
1

Understanding Concept Drift with Deprecated
Permissions in Android Malware Detection

Ahmed Sabbah , Radi Jarrar , Samer Zein , David Mohaisen , Senior Member, IEEE

Abstract—Permission analysis is a widely used method for Android malware detection. It involves examining the permissions
requested by an application to access sensitive data or perform potentially malicious actions. In recent years, various machine learning
(ML) algorithms have been applied to Android malware detection using permission-based features and feature selection techniques,
often achieving high accuracy. However, these studies have largely overlooked important factors such as protection levels and the
deprecation or restriction of permissions due to updates in the Android OS—factors that can contribute to concept drift.
In this study, we investigate the impact of deprecated and restricted permissions on the performance of machine learning models. A
large dataset containing 166 permissions was used, encompassing more than 70,000 malware and benign applications. Various
machine learning and deep learning algorithms were employed as classifiers, along with different concept drift detection strategies.
The results suggest that Android permissions are highly effective features for malware detection, with the exclusion of deprecated and
restricted permissions having only a marginal impact on model performance. In some cases, such as with CNN, accuracy improved.
Excluding these permissions also enhanced the detection of concept drift using a year-to-year analysis strategy. Dataset balancing
further improved model performance, reduced low-accuracy instances, and enhanced concept drift detection via the
Kolmogorov–Smirnov test.

Index Terms—Android Malware; Machine Learning; Malware Detection, Concept Drift

✦

1 INTRODUCTION

Mobile devices are an essential tool in everyday life, pro-
viding users with access to a wide range of applications for
communication, banking, entertainment, and productivity.
Two operating systems dominate the mobile market, Google
Android and Apple iOS, with Android taking 71% of the
market share by 2024 [1]. Android employs a permission-
based security model that grants applications specific privi-
leges to regulate access to sensitive resources. These permis-
sions control access to hardware components (e.g., camera,
microphone, etc.), user data (e.g., contacts, messages, loca-
tion), and system functionalities (e.g., network access, stor-
age, background processes) [2]. Android permissions aim
to balance security and usability, ensuring that applications
can only access resources explicitly allowed by the user.

While the permission system is designed to protect user
privacy and device security, permissions can be misused,
intentionally by adversaries [3] or unintentionally by novice
developers who may request permissions without fully un-
derstanding their implications [4]. This is clear in the finding
of more 26% of more than 83k applications examined that
contained at least one bad practice of custom permission
issue [5]. However, while it is important to investigate
the bad practices of using permissions, this study focuses
on intentional misuse by attackers by requesting excessive
permissions to access user data or control device function-
ality. For example, some malware applications masquerade

• Ahmed Sabbah, Radi Jarrar, and Samer Zein are with the Depart-
ment of Computer Science, University of Birzeit, Palestine. E-mail:
asabah@birzeit.edu, rjarrar@birzeit.edu, szain@birzeit.edu.

• David Mohaisen is with the Department of Computer Science, University
of Central Florida, Orlando, FL 32816 USA. E-mail: mohaisen@ucf.edu
(Corresponding author).

themselves as legitimate apps, such as flashlights or weather
apps, but request permission to read SMS messages, access
call logs, or track user locations.

Due to the risks associated with permissions and their
role in granting access to user and system resources, per-
missions are a target for adversaries and third-party apps,
enabling them to control devices and access sensitive data.
This, in turn, allows defenders to extract permission-based
features for malware detection with machine learning algo-
rithms [6], [7], [8], [9]. Many studies have recognized the
importance of permissions and have focused on improving
the performance of detection models that use them [6],
[10], often through feature selection and optimization [7],
[8], [9]. Other research has explored combining permissions
with additional features, such as APIs, to enhance perfor-
mance [11], [12], yielding strong results. However, most
of these studies assume that permissions and their usage
patterns remain static over time, failing to consider how
changes in permissions impact detection.

Concept drift is closely associated with machine learning
models, where performance degrades over time due to
changes in the underlying data distribution. Researchers
have investigated concept drift from various perspectives.
For instance, Hoens et al. reviewed methods for detecting
concept drift and highlighted the challenge of class imbal-
ance in data streams [13]. Ditzler et al. examined existing
methods for detecting concept drift, considering both active
and passive approaches [14]. Webb et al. introduced formal
definitions of concept drift and proposed a taxonomy that
includes various types, such as drift duration, drift tran-
sition, and drift recurrence [15]. Krawczyk et al. surveyed
ensemble learning methods for data stream classification
and regression tasks in the context of concept drift [16].
Moreover, some studies have focused on adaptation meth-

ar
X

iv
:2

50
7.

22
23

1v
1

 [
cs

.C
R

]
 2

9
Ju

l 2
02

5

https://orcid.org/0000-0001-5034-8038
https://orcid.org/0000-0003-2692-8096
https://orcid.org/0000-0003-3720-4384
https://orcid.org/0000-0003-3227-2505
https://arxiv.org/abs/2507.22231v1

2

ods in machine learning to address concept drift [17].
In the context of Android malware detection, concept

drift has been gaining momentum, due to ML widespread
adoption in the defense-attack arms race. Ensemble classi-
fiers with sliding windows and feature selection are used to
adaptively detect malware in streaming data [18]. Retrain-
ing methods used for concept drift detection and sampling
methods to maintain detector performance in changing en-
vironments [19]. Self-training with pseudo-labels is adapted
to handle shifting data distributions, mitigating concept
drift, and reducing annotation efforts when combined with
active learning [20]. Chow et al. proposed a framework for
analyzing dataset drift exploring root causes [21].

Despite these findings, concept drift studies are often
limited to the natural evolution of usage patterns while
ignoring an important aspect of evolution: deprecation.
Since permissions are continuously added, deprecated, or
restricted, models trained on outdated permissions may be-
come ineffective, leading to a decline in detection accuracy.
Malware detection models trained on older data may strug-
gle to accurately classify newer malware due to changes in
permission usage patterns. This issue has been largely ne-
glected in existing research, despite its critical implications
for the long-term effectiveness of malware detection.

In this work, we investigate the impact of Android
permission evolution on malware detection by analyzing
how deprecated and restricted permissions contribute to
concept drift. We evaluate the effectiveness of permissions
as features in malware classification by training models such
as Random Forest (RF), Convolutional Neural Networks
(CNN), and Recurrent Neural Networks (RNN) on historical
data and testing them on newer datasets. Additionally, we
assess how removing deprecated and restricted permissions
affects model performance over time. By quantifying con-
cept drift in both traditional machine learning and deep
learning models, we provide insights into the challenges of
maintaining effective malware detection systems in the con-
text of a rapidly evolving Android permission landscape.

Contributions. We make the following contributions:

1) Analyzing the use of permissions in malware and benign
applications. We examine how permissions are used in
malicious and benign applications, identifying patterns
and differences that can inform effective permission
abuse prevention and malware detection strategies

2) Investigating the impact of permission evolution on concept
drift. We analyze the effect of permission changes over
time by training models on historical datasets and testing
them on newer data. For example, we train on permis-
sions from 2008 and evaluate on data from subsequent
years (2009–2020).

3) Examining the effect of deprecated and restricted permissions
on model stability. We assess how the removal of dep-
recated and restricted permissions influences malware
detection performance, highlighting potential pitfalls in
using outdated or evolving feature sets.

Organization. The background is outlined in section 2,
followed by the methodology in section 3, the results and
discussion in section 4, the related work in section 5, fol-
lowed by concluding remarks in section 6.

2 BACKGROUND

Android malware apps can be installed via official stores,
third parties, or social engineering tactics [22] to gain unau-
thorized access and exploit root privileges without user
consent [23]. Android malware varies widely and can be
categorized based on shared characteristics or behaviors.
Common types include banking malware, Trojans, spyware,
and worms, with each type further classified into families
based on specific traits or attack patterns.

2.1 Android Package Kit (APK)
The Android Package Kit (APK) is an archive file format
used to deploy and install applications on the Android op-
erating system. APK files can be downloaded and installed
from the official Google Play Store or from third-party
sources. To install APKs from outside the official app store,
Android users must enable a setting feature that allows
installations from unknown sources. The main components
of the APK file are as follows:
• AndroidManifest.xml: This file contains XML meta-

data information about components of the application,
such as security permissions, activities, and services.

• Classes.dex: This file contains the source code of an
application written in Java and compiled to a Dalvik
executable with .edx extension.

• Resources.arsc: A binary XML file that includes pre-
compiled application resources [24].

• Resources (res/): A folder containing non-compiled
resources that the application requires at run time, such
as menus, images, layouts, and database use.

• Assets (assets/): Optional folder containing applica-
tion assets that Asset Manager can retrieve.

• Libraries (lib/): Optional folder containing code
compiled for various processors; e.g., ARM and x86 [24].

• META-INF: Folder containing the MANIFEST.MF file. Fur-
ther, it includes the application developer’s signature,
which can be used to authenticate an external developer.

2.2 Android Security
As an open-source platform, Android has been an ongoing
target of hackers. Consequently, ensuring the security of
applications remains a critical concern and a significant
challenge. To mitigate this risk, Android OS implements
a two-level security framework: one at the Linux kernel
level and another at the application level [25]. The security
mechanisms of Android include the following features:
• Sandbox: Each application is assigned a unique user ID

(UID) and runs in its own process and isolated space.
Thus, one application with its own UID did not allow
it to be accessed or modified by another application.
Additionally, the application running in its own sandbox
has limited access to system resources.

• Permissions: Any application must define the permission
needs of other application components or Android re-
sources in the AndroidManifest.xml file. The user must
grant these permissions during app installation; other-
wise, the application cannot be installed on the device.
Moreover, permission can be granted during the applica-
tion runtime, which is called dynamic permissions.

3

No Permission?

FulfillDeclare

YesNo

YesNo

Sensitive?

Request

End

End End

No Permission?

FulfillDeclare

✅❌

Sensitive?

Request

start

✅❌

Figure 1: Workflow for Android permissions.

• Signatures: The Android application must be stamped
and digitally signed with a certificate that identifies the
developer of the application. A developer with the same
certificate can update the application in the future. In
addition, applications with this signature can trust each
other by sharing the UID between them.

• Secure Inter-process Communication (IPC): IPC proto-
cols allow an application to communicate with remote
servers and also other applications.

2.3 Android Permissions
Android apps are required to request explicit permission
from users before accessing sensitive resources or data, such
as the camera, location, or microphone. This ensures that
applications cannot access personal information without the
user’s knowledge and explicit consent. The workflow of
using app permissions is illustrated in Figure 1.

The Android operating system provides normal, dan-
gerous, signature, custom, install-time, and special permis-
sions [2], which we highlight in the following:
1) Normal Permissions: These permissions are automati-

cally granted during installation and are associated with
basic functionalities like internet access, Bluetooth, and
NFC. They pose minimal privacy and security risks as
they do not access sensitive data.

2) Dangerous Permissions: Require explicit user approval
during execution as they grant access to sensitive data or
critical functions, such as contacts, location, microphone,
and camera, posing potential privacy and security risks.

3) Signature Permissions: These permissions enable apps
signed with the same certificate (private key) to share
privileged information or resources. New apps are au-
tomatically granted these permissions if signed with the
same certificate as existing applications.

4) Custom Permissions: These permissions are defined by
developers to enforce access control between apps. More-
over, these permissions can be classified as normal or
dangerous depending on the level of access they provide.
This type is widely used but often undocumented and
hidden from users, posing security risks by enabling in-
direct access to protected resources without consent [26].

5) Install-Time Permissions: Introduced in Android 6.0,
these permissions are granted by users during installa-
tion instead of being requested at runtime.

6) Special Permissions: These permissions are restricted to
system apps or those signed with the same certificate
as system applications. Moreover, these permissions are
not available to third-party apps and must be explicitly
granted by the platform or device manufacturer.

2.4 Permission-Based Malware Detection

Android malware detection using permission-based anal-
ysis involves multiple stages to extract, preprocess, and
classify apps based on their permissions. The pipeline can
be structured into the following key components:

Data Collection and Preprocessing. The android mal-
ware detection begins with collecting APK files from var-
ious sources, including official stores, third-party repos-
itories, and malware datasets. Each APK undergoes
static analysis to extract requested permissions from the
AndroidManifest.xml file. Let A = {a1, a2, . . . , an} rep-
resent a set of applications, and each app ai requests a subset
of permissions Pi = {p1, p2, . . . , pm}, where P is the global
set of all possible permissions.

Feature Engineering and Selection. Extracted permissions
serve as features for classification. Given an application
ai, its permission vector vi can be represented as vi =
(x1, x2, . . . , xm), where xj ∈ {0, 1} indicates whether per-
mission pj is requested or not in the application.

