and model-specific methods (e.g., Tree SHAP), making
it suitable for a broad range of models. The automated rules,
unlike handcrafted ones, can be used independently to make
masking decisions or alongside the model to achieve better
predictions and decisions, as shown in Fig. 2.

ϕf =
∑

g⊆N\{f}

|g|! (h− |g| − 1)!

h!
[val (g ∪ {f})− val(g)]

(6)
C. POLARIS Masking in Side-Channel Defense

The trained model can be used directly to mask a design for
side-channel defense and can also leverage human-readable
rules (RL) rules generated through the XAI framework to
improve decision-making. For each gate in the graph (Gr),
generated from (D), structural features (Sf) are extracted,
and predictions (Ppred) are made using the model or rules
followed by appending Ppred values to choices (C). The set C
is sorted in descending order to identify the top selections
(Ctop). Finally, masking is applied to the design based on
Ctop, and leakage of the masked design (DM) is measured.
Algorithm 2 outlines all the steps involved.

V. RESULTS AND XAI ANALYSIS

In this section, we analyze the effectiveness of the proposed
framework POLARIS in identifying and mitigating leakage
from open-source designs with varying complexities and
leveraging the SHAP framework to mitigate leakage through
masking against power side-channel attacks.

A. Experiment Configuration

We utilize knowledge obtained from training on smaller
designs to generalize to larger and entirely unseen designs,
leveraging the transfer learning approach. The model is trained
on smaller open-source designs that can adapt to larger de-
signs, capturing patterns that can be transferred for practical

TABLE II: Quantitative comparison between VALIANT [6] & POLARIS in terms of leakage reduction & runtime efficiency.

Leakage Value (Per Gate) Total Leakage Reduction (%) Time (s)
POLARIS POLARISBenchmarks Before VALIANT 50%Mask 75%Mask Full Mask VALIANT 50%Mask 75%Mask Full Mask VALIANT POLARIS

des3 2.66 1.20 1.23 1.09 1.02 54.89 53.76 59.02 61.65 38.68 16.40
arbiter 1.42 1.10 1.15 0.98 0.88 22.54 19.01 30.99 38.03 97.62 15.11

sin 2.16 1.23 1.19 1.04 0.91 43.06 44.91 51.85 57.87 42.42 15.21
md5 2.93 1.39 1.41 1.28 1.21 52.56 51.88 56.31 58.70 202.11 59.11
voter 2.96 1.30 1.12 1.10 1.01 56.08 62.16 62.84 65.88 84.59 28.36

square 2.94 1.23 1.29 1.25 1.21 58.16 56.12 57.48 58.84 309.00 56.62
sqrt 3.04 1.44 1.48 1.31 1.20 52.63 51.32 56.91 60.53 281.05 75.53
div 2.28 1.44 1.37 1.28 1.18 36.84 39.91 43.86 48.25 389.26 92.51

memctrl 1.62 1.21 1.18 1.03 1.00 25.31 27.16 36.42 38.27 2257.50 94.44
multiplier 2.44 1.23 1.22 1.14 1.12 49.59 50.00 53.28 54.10 498.15 127.03

log2 2.25 1.16 1.20 1.11 1.06 48.44 46.67 50.67 52.89 428.31 148.38
Average 2.43 1.27 1.26 1.15 1.07 45.46 45.72 50.88 54.09 420.79 66.25

Note: ‘X% Mask’ denotes X% of total number of leaky gates. The computational time for POLARIS with varying mask sizes is similar.

TABLE III: Comparison among different ML models used in
POLARIS. Values indicate leakage reduction in %.

Designs Random Forest XGBoost AdaBoost
des3 33.73 41.35 61.65

arbiter 29.36 43.02 38.03
sin 32.48 56.89 57.87

md5 43.97 54.70 58.70
voter 58.67 62.39 65.88

square 22.37 42.96 58.84
sqrt 39.02 53.57 60.53
div 68.69 74.36 48.25

memctrl 18.95 28.16 38.27
multiplier 57.09 55.09 54.10

log2 57.37 53.88 52.89
Average 41.97 51.49 54.09

Note: We observe nominal differences in computational time across models.

application of transfer learning. We used six designs from the
ISCAS-85 benchmark suite [23] synthesized using Synopsys
Design Compiler (DC) for training and simulated using 10,000
traces for leakage measurement by TVLA analysis. Selecting
smaller designs helps reduce the model’s training time (∼40
minutes). The key parameters are: Msize = 200, L = 7
(considering 7 neighboring gates), itr = 100, and θr = 0.70
(indicating a leakage reduction of 70% or more as good
masking). The rationale behind selecting the value of θr to
0.70 is that selecting higher values lead to significant data
imbalance, which could cause the model to underfit and
hinder its ability to generalize effectively. The evaluation phase
includes larger and entirely different designs with varying
Msize from EPFL [24] and MIT-CEP [25] benchmark suite
that are distinct from training designs.

