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Abstract—Secure coding is a critical yet often overlooked
practice in software development. Despite extensive awareness
efforts, real-world adoption remains inconsistent due to organi-
zational, educational, and technical barriers. This paper provides
a comprehensive review of secure coding practices across major
frameworks and domains, including web development, DevSec-
Ops, and cloud security. It introduces a structured framework
comparison and categorizes threats aligned with the OWASP Top
10. Additionally, we explore the rising role of Large Language
Models (LLMs) in evaluating and recommending secure code,
presenting a reproducible case study across four major vulnera-
bility types. This paper offers practical insights for researchers,
developers, and educators on integrating secure coding into real-
world development processes.

Index Terms—Secure Coding, Web Security, OWASP, NIST,
SSDLC, SQL Injection, XSS, Authentication Security, LLM

I. INTRODUCTION

The widespread adoption of web applications has dra-
matically reshaped digital service delivery across industries.
From finance and e-commerce to healthcare and education,
organizations increasingly rely on web based systems to
streamline operations, deliver services, and engage with users.
However, this growing dependency has made web applications
one of the most targeted vectors for cyberattacks, exposing
sensitive data and critical infrastructure to significant risk. As
a result, embedding robust security mechanisms directly into
the software development lifecycle has become an essential
component of modern software engineering [2], [6].

In recent years, the frequency, scale, and sophistication of
web based attacks have surged. Common vulnerabilities such
as SQL injection (SQLi), cross-site scripting (XSS), broken
authentication, and cross-site request forgery (CSRF) continue
to dominate global threat landscapes [9], [12], [14]. These
flaws are often the result of insecure coding practices, weak
input validation, and a lack of secure software design princi-
ples. Empirical studies have shown that a large percentage
of data breaches can be traced back to such preventable
vulnerabilities [14].

To mitigate these risks, several secure coding frameworks
and best practice guidelines have been proposed. The OWASP
Top 10 identifies the most critical security risks for web appli-
cations and provides actionable strategies to address them [6].

The NIST Cybersecurity Framework offers a structured, high
level approach to managing cybersecurity risk through its
five core functions: identify, protect, detect, respond, and
recover [7]. Similarly, the Secure Software Development Life-
cycle (SSDLC) emphasizes the integration of security controls
at every stage of the development process, from requirements
gathering to deployment and maintenance [2], [4].

Despite the availability of such resources, the consistent
implementation of secure coding practices remains a challenge
in the real world. Many organizations face barriers such as
inadequate developer training, pressure to meet tight deadlines,
and limited security resources. This often results in a prior-
itization of feature delivery over security assurance, leaving
applications vulnerable to exploitation [1], [3], [5].

Furthermore, the rapid evolution of software development
paradigms—such as agile methodologies, DevOps pipelines,
and cloud native environments has introduced new complex-
ities that traditional security practices struggle to keep up
with. These shifts necessitate a more adaptive, automated,
and integrated approach to secure coding, aligning security
measures with modern development workflows.

This paper presents a comprehensive review of secure
coding frameworks and practices in the context of web appli-
cation security. It explores established standards, analyzes key
implementation challenges, and investigates emerging trends
such as AI powered security tools, zero trust architectures, and
security as code in DevSecOps environments. By synthesizing
insights from academic literature, industry reports, and real-
world practices, the paper aims to offer practical guidance
for developers, security engineers, and organizational leaders
striving to enhance software security.

As illustrated in Figure 1, injection flaws and XSS vulner-
abilities continue to be among the most commonly reported
security issues in modern web applications.

II. LITERATURE REVIEW

Secure coding has long been recognized as a critical dis-
cipline in the field of cybersecurity. Numerous studies have
examined the causes of software vulnerabilities and proposed
various frameworks, strategies, and methodologies to prevent
them. This section presents a structured overview of the
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Fig. 1. Prevalence of Common Web Vulnerabilities (adapted from OWASP
Top 10 and industry surveys).

key literature, organized around core contributions: proactive
security integration, vulnerability identification and mitigation,
automation, and emerging security technologies.

A. Proactive Integration of Security in the Development Life-
cycle

Early efforts in secure software design emphasized the
importance of integrating security from the initial stages of
development. Shostack [17] introduced threat modeling as a
proactive methodology, urging developers to assess risks dur-
ing the design phase rather than waiting until deployment. His
approach underscored that identifying and mitigating threats
early reduces the cost and complexity of security interventions.