Training and Classification. A machine learning or deep
learning classifier is trained using labeled data. Given a
training dataset D = {(v1, y1), (v2, y2), . . . , (vn, yn)}, where
yi ∈ {0, 1} denotes whether an app is benign (0) or mali-
cious (1), the model learns a mapping function f : v → y.

Classification algorithms used in permission-based mal-
ware detection include traditional machine learning algorithms,
such as random forest (RF), support vector machines (SVM),
decision trees (DT), and deep learning algorithms, such as
neural networks (NN), long short-term memory (LSTM),
and graph neural networks (GNN).

2.5 Concept Drift

The phenomenon of concept drift refers to the unexpected
change in the statistical properties or defining features of
the target variable over time in non-stationary data dis-
tributions [27]. Mathematically, let Pt(X,Y) represent the
joint probability distribution of the input features X and
the target variable Y at time t. Concept drift occurs when:
Pt1(X,Y) ̸= Pt2(X,Y), for t1 ̸= t2. This change can man-
ifest in different forms: abrupt, incremental, gradual, and
recurring [28]. Each form corresponds to distinct transitions
in the data distribution:

Abrupt Drift. A sudden shift in the data distribution
at a specific point in time, mathematically defined as:

Pt(X,Y) =

{
PA(X,Y), t < tc
PB(X,Y), t ≥ tc

, where tc is the time at

which the drift occurs, and PA and PB represent different
distributions before and after the drift.

Incremental Drift. In this type of drift, the data distribu-
tion evolves progressively over time, making the transition
smooth, expressed as follows:

Pt(X,Y) = αtPA(X,Y) + (1− αt)PB(X,Y),

0 < αt < 1, lim
t→∞

αt = 0.

4

Gradual Drift. In this type, both old and new distributions
coexist during a transition period before the new distribu-
tion fully replaces the old one:

Pt(X,Y) =

{
(1− βt)PA(X,Y) + βtPB(X,Y), tc ≤ t ≤ td
PB(X,Y), t > td

,

where βt gradually increases from 0 to 1 over the transition
period [tc, td] leading to the gradual drift.

Recurring Drift. In this type, a previously observed concept
reappears at later time steps:

Pt(X,Y) ∈ {PA(X,Y), PB(X,Y), PC(X,Y), . . . },
where Pt(X,Y) cycles over time.

In conclusion, abrupt drift involves rapid concept tran-
sitions, incremental drift refers to slower changes, gradual
drift involves periodic concept shifts, and recurring drift is
characterized by the reappearance of earlier concepts [28].
These forms of concept drift indicate changes in the un-
derlying data distribution, necessitating adaptive learning
models to maintain performance in dynamic environments.

2.6 Android Permissions Deprecation

The Android permission system is not static and contin-
uously evolves as new hardware is introduced, security
policies change, and user expectations shift. Consequently,
Google has introduced new permissions, deprecated old
ones, and restricted access to certain sensitive permissions
to enhance security [2], as shown in the timeline in Figure 2.
Deprecated permissions are those removed or replaced with
more secure alternatives. For example, the GET_TASKS
permission, which allowed applications to retrieve infor-
mation about running tasks, was deprecated in Android
5.0 (API Level 21) due to privacy risks [29]. Similarly,
READ_CALL_LOG was restricted in Android 9.0 (API Level
28) to prevent unauthorized access to call history [29].
Restricted permissions are those moved to higher security
levels, meaning only system or explicitly approved apps
can use them. For example, Android 10 (API Level 29) in-
troduced restrictions on ACCESS_BACKGROUND_LOCATION,
limiting its use to prevent apps from stealthily tracking
users. Additionally, changes were made to prevent silent
access to the device’s screen contents by restricting the scope
of READ_FRAME_BUFFER to signature access [30].

3 METHODOLOGY

Concept drift occurs when the relationship between features
and target labels changes over time [31]. In the context
of Android malware detection, the continuous evolution
of the Android permission system–driven by security up-
dates, hardware advancements, and changes in app devel-
opment practices–affects the reliability of permission-based
detection models. Although permissions have been widely
used as features in machine learning models for malware
detection, prior studies have largely treated them as static
attributes, overlooking how their deprecation, restriction, or
modification over time can impact model effectiveness.

We aim to bridge this gap by: (1) reevaluating the ef-
fectiveness of permissions as features for machine learning

and deep learning models, (2) assessing their sensitivity
to concept drift as permissions evolve, and (3) analyzing
the impact of deprecated and restricted permissions on
model performance. Consequently, we seek to answer the
following research questions.
• RQ-1: How do permission-based features impact malware

detection accuracy across ML and DL models?
• RQ-2: How does permission sensitivity to concept drift

affect Android malware detection over time?
• RQ-3: How do deprecated and restricted permissions

influence model stability, accuracy, and drift?
To achieve the study goals and answer the questions, we

propose the following strategies as steps of exploration:
1) Ignoring the Chronological Context. Algorithms were

tested on all features, including timestamps.
2) Year-to-Year Strategy. Models were trained on data from

one year and tested on subsequent years (e.g., trained on
2008, tested on 2009–2020).

3) Exclusion Strategy. Specific permission cate-
gories—deprecated (D), restricted (R), and not-for-
use-by-third-party (N)—were systematically removed to
assess their impact on malware detection and concept
drift. Results were compared against a baseline using all
permissions (ALL) in both prior strategies.

3.1 Model Workflow

In this work, this test was applied to a simulated dataset
for concept drift detection [32]. The dataset was divided
into 12 blocks, sequentially labeled, and the p-values were
calculated over time. We used this test to compute the
Cumulative CDFs of two sample groups (e.g., CDFs for the
accuracy of training years 2008 and 2010). The KS test mea-
sures the maximum absolute difference between the CDFs,
and pairwise comparisons were performed by computing
the KS test statistic and the corresponding p-value for each
pair of training years (T1, T2). A significant p-value (< 0.05)
indicates a possible drift between distributions.

Figure 3 presents a four-stage workflow of this work. In
the pre-processing phase, benign and malware are collected
from real devices and emulators, followed by the extraction
of permissions and their corresponding API levels to col-
lect metadata. In the feature space stage, permissions are
mapped to categories such as restricted, deprecated, or not-
for-use-by-third-party, and merged with the dataset based
on API release year. The balance phase applies the balance
algorithm. Finally, in the Classification and Drift phase,
temporal evaluation strategies, year-to-year, and exclusion-
based are applied using machine learning and deep learning
classifiers, with performance evaluated through metrics like
accuracy, precision, recall, F1 score, and drift detection via
the Kolmogorov–Smirnov (KS) test.

3.2 Dataset Overview

The Kronodroid dataset [33] was built using a combination
of static and dynamic features extracted from Android ap-
plications. The source of the malware samples was selected
from different databases: VirusTotal, Drebin, VirusShare,
and AMD. The benign apps were selected from APKMirror,
F-droid, and MARVIN. This dataset includes 489 dynamic

5

2015
Android 6.0

2017
Android 8.0

2019
Android 10

2020
Android 11

2021
Android 12

2022
Android 13

2023
Android 14

Run-time permissions

READ_SMS
ACCESS_FINE_LOCATION
WRITE_EXTERNAL_STORAGE

Background Execution Limits
PROCESS_OUTGOING_CALLS

Storage and Location Restriction

READ_EXTERNAL_STORAGE
WRITE_EXTERNAL_STORAGE
ACCESS_BACKGROUND_LOCATION

Privacy and Storage Enforcement

READ_PHONE_STATE
CALL_LOG, SMS_LOG

Mic, Camera, and Bluetooth Permissions

BT_ADMIN à BT_SCAN, BT_CONNECT, BT_ADVERTISE
ACCESS_FINE_LOCATION à NEARBY_WIFI_DEVICES

Photo Picker and Notification

READ_EXTERNAL_STORAGE
POST_NOTIFICATIONS

Figure 2: A timeline of the Android permission system evolution and deprecation across various versions. The permissions
are added or removed, and Android 14 and 15 (2023 and 2024) were removed due to the lack of space.

Real Device

Emulator

Collection Data Source

Permissions Restricted

Meta Data Collection

① Preprocessing ② Features Space ④ Classification & Drift

Strategies

Disregard Of
Chronological Context

Year-To-Year

Exclusion

③ Balancing

MalwareBenign

Accuracy, Precision, Recall, F1

Machine
learning

Deep learning

Evaluation

Classifiers

Not-For-Use-By-Third-
Party

Deprecated

Mapping API Level

Mapping Year Based

Merage With Dataset

Link With Permission Post Balance

Pre Balance

Kolmogorov-Smirnov (KS)

Pre Balance

Figure 3: A four-stage framework for Android malware
detection and drift analysis: data preprocessing, API-level
permission-based feature extraction, dataset balancing, and
classification using machine and deep learning. Concept
drift is identified using KS statistics and standard metrics.

and static features extracted from Android applications that
covered the years 2008 to 2020. The emulator dataset con-
tains 28,745 malware samples and 35,246 benign samples.
The real device dataset includes 41,382 malware samples
and 36,755 benign samples. Figure 4 shows the number of
malware and benign applications for each year. For permis-
sions features, 166 features were selected from the real de-
vice and emulator datasets. An app takes a value of 1 when
requesting permission and 0 otherwise. Kronodroid did not
provide different levels of protection for each permission,
such as normal, signature, and dangerous.

3.3 Data Analysis
Because Knorodoid lacks information about the permissions
themselves, we addressed this gap by collecting metadata
for each permission from the official Android website [34].
This metadata includes critical attributes, such as the four
types of protection levels (normal, dangerous, signature,
and not for use by third parties). Additionally, it specifies
the API levels at which permissions were deprecated or
restricted, allowing them to be mapped to the corresponding
years. The usage of deprecated permissions over time for
both the emulator and real device is shown in Figure 5.

Obsolete Permissions Induce Drift. Although some
permissions were deprecated in earlier years, such as
GET_TASK, which was deprecated in 2014, they continued
to be used in subsequent years. However, the usage of
this permission decreased significantly, particularly in 2019

Table 1: Summary of Permission Categories. (N) denotes
“not for use by third-party.”

Category Permissions Deprecated Restricted

Dangerous 30 1 9
Normal 54 6 -
Signature 43 2 -
(N). Third-Party 39 1 -

Total 166 10 9

and 2020. This decline suggests that the associated features
became obsolete, contributing to changes in the feature
space distribution and potentially causing drift.

Malware Exploits Restricted Permissions. To investigate
the usage of protection level types by malware, we cate-
gorized benign and malicious applications based on their
use of permissions. Malware tends to use permissions
more extensively than benign applications. However, cer-
tain permissions–such as those classified as “not for use
by third parties”–show notable usage by malware in the
emulator dataset. These permissions are generally restricted
to pre-installed apps and require the requesting app to share
the same digital signature as the app granting the permis-
sion. The ability of malware to access these permissions
indicates potential exploitation of pre-installed apps and
warrants further investigation. Figure 6 shows that malware
frequently exploits dangerous permissions, highlighting the
importance of monitoring these permissions for security.

After analyzing the dataset, we can summarize the
number of permissions present and how their usage has
changed over time. Table 1 summarizes the classification
of permissions based on their metadata, including their
protection levels, number of deprecations, and restriction
levels for 166 permissions in the dataset.

Evolving Permissions Challenge Models. Per the official
Android website, the total number of permissions reached
323 at the time of writing this paper. However, our dataset
covers the period from 2008 to 2020, with only 166 per-
missions utilized up to API level 30. The new permissions
introduced after 2021, as illustrated in Table 2, highlight
the evolving nature of Android’s security policies. These
emerging permissions introduce previously unseen features
that were absent in earlier years, posing a significant chal-
lenge for machine learning models trained on historical
data. Since the model has not encountered these permissions
before, its decision boundaries may become less reliable,
leading to performance degradation and concept drift.

6

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

0

1

2
·104

6
4 6
2
2 5
,0

7
4

2
2
,8

7
3

3
4
2

4
8
9

6
3
2

7
2
0

7
4
3

6
5
0

7
7
5

2
0
0

2
7
5

9
3
4

2
0

2
6
9 3
,1

3
7

7
,5

6
4

7
,4

8
7

8
,0

0
5

1
,4

2
4

2
,4

4
5

4
,8

0
6

4
,0

0
6

1
,4

9
1

1
,0

4
8

6
6 6
0
7 4
,9

7
8

2
2
,1

4
6

3
0
9

4
4
4

5
9
6

6
8
9

7
1
5

7
8
8

7
3
3

1
8
0

1
,0

0
2

6
8
6

1
9

2
6
0

2
,2

7
7

6
,4

9
8

5
,6

4
1

6
,2

8
6

1
,0

3
1

1
,9

4
1

6
2
5

2
,2

9
9

1
,3

8
8

2
5
6#
A

pp
s

Benign–Real Device Malware–Real Device
Benign–Emulator Malware–Emulator

Figure 4: KronoDroid dataset distribution of both malware and benign samples across different years.