B. Comparing ML Models for Leakage Reduction

In this work, we explore several machine-learning tech-
niques to develop improved masked designs that mitigate
side-channel vulnerabilities. Table III compares the leakage
reduction by Random Forest, XGBoost, and AdaBoost models
for L = 7, θr = 0.7, and Msize denoting number of
leaky gates identified by TVLA. We applied SMOTE [26] for
Random Forest and employed weighted training for XGBoost
and AdaBoost models for handling imbalance that occurred

due to θr. The learning rate (α) for both XGBoost and
AdaBoost was set to 0.01. AdaBoost outperforms the other
models with a 54.09% leakage reduction on average, making
it the chosen model for the remaining experiments.

(a)

(b)

Fig. 3: SHAP waterfall plots generated by POLARIS Adaboost
(ADB) model for power side channel defense.

C. Comparison with State-of-the-Art

Table II compares the performance of VALIANT framework
[6] and POLARIS in terms of leakage per gate, total leakage
reduction, and execution time. POLARIS is tested with 50%,
75%, and full (100%) masking sizes. Even with only 50%
masking, POLARIS achieves a 45.72% leakage reduction,
surpassing VALIANT’s 45.46% with full masking. At 75%

TABLE IV: Comparison of area, power, and delay overheads between VALIANT [6] and POLARIS§.

Original VALIANT (x Original♢) POLARIS§ (x Original♢) Reduction (%) in POLARISDesigns Area (µM²) Power (mW) Delay (ns) Area Power Delay Area Power Delay Area Power Delay
des3 9083.31 2.73 1.3 3.7 3.1 1.6 2.4 1.8 1.2 35.14 41.94 25.00

arbiter 10310.05 1.61 1.23 3.1 3.3 3.3 2.1 2 2.1 32.26 39.39 36.36
sin 13421.04 9.12 7.98 3.6 3.1 3.1 2.3 1.6 1.9 36.11 48.39 38.71

md5 24217.29 0.94 0.12 5.1 3.8 1.4 3.1 1.7 1.1 39.22 55.26 21.43
voter 28090.42 17.25 2.53 4.2 3.8 4.5 2.5 2.4 2.9 40.48 36.84 35.56

square 51117.09 32.98 9.84 4.7 3.8 3.2 2.7 2.3 1.2 42.55 39.47 62.50
sqrt 42921.71 83.28 279.99 5.3 3.8 3 3.2 2.3 1.9 39.62 39.47 36.67
div 44048.97 12.59 196.90 3.1 2.9 2.2 2.5 2.2 1.7 19.35 24.14 22.73

memctrl 42921.71 8.21 3.55 4 4.2 2.6 2.2 2.1 1.9 45.00 50.00 26.92
multiplier 66185.85 56.62 10.13 2.4 1.9 2 2.1 1.5 1.7 12.50 21.05 21.68

log2 77395.08 66.95 16.55 3.9 3.2 3.4 2.4 1.6 2.1 38.46 50.00 38.24
Average 37246.59 26.57 48.19 3.92 3.35 2.75 2.50 1.95 1.79 34.61 40.54 33.25

§ We utilize POLARIS w/ 50% Mask for comparison with VALIANT, achieving a comparable leakage reduction while masking half the number of gates.
♢ Overheads are reported as x times original value.

TABLE V: Power side-channel mitigation rules generated via the POLARIS framework (AdaBoost Model).