Similarly, McGraw [2] advocated for building security into
the software lifecycle by adopting risk based security assess-
ments, secure architecture principles, and developer education.
He positioned security not as an add on but as a foundational
element in software design. Lipner [18] demonstrated the
practical implementation of these ideas through Microsoft’s
Security Development Lifecycle (SDL), showing that introduc-
ing security checkpoints throughout development can reduce
vulnerabilities and enhance software reliability.

B. Vulnerability Patterns and Defensive Coding Practices

A Complementary body of research focused on understand-
ing how specific coding flaws lead to exploitation. Howard
and LeBlanc [1] analyzed real-world case studies of security
failures and proposed coding strategies to avoid common
mistakes. They emphasized consistency in applying secure
coding principles across teams and projects.

Viega and McGraw [4] further highlighted typical software
vulnerabilities such as poor input validation, weak error han-
dling, and insecure authentication. They promoted defensive
programming, encouraging developers to assume that any
input or dependency might be malicious and to write code
accordingly.

Whittaker and Thompson [19] contributed by mapping
attack patterns to software defects. Their work offered insight
into how attackers exploit insecure code and how developers
can anticipate such attacks during development. This mindset

shift from reactive defense to attacker aware development laid
the groundwork for more resilient applications.

C. Security Testing and Automation

Another significant area of research examines tools and
techniques for identifying security flaws during development
and testing. Jones and Rastogi [20] compared static and
dynamic analysis tools, showing that both approaches have
strengths and limitations. Static analysis is valuable for early
code level checks, while dynamic analysis is critical for
detecting runtime vulnerabilities. The authors recommended
a hybrid approach to maximize security coverage.

Sharma et al. [21] expanded on this by exploring AI
powered vulnerability scanners that automate threat detection.
Their study found that machine learning based tools improve
scanning speed and efficiency, especially in large codebases.
However, they also noted the risk of false positives, reinforcing
the need for expert validation.

D. Evaluating Frameworks and Emerging Technologies

Rajput et al. [22] evaluated several secure coding frame-
works, including OWASP and NIST, across diverse software
development environments. Their findings revealed that while
these frameworks offer robust guidelines, adoption is often
hindered by limited expertise, resource constraints, and orga-
nizational resistance.

To address security challenges in decentralized and
distributed systems, Ghobadi and Tavana [23] proposed
blockchain based authentication mechanisms. They argued that
decentralized identity management can reduce the risks of
credential theft and unauthorized access in web applications.

E. Summary of Literature Insights

Taken together, the literature shows that secure coding
is a multi dimensional field that evolves in response to
both technical and organizational factors. Effective approaches
combine early integration of security practices [2], [17], use of
structured frameworks [6], [7], [22], automation tools [21], and
support for emerging technologies such as blockchain [23].
While there is no one size fits all solution, the convergence of
best practices from software engineering, cybersecurity, and AI
research continues to shape the future of secure development.

To illustrate how secure coding concepts and frameworks
have evolved over time, Figure 2 presents a timeline of key
milestones. These include foundational works such as Mc-
Graw’s secure development lifecycle, Shostack’s introduction
of threat modeling, and the iterative updates to the OWASP
Top 10, as well as the formalization of NIST’s cybersecurity
framework and more recent AI driven developments.

Secure coding remains central to preventing critical threats
like SQL injection, XSS, and broken authentication [2], [4],
[18]. However, the literature also makes it clear that technical
strategies alone are insufficient developer training, organiza-
tional buy in, and continuous adaptation to new risks are
equally vital for lasting impact.



Fig. 2. Timeline of Secure Coding Frameworks and Milestones.

III. REMARKS ON LITERATURE REVIEW

The literature on secure coding offers a wealth of insights
into foundational practices, tools, and frameworks. However,
several key challenges and research gaps emerge that require
further investigation to bridge the divide between theory and
practice. This section highlights three major observations
derived from the reviewed works: challenges in implementa-
tion, gaps in research coverage, and limitations of automated
security testing.

A. Challenges in the Practical Adoption of Secure Coding

Despite the presence of structured guidelines and mature
frameworks, the consistent and effective implementation of
secure coding practices remains elusive in many real-world
settings. Rajput et al. [22] identified several obstacles that
hinder adoption, including insufficient developer training, lack
of management commitment, and competing business priori-
ties. These organizational factors often result in security being
deprioritized in favor of faster delivery timelines.

Whittaker and Thompson [19] further emphasized that
many security failures are not purely technical but arise
from developers’ limited understanding of attacker behaviors
and threat vectors. Without adequate training and attacker
centric thinking, even well intentioned teams may overlook
exploitable flaws, leading to persistent vulnerabilities in de-
ployed software.