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

Year

0

1000

2000

3000

4000

To
ta

l d
ep

re
ca

te
d

pe
rm

iss
io

ns
 u

se
d

Permissions & Markers
PROCESS_OUTGOING_CALLS (Deprecated: 2019)
SMS_FINANCIAL_TRANSACTIONS (Deprecated: 2021)
BIND_CHOOSER_TARGET_SERVICE (Deprecated: 2020)
USE_FINGERPRINT (Deprecated: 2018)
BIND_CARRIER_MESSAGING_SERVICE (Deprecated: 2015)
GET_TASKS (Deprecated: 2014)
READ_INPUT_STATE (Deprecated: 2012)
PERSISTENT_ACTIVITY (Deprecated: 2011)
RESTART_PACKAGES (Deprecated: 2011)
SET_PREFERRED_APPLICATIONS (Deprecated: 2011)
Emulator
Real Device

Figure 5: Deprecated permissions over time–the legend with
the deprecation years for real and emulator datasets.

Dangerous
Normal

Not third-party
Signature

0

1

2

·105

#
Pe

rm
is

si
on

s Benign–Real Device

Malware–Real Device

Benign–Emulator

Malware–Emulator

Figure 6: Protection level usage: malware vs. benign.

3.4 Evaluation Metrics

Models Performance. We utilize standard classification met-
rics to evaluate various aspects of model performance. These
metrics are used to evaluate the effectiveness of the de-
tection model and monitor performance changes when the
model encounters concept drift. The key evaluation metrics
are as follows. (1) Precision: Measures the accuracy of cor-
rectly classified malware apps: Precision =

∑K
i=1 TPi∑K

i=1(TPi+FPi)
,

where TPi and FPi are the true and false positives for
class i, respectively, and K is the number of classes. (2)
Recall: Represents the proportion of actual malware apps
correctly classified: Recall =

∑K
i=1 TPi∑K

i=1(TPi+FNi)
, where FNi is

the false negatives for class i. (3) Accuracy: Defines the
total number of correct predictions out of all predictions:
Accuracy =

∑n
i=1 1(yi=ŷi)

n , where yi and ŷi are the true
and predicted labels, and n is the total number of samples.
(4) F1 Score: The harmonic mean of precision and recall:
F1 score = 2·Precision×Recall

Precision+Recall .

Kolmogorov-Smirnov (KS) Test. Specific to concept drift,
we use the KS test, a non-parametric statistical test used
to compare the distributions of two datasets and deter-
mine whether they originate from the same underlying
probability distribution. KS is particularly useful in detect-
ing concept drift by measuring discrepancies between two
empirical distributions. Given two cumulative distribution
functions (CDFs), F1(X) and F2(X), the KS statistic is
defined as Dn,m = supx |F1(x)− F2(x)| where Dn,m is the

Table 2: Protection levels of permissions across Android API
levels and years. Dangerous, Internal, Normal, Signature,
Not for use by 3rd party (¬TP), and total are the metrics.

Year (API) Dang. Int Norm ¬TP Sig Total
2008 (1) 17 0 26 25 6 74
2009 (2) 2 0 0 2 0 4
2010 (8) 1 0 1 1 2 5
2011 (11) 0 0 0 0 1 1
2012 (16) 3 0 0 0 1 4
2013 (18) 2 0 0 2 1 5
2014 (20) 1 0 0 0 0 1
2015 (22) 0 0 1 0 0 1
2016 (24) 0 0 1 0 3 4
2017 (26) 2 0 4 0 3 9
2018 (28) 1 0 3 0 0 4
2019 (29) 3 0 3 0 4 10
2020 (30) 0 0 5 0 3 8
2021 (31) 4 0 8 1 4 17
2022 (32) 0 0 1 0 0 1
2023 (34) 1 79 21 1 2 104
2024 (35) 0 6 4 2 0 12

Unknown (0) 0 0 1 0 0 1

KS statistic (maximum difference between the two distribu-
tions), F1(x) is the empirical CDF of the first dataset (e.g.,
past data), F2(x) is the empirical CDF of the second dataset
(e.g., new data), and supx denotes the supremum (i.e., the
greatest absolute difference over all x). For two samples
of sizes n and m, the null hypothesis H0 states that both
datasets come from the same distribution. The critical value
for rejecting H0 at a given significance level α is given by
Dα = c(α)

√
n+m
nm , where c(α) is a constant determined by

the significance level α, and obtained from statistical tables.

3.5 Experiment Setup

Environment. All experiments were conducted using
Google Colaboratory (“Colab”), a cloud-based platform that
provides free access to computing resources, including GPU
acceleration. Colab supports writing and executing Python
code directly in a web browser. The experiments were run
using both the cloud-hosted and local runtimes, with the
default Colab configuration and no manual modifications.
The scikit-learn library was used to build machine learning
models, generate classification reports, and create confusion
matrices. For deep learning models, we used Keras, a high-
level neural network API running on top of TensorFlow.

Experiments Design. Each model was evaluated using
different subsets of features selected from the Kronodroid
dataset. These subsets included all permissions (a total of
166), as well as subsets that excluded permissions based
on their protection levels–specifically deprecated, restricted,
and not-for-use-by-third-party permissions.

7

Parameters. The default configurations were used for RF,
with the random state parameter set to 42. For deep learning
algorithms, we used binary cross-entropy as the loss func-
tion, Adam optimizer with a default learning rate of 0.001,
an early stopping criterion based on minimum validation
loss, 15 training epochs, a batch size of 15, and a validation
split of 0.10. Accuracy and F1 score were used as perfor-
mance metrics to evaluate the generated models.

Architecture. We use these deep learning architectures:

• CNN. Sequential input shape and two convolutional lay-
ers with 64 and 128 filters, each followed by ReLU activa-
tion and max pooling layers. This is followed by a dense
layer with 128 units, also using ReLU activation, and a
dropout layer with a dropout rate of 0.2. The network
concludes with a final output layer that features a single
sigmoid unit for binary classification.

• RNN. The input data was sequential, and the model
included a single RNN layer with 8 units, followed by
a flattening layer. A dense layer with 128 units and a
dropout layer with a dropout rate of 0.2 were then added,
leading to a final output layer with a single sigmoid
unit. ReLU activation was used for the hidden layer, and
sigmoid activation for the output.

4 RESULTS AND DISCUSSION

4.1 Ignoring the Chronological Context

In these experiments, we ignored temporal factors and
trained and tested on the entire dataset, following a com-
mon practice in the literature. We use these results as a base-
line to underscore the importance of correctly accounting
for concept drift. For machine learning models, the dataset
was split into 80% for training and 20% for testing. The
same split was applied to the deep learning models, with an
additional 10% of the training set reserved for validation.

The results in Table 3 compare the performance of RF,
CNN, and RNN on data collected from both a real device
and an emulator. These classifiers were evaluated using 166
permissions as features, with precision, recall, and F1 score
reported separately for malware and benign samples, and
accuracy used as an overall metric. Although both datasets
(real and emulator) used the same set of permissions, there
were minor differences in precision, recall, and F1 scores. RF
consistently achieved the best overall performance across
both datasets, while CNN and RNN showed slightly lower
performance, particularly on the emulator dataset, where
they exhibited reduced recall for malware samples.

Takeaway

While static permissions are reliable, the source of the
dataset can still influence the detection outcomes.

For the exclusion strategy, the permission protection lev-
els (deprecated, restricted, and not used by a third party) slightly
affected the performance of detection models differently. For
deprecated permissions (ED), their exclusion has minimal
effects on RF models, with the accuracy remaining stable
(e.g., a slight drop from 0.954 to 0.949 in the real dataset
and from 0.948 to 0.946 in the emulator dataset). While RNN

results have a similar drop in accuracy as RF, CNN accuracy
increased from 0.944 to 0.947 in the real dataset.

The exclusion of the restricted permissions (ER) results
in a significant decrease in performance across all models
and datasets. In the real dataset, the RF accuracy dropped
from 0.954 to 0.933, CNN from 0.947 to 0.933, and RNN from
0.940 to 0.924. The decline is even more pronounced in the
emulator dataset, where RF accuracy decreased from 0.948
to 0.932, CNN from 0.944 to 0.931, and RNN from 0.943 to
0.924–a similar effect is observed with the emulator. These
results highlight that the restricted permissions contain es-
sential features that boost the models’ accuracy.

For not-for-third-party permissions (EN), their exclu-
sion has minimal effects across models. In the real dataset,
the RF and RNN accuracy remained nearly unchanged
(RF: 0.954 to 0.949 and RNN: 0.943 to 0.941), while CNN
improved from 0.944 to 0.946. In the emulator dataset, the
RF accuracy decreased slightly from 0.948 to 0.945, while the
CNN and RNN accuracy experienced a marginal decrease
from 0.946 to 0.944 and from 0.941 to 0.937, respectively. This
indicates that excluding not-for-third-party permissions has
a limited role in influencing model performance.

Takeaway

Restricted permissions have a significant impact on model
performance, with their exclusion causing notable drops in
accuracy and F1 scores across all models and datasets—
indicating their importance in distinguishing benign from
malicious behavior. In contrast, removing deprecated or
third-party-only permissions has minimal effect, suggesting
they contribute redundant or less relevant features.

4.2 Year-to-Year Strategy
4.2.1 Performance of Models Without KS Test.
To investigate factors of concept drift that affect the perfor-
mance of the models, we define the following criteria:

① Accuracy and F1 score drift. Based on accuracy and F1
score for all models that ignored the temporal factor, we
calculated their averages for both accuracy and F1 score
with all permissions, as presented in Tables 3 and consid-
ered as baseline. Any value greater than 0.50 and less than
0.94 is considered to exhibit drift in the testing year and is
highlighted in red on the heatmap figures.

② For balancing results. To evaluate the effect of balance on
the performance of the models, we considered any value less
than 0.50 to require improvement (poor performance). These
values are highlighted in yellow to monitor enhancements
in the results after balancing.

③ Outperforming the baseline. Any result greater than
0.94 is highlighted in green, indicating that it exceeds the
performance of the baseline.

Heatmaps For Emulator and Real Datasets. For each model,
we generated heatmaps for the real and emulator data,
both before and after balancing, as shown in Figure 7. In
addition, we summarize these heatmap results in tables for
each model (RF, CNN, and RNN) presented in Table 4. The
main observations of the results are as follows.

① Pre-balancing. RF models on both real and emulator
datasets show a significant number of drift accuracy in

8

Table 3: Performance of various models on real devices and emulators. (All) All permissions: (E) Exclude, (D) deprecated,
(R) Restricted, (N) Not for use by third party.

Model
Real Device Emulator

Benign Malware Acc Benign Malware AccP R F1 P R F1 P R F1 P R F1
RF-All 0.943 0.959 0.951 0.964 0.949 0.956 0.954 0.942 0.965 0.953 0.956 0.927 0.941 0.948
RF-ED 0.938 0.956 0.947 0.960 0.943 0.951 0.949 0.939 0.963 0.951 0.954 0.924 0.939 0.946
RF-ER 0.919 0.947 0.933 0.952 0.925 0.938 0.936 0.924 0.954 0.939 0.943 0.905 0.924 0.932
RF-EN 0.937 0.957 0.947 0.960 0.943 0.951 0.949 0.939 0.962 0.950 0.953 0.925 0.939 0.945

CNN-All 0.933 0.949 0.941 0.954 0.939 0.947 0.944 0.939 0.964 0.951 0.954 0.924 0.939 0.946
CNN-ED 0.936 0.953 0.945 0.957 0.942 0.949 0.947 0.951 0.941 0.946 0.929 0.941 0.935 0.941
CNN-ER 0.913 0.944 0.928 0.948 0.919 0.933 0.931 0.923 0.934 0.928 0.919 0.905 0.912 0.921
CNN-EN 0.938 0.948 0.943 0.953 0.943 0.948 0.946 0.936 0.957 0.946 0.946 0.921 0.934 0.941
RNN-All 0.914 0.968 0.940 0.971 0.920 0.944 0.943 0.935 0.960 0.947 0.949 0.917 0.933 0.941
RNN-ED 0.931 0.941 0.936 0.948 0.939 0.944 0.940 0.937 0.953 0.945 0.942 0.923 0.932 0.939
RNN-ER 0.929 0.906 0.917 0.920 0.940 0.930 0.924 0.927 0.934 0.931 0.920 0.912 0.916 0.924
RNN-EN 0.928 0.948 0.938 0.953 0.936 0.944 0.941 0.930 0.956 0.943 0.946 0.914 0.930 0.937

heatmap cells (100+ in most cases), highlighting substantial
concept drift in accuracy over many testing years. However,
RF demonstrates slightly less drift in accuracy compared to
CNN (e.g., 108 for the real dataset and 111 for the emulator
dataset). RNN follows a similar trend, and RF generally
has fewer drifts than RNN. In contrast, the count of poor
accuracy results, representing values below 0.50, is relatively
high, particularly for the emulator dataset, which reached 47
with RF after excluding restricted permissions, while CNN
and RNN achieved 28 and 29, respectively. For exceeding
baseline accuracy, the models achieved more than 20 results
in some cases, but the impact of balancing significantly
reduced this number by approximately half, revealing the
strong influence of class imbalance on performance. Exclud-
ing D and R features reduced the drift in accuracy for RF
compared to using all permissions, while a decrease was
observed in CNN for both real and emulator datasets, and
only in the real dataset for RNN. In contrast, excluding N
permissions reduced the accuracy drift only in the RNN.