Rules As long as Procedure

A G4 = NAND && G5 = AND && G4 (NAND) and G5 (AND) are not connected &&
G6 = NAND && G10 = NAND && G8 (NOT) and G9 (NAND) are connected

Select & Replace
with masking gate

B G5 = AND && G4 = NOT && G7 = OR && G4 (NOT) and G5 (AND) are connected blue
&& G7 (OR) and G8 (NOT) are connected Do not Mask

Fig. 4: TVLA values before and after masking in des3 design.
Gates exceeding threshold (±4.5) are considered as leaky.

and full masking, POLARIS reduces leakage by 50.88% and
54.09%, respectively, outperforming VALIANT. Additionally,
POLARIS operates 6x faster than VALIANT, demonstrating
its efficiency in leakage mitigation. Table IV compares area
(µM2), power (mW), and delay (ns) overheads of the un-
masked design (Original) with the respective masked designs
produced by VALIANT and POLARIS. As we can observe,
POLARIS reduces area by 34.61%, power by 40.54%, and
delay by 33.25% compared to VALIANT while also achieving
greater leakage reduction. These results highlight the effective-
ness of POLARIS in mitigating side-channel vulnerabilities
with reduced resource overhead.

D. Explainability: POLARIS Extracted Rules

Using SHAP algorithms, we interpret the decision-making
process for individual samples by examining waterfall plots
in Fig. 3, which illustrate the contribution of each feature
to the prediction of the target variable. Here, x represents
a selected observation, f(x) is the model’s predicted value

for this input, and E[f(x)] denotes the expected value of the
target variable, essentially the average prediction across all
observations. The length of each bar in the plot indicates the
SHAP value (Fig. 3). POLARIS can extract rules for leakage
reduction; these rules are summarized in Table V.

E. Additional Analysis & Discussion

To visualize the effectiveness of POLARIS (see Fig. 4),
we performed TVLA analysis for all gates in the des3 design
before () and after POLARIS masking (). The performance
of POLARIS can be improved by including a wider variety of
designs in the training process, enabling POLARIS to better
comprehend design diversity. POLARIS can also be extended
to support other masking gates (e.g., DOM [5]), providing a
flexible and robust solution for addressing power side-channel
leakage mitigation with improved performance.

VI. CONCLUSION

Power side-channel leakage of sensitive on-chip data is a
major security threat. Existing mitigation frameworks face
scalability issues (limited data, TVLA reliance, slow runtime)
and lack effectiveness. This paper presents the POLARIS, a
DFS framework that can be integrated into commercial ASIC
design flow to generate design-specific rules using XAI for
low-overhead power side-channel mitigation. POLARIS is fast
and utilizes a synthetic data generation scheme to bypass data-
related concerns associated with most AI frameworks. We
observe significant performance gain over state-of-the-art so-
lutions in terms of speed, leakage reduction, and design over-
head. Future works will make the POLARIS framework more
efficient and extend it to other side-channels (EM/timing).

VII. ACKNOWLEDGMENT

This material is supported by the National Science Founda-
tion (NSF) under Grant No. 2350363 and Grant No. 2316399.

REFERENCES

[1] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances
in Cryptology — CRYPTO’ 99. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1999, pp. 388–397.

[2] A. Moradi, “Side-Channel Leakage through Static Power – Should We
Care about in Practice?” Cryptology ePrint Archive, Paper 2014/025,
2014. [Online]. Available: https://eprint.iacr.org/2014/025

[3] G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi, “A testing methodology for
side channel resistance validation,” in NIST Non-Invasive Attack Testing
Workshop, vol. 7, 2011, pp. 115–136.

[4] E. Trichina, “Combinational Logic Design for AES SubByte
Transformation on Masked Data,” Cryptology ePrint Archive, Paper
2003/236, 2003. [Online]. Available: https://eprint.iacr.org/2003/236

[5] H. Gross, S. Mangard, and T. Korak, “Domain-Oriented Masking:
Compact Masked Hardware Implementations with Arbitrary Protection
Order,” in Proceedings of the 2016 ACM Workshop on Theory of
Implementation Security, ser. TIS ’16, New York, NY, USA, 2016, p. 3.

[6] R. Sadhukhan, S. Saha, S. Paria, S. Bhunia, and D. Mukhopadhyay,
“VALIANT: An EDA Flow for Side-Channel Leakage Evaluation and
Tailored Protection,” IEEE Transactions on Computers, vol. 73, no. 2,
pp. 436–450, 2024.

[7] D. Šijačić, J. Balasch, B. Yang et al., “Towards efficient and automated
side-channel evaluations at design time,” J Cryptogr Eng, vol. 10, pp.
305–319, 2020.