B. Research Gaps in Secure Coding Education and Integration

While numerous studies propose technical solutions for im-
proving code security, far fewer address the systemic barriers
to their adoption particularly in educational and organizational
contexts. Ghobadi and Tavana [23] observed that secure coding
principles are not consistently embedded in software engi-
neering curricula, leaving new graduates unprepared to handle
security responsibilities in practice.

Moreover, Shostack [17] highlighted the lack of alignment
between threat modeling approaches and modern agile or De-
vOps workflows. These fast paced development environments
often omit early stage security planning due to time constraints

and tooling complexity, which limits the effectiveness of
traditional models like SDL and SSDLC.

C. Limitations of Automated Testing and AI based Security
Tools

With the increasing complexity of software systems, se-
curity testing has evolved to incorporate automation and
artificial intelligence. Sharma et al. [21] demonstrated that
AI powered static and dynamic analysis tools can identify
common vulnerabilities more quickly and comprehensively
than manual methods, making them valuable components of
modern development pipelines.

However, these tools are not without limitations. Automated
scanners frequently generate false positives, lack contextual
understanding, and may struggle with complex, logic based
vulnerabilities. As a result, expert oversight is still essential to
validate findings and guide remediation efforts. Over reliance
on automation without human review can lead to misplaced
confidence and overlooked risks.

D. Summary of Literature Remarks

Taken together, these observations highlight a clear discon-
nect between secure coding theory and its operationalization
in practice. Technical tools and frameworks exist, but their
real-world impact is often constrained by educational, cultural,
and organizational factors. The literature suggests that future
research should not only focus on advancing technical solu-
tions but also prioritize improved training, better integration
with agile methodologies, and hybrid approaches that balance
automation with human expertise.

IV. COMPARISON OF SECURE CODING
FRAMEWORKS

Several well established frameworks have emerged to guide
secure coding efforts and improve the security posture of
software systems. This section compares three of the most
influential models: the OWASP Top 10, the NIST Cybersecu-
rity Framework (CSF), and the Secure Software Development
Lifecycle (SSDLC). Each serves a distinct role in promoting
secure development, with unique strengths and limitations.

A. OWASP Top 10 and Secure Coding

The OWASP Top 10 is a widely recognized industry bench-
mark that outlines the most critical security risks to web
applications [6]. It covers issues such as injection attacks, bro-
ken access control, and misconfigurations. The list is updated
regularly most recently in 2021 to reflect emerging threats and
trends, and it is mapped to Common Weakness Enumerations
(CWEs), providing actionable guidance for developers.

Howard and LeBlanc emphasize that the OWASP Top 10 is
particularly effective in encouraging secure input handling and
validation, which helps mitigate frequent attack vectors [1].
Similarly, McGraw supports OWASP’s emphasis on incorpo-
rating security earlier in the development process, reinforcing
its role as a proactive risk reduction strategy [2].

One key strength of the OWASP Top 10 lies in its simplicity
and accessibility it translates complex security concerns into



ten high impact categories that are easily understandable even
for non security professionals. However, its limitations are
equally noteworthy. The Top 10 is focused exclusively on web
application risks and lacks depth in areas such as infrastruc-
ture security or CMS specific threats [29]. Additionally, its
high level nature may leave organizations without sufficient
guidance for implementation.

B. NIST Cybersecurity Framework

The NIST CSF offers a broad, adaptable structure for man-
aging cybersecurity risk across organizational and technical
domains [7]. It defines six core functions govern, identify, pro-
tect, detect, respond, and recover that serve as a comprehensive
roadmap for integrating security into both strategic planning
and operational workflows. Seacord highlights that adopting
this framework improves alignment between development and
security teams while promoting robust software engineering
practices [3].

The flexibility of the NIST framework is one of its greatest
strengths. It can be customized to fit an organization’s size,
industry, and maturity level, making it suitable for both small
businesses and large enterprises [30]. Moreover, its adoption
supports regulatory compliance and improves stakeholder con-
fidence.

However, the framework’s high level of abstraction may
pose challenges. It does not prescribe specific technical con-
trols, which can hinder implementation in organizations lack-
ing in house cybersecurity expertise [31]. This often leads to
inconsistent adoption unless supported by strong governance
and training programs.

Figure 3 provides a visual overview of the NIST CSF’s core
functions.

Fig. 3. NIST Cybersecurity Framework.

C. Secure Software Development Lifecycle (SSDLC)

The SSDLC emphasizes integrating security activities
throughout all phases of software development from require-
ments gathering and design to implementation, testing, and
maintenance. By embedding security into each phase, the

SSDLC model promotes early identification and mitigation
of vulnerabilities, leading to more secure and reliable soft-
ware [4].