Takeaway

Excluding D, R, and N permissions generally improves per-
formance stability across years. However, this can come at the
cost of reduced accuracy, particularly on emulator datasets,
highlighting a trade-off between stability and performance.
Moreover, fewer instances surpass baseline performance after
exclusion, suggesting limited gains in certain scenarios.

② Post-Balancing. The results of the models’ performance
post-balancing show that balancing the datasets positively
impacts the F1 scores across all models (RF, CNN, and
RNN). This improvement highlights that addressing the
imbalance of data before analyzing the drift is crucial to
accurately assess the behavior of the models. The increase
in F1 scores indicates that the models benefit from a more
representative distribution of benign and malicious samples,
which enhances their ability to generalize over testing years.
Moreover, the reduction in poor performance in accuracy
is clear, which indicates that model performance improved
when compared with pre-balance. However, the increase in
drift count in accuracy, especially for CNN and RNN, re-
flects the fundamental reality of concept drift. This indicates
that balancing the dataset improves model performance and
reveals the extent of concept drift previously obscured by
imbalance. Once this imbalance is addressed, the models’
results reveal more accurate trends, highlighting the impact
of drift over time.

Takeaway

Balancing the datasets before addressing the concept drift
is critical to revealing the drift’s extent and mitigating its
impact.

Focusing on the effect of excluding D, R, and N per-
missions, the RF results demonstrate resilience to concept
drift, with fewer increases in the number of drifts compared
to CNN and RNN. Excluding D for RF with real is not
affected, and concept drift occurred with the emulator in
one new year, similar to excluding R (i.e., an increase from
145 to 146 poor performance instances). However, the drift
is reduced when N is excluded–by one year in real and
two in the emulator. CNN is the most sensitive to the
exclusion of permissions, specifically D and R, where the
poor accuracy values increase significantly. RNN shows a
moderate response to the exclusion scenarios. Excluding D
and R permissions increases concept drift, especially in em-
ulator datasets. However, RNN still achieves improvements
in the post-balance F1 scores for the real dataset with all
permissions. Additionally, deep learning models show less
poor accuracy and higher F1 scores after balancing.

Takeaway

Although deprecated or restricted permissions may seem
outdated, they remain relevant for many applications and
aid malware detection. Results show that excluding them in-
creases concept drift in CNN and RNN models, highlighting
their continued real-world predictive value.

4.2.2 Concept Drift Detection Using KS Test

In this set of experiments, we aim to detect the presence of
concept drift using the Kolmogorov-Smirnov (KS) test. We
employ the KS test to analyze feature distributions across
different time periods, datasets (real vs. emulator), and
permission configurations (e.g., exclusion of deprecated,
restricted, or not-for-use-by-third-party permissions).

The null hypothesis (H0) proposes that there is no sig-
nificant difference in the accuracy and F1 score distributions
between the two years being compared. If the p-value result-
ing from the KS test is below a chosen significance threshold
(p ≤ 0.05), we reject the null hypothesis, indicating that a
statistically significant concept drift has occurred.

We conducted a large number of experiments, totaling 32
heatmap results for each model and Figure 8 illustrates an
example of the results obtained for the three classification

9

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Test Year

2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008

Tr
ai

n
Ye

ar

0.327 0.966 0.953 0.894 0.245 0.219 0.177 0.627 0.640 0.676 0.611 0.927
0.225 0.972 0.955 0.886 0.142 0.206 0.213 0.687 0.613 0.908 0.630 0.889
0.833 0.921 0.868 0.728 0.956 0.967 0.920 0.881 0.850 0.982 0.921 0.924
0.841 0.933 0.916 0.755 0.635 0.750 0.742 0.871 0.906 0.958 0.876 0.915
0.885 0.729 0.719 0.714 0.797 0.849 0.879 0.909 0.947 0.862 0.830 0.872
0.864 0.711 0.703 0.683 0.822 0.817 0.815 0.801 0.936 0.892 0.874 0.917
0.887 0.877 0.770 0.554 0.975 0.983 0.863 0.808 0.947 0.893 0.812 0.843
0.864 0.778 0.738 0.542 0.982 0.935 0.842 0.810 0.946 0.893 0.834 0.854
0.868 0.708 0.627 0.468 0.980 0.933 0.818 0.797 0.938 0.880 0.715 0.708
0.132 0.978 0.970 0.458 0.350 0.332 0.487 0.309 0.833 0.458 0.882 0.876
0.174 0.974 0.892 0.172 0.168 0.137 0.611 0.390 0.845 0.581 0.934 0.861
0.078 0.953 0.882 0.058 0.084 0.163 0.337 0.233 0.121 0.162 0.876 0.790

0.474 0.377 0.272 0.965 0.945 0.949 0.778 0.825 0.917 0.886 0.323 0.390

(a) Pre-RF-R-Acc.

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Test Year

2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008

Tr
ai

n
Ye

ar

0.822 0.925 0.941 0.846 0.711 0.650 0.627 0.871 0.754 0.936 0.859 0.906
0.595 0.966 0.945 0.863 0.526 0.619 0.547 0.864 0.796 0.932 0.815 0.962
0.878 0.919 0.784 0.535 0.965 0.965 0.924 0.864 0.842 0.975 0.900 0.889
0.823 0.921 0.829 0.615 0.746 0.845 0.796 0.867 0.858 0.952 0.906 0.837
0.885 0.694 0.686 0.680 0.592 0.613 0.759 0.905 0.935 0.849 0.816 0.798
0.828 0.725 0.696 0.715 0.736 0.724 0.677 0.849 0.943 0.864 0.859 0.893
0.922 0.774 0.701 0.510 0.978 0.982 0.865 0.765 0.937 0.888 0.833 0.849
0.854 0.872 0.741 0.550 0.976 0.934 0.847 0.827 0.950 0.821 0.864 0.876
0.928 0.471 0.398 0.298 0.973 0.970 0.847 0.798 0.953 0.930 0.630 0.672
0.221 0.977 0.969 0.444 0.324 0.184 0.486 0.324 0.794 0.479 0.911 0.942
0.136 0.967 0.896 0.227 0.240 0.126 0.487 0.321 0.832 0.473 0.879 0.814
0.062 0.950 0.880 0.043 0.061 0.073 0.332 0.230 0.118 0.157 0.878 0.791

0.526 0.449 0.348 0.934 0.889 0.937 0.809 0.854 0.930 0.906 0.578 0.683

(b) Pre-CNN-R-Acc.

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Test Year

2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008

Tr
ai

n
Ye

ar

0.650 0.947 0.947 0.841 0.662 0.610 0.550 0.840 0.741 0.928 0.837 0.923
0.609 0.966 0.939 0.845 0.409 0.561 0.561 0.843 0.727 0.941 0.785 0.966
0.820 0.938 0.899 0.755 0.926 0.941 0.897 0.880 0.836 0.975 0.957 0.924
0.797 0.928 0.867 0.642 0.745 0.707 0.800 0.871 0.904 0.950 0.881 0.867
0.920 0.681 0.635 0.662 0.792 0.771 0.883 0.907 0.941 0.878 0.789 0.825
0.717 0.935 0.898 0.785 0.718 0.697 0.751 0.798 0.955 0.889 0.915 0.934
0.918 0.793 0.713 0.516 0.980 0.985 0.857 0.843 0.945 0.894 0.818 0.828
0.827 0.832 0.759 0.558 0.976 0.932 0.833 0.777 0.946 0.893 0.850 0.870
0.894 0.728 0.691 0.503 0.982 0.937 0.837 0.808 0.942 0.887 0.800 0.815
0.284 0.969 0.971 0.630 0.479 0.358 0.498 0.384 0.804 0.542 0.925 0.945
0.189 0.967 0.903 0.503 0.338 0.229 0.531 0.385 0.817 0.441 0.879 0.814
0.141 0.961 0.892 0.167 0.171 0.128 0.446 0.263 0.173 0.321 0.882 0.791

0.523 0.454 0.347 0.924 0.844 0.896 0.795 0.857 0.930 0.894 0.426 0.497

(c) Pre-RNN-R-Acc.

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Test Year

2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008

Tr
ai

n
Ye

ar

0.730 0.632 0.638 0.645 0.756 0.731 0.629 0.786 0.748 0.800 0.802 0.678
0.635 0.633 0.540 0.591 0.673 0.589 0.578 0.820 0.735 0.949 0.834 0.775
0.902 0.664 0.827 0.802 0.888 0.881 0.883 0.899 0.849 0.964 0.900 0.738
0.887 0.626 0.772 0.683 0.822 0.809 0.817 0.895 0.875 0.957 0.782 0.931
0.922 0.661 0.783 0.679 0.865 0.868 0.773 0.905 0.957 0.891 0.836 0.639
0.862 0.576 0.736 0.675 0.850 0.855 0.883 0.853 0.909 0.886 0.836 0.903
0.856 0.774 0.815 0.794 0.959 0.953 0.886 0.850 0.943 0.896 0.919 0.812
0.867 0.715 0.822 0.814 0.972 0.932 0.871 0.849 0.947 0.911 0.903 0.938
0.847 0.759 0.789 0.785 0.951 0.929 0.860 0.832 0.931 0.881 0.905 0.880
0.702 0.777 0.852 0.835 0.877 0.735 0.747 0.650 0.948 0.835 0.858 0.792
0.608 0.634 0.613 0.585 0.601 0.543 0.685 0.583 0.875 0.740 0.743 0.705
0.562 0.562 0.512 0.684 0.619 0.613 0.532 0.495 0.479 0.504 0.668 0.482

0.729 0.775 0.736 0.790 0.768 0.782 0.700 0.711 0.739 0.694 0.677 0.675

(d) Post-RF-R-Acc.

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Test Year

2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008

Tr
ai

n
Ye

ar

0.852 0.651 0.748 0.646 0.818 0.782 0.776 0.841 0.784 0.923 0.858 0.737
0.838 0.623 0.726 0.710 0.706 0.745 0.694 0.885 0.823 0.958 0.909 0.944
0.879 0.688 0.820 0.806 0.917 0.912 0.906 0.894 0.858 0.967 0.882 0.692
0.857 0.679 0.780 0.658 0.819 0.807 0.800 0.887 0.878 0.949 0.757 0.740
0.894 0.729 0.829 0.670 0.755 0.801 0.777 0.888 0.954 0.872 0.812 0.653
0.869 0.599 0.743 0.676 0.851 0.827 0.832 0.857 0.930 0.875 0.731 0.909
0.940 0.747 0.789 0.764 0.960 0.957 0.887 0.822 0.916 0.887 0.926 0.859
0.798 0.783 0.809 0.801 0.961 0.927 0.877 0.848 0.954 0.914 0.721 0.938
0.869 0.730 0.790 0.770 0.963 0.931 0.868 0.839 0.937 0.908 0.923 0.923
0.701 0.758 0.868 0.888 0.812 0.816 0.742 0.681 0.946 0.838 0.853 0.905
0.579 0.624 0.645 0.606 0.593 0.527 0.646 0.591 0.889 0.737 0.734 0.675
0.677 0.657 0.482 0.656 0.705 0.610 0.573 0.532 0.505 0.560 0.521 0.484

0.723 0.766 0.740 0.795 0.760 0.788 0.715 0.741 0.767 0.733 0.771 0.804

(e) Post-CNN-R-Acc.