[8] P. Slpsk, P. K. Vairam, C. Rebeiro, and V. Kamakoti, “Karna: A Gate-
Sizing based Security Aware EDA Flow for Improved Power Side-
Channel Attack Protection,” in 2019 IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), 2019, pp. 1–8.

[9] T. Moos, F. Wegener, and A. Moradi, “DL-LA: Deep learning
leakage assessment: A modern roadmap for SCA evaluations,”
Cryptology ePrint Archive, Paper 2019/505, 2019. [Online]. Available:
https://eprint.iacr.org/2019/505

[10] M. Nair, R. Sadhukhan, H. Pearce, D. Mukhopadhyay, and R. Karri,
“Netlist whisperer: Ai and nlp fight circuit leakage!” in Proceedings
of the 2023 Workshop on Attacks and Solutions in Hardware
Security, ser. ASHES ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 83–92. [Online]. Available:
https://doi.org/10.1145/3605769.3623989

[11] T. Schneider and A. Moradi, “Leakage Assessment Methodology - a
clear roadmap for side-channel evaluations,” Cryptology ePrint Archive,
Paper 2015/207, 2015. [Online]. Available: https://eprint.iacr.org/2015/
207

[12] O. Reparaz, “Detecting Flawed Masking Schemes with Leakage De-
tection Tests,” in Revised Selected Papers of the 23rd International
Conference on Fast Software Encryption - Volume 9783, ser. FSE 2016.
Berlin, Heidelberg: Springer-Verlag, 2016, p. 204–222.

[13] E. Prouff and M. Rivain, “Masking against side-channel attacks: A
formal security proof,” in Advances in Cryptology – EUROCRYPT 2013.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 142–159.

[14] P. Pathmanathan, S. Chakraborty, X. Liu, Y. Liang, and F. Huang, “Is
poisoning a real threat to llm alignment? maybe more so than you think,”
arXiv preprint arXiv:2406.12091, 2024.

[15] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data poisoning attacks
against federated learning systems,” in Computer security–ESORICs
2020: 25th European symposium on research in computer security,
ESORICs 2020, guildford, UK, September 14–18, 2020, proceedings,
part i 25. Springer, 2020, pp. 480–501.

[16] W. Guo, B. Tondi, and M. Barni, “An overview of backdoor attacks
against deep neural networks and possible defences,” IEEE Open Journal
of Signal Processing, vol. 3, pp. 261–287, 2022.

[17] A. Turner, D. Tsipras, and A. Madry, “Label-consistent backdoor at-
tacks,” arXiv preprint arXiv:1912.02771, 2019.

[18] S. Lundberg, “A unified approach to interpreting model predictions,”
arXiv preprint arXiv:1705.07874, 2017.

[19] P. Chakraborty, J. Cruz, and S. Bhunia, “SAIL: Machine learning guided
structural analysis attack on hardware obfuscation,” in 2018 Asian
Hardware Oriented Security and Trust Symposium (AsianHOST). IEEE,
2018, pp. 56–61.

[20] P. Chakraborty, J. Cruz, R. Almawzan, T. Mahfuz, and S. Bhunia,
“Learning Your Lock: Exploiting Structural Vulnerabilities in Logic
Locking,” IEEE Design & Test, 2024.

[21] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust you?
Explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining, 2016, pp. 1135–1144.

[22] N. Kokhlikyan, V. Miglani, M. Martin, E. Wang, B. Alsallakh,
J. Reynolds, A. Melnikov, N. Kliushkina, C. Araya, S. Yan et al., “Cap-
tum: A unified and generic model interpretability library for pytorch,”
arXiv preprint arXiv:2009.07896, 2020.

[23] J. Hayes, “ISCAS Benchmark Circuits for Logic Synthesis and
Verification,” accessed: 2024-11. [Online]. Available: https://web.eecs.
umich.edu/∼jhayes/iscas.restore/benchmark.html

[24] EPFL-LSI, “The EPFL Combinational Benchmark Suite,” accessed:
2024-11. [Online]. Available: https://www.epfl.ch/labs/lsi/page-102566-
en-html/benchmarks/

[25] MIT-LL, “CEP: Common Evaluation Platform,” accessed: 2024-11.
[Online]. Available: https://github.com/mit-ll/CEP/

[26] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: synthetic minority over-sampling technique,” Journal of arti-
ficial intelligence research, vol. 16, pp. 321–357, 2002.