Viega and McGraw [4] and Long et al. [5] stress that
this early integration significantly reduces downstream security
costs and improves code quality. The SSDLC is particularly
beneficial in reducing overlooked edge cases, ensuring more
thorough validation and testing, and building a security con-
scious development culture [32].

Despite its strengths, SSDLC introduces additional com-
plexity and demands greater coordination across teams. In
agile and fast paced development environments, integrating
security in every iteration can be seen as time consuming,
which sometimes results in resistance from developers or
project managers.

Figure 4 illustrates how security tasks are embedded within
each stage of the SSDLC process.

Fig. 4. Secure Software Development Life Cycle (SSDLC).

D. Comparative Analysis
Each of the three frameworks plays a vital role in en-

hancing software security, but they differ in scope, focus,
and implementation difficulty. Table I summarizes their key
characteristics, offering a side by side comparison of their
purposes, advantages, and practical limitations.

V. CHALLENGES IN IMPLEMENTING SECURE
CODING PRACTICES

Although secure coding frameworks and tools are increas-
ingly available, organizations still face numerous barriers
to consistent adoption. These challenges span organizational
constraints, educational gaps, and technical limitations. This
section categorizes the core difficulties into three key dimen-
sions.

A. Organizational Challenges
1) Resource and Budget Constraints: Small to mid sized

enterprises often operate under limited budgets and with min-
imal personnel, making it difficult to prioritize secure coding
practices. These constraints hinder investment in advanced
security tools, code review processes, or developer training [9].
Howard and LeBlanc [1] note that organizations frequently
underestimate the long term costs of insecure development,
failing to allocate adequate resources for prevention strategies.

2) Limited Management Support: The successful implemen-
tation of secure development policies often requires buy in
from senior leadership. However, decision makers frequently
prioritize speed, feature delivery, and cost efficiency over long
term security [24]. This strategic misalignment causes security
to be treated as a secondary concern, leading developers to
deprioritize security in their day to day workflows.



TABLE I
COMPARISON OF SECURE CODING FRAMEWORKS.

Framework Purpose, Strengths, and Limitations
OWASP Top 10 Purpose: Identify and prioritize top web application vulnerabilities.

Strengths: Easy to understand, regularly updated, widely adopted in training.
Limitations: High level; limited guidance for implementation and infrastructure threats.

NIST CSF Purpose: Provide a flexible framework for managing cybersecurity risk.
Strengths: Broad applicability; supports governance, compliance, and scalability.
Limitations: Too abstract for direct use by developers; requires security expertise.

SSDLC Purpose: Integrate security into each stage of software development.
Strengths: Proactive, improves code robustness, identifies flaws early.
Limitations: Resource intensive; may slow development and be resisted in agile environments.

3) “Speed to Market” Culture: In highly competitive mar-
kets, the pressure to rapidly release software often supersedes
the focus on building secure systems [17]. This urgency fosters
a reactive rather than proactive approach to security, where
controls are added post deployment if at all. Such practices
increase the likelihood of releasing software with untested
vulnerabilities [6], [17].

B. Educational and Knowledge Gaps

1) Inadequate Formal Training: A major barrier to secure
software development is the lack of formal education in secu-
rity principles among developers. Many computer science and
software engineering programs continue to overlook secure
coding as a core component of the curriculum [3], [10]. As
McGraw argues, developers without foundational knowledge
in secure development may inadvertently introduce exploitable
flaws [2].

2) Lack of Developer Awareness: Even when resources are
available, many developers remain unaware of best practices
or credible training programs. The Open Source Security
Foundation (OpenSSF) reports that 53% of developers have
never received training in secure coding practices [25]. This
is especially common among self taught developers, who may
not have been exposed to security standards in a structured
way.

3) Limited On the Job Training: Beyond initial education,
there is a lack of continuous professional development in
application security. Many organizations do not offer routine
security training or allocate time for developers to stay in-
formed about evolving threats. According to recent surveys,
over half of developers attribute their inability to build secure
applications to insufficient in house training programs.

C. Technical Challenges

1) Legacy Systems and Technical Debt: Large organizations
often maintain legacy systems with outdated architectures and
codebases that were not designed with modern security in
mind [26]. Modifying such systems to align with current
best practices is resource intensive and risky, especially when
existing functionality is poorly documented. This technical
debt discourages developers from making necessary security
updates, leaving the systems exposed.