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Test Year

2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008

Tr
ai

n
Ye

ar

0.822 0.653 0.674 0.635 0.768 0.689 0.664 0.836 0.795 0.948 0.834 0.682
0.781 0.639 0.736 0.637 0.663 0.685 0.641 0.880 0.793 0.950 0.887 0.940
0.897 0.643 0.824 0.805 0.918 0.906 0.893 0.902 0.864 0.967 0.879 0.765
0.862 0.633 0.773 0.659 0.700 0.750 0.805 0.894 0.883 0.946 0.737 0.854
0.917 0.649 0.762 0.673 0.831 0.815 0.742 0.893 0.949 0.874 0.807 0.634
0.833 0.553 0.717 0.656 0.812 0.794 0.821 0.855 0.922 0.866 0.829 0.901
0.925 0.667 0.803 0.775 0.964 0.962 0.899 0.853 0.951 0.893 0.896 0.930
0.831 0.729 0.817 0.812 0.966 0.938 0.886 0.854 0.945 0.916 0.772 0.852
0.811 0.722 0.796 0.786 0.964 0.934 0.874 0.851 0.940 0.907 0.910 0.890
0.708 0.773 0.855 0.904 0.871 0.728 0.729 0.692 0.951 0.862 0.873 0.892
0.589 0.634 0.657 0.646 0.607 0.561 0.610 0.550 0.832 0.661 0.681 0.660
0.704 0.748 0.554 0.666 0.691 0.665 0.668 0.645 0.512 0.608 0.717 0.602

0.705 0.761 0.719 0.793 0.779 0.794 0.709 0.750 0.753 0.722 0.708 0.683

(f) Post-RNN-R-Acc.
Figure 7: Accuracy performance of various models pre/post balancing with all permissions. (R) real device dataset. Cells
with red color indicate decreased accuracy, yellow represent values less than 0.50, and green show improvements.

Table 4: RF, CNN, and RNN accuracy and F1 scores for different configurations of permission sets with a comparison to
the baseline. Red indicates the count of testing years with decreased accuracy, yellow represents values less than 0.50, and
green shows the number of years improved. (D) Deprecated, (R) Restricted, and (N) Not for use by third party.

Balance Accuracy F1 score
Red Yellow Green Red Yellow Green

RF - Random Forest
Pre 100 34 22 111 44 1
Pre (Excl.) 99 (D) / 95 (R) / 101 (N) 35 (D) / 40 (R) / 34 (N) 22 (D) / 21 (R) / 21 (N) 109 (D) / 104 (R) / 112 (N) 45 (D) / 51 (R) / 42 (N) 2 (D) / 1 (R) / 2 (N)
Post 142 3 11 136 9 11
Post (Excl.) 142 (D) / 146 (R) / 141 (N) 4 (D) / 4 (R) / 5 (N) 10 (D) / 6 (R) / 10 (N) 135 (D) / 136 (R) / 135 (N) 11 (D) / 14 (R) / 11 (N) 10 (D) / 6 (R) / 10 (N)

CNN - Convolutional Neural Network
Pre 108 27 21 111 44 1
Pre (Excl.) 112 (D) / 109 (R) / 110 (N) 24 (D) / 29 (R) / 23 (N) 20 (D) / 18 (R) / 23 (N) 110 (D) / 113 (R) / 120 (N) 44 (D) / 42 (R) / 34 (N) 2 (D) / 1 (R) / 2 (N)
Post 142 2 12 136 8 12
Post (Excl.) 146 (D) / 146 (R) / 143 (N) 0 (D) / 1 (R) / 1 (N) 10 (D) / 9 (R) / 12 (N) 142 (D) / 140 (R) / 139 (N) 4 (D) / 7 (R) / 5 (N) 10 (D) / 9 (R) / 12 (N)

RNN - Recurrent Neural Network
Pre 110 23 23 116 38 2
Pre (Excl.) 107 (D) / 108 (R) / 108 (N) 28 (D) / 27 (R) / 26 (N) 21 (D) / 21 (R) / 22 (N) 117 (D) / 112 (R) / 114 (N) 38 (D) / 42 (R) / 40 (N) 1 (D) / 2 (R) / 2 (N)
Post 143 0 13 140 3 13
Post (Excl.) 142 (D) / 147 (R) / 144 (N) 1 (D) / 2 (R) / 0 (N) 13 (D) / 7 (R) / 12 (N) 140 (D) / 141 (R) / 139 (N) 3 (D) / 8 (R) / 5 (N) 13 (D) / 7 (R) / 12 (N)

models (RF, CNN, and RNN) before and after balancing,
using both the real and emulator datasets. Each heatmap
represents the p-values of the KS tests applied to the accu-
racy and F1 score distributions for year-to-year comparisons
under various permission configurations.

To simplify interpretation, we summarize each heatmap
by counting the number of year-to-year comparisons with
a p-value less than 0.05, indicating a statistically significant
concept drift. These summarized results are presented sep-
arately for each model in Table 5.

① Impact of Balancing. Across all models, the number
of significant p-values noticeably increased after balancing,
indicating that balancing better captures concept drift in
both accuracy and F1 scores. This suggests that balancing
has a significant impact on improving the sensitivity of drift
detection. For example, in RF, the number of significant
p-values for accuracy increased from 52 to 84 (real, all
permissions) and from 70 to 96 (emulator, all permissions)
after balancing. For CNN, a similar trend is observed, with
p-values increasing from 52 to 60 and from 58 to 76. For
RNN, the increase was from 40 to 60 and from 48 to 64.

Takeaway

Balancing the dataset not only improves concept drift detec-
tion in general but also reveals variations in model sensitivity
to concept drift.

② Dataset-Specific Observations (Real vs. Emulator). For
all models, the p-value counts are generally higher when
using the emulator dataset compared to the real dataset.

For the RF model, the significant p-values related to post-
balancing accuracy increased to 96 for the emulator dataset,
compared to 84 for the real dataset. Similarly, for the CNN
and RNN models, the p-values for accuracy reached 76
compared to 60, and 64 compared to 60, respectively.

③ Impact of Excluding Permissions. Across all models,
the exclusion of permissions increased concept drift, par-
ticularly after balancing. For RF 5, post-balancing accu-
racy p-values for the real dataset increased from 84 (All
Permissions) to 94 (Exclude D). Furthermore, CNN and
RNN showed improvements, with post-balancing accuracy
p-values increasing from 60 to 72 for the real dataset.

We further compared the performance of the models
with all permissions and after excluding D permissions
in Figure 9 for RF with post-balancing on the real dataset.
The results of excluding deprecated permissions lead to
some, but not significant, effect on model performance
across most years. For example, in 2010, the average ac-
curacy improved from 0.660 (all permissions) to 0.665 (D
excluded). In 2011, accuracy increased from 0.801 to 0.836,
and in 2016, it increased from 0.815 to 0.846. However, in
some years, such as 2013, the exclusion has minimal impact,
with accuracy remaining nearly the same (0.878 vs. 0.879).

Takeaway

While excluding permissions does not have a significant
effect on the model’s performance, it is statistically significant
in improving concept drift detection.

10

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Train Year

2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008

Tr
ai

n
Ye

ar

0.869 0.256 0.869 0.536 0.100 0.031 0.031 0.008 0.031 0.031 0.008 0.998
0.869 0.536 0.869 0.536 0.100 0.031 0.031 0.008 0.031 0.100 0.008 0.998
0.100 0.008 0.008 0.008 0.008 0.256 0.100 0.031 0.031 0.869 0.008 0.008
0.256 0.008 0.008 0.008 0.100 0.536 0.536 0.256 0.256 0.869 0.100 0.031
0.256 0.008 0.008 0.008 0.869 0.869 0.536 0.869 0.256 0.031 0.031 0.031
0.256 0.008 0.008 0.008 0.536 0.536 0.536 0.869 0.256 0.031 0.008 0.008
0.256 0.008 0.031 0.008 0.256 1.000 0.536 0.536 0.536 0.100 0.031 0.031
0.256 0.008 0.031 0.008 0.256 1.000 0.536 0.869 0.536 0.256 0.031 0.031
0.536 0.008 0.031 0.031 0.256 0.256 0.536 0.869 0.100 0.008 0.100 0.100
0.536 0.256 0.869 0.031 0.008 0.008 0.008 0.008 0.008 0.008 0.536 0.536
0.536 0.998 0.869 0.031 0.031 0.031 0.008 0.008 0.008 0.008 0.869 0.869
0.100 0.998 0.256 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.536 0.256

0.100 0.536 0.536 0.536 0.256 0.256 0.256 0.256 0.256 0.100 0.869 0.869

(a) Pre-RF-E-Acc.

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Train Year

2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008

Tr
ai

n
Ye

ar

0.869 0.008 0.008 0.031 0.536 0.256 0.256 0.536 0.536 0.536 0.100 0.869
0.869 0.100 0.256 0.536 0.536 0.256 0.256 0.256 0.869 0.536 0.100 0.869
0.008 0.008 0.008 0.008 0.031 0.008 0.256 0.008 0.031 0.100 0.100 0.100
0.256 0.008 0.008 0.008 0.869 0.869 0.869 0.256 0.998 0.100 0.536 0.536
0.536 0.008 0.031 0.100 0.869 0.869 0.869 0.536 0.998 0.031 0.869 0.536
0.256 0.008 0.008 0.008 0.869 0.031 0.100 0.536 0.256 0.008 0.256 0.536
0.100 0.008 0.008 0.031 0.256 0.536 0.100 0.869 0.869 0.256 0.256 0.256
0.100 0.008 0.008 0.031 0.100 0.536 0.031 0.869 0.869 0.008 0.256 0.256
0.536 0.008 0.031 0.031 0.100 0.256 0.869 0.869 0.869 0.031 0.536 0.536
0.256 0.256 0.869 0.031 0.031 0.031 0.008 0.100 0.008 0.008 0.536 0.031
0.100 0.536 0.869 0.031 0.008 0.008 0.008 0.031 0.008 0.008 0.256 0.008
0.100 0.536 0.256 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.100 0.008

0.100 0.100 0.256 0.536 0.100 0.100 0.256 0.536 0.256 0.008 0.869 0.869

(b) Pre-CNN-E-Acc.

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Train Year

2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008

Tr
ai

n
Ye

ar

0.869 0.100 0.256 0.536 0.869 0.256 0.100 0.536 0.536 0.536 0.100 0.869
0.536 0.008 0.536 0.256 0.869 0.100 0.100 0.256 0.536 0.536 0.031 0.869
0.031 0.008 0.008 0.008 0.100 0.536 0.869 0.100 0.869 0.869 0.031 0.100
0.100 0.008 0.008 0.008 0.256 0.869 0.536 0.256 0.869 0.869 0.536 0.536
0.256 0.008 0.031 0.100 0.536 0.869 0.536 0.256 0.869 0.869 0.536 0.536
0.256 0.008 0.008 0.008 0.869 0.256 0.100 0.256 0.256 0.100 0.256 0.536
0.031 0.008 0.031 0.008 0.031 0.998 0.100 0.536 0.536 0.869 0.100 0.100
0.100 0.008 0.031 0.031 0.100 0.998 0.256 0.869 0.869 0.536 0.100 0.256
0.536 0.031 0.031 0.100 0.100 0.031 0.869 0.536 0.256 0.100 0.869 0.869
0.869 0.536 0.998 0.100 0.031 0.008 0.008 0.100 0.008 0.008 0.256 0.536
0.869 0.256 0.998 0.031 0.031 0.031 0.008 0.031 0.008 0.008 0.536 0.256
0.256 0.256 0.536 0.031 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.100

0.256 0.869 0.869 0.536 0.100 0.031 0.256 0.256 0.100 0.031 0.536 0.869

(c) Pre-RNN-E-Acc.

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Train Year

2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008

Tr
ai

n
Ye

ar

0.031 0.000 0.008 0.031 0.000 0.000 0.000 0.008 0.000 0.000 0.001 0.536
0.008 0.000 0.100 0.256 0.001 0.001 0.001 0.031 0.001 0.031 0.008 0.536
0.001 0.000 0.000 0.100 0.256 0.869 0.536 0.031 0.256 0.536 0.008 0.001
0.008 0.000 0.000 0.536 0.869 0.869 0.998 0.256 0.869 0.536 0.031 0.000
0.000 0.000 0.000 0.256 0.536 0.536 0.869 0.256 0.869 0.256 0.001 0.000
0.031 0.000 0.000 0.869 0.536 0.031 0.536 0.256 0.256 0.031 0.031 0.008
0.000 0.000 0.000 0.256 0.869 0.869 0.536 0.869 0.998 0.536 0.001 0.000
0.000 0.000 0.000 0.100 0.100 0.869 0.031 0.536 0.869 0.869 0.001 0.000
0.001 0.000 0.000 0.536 0.100 0.869 0.536 0.536 0.869 0.256 0.001 0.000
0.100 0.000 0.001 0.536 0.100 0.256 0.869 0.256 0.536 0.100 0.256 0.031
0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.100 0.008
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.100 0.001 0.000 0.000 0.031 0.000 0.008 0.001 0.008 0.031

(d) Post-RF-E-Acc.