2) Inadequate Testing and Scanning: Comprehensive secu-
rity testing is frequently overlooked under time constraints.
Dynamic analysis, penetration testing, and manual code re-
views are time consuming and are often omitted to meet
delivery deadlines. In a 2024 survey by Contrast Security,
53% of organizations admitted to skipping security scans to
expedite releases [27].

3) Architectural Complexity: Modern applications are com-
posed of interconnected microservices, third party APIs, cloud
native resources, and open source dependencies. This hetero-
geneous architecture significantly increases the attack surface
and makes it difficult to enforce consistent security practices
across all components [26]. Managing security across such di-
verse and distributed environments requires advanced tooling,
centralized policies, and cross team coordination all of which
are often lacking.

D. Summary of Challenges
In summary, the challenges in implementing secure coding

are multifaceted. Organizational inertia, gaps in developer
knowledge, and the inherent complexity of modern software
systems all contribute to inconsistent adoption of best prac-
tices. Addressing these barriers requires a holistic strategy that
combines education, tooling, process redesign, and executive
level commitment.

To better visualize the prevalence and grouping of imple-
mentation barriers, Figure 5 presents a summary of root causes
across organizational, educational, and technical domains.

Fig. 5. Root Causes of Challenges in Secure Coding, grouped by Organiza-
tional, Educational, and Technical categories.



VI. EMERGING TRENDS IN SECURE CODING

As cyber threats grow more sophisticated and development
environments become increasingly agile and distributed, new
trends in secure coding are emerging to bridge the gap between
traditional practices and modern software demands. This sec-
tion explores three of the most influential developments: AI
driven security automation, the zero trust security model, and
the rise of Security as Code in DevSecOps.

A. AI Driven Security Automation

Artificial Intelligence (AI) is playing an increasingly vital
role in strengthening software security by enabling automation
throughout the development lifecycle. AI powered tools can
scan codebases for vulnerabilities, detect anomalous patterns,
and even suggest or implement patches in near real time [12].
By automating routine security checks, AI reduces the manual
burden on developers and enhances the speed and scale of
vulnerability discovery.

Sutton et al. [15] note that AI significantly improves the
efficiency of testing workflows and broadens coverage, making
it especially valuable in large, complex systems. However,
McGraw [2] cautions against over reliance on automated tools.
AI systems may generate false positives or misinterpret context
sensitive logic, necessitating human review to ensure accuracy
and prevent the overlooking of subtle vulnerabilities.

Although promising, AI based security is still maturing.
Successful adoption requires continuous validation, human
oversight of high risk decisions, and regular model updates
to align with evolving threat landscapes.

B. Zero-Trust Security Model

The zero-trust model operates on the principle that no
user or system whether inside or outside an organization’s
perimeter should be automatically trusted. Every access re-
quest must be authenticated, authorized, and verified before
granting permission [7]. This philosophy is well suited to the
modern development landscape, where applications operate in
distributed, cloud native environments that manage sensitive
user data.

Shostack [17] emphasizes that combining secure coding
with zero-trust principles such as role based access control,
network segmentation, and continuous verification can signif-
icantly limit an attacker’s lateral movement post compromise.
As a result, zero-trust architectures create a more resilient and
tamper resistant system.

Despite its advantages, implementing zero-trust introduces
operational complexity. Continuous validation mechanisms,
like expiring tokens and strict authentication policies, can
impact application flow and performance [33]. Moreover, ef-
fective adoption requires skilled personnel and well integrated
tooling, which may be lacking in many development teams.

C. Security-as-Code (SaC) in DevSecOps

Security-as-Code (SaC) refers to embedding security poli-
cies, validation rules, and configurations directly into source

code and infrastructure-as-code artifacts. This practice is a cor-
nerstone of DevSecOps, where development, operations, and
security teams collaborate to integrate security throughout the
continuous integration and deployment (CI/CD) pipeline [4],
[5].

By codifying security controls, organizations can enforce
policies consistently during every build, test, and deployment
cycle. As discussed in our previous work [44], remote agile
tools significantly influence communication workflows, which
are tightly coupled with the adoption and integration of secure
development practices. SaC enables real time enforcement of
access policies, vulnerability scans, and compliance checks,
helping to catch and remediate issues early in the lifecy-
cle [34].

Howard and LeBlanc [1] highlight that early integration
of security reduces the cost of post release fixes and fosters
a culture of secure development. SaC implementations often
include deployment restrictions, role based access control
definitions, and automated security testing frameworks [34].

D. Summary of Trends

Together, these emerging trends signal a shift from reactive
security practices toward proactive, embedded, and scalable
approaches. AI-based automation accelerates detection, zero-
trust redefines access management, and Security-as-Code oper-
ationalizes security within CI/CD workflows. When combined,
these paradigms offer a robust foundation for securing modern
software applications provided they are implemented with
awareness of their limitations and a commitment to continuous
improvement.

VII. EVALUATING LLMS FOR SECURE CODE REVIEW: A
CASE STUDY

Large Language Models (LLMs) have found applications
across diverse domains such as software development [41],
[42], healthcare [39], [40], and education [43]. In software
engineering, they are increasingly being explored for tasks like
code generation [35], [36], documentation, and review. In
the context of secure coding, these models may also offer
potential as lightweight vulnerability detectors during early
development stages [37], [38]. To assess this capability, we
conducted a case study to evaluate how effectively an LLM
can identify common security issues in code.

A. Methodology

We selected three intentionally vulnerable code snippets
in commonly used web development languages (Python and
JavaScript), each representing a typical flaw: SQL injection
(SQLi), cross-site scripting (XSS), and broken authentication.
The prompts were submitted to publicly accessible interface
of GPT (ChatGPT with GPT-4), asking:

”Analyze this code and describe any security vulnerabili-
ties.”

The LLM’s responses were analyzed for correctness, depth,
and completeness.



B. Results

Table II summarizes the results of the LLM based vulner-
ability analysis. As shown, the model was able to accurately
identify and explain a classic SQL injection flaw in Python
code. For the XSS example in JavaScript, the LLM correctly
flagged the issue but provided only a partial explanation,
lacking detail on encoding or proper output sanitization. In
contrast, the model failed to recognize a broken authentication
scenario, highlighting current limitations in detecting logic
based vulnerabilities that require deeper contextual under-
standing.

C. Discussion

The results show that LLMs can reliably detect certain
syntactic vulnerabilities, such as unsanitized SQL queries and
basic XSS vectors. However, more nuanced and contextual
issues like broken authentication logic were not accurately
identified. The LLM often provided generic suggestions with-
out fully understanding the logic or flow of the code. These
findings highlight both the strengths and current limitations of
LLMs in the secure coding domain.

While promising as support tools for early review, LLMs
should not be relied upon as primary security evaluators.
They are best viewed as complementary aids that may assist
developers, particularly those with limited security experience,
in identifying obvious flaws before formal testing or peer
review.

D. Comparison with Traditional Security Tools

To contextualize the strengths and limitations of large
language models in secure code analysis, Table III presents
a structured comparison between LLMs and traditional static
and dynamic analysis tools. The comparison covers setup com-
plexity, detection capabilities, explainability, and integration
potential in development workflows.

VIII. FUTURE RESEARCH DIRECTIONS

While secure coding practices have significantly evolved,
the dynamic nature of software development, evolving threat
landscapes, and the rise of distributed systems continue to
expose new vulnerabilities. As such, there is a pressing need
for further research to address the limitations of current
frameworks and to enhance their applicability in modern
environments. This section outlines three primary areas for
future exploration: education, automation, and adaptation to
emerging technologies.

A. Enhancing Secure Coding Education

A fundamental yet underexplored area is the improvement
of secure coding education at both academic and professional
levels. Many graduates enter the workforce with limited expo-
sure to secure development concepts, increasing the likelihood
of introducing vulnerabilities early in the software lifecy-
cle [3], [10]. McGraw [2] emphasizes that security must be
viewed as a design principle rather than a post development
fix, advocating for its inclusion from the first line of code.

Future research should explore the development of standard-
ized secure coding curricula for undergraduate and graduate
programs, possibly aligned with industry frameworks such
as OWASP and NIST. Additionally, empirical studies are
needed to evaluate the effectiveness of hands on training
environments, such as cyber ranges and CTF style exercises, in
promoting long term security awareness among students and
professionals.

B. Developing Advanced Security Automation Tools
Although current automated tools assist in identifying com-

mon vulnerabilities, they are often limited by high false
positive rates and an inability to interpret contextual logic.
Enhancing these tools with more sophisticated machine learn-
ing and natural language processing capabilities could improve
their precision, especially for detecting semantic flaws or
business logic errors [12], [15].

Sutton et al. [15] highlight that fuzzing and automated
scanning can uncover obscure vulnerabilities, but expert over-
sight remains essential to interpret results accurately. Future
research could focus on developing explainable AI models
in security automation tools that not only detect flaws but
also provide human understandable justifications. Moreover,
integrating such models seamlessly into CI/CD pipelines could
facilitate real time vulnerability detection during rapid deploy-
ment cycles.