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Train Year

2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008

Tr
ai

n
Ye

ar

0.100 0.000 0.001 0.536 0.536 0.256 0.536 0.256 0.869 0.536 0.100 0.536
0.536 0.001 0.008 0.536 0.100 0.031 0.031 0.256 0.536 0.100 0.031 0.536
0.001 0.000 0.000 0.031 0.536 0.536 0.998 0.008 0.256 0.869 0.031 0.100
0.008 0.000 0.000 0.256 0.998 0.869 0.998 0.031 0.869 0.869 0.100 0.536
0.031 0.000 0.000 0.536 0.869 0.536 0.536 0.100 0.869 0.256 0.536 0.869
0.031 0.000 0.000 0.536 0.031 0.008 0.100 0.100 0.031 0.008 0.256 0.256
0.001 0.000 0.000 0.100 0.998 0.998 0.100 0.536 0.998 0.998 0.031 0.536
0.000 0.000 0.000 0.031 0.998 0.998 0.008 0.536 0.869 0.536 0.031 0.256
0.001 0.000 0.000 0.100 0.998 0.998 0.031 0.869 0.998 0.536 0.100 0.536
0.256 0.000 0.000 0.100 0.031 0.100 0.536 0.536 0.256 0.031 0.536 0.536
0.000 0.100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.001
0.000 0.100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000

0.000 0.000 0.256 0.001 0.000 0.001 0.031 0.031 0.008 0.001 0.536 0.100

(e) Post-CNN-E-Acc.

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Train Year

2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008

Tr
ai

n
Ye

ar

0.031 0.000 0.008 0.536 0.100 0.100 0.100 0.998 0.869 0.536 0.031 0.869
0.100 0.001 0.031 0.256 0.256 0.256 0.256 0.536 0.869 0.869 0.536 0.869
0.001 0.000 0.000 0.256 0.869 0.869 0.869 0.100 0.256 0.869 0.536 0.031
0.008 0.001 0.001 0.869 0.256 0.256 0.256 0.256 0.869 0.869 0.869 0.536
0.008 0.000 0.001 0.869 0.256 0.256 0.100 0.998 0.869 0.256 0.869 0.869
0.031 0.000 0.001 0.869 0.100 0.100 0.256 0.998 0.256 0.100 0.536 0.998
0.000 0.000 0.000 0.256 0.998 0.998 0.256 0.100 0.256 0.869 0.256 0.100
0.000 0.000 0.000 0.256 0.998 0.998 0.100 0.256 0.256 0.869 0.256 0.100
0.000 0.000 0.000 0.256 0.998 0.998 0.100 0.256 0.256 0.869 0.256 0.100
0.008 0.000 0.000 0.256 0.256 0.256 0.869 0.869 0.869 0.256 0.256 0.536
0.031 0.256 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.031 0.008
0.000 0.256 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000

0.000 0.031 0.008 0.000 0.000 0.000 0.031 0.008 0.008 0.001 0.100 0.031

(f) Post-RNN-E-Acc.
Figure 8: Concept drift detection of various algorithms pre/post balancing, where p-value ≤ 0.05 (red color). (E) emulator

Table 5: RF, CNN, and RNN model p-value counts (≤ 0.05) for accuracy and F1 score across real devices and emulators.
(Pre) Pre-balanced, (Post) Post-balanced, (All) All permissions, (D) Deprecated, (R) Restricted, (N) Not for use by 3rd-party.

Balance
Real Device Emulator

Accuracy (p ≤ 0.05) F1 score (p ≤ 0.05) Accuracy (p ≤ 0.05) F1 score (p ≤ 0.05)
All Excl. All Excl. All Excl. All Excl.

RF - Random Forest
Pre 52 58 (D) / 42 (R) / 58 (N) 50 64 (D) / 50 (R) / 60 (N) 70 68 (D) / 58 (R) / 68 (N) 66 64 (D) / 56 (R) / 58 (N)
Post 84 94 (D) / 92 (R) / 92 (N) 80 94 (D) / 94 (R) / 92 (N) 96 102 (D) / 96 (R) / 92 (N) 96 102 (D) / 98 (R) / 94 (N)

CNN - Convolutional Neural Network
Pre 52 52 (D) / 44 (R) / 52 (N) 46 38 (D) / 44 (R) / 34 (N) 58 52 (D) / 54 (R) / 58 (N) 60 62 (D) / 48 (R) / 50 (N)
Post 60 72 (D) / 68 (R) / 58 (N) 62 76 (D) / 70 (R) / 54 (N) 76 70 (D) / 72 (R) / 64 (N) 78 70 (D) / 72 (R) / 62 (N)

RNN - Recurrent Neural Network
Pre 40 36 (D) / 42 (R) / 54 (N) 36 38 (D) / 40 (R) / 42 (N) 48 42 (D) / 40 (R) / 52 (N) 42 38 (D) / 46 (R) / 42 (N)
Post 60 72 (D) / 68 (R) / 64 (N) 60 72 (D) / 68 (R) / 62 (N) 64 60 (D) / 76 (R) / 58 (N) 64 60 (D) / 78 (R) / 58 (N)

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

0

0.2

0.4

0.6

0.8

1

0
.7

3

0
.5

6 0
.6

6 0
.8 0
.8

6

0
.8

8

0
.8

7

0
.8

2

0
.8

2

0
.8

2

0
.8

5

0
.7 0
.7

2

0
.7

3

0
.5

5 0
.6

7

0
.8

4

0
.8

6

0
.8

8

0
.8

7

0
.8 0
.8

5

0
.8

2

0
.8

5

0
.6

8

0
.6

7

Train Year

A
ve

ra
ge

A
cc

ur
ac

y

All Permissions
Excluding Deprecated

Figure 9: RF with all permissions and without deprecated.

4.3 Discussion

Our results provide strong empirical evidence that concept
drift is prevalent in Android malware detection and is
influenced by multiple factors. Below, we highlight those
results by answering the research questions in section 3.
AQ-1: The findings indicate that permissions play a signifi-
cant role in both the accuracy and effectiveness of malware
detection across all models. Specifically, as shown in the
results for the real and emulator datasets in Table 3, the
RF model achieved an accuracy of 0.954 on the real dataset
using only 166 permissions out of 489 dynamic and static
features. When using these hybrid features, the models
achieved accuracies of 0.980 (RF), 0.970 (CNN), and 0.980
(RNN). These results underscore the critical importance of
permissions in Android malware detection.
AQ-2: The sensitivity of permissions to concept drift signif-
icantly impacts the temporal performance of Android mal-
ware detection models. The results reveal that permissions
in the emulator dataset are more prone to drift, as evidenced
by fluctuations in accuracy and consistently higher p-value
counts in this dataset compared to the real device dataset.

Drift became more pronounced after data balancing, as

observed across all models. Although accuracy improved
in low-performing cases, this improvement also highlights
the heightened sensitivity of permissions to distributional
changes. For example, accuracy (yellow) increased from 47
to 8 after balancing and excluding restricted permissions
in the emulator dataset Table 4. While this is considered
a performance improvement, it also coincides with an in-
crease in detected concept drift, which rose from 96 to 146.
Additionally, for the same case, the number of significant
p-values increased from 58 to 96, as shown in Table 5.
AQ-3: The exclusion strategy revealed a marginal impact
on the models when deprecated and not for use by third-
party permissions were omitted. In some cases, such as with
the CNN model, performance metrics like accuracy and F1
score showed slight improvements, suggesting that these
permissions—while historically valuable—may contribute
less to a model’s ability to generalize in certain scenarios.

From the perspective of concept drift, the exclusion of
these permissions played a significant role in enhancing the
detection of drift patterns. Using the KS test or heatmap cells
to highlight drift, the results indicated that removing these
permissions made concept drift more apparent. This can be
attributed to the elimination of outdated or less relevant
features, which appeared in certain years but were absent in
others, as shown in the analysis section (Figure 5).

Thus, while excluding deprecated and not-for-use-by-third-
party permissions might not always boost immediate model
performance, it contributes to the understanding and detec-
tion of concept drift–an essential factor for the long-term
stability and reliability of malware detection systems.

5 RELATED WORK

The Android permission system plays a central role in both
malware detection and platform security. In the following,

11

we review work on its evolution, abuse, and implications
for machine learning-based detection.

Android Permission System. Since API 6.0, Android’s per-
mission model has undergone several changes, expanding
to support hardware rather than refining security granu-
larity [35]. Studies reveal overprivileged apps—especially
pre-installed ones—contributing to user confusion and in-
creased risk [36]. Tools like PScout [37] and Cusper [38]
exposed structural flaws, while fine-grained enforcement
via frameworks like Sorbet [39] and DroidCap [40] sought
to address least-privilege enforcement. Recent efforts also
uncovered issues with undocumented permissions [41] and
inter-version inconsistencies [35], highlighting challenges in
sustaining a secure permission framework.

Privilege Escalation via Permission Abuse. The permis-
sion system has been exploited through custom permission
spoofing [42], exposed components for sensor access [43],
covert collusion channels [44], and physical hijacking [45].
Tools like PmDroid [46] detect permission violations by
ad libraries, while others reveal permissionless exfiltration
paths via shared resources [47]. Detection techniques span
static (e.g., COVERT [48]), dynamic (e.g., VetDroid [49]),
and hybrid approaches (e.g., Permlyzer [50]), reinforcing the
need for multi-pronged analysis and mitigation.

Runtime Permission Issues and Testing. The shift to run-
time permissions introduced new vulnerabilities. Tools such
as RevDroid [51] and Aper [52] analyzed app behavior
post-revocation, showing malware often handles revocation
more gracefully than benign apps. Testing frameworks like
PermDroid [53], PATDroid [54], and DPC [55] automate
state-based testing or introduce dynamic controls to restrict
third-party library misuse.

Android Malware Detection. Permissions are a critical
feature in Android malware detection. Numerous works
highlight their utility: Ilham et al. [6] and Shatnawi et
al. [10] showed high accuracy with selected permissions
using traditional classifiers. Sahin et al. [9] demonstrated
the benefit of reducing permission sets, while Kato et al. [7]
introduced composition ratios to classify malware. Recent
models combine permissions with APIs, intents, and be-
havior traces. Tools such as PermPair [56], DroidXGB [57],
and MalPat [58] enhance classification by mining permis-
sion patterns and graphs. Multi-feature models, including
CNNs with opcode and API information [11], improve
zero-day detection. Federated learning approaches like FE-
Droid [12] address privacy-preserving malware detection
using permission-based features. Permissions also support
behavior-specific multi-label classification frameworks [59].
These studies reinforce the critical role of permissions in
malware detection. However, their effectiveness is suscepti-
ble to changes in permission availability and semantics over
time, introducing a potential source of concept drift.

Concept Drift. To improve model adaptability under drift,
approaches like TRANSCEND [60], TRANSCENDENT [61],
and DREAM [62] incorporate conformal prediction, rejec-
tion mechanisms, or semi-supervised learning. Active learn-
ing and retraining techniques [19], [20], [63] reduce labeling
cost and improve drift responsiveness. Other models use
self-training [20], contrastive learning [64], and ensemble

classifiers with adaptive feature selection [18].
Novel architectures include cluster-based drift detec-

tion [65], GNNs for invariant feature learning [66], and
hybrid models enhanced with evolutionary strategies [67].
Recent insights from Chow et al. [21] show that drift stems
not only from evolving malware but also goodware changes
and family-specific shifts. Molina et al. [19] further advocate
for retraining-on-drift rather than fixed intervals to conserve
resources and improve stability.

This Study. While prior work broadly addresses evolving
threats and concept drift, our study focuses on the under-
explored impact of permission deprecation—a system-level
change—on model stability and performance drift. We offer
new insights into how Android’s evolving permission archi-
tecture affects the reliability of ML-based malware detection.
Effectively addressing concept drift is critical for sustaining
detection accuracy, and this study examines the temporal
evolution of permission-based features, demonstrating that
even simple models are susceptible to degradation. By iso-
lating the effects of permission deprecation and quantifying
drift using accuracy and F1 scores, our findings support the
design of more adaptive and resilient detection frameworks.

6 CONCLUSION

This work explored the role of Android permissions in
malware detection, their sensitivity to concept drift, and the
impact of deprecated and restricted permissions on model
stability. Using the KronoDroid dataset (including real and
emulator devices), it found permissions to be strong features
for detection. Excluding deprecated/restricted permissions
had minimal impact on performance and even improved
accuracy in some models (e.g., CNN). Two strategies as-
sessed whether this exclusion mitigates concept drift. Re-
sults showed improved drift detection–especially in a year-
to-year setup—since deprecated permissions persisted in
updated apps. Additionally, dataset balancing improved
model accuracy and enhanced drift detection via the KS test.