C. Adapting Secure Coding Practices for Emerging Technolo-
gies

The rapid adoption of modern architectures such as mi-
croservices, serverless computing, and cloud native platforms
has introduced novel security challenges. Traditional secure
coding frameworks often fall short when applied to highly
dynamic and decentralized environments [8]. These plat-
forms introduce complexities related to ephemeral services,
infrastructure-as-code, and third party integrations, which re-
quire more adaptive security methodologies.

Shostack [17] and others advocate for deeper integration
of threat modeling and security automation tailored to cloud
environments. Future work should investigate how to extend
the SSDLC model to accommodate DevSecOps workflows,
leveraging Security-as-Code principles to ensure continuous
compliance and enforcement. Furthermore, researchers should
explore how secure coding can be embedded at the infras-
tructure layer, particularly in container orchestration platforms
such as Kubernetes.

D. Toward an Evolving Research Agenda
In conclusion, future research in secure coding must bal-

ance foundational education, intelligent automation, and ar-
chitectural adaptability. Addressing these gaps will not only
improve the security of web applications but also ensure that
secure coding evolves alongside modern software engineering
practices. A collaborative effort between academia, industry,
and open-source communities will be essential to advance
practical, scalable, and effective security solutions for next
generation software systems.



TABLE II
LLM DETECTION OF CODE VULNERABILITIES.

Vulnerability Type Language LLM Detected? Explanation Accurate?
SQL Injection Python Yes Yes
Cross-Site Scripting (XSS) JavaScript Yes Partially
Broken Authentication JavaScript No N/A

TABLE III
COMPARISON OF LLMS AND TRADITIONAL STATIC/DYNAMIC ANALYSIS

TOOLS

Feature LLMs (e.g., ChatGPT) Traditional Tools
Setup Time None (zero setup) Requires installation and

configuration
Input Format Natural language or code

snippets
Source code, binaries, or
compiled artifacts

Output Type Human-readable explanation Structured reports with warn-
ings/errors

Context Understanding Partial, limited to prompt
scope

Strong syntactic analysis,
limited semantic depth

Detection of Logic Flaws Limited Possible with dynamic tools,
but not guaranteed

False Positive Rate Low to Medium Medium to High (especially
in static tools)

CI/CD Integration Manual or external scripting
required

Built-in support in modern
DevSecOps pipelines

Learning Curve Low (conversational inter-
face)

Medium to High, depending
on tool complexity

Explainability of Results High (natural language rea-
soning)

Often limited to error codes
or technical traces

IX. CONCLUSION

Secure coding remains a foundational discipline in protect-
ing web applications from increasingly sophisticated cyber
threats. This paper provided a comprehensive review of key
secure coding frameworks including the OWASP Top 10,
the NIST Cybersecurity Framework, and the Secure Software
Development Lifecycle (SSDLC) all of which offer structured
methodologies for reducing software vulnerabilities [4], [6],
[7]. Despite their widespread availability, consistent adoption
across organizations continues to face obstacles such as in-
adequate training, limited resources, and the rapid pace of
software delivery [1], [3], [9].

To address these challenges, emerging trends such as AI-
driven vulnerability detection, zero-trust security models, and
Security-as-Code practices within DevSecOps pipelines of-
fer promising directions [5], [12], [17]. However, these ap-
proaches must be further refined and operationalized to ensure
scalability and effectiveness in production environments.

Future research should focus on embedding secure coding
principles into formal education, enhancing the intelligence
and interpretability of automated security tools, and evolving
traditional models to align with modern cloud native and
distributed systems [8], [10], [15]. Bridging these gaps will
be essential for developing software systems that are not only
functional and performant but also inherently secure by design.

By synthesizing foundational frameworks, current imple-
mentation challenges, and cutting edge trends, this work
contributes a holistic perspective to the secure coding land-
scape offering valuable guidance to researchers, educators, and
practitioners seeking to advance the state of secure software
development.

• Secure coding remains foundational, yet under-adopted.
• LLMs provide helpful early feedback but cannot replace

expert review.
• Embedding secure practices in education, automation,

and cloud-native workflows is critical for future re-
silience.
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APPENDIX

APPENDIX: LLM PROMPTS AND RESPONSES

This appendix presents the full prompts and LLM-generated
responses used in the case study described in Section VI. Each
prompt was submitted to ChatGPT (GPT-4), and the model’s
output is shown below without modification.