REFERENCES

[1] —, “Manifest.permission — android developers,”
https://www.counterpointresearch.com/insights/
global-smartphone-os-market-share, 2025.

[2] ——, “Permissions on android android developers,” https:
//developer.android.com/guide/topics/permissions/overview,
2025.

[3] Y. Sharma and A. Arora, “A comprehensive review on
permissions-based android malware detection,” Int. J. Inf.
Sec., vol. 23, no. 3, pp. 1877–1912, 2024. [Online]. Available:
https://doi.org/10.1007/s10207-024-00822-2

[4] N. Carlini, A. P. Felt, and D. Wagner, “An evaluation of the google
chrome extension security architecture,” in USENIX Security Sym-
posium, 2012, pp. 97–111.

[5] X. Zhang, Z. Yu, X. Li, C. Zhang, C. Sun, N. Zhang, and R. H.
Deng, “Understanding the bad development practices of android
custom permissions in the wild,” IEEE Transactions on Dependable
and Secure Computing, pp. 1–17, 2025.

[6] S. Ilham, A. Ghadi, and A. B. Abdelhakim, “Permission based
malware detection in android devices,” in SCA. ACM, 2018, pp.
83:1–83:6. [Online]. Available: https://doi.org/10.1145/3286606.
3286860

[7] H. Kato, T. Sasaki, and I. Sasase, “Android malware detection
based on composition ratio of permission pairs,” IEEE
Access, vol. 9, pp. 130 006–130 019, 2021. [Online]. Available:
https://doi.org/10.1109/ACCESS.2021.3113711

https://www.counterpointresearch.com/insights/global-smartphone-os-market-share
https://www.counterpointresearch.com/insights/global-smartphone-os-market-share
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://doi.org/10.1007/s10207-024-00822-2
https://doi.org/10.1145/3286606.3286860
https://doi.org/10.1145/3286606.3286860
https://doi.org/10.1109/ACCESS.2021.3113711

12

[8] S. R. T. Mat, M. F. A. Razak, M. N. M. Kahar, J. M. Arif, and
A. Firdaus, “A bayesian probability model for android malware
detection,” ICT Express, 2022.

[9] D. Ö. Sahin, O. E. Kural, S. Akleylek, and E. Kiliç, “A
novel permission-based android malware detection system using
feature selection based on linear regression,” Neural Comput.
Appl., vol. 35, no. 7, pp. 4903–4918, 2023. [Online]. Available:
https://doi.org/10.1007/s00521-021-05875-1

[10] A. S. Shatnawi, Q. Yassen, and A. A. Yateem, “An android
malware detection approach based on static feature analysis using
machine learning algorithms,” in ANT, vol. 201, 2022, pp. 653–658.
[Online]. Available: https://doi.org/10.1016/j.procs.2022.03.086

[11] S. Millar, N. McLaughlin, J. M. del Rincón, and P. Miller, “Multi-
view deep learning for zero-day android malware detection,”
J. Inf. Secur. Appl., vol. 58, p. 102718, 2021. [Online]. Available:
https://doi.org/10.1016/j.jisa.2020.102718

[12] W. Fang, J. He, W. Li, X. Lan, Y. Chen, T. Li, J. Huang,
and L. Zhang, “Comprehensive android malware detection
based on federated learning architecture,” IEEE Trans. Inf.
Forensics Secur., vol. 18, pp. 3977–3990, 2023. [Online]. Available:
https://doi.org/10.1109/TIFS.2023.3287395

[13] T. R. Hoens, R. Polikar, and N. V. Chawla, “Learning from
streaming data with concept drift and imbalance: an overview,”
Prog. Artif. Intell., vol. 1, no. 1, pp. 89–101, 2012. [Online].
Available: https://doi.org/10.1007/s13748-011-0008-0

[14] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning
in nonstationary environments: A survey,” IEEE Comput. Intell.
Mag., vol. 10, no. 4, pp. 12–25, 2015. [Online]. Available:
https://doi.org/10.1109/MCI.2015.2471196

[15] G. I. Webb, R. Hyde, H. Cao, H. Nguyen, and F. Petitjean,
“Characterizing concept drift,” Data Min. Knowl. Discov.,
vol. 30, no. 4, pp. 964–994, 2016. [Online]. Available: https:
//doi.org/10.1007/s10618-015-0448-4

[16] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and
M. Wozniak, “Ensemble learning for data stream analysis: A
survey,” Inf. Fusion, vol. 37, pp. 132–156, 2017. [Online]. Available:
https://doi.org/10.1016/j.inffus.2017.02.004

[17] F. Bayram, B. S. Ahmed, and A. Kassler, “From concept drift
to model degradation: An overview on performance-aware drift
detectors,” Knowl. Based Syst., vol. 245, p. 108632, 2022. [Online].
Available: https://doi.org/10.1016/j.knosys.2022.108632

[18] D. Hu, Z. Ma, X. Zhang, P. Li, D. Ye, and B. Ling, “The concept
drift problem in android malware detection and its solution,”
Secur. Commun. Networks, vol. 2017, pp. 4 956 386:1–4 956 386:13,
2017. [Online]. Available: https://doi.org/10.1155/2017/4956386

[19] B. Molina-Coronado, U. Mori, A. Mendiburu, and J. Miguel-
Alonso, “Efficient concept drift handling for batch android
malware detection models,” Pervasive Mob. Comput., vol. 96, p.
101849, 2023. [Online]. Available: https://doi.org/10.1016/j.pmcj.
2023.101849

[20] M. T. Alam, R. Fieblinger, A. Mahara, and N. Rastogi, “MORPH:
towards automated concept drift adaptation for malware
detection,” CoRR, vol. abs/2401.12790, 2024. [Online]. Available:
https://doi.org/10.48550/arXiv.2401.12790

[21] T. Chow, Z. Kan, L. Linhardt, L. Cavallaro, D. Arp,
and F. Pierazzi, “Drift forensics of malware classifiers,”
in AISec. ACM, 2023, pp. 197–207. [Online]. Available:
https://doi.org/10.1145/3605764.3623918

[22] G. Meng, M. Patrick, Y. Xue, Y. Liu, and J. Zhang, “Securing
android app markets via modeling and predicting malware
spread between markets,” IEEE Trans. Inf. Forensics Secur.,
vol. 14, no. 7, pp. 1944–1959, 2019. [Online]. Available:
https://doi.org/10.1109/TIFS.2018.2889924

[23] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. A.
Wagner, “A survey of mobile malware in the wild,” in
SPSM. ACM, 2011, pp. 3–14. [Online]. Available: https:
//doi.org/10.1145/2046614.2046618

[24] W. Ali, “Hybrid intelligent android malware detection using
evolving support vector machine based on genetic algorithm and
particle swarm optimization,” IJCSNS, vol. 19, no. 9, p. 15, 2019.

[25] A. Vishnoi, P. Mishra, C. Negi, and S. K. Peddoju, “Android
malware detection techniques in traditional and cloud computing
platforms: A state-of-the-art survey,” Int. J. Cloud Appl.
Comput., vol. 11, no. 4, pp. 113–135, 2021. [Online]. Available:
https://doi.org/10.4018/IJCAC.2021100107

[26] J. Gamba, Á. Feal, E. Blázquez, V. Bandara, A. Razaghpanah,
J. Tapiador, and N. Vallina-Rodriguez, “Mules and permission

laundering in android: Dissecting custom permissions in the
wild,” IEEE Trans. Dependable Secur. Comput., vol. 21, no. 4, pp.
1801–1816, 2024. [Online]. Available: https://doi.org/10.1109/
TDSC.2023.3288981

[27] J. C. Schlimmer and R. H. Granger, “Incremental learning from
noisy data,” Mach. Learn., vol. 1, no. 3, pp. 317–354, 1986. [Online].
Available: https://doi.org/10.1023/A:1022810614389

[28] Q. Xiang, L. Zi, X. Cong, and Y. Wang, “Concept drift adaptation
methods under the deep learning framework: A literature review,”
Applied Sciences, vol. 13, no. 11, p. 6515, 2023.

[29] —, “Activitymanager — api reference — android developers,”
https://developer.android.com/reference/android/app/ActivityManager,
3 2025.

[30] ——, “Privacy changes in android 10 — android developers,”
https://developer.android.com/about/versions/10/privacy/changes,
03 2025.

[31] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia,
“A survey on concept drift adaptation,” ACM Comput. Surv.,
vol. 46, no. 4, pp. 44:1–44:37, 2014. [Online]. Available:
https://doi.org/10.1145/2523813

[32] Z. Wang and W. Wang, “Concept drift detection based on
kolmogorov–smirnov test,” in Artificial Intelligence in China. Sin-
gapore: Springer Singapore, 2020, pp. 273–280.

[33] A. Guerra-Manzanares, H. Bahsi, and S. Nõmm, “Kronodroid:
Time-based hybrid-featured dataset for effective android malware
detection and characterization,” Comput. Secur., vol. 110, p.
102399, 2021. [Online]. Available: https://doi.org/10.1016/j.cose.
2021.102399

[34] —, “Manifest.permission — android developers,” https://
developer.android.com/reference/android/Manifest.permission,
2025.

[35] Y. Zhauniarovich and O. Gadyatskaya, “Small changes, big
changes: An updated view on the android permission system,” in
RAID, vol. 9854. Springer, 2016, pp. 346–367. [Online]. Available:
https://doi.org/10.1007/978-3-319-45719-2 16

[36] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Permission
evolution in the android ecosystem,” in ACSAC. ACM, 2012,
pp. 31–40. [Online]. Available: https://doi.org/10.1145/2420950.
2420956

[37] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing
the android permission specification,” in CCS. ACM, 2012, pp.
217–228. [Online]. Available: https://doi.org/10.1145/2382196.
2382222

[38] G. S. Tuncay, S. Demetriou, K. Ganju, and C. A. Gunter,
“Resolving the predicament of android custom permissions,”
in NDSS. The Internet Society, 2018. [Online]. Avail-
able: https://www.ndss-symposium.org/wp-content/uploads/
2018/02/ndss2018 08-4 Tuncay paper.pdf

[39] E. Fragkaki, L. Bauer, L. Jia, and D. Swasey, “Modeling
and enhancing android’s permission system,” in ESORICS,
vol. 7459. Springer, 2012, pp. 1–18. [Online]. Available:
https://doi.org/10.1007/978-3-642-33167-1 1

[40] A. Dawoud and S. Bugiel, “Droidcap: OS
support for capability-based permissions in android,”
in NDSS. The Internet Society, 2019. [Online].
Available: https://www.ndss-symposium.org/ndss-paper/
droidcap-os-support-for-capability-based-permissions-in-android/

[41] H. Zhou, H. Wang, S. Wu, X. Luo, Y. Zhou, T. Chen, and T. Wang,
“Finding the missing piece: Permission specification analysis
for android NDK,” in ASE. IEEE, 2021, pp. 505–516. [Online].
Available: https://doi.org/10.1109/ASE51524.2021.9678843

[42] R. Li, W. Diao, Z. Li, S. Yang, S. Li, and S. Guo, “Android custom
permissions demystified: A comprehensive security evaluation,”
IEEE Trans. Software Eng., vol. 48, no. 11, pp. 4465–4484, 2022.
[Online]. Available: https://doi.org/10.1109/TSE.2021.3119980

[43] A. Aldoseri, D. F. Oswald, and R. Chiper, “A tale of
four gates - privilege escalation and permission bypasses
on android through app components,” in ESORICS, vol.
13555. Springer, 2022, pp. 233–251. [Online]. Available:
https://doi.org/10.1007/978-3-031-17146-8 12

[44] J. Reardon, Á. Feal, P. Wijesekera, A. E. B. On, N. Vallina-
Rodriguez, and S. Egelman, “50 ways to leak your data: An explo-
ration of apps’ circumvention of the android permissions system,”
login Usenix Mag., vol. 44, no. 4, 2019. [Online]. Available: https:
//www.usenix.org/publications/login/winter2019/reardon