Case 1: SQL Injection

Prompt

def login():
username = request.args.get("user")
password = request.args.get("pass")
query = "SELECT * FROM users WHERE name =

’" + username + "’ AND pwd = ’" +
password + "’"

cursor.execute(query)

Listing 1. Prompt for SQL Injection

LLM Response

This code is vulnerable to SQL Injection
attacks.

SQL Injection is a code injection technique
that attackers can use to insert malicious
SQL statements into input fields for

execution. This can allow the attacker to
view data that they are not authorized to
access, manipulate or delete data, or even
execute administration operations on the

database.

In this code, the username and password are
directly concatenated into the SQL query
without any form of sanitization or
parameterization. This means that an
attacker could provide a username or
password that contains SQL code, which
would then be executed by the database.

For example, an attacker could use the
username ‘admin’ --‘ . This would cause
the SQL query to become ‘SELECT * FROM
users WHERE name = ’admin’ --’ AND pwd = ’
’‘, effectively commenting out the
password check and allowing the attacker
to login as the admin user without knowing
the password.

To mitigate this vulnerability, you should use
parameterized queries or prepared

statements, which can ensure that user
input is always treated as literal data
and not executable code. Here is an
example of how you could modify the code
to use parameterized queries in Python
with a SQLite database:

def login():
username = request.args.get("user")
password = request.args.get("pass")
query = "SELECT * FROM users WHERE name =

? AND pwd = ?"

cursor.execute(query, (username, password)
)

In this version of the code, the ‘?‘
characters are placeholders that the ‘
execute‘ method replaces with the ‘
username‘ and ‘password‘ variables in a
safe manner that prevents SQL Injection.

Listing 2. LLM Response for SQL Injection

Case 2: Cross-Site Scripting (XSS)

Prompt

<!DOCTYPE html>
<html>
<body>

<form method="GET">
<input name="msg" />
<button type="submit">Submit</button>

</form>
<p>Your message: <script>document.write(

location.search.split(’=’)[1])</script
></p>

</body>
</html>

Listing 3. Prompt for XSS

LLM Response

The code above is a simple HTML form that
takes a user’s input and displays it on
the page. However, it has a significant
security vulnerability related to Cross-
Site Scripting (XSS).

The vulnerability lies in the line where it
writes the user’s input directly to the
document without any sanitization or
encoding:

<script>document.write(location.search.split
(’=’)[1])</script>

This line takes the value from the URL
parameter ’msg’ and writes it directly to
the page. If a user enters a string that
includes JavaScript code, that code will
be executed when the page loads. This is a
classic example of a reflected XSS

vulnerability.

For example, an attacker could craft a URL
like http://example.com/?msg=<script>
malicious_code_here</script>. If someone
visits this URL, the malicious JavaScript
code will be executed.

To fix this vulnerability, the application
should properly encode or sanitize user
inputs before displaying them on the page.
This can be done using various methods

depending on the programming language and
framework used. For JavaScript, one could
use the ‘textContent‘ property or ‘
innerText‘ property instead of ‘document.



write()‘, as these properties do not
interpret the input as HTML or JavaScript
code.

Listing 4. LLM Response for XSS

Case 3: Broken Authentication

Prompt

def login():
username = request.form[’username’]
user = db.find_user(username)
if user:

session[’logged_in’] = True
return "Welcome!"

else:
return "User not found"

Listing 5. Prompt for Broken Authentication

LLM Response

The code provided is a simple login function
that checks if a user exists in the
database and then logs them in if they do.
However, there are several security

vulnerabilities present:

1. No Password Verification: The function does
not check for a password. It only checks

if the username exists in the database.
Anyone who knows a valid username can log
in.

2. No Input Sanitization: The function does
not sanitize the input from the user. This
leaves the application vulnerable to SQL

Injection attacks. An attacker could
potentially input malicious SQL code as
the username to manipulate the database.

3. No Encryption: The function does not
encrypt the username before storing it in
the session. This could potentially expose
sensitive user information.

4. No Brute Force Protection: The function
does not limit the number of login
attempts. This makes it vulnerable to
brute force attacks, where an attacker
tries many different usernames until they
find one that works.

5. No Error Handling: The function does not
handle any errors that may occur during
the login process. This could potentially
expose sensitive information about the
system or the database.

6. No Use of HTTPS: If this function is used
in a web application that does not use
HTTPS, the username could be intercepted
by an attacker.

7. Session Fixation: The function does not
regenerate the session ID after successful
login. This makes it vulnerable to

session fixation attacks, where an
attacker sets a victim’s session ID before
they log in.

8. No Logging: The function does not log any
events. This makes it difficult to detect
and respond to security incidents.

Listing 6. LLM Response for Broken Authentication
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