[45] X. Wang, S. Shi, Y. Chen, and W. C. Lau, “Phyjacking: Physical
input hijacking for zero-permission authorization attacks on

https://doi.org/10.1007/s00521-021-05875-1
https://doi.org/10.1016/j.procs.2022.03.086
https://doi.org/10.1016/j.jisa.2020.102718
https://doi.org/10.1109/TIFS.2023.3287395
https://doi.org/10.1007/s13748-011-0008-0
https://doi.org/10.1109/MCI.2015.2471196
https://doi.org/10.1007/s10618-015-0448-4
https://doi.org/10.1007/s10618-015-0448-4
https://doi.org/10.1016/j.inffus.2017.02.004
https://doi.org/10.1016/j.knosys.2022.108632
https://doi.org/10.1155/2017/4956386
https://doi.org/10.1016/j.pmcj.2023.101849
https://doi.org/10.1016/j.pmcj.2023.101849
https://doi.org/10.48550/arXiv.2401.12790
https://doi.org/10.1145/3605764.3623918
https://doi.org/10.1109/TIFS.2018.2889924
https://doi.org/10.1145/2046614.2046618
https://doi.org/10.1145/2046614.2046618
https://doi.org/10.4018/IJCAC.2021100107
https://doi.org/10.1109/TDSC.2023.3288981
https://doi.org/10.1109/TDSC.2023.3288981
https://doi.org/10.1023/A:1022810614389
https://doi.org/10.1145/2523813
https://doi.org/10.1016/j.cose.2021.102399
https://doi.org/10.1016/j.cose.2021.102399
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/reference/android/Manifest.permission
https://doi.org/10.1007/978-3-319-45719-2_16
https://doi.org/10.1145/2420950.2420956
https://doi.org/10.1145/2420950.2420956
https://doi.org/10.1145/2382196.2382222
https://doi.org/10.1145/2382196.2382222
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_08-4_Tuncay_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_08-4_Tuncay_paper.pdf
https://doi.org/10.1007/978-3-642-33167-1_1
https://www.ndss-symposium.org/ndss-paper/droidcap-os-support-for-capability-based-permissions-in-android/
https://www.ndss-symposium.org/ndss-paper/droidcap-os-support-for-capability-based-permissions-in-android/
https://doi.org/10.1109/ASE51524.2021.9678843
https://doi.org/10.1109/TSE.2021.3119980
https://doi.org/10.1007/978-3-031-17146-8_12
https://www.usenix.org/publications/login/winter2019/reardon
https://www.usenix.org/publications/login/winter2019/reardon

13

android,” in NDSS. The Internet Society, 2022. [Online]. Available:
https://www.ndss-symposium.org/ndss-paper/auto-draft-187/

[46] X. Gao, D. Liu, H. Wang, and K. Sun, “Pmdroid: Permission
supervision for android advertising,” in SRDS. IEEE Computer
Society, 2015, pp. 120–129. [Online]. Available: https://doi.org/
10.1109/SRDS.2015.41

[47] J. Wu, Y. Wu, M. Yang, Z. Wu, T. Luo, and Y. Wang, “POSTER:
bitheft: Stealing your secrets by bidirectional covert channel
communication with zero-permission android application,” in
SIGSAC. ACM, 2015, pp. 1690–1692. [Online]. Available:
https://doi.org/10.1145/2810103.2810108

[48] H. Bagheri, A. Sadeghi, J. Garcia, and S. Malek, “COVERT:
compositional analysis of android inter-app permission leakage,”
IEEE Trans. Software Eng., vol. 41, no. 9, pp. 866–886, 2015.
[Online]. Available: https://doi.org/10.1109/TSE.2015.2419611

[49] Y. Zhang, M. Yang, Z. Yang, G. Gu, P. Ning, and B. Zang,
“Permission use analysis for vetting undesirable behaviors in
android apps,” IEEE Trans. Inf. Forensics Secur., vol. 9, no. 11, pp.
1828–1842, 2014. [Online]. Available: https://doi.org/10.1109/
TIFS.2014.2347206

[50] W. Xu, F. Zhang, and S. Zhu, “Permlyzer: Analyzing
permission usage in android applications,” in ISSRE. IEEE
Computer Society, 2013, pp. 400–410. [Online]. Available:
https://doi.org/10.1109/ISSRE.2013.6698893

[51] Z. Fang, W. Han, D. Li, Z. Guo, D. Guo, X. S. Wang,
Z. Qian, and H. Chen, “revdroid: Code analysis of the side
effects after dynamic permission revocation of android apps,”
in AsiaCCS. ACM, 2016, pp. 747–758. [Online]. Available:
https://doi.org/10.1145/2897845.2897914

[52] S. Wang, Y. Wang, X. Zhan, Y. Wang, Y. Liu, X. Luo, and
S. Cheung, “APER: evolution-aware runtime permission misuse
detection for android apps,” in ICSE. ACM, 2022, pp. 125–137.
[Online]. Available: https://doi.org/10.1145/3510003.3510074

[53] S. Yang, Z. Zeng, and W. Song, “Permdroid: automatically
testing permission-related behaviour of android applications,”
in ISSTA. ACM, 2022, pp. 593–604. [Online]. Available:
https://doi.org/10.1145/3533767.3534221

[54] A. Sadeghi, R. Jabbarvand, and S. Malek, “Patdroid: permission-
aware GUI testing of android,” in ESEC/FSE. ACM, 2017, pp.
220–232. [Online]. Available: https://doi.org/10.1145/3106237.
3106250

[55] F. Hsu, N. Liu, Y. Hwang, C. Liu, C. Wang, and C. Chen,
“DPC: A dynamic permission control mechanism for android
third-party libraries,” IEEE Trans. Dependable Secur. Comput.,
vol. 18, no. 4, pp. 1751–1761, 2021. [Online]. Available:
https://doi.org/10.1109/TDSC.2019.2937925

[56] A. Arora, S. K. Peddoju, and M. Conti, “Permpair: Android
malware detection using permission pairs,” IEEE Trans. Inf.
Forensics Secur., vol. 15, pp. 1968–1982, 2020. [Online]. Available:
https://doi.org/10.1109/TIFS.2019.2950134

[57] P. Kumar and S. Singh, “Enhancing android application security:
A novel approach using droidxgb for malware detection based
on permission analysis,” Secur. Priv., vol. 7, no. 2, 2024. [Online].
Available: https://doi.org/10.1002/spy2.361

[58] G. Tao, Z. Zheng, Z. Guo, and M. R. Lyu, “Malpat: Mining
patterns of malicious and benign android apps via permission-
related apis,” IEEE Trans. Reliab., vol. 67, no. 1, pp. 355–369, 2018.
[Online]. Available: https://doi.org/10.1109/TR.2017.2778147

[59] Q. Qiao, R. Feng, S. Chen, F. Zhang, and X. Li, “Multi-label
classification for android malware based on active learning,” IEEE
Transactions on Dependable and Secure Computing, pp. 1–18, 2022.

[60] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang,
D. Papini, I. Nouretdinov, and L. Cavallaro, “Transcend:
Detecting concept drift in malware classification models,”
in USENIX. USENIX Association, 2017, pp. 625–
642. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/jordaney

[61] F. Barbero, F. Pendlebury, F. Pierazzi, and L. Cavallaro,
“Transcending TRANSCEND: revisiting malware classification in
the presence of concept drift,” in 43rd SP. IEEE, 2022, pp.
805–823. [Online]. Available: https://doi.org/10.1109/SP46214.
2022.9833659

[62] Y. He, J. Lei, Z. Qin, and K. Ren, “Dream: Combating
concept drift with explanatory detection and adaptation
in malware classification,” 2024. [Online]. Available: https:
//arxiv.org/abs/2405.04095

[63] A. Abusnaina, A. Anwar, M. Saad, A. Alabduljabbar, R. Jang,
S. Salem, and D. Mohaisen, “Exposing the limitations of machine
learning for malware detection under concept drift,” in WISE,
vol. 15437. Springer, 2024, pp. 273–289. [Online]. Available:
https://doi.org/10.1007/978-981-96-0567-5 20

[64] Y. Chen, Z. Ding, and D. A. Wagner, “Continuous learning for
android malware detection,” in USENIX. USENIX Association,
2023, pp. 1127–1144. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity23/presentation/chen-yizheng

[65] A. Mishra and M. Stamp, “Cluster analysis and concept drift
detection in malware,” CoRR, vol. abs/2502.14135, 2025. [Online].
Available: https://doi.org/10.48550/arXiv.2502.14135

[66] A. S. Li, A. Iyengar, A. Kundu, and E. Bertino, “Revisiting concept
drift in windows malware detection: Adaptation to real drifted
malware with minimal samples,” in NDSS. ISOC, 2025.

[67] B. P. Gond and D. P. Mohapatra, “Deep learning-driven
malware classification with api call sequence analysis and
concept drift handling,” 2025. [Online]. Available: https:
//arxiv.org/abs/2502.08679

Ahmed Sabbah received a Bachelor’s degree in
computer science from An-Najah National Uni-
versity, Palestine, in 2008 and a Master’s degree
in software engineering from Birzeit University in
2021. He is currently working toward a Ph.D. de-
gree with the Department of Computer Science,
Birzeit University. His research interests include
security, machine learning, software engineer-
ing, and mobile malware analysis.

Radi Jarrar received his B.Sc. in Computer In-
formation Technology from the Arab American
University in 2007 and a Ph.D. in Computer
Science from Monash University in 2012. Since
2015, he has been an assistant professor in the
Department of Computer Science at Birzeit Uni-
versity, Ramallah, Palestine. His research inter-
ests include machine learning, computer vision,
and data science, with applications in computer
security.

Samer Zein received the M.Sc. degree in Soft-
ware Engineering from Northumbria University,
United Kingdom, in 2004, and the Ph.D. degree
in Mobile Software Engineering from the Inter-
national Islamic University Malaysia (IIUM) in
2016. He is currently an Associate Professor in
the Department of Computer Science at Birzeit
University. He has over 20 years of academic ex-
perience and has contributed as a software engi-
neer to several management information system
(MIS) projects since 2000. His research inter-

ests include mobile app software engineering, empirical software engi-
neering, model-driven software development, and systematic literature
reviews (SLRs). He has also conducted multiple qualitative studies
involving contemporary industrial case studies.

David Mohaisen (Senior Member, IEEE) re-
ceived the MSc and PhD degrees from the Uni-
versity of Minnesota in 2012. He is currently a
full professor at the University of Central Florida,
where he directs the Security and Analytics Lab.
From 2015 to 2017, he was an assistant pro-
fessor at SUNY Buffalo, and from 2012 to 2015,
he was a senior research scientist with Verisign
Labs. His research interests span networked
systems security, online privacy, and measure-
ments. He has been an associate editor for the

IEEE Transactions on Mobile Computing, IEEE Transactions on Cloud
Computing, IEEE Transactions on Parallel and Distributed Systems,
and IEEE Transactions on Dependable and Secure Computing. He is a
senior member of ACM (2018) and IEEE (2015), a distinguished speaker
of the ACM, and a distinguished visitor of the IEEE Computer Society.

https://www.ndss-symposium.org/ndss-paper/auto-draft-187/
https://doi.org/10.1109/SRDS.2015.41
https://doi.org/10.1109/SRDS.2015.41
https://doi.org/10.1145/2810103.2810108
https://doi.org/10.1109/TSE.2015.2419611
https://doi.org/10.1109/TIFS.2014.2347206
https://doi.org/10.1109/TIFS.2014.2347206
https://doi.org/10.1109/ISSRE.2013.6698893
https://doi.org/10.1145/2897845.2897914
https://doi.org/10.1145/3510003.3510074
https://doi.org/10.1145/3533767.3534221
https://doi.org/10.1145/3106237.3106250
https://doi.org/10.1145/3106237.3106250
https://doi.org/10.1109/TDSC.2019.2937925
https://doi.org/10.1109/TIFS.2019.2950134
https://doi.org/10.1002/spy2.361
https://doi.org/10.1109/TR.2017.2778147
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jordaney
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jordaney
https://doi.org/10.1109/SP46214.2022.9833659
https://doi.org/10.1109/SP46214.2022.9833659
https://arxiv.org/abs/2405.04095
https://arxiv.org/abs/2405.04095
https://doi.org/10.1007/978-981-96-0567-5_20
https://www.usenix.org/conference/usenixsecurity23/presentation/chen-yizheng
https://www.usenix.org/conference/usenixsecurity23/presentation/chen-yizheng
https://doi.org/10.48550/arXiv.2502.14135
https://arxiv.org/abs/2502.08679
https://arxiv.org/abs/2502.08679

	1 Introduction
	2 Background
	2.1 Android Package Kit (APK)
	2.2 Android Security
	2.3 Android Permissions
	2.4 Permission-Based Malware Detection
	2.5 Concept Drift
	2.6 Android Permissions Deprecation

	3 Methodology
	3.1 Model Workflow
	3.2 Dataset Overview
	3.3 Data Analysis
	3.4 Evaluation Metrics
	3.5 Experiment Setup

	4 Results and Discussion
	4.1 Ignoring the Chronological Context
	4.2 Year-to-Year Strategy
	4.2.1 Performance of Models Without KS Test.
	4.2.2 Concept Drift Detection Using KS Test

	4.3 Discussion

	5 Related Work
	6 Conclusion
	References
	Biographies
	Ahmed Sabbah
	Radi Jarrar
	Samer Zein
	David Mohaisen

