arXiv:2507.22371v1 [cs.CR] 30 Jul 2025

SAEL: Leveraging Large Language Models with
Adaptive Mixture-of-Experts for Smart Contract
Vulnerability Detection

Lei Yu'!, Shiqi Cheng!!, Zhirong Huang'¥, Jingyuan Zhang'*, Chenjie Shen'?,
Junyi Lu™¥, Li Yang™, Fengjun Zhang$*, Jiajia Maf
TInstitute of Software, Chinese Academy of Sciences, Beijing, China
iUniversity of Chinese Academy of Sciences, Beijing, China
8State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
{yulei2022, chengshiqi, huangzhirong2022, zhangjingyuan2023, lujunyi2022} @iscas.ac.cn,
shenchenjie22 @mails.ucas.ac.cn, {yangli2017, fengjun, majiajia}@iscas.ac.cn

Abstract—With the increasing security issues in blockchain,
smart contract vulnerability detection has become a research
focus. Existing vulnerability detection methods have their limita-
tions: 1) Static analysis methods struggle with complex scenarios.
2) Methods based on specialized pre-trained models perform well
on specific datasets but have limited generalization capabilities.
In contrast, general-purpose Large Language Models (LLMs)
demonstrate impressive ability in adapting to new vulnerability
patterns. However, they often underperform on specific vulnera-
bility types compared to methods based on specialized pre-trained
models. We also observe that explanations generated by general-
purpose LLMs can provide fine-grained code understanding
information, contributing to improved detection performance.

Inspired by these observations, we propose SAEL, a LLM-
based framework for smart contract vulnerability detection.
First, we design prompts targeting specific smart contract vul-
nerabilities to guide general-purpose LLMs in detecting vul-
nerabilities and providing explanations. The detection results
generated by LLMs serve as prediction features. Then, we
employ prompt-tuning on CodeT5 and TS5 respectively to process
contract code and explanations, enhancing model performance
on specific tasks. To leverage the strengths of each component, we
introduce Adaptive Mixture-of-Experts, a dynamic architecture
for smart contract vulnerability detection. This mechanism dy-
namically adjusts feature weights through a Gating Network,
which selects the most relevant features by applying TopK
filtering and Softmax normalization, and a Multi-Head Self-
Attention mechanism, which enhances cross-feature relationships
by processing multiple attention heads in parallel. This design
ensures that prediction results for LLMs, explanation features,
and contract code features are effectively integrated through
gradient optimization. The loss function focuses on the inde-
pendent prediction performance of each feature and the overall
performance of weighted predictions. Experimental results show
that SAEL outperforms existing methods in detecting various
vulnerabilities.

Index Terms—Smart Contract, Large Language Models,
Mixture-of-Experts, Vulnerability Detection

I. INTRODUCTION
Blockchain technology has grown rapidly and become popu-
lar across various sectors due to its decentralized nature [1]. As

1Lei Yu and Shigi Cheng contributed equally to this work.
*Corresponding authors: Li Yang and Fengjun Zhang.

a significant innovation, blockchain allows for the creation of
secure, decentralized, and distributed digital ledgers that record
transactions [2]. By using cryptographic methods, blockchain
ensures that each transaction is secure and verified, making it
a highly dependable technology [3]], [4]]. In particular, graph
analysis techniques, including detecting criminal communities
[S] and multi-scale anomaly detection [[6], play a crucial role
in identifying irregular patterns and enhancing the security of
blockchain networks. Smart contracts are automated programs
on the blockchain that let developers create rules for managing
digital assets like cryptocurrency. They automatically execute
when specific conditions are met. Once these programs are
deployed on the blockchain, they are permanent [7]]. However,
the unchangeable and complex nature of smart contracts
means that their security challenges are increasingly evident
[7]. The infamous DAO attack [8|]-[12] illustrates the severe
consequences of such vulnerabilities. This attack led to the
unauthorized transfer of Ethereum worth 60 million dollars,
causing significant disruptions in the blockchain community
[13], [14]. This highlights the critical need to enhance the
security of smart contracts to avoid such crushing outcomes
in the future.

Researchers have developed various techniques to identify
vulnerabilities in smart contracts. One popular approach is
symbolic execution, which is implemented in tools such as
Oyente [15], Mythril [16], Osiris [[17], and Manticore [18].
Another commonly used technique is static analysis, which
is employed by tools like Slither [[19] and SmartCheck [20].
However, these methods rely solely on fixed patterns and have
poor generalizability. As shown in Fig. [T| Slither incorrectly
identifies a reentrancy vulnerability by detecting external calls
and state variable modifications, but fails to consider the
onlyOwner modifier that prevents such attacks, resulting in
a false positive. Clear [21] adopts a Contrastive Learning
(CL) model to learn complex relationships between contracts.
Zhuang et al. [22] and Luo et al. [23] introduce a graph neural
network-based approach that converts smart contract code into
graph representations. However, the complexity of the graph

https://arxiv.org/abs/2507.22371v1

structures employed in these techniques makes them difficult
to reproduce and effectively represent programs. Peculiar [24]]
and PSCVFinder [25] achieve precise detection of smart
contract vulnerabilities by fine-tuning pre-trained models. As
shown in Fig. [2] their detection capabilities for reentrancy and
timestamp dependency vulnerabilities are superior to directly
using general-purpose LLMs. However, they may struggle to
handle scenarios not well-represented in the training data,
exhibiting poor generalizability. As illustrated in Fig. [1} spe-
cialized pre-trained models (PSCVFinder and Peculiar) fail
to understand the role of the onlyOwner modifier in Fig.
[1l resulting in false positives. In contrast, general-purpose
LLM correctly understands the function of the onlyOwner
modifier, recognizing that the refund function is protected by
the onlyOwner modifier. Even if investor.call.value(amount)()
triggers a callback function of a malicious contract, that ma-
licious contract cannot call the refund function again because
it is not the contract owner. Consequently, general-purposed
LLM correctly concludes that the contract does not contain a
reentrancy vulnerability. This comparison highlights the com-
plementary strengths of different approaches: general-purpose
LLMs demonstrate superior capability in adapting to new
vulnerability patterns, while specialized pre-trained models
provide high performance for well-defined vulnerability types.

We observe that explanations generated by general-purpose
LLMs can serve as fine-grained code understanding informa-
tion, improving the performance of smart contract vulnera-
bility detection. As shown in Fig. [3| for a specific contract,
the general-purpose LLM (Qwenl.5-72B-Chat) identified a
timestamp dependency vulnerability in the contract and pro-
vided explanations about the usage of block.timestamp (only
used in a require statement), the structure and security checks
of the function (constrained by two require statements), and
the usage of state variables (read-only). These details allow
for the analysis that the timestamp is only used for simple
comparison, does not directly affect the state, and state vari-
ables are not modified. These inferences based on detailed
explanations suggest that the contract may not actually contain
a timestamp dependency vulnerability, which is consistent
with the label. This insight motivates us to incorporate the
explanation generated by general-purpose LLMs into smart
contract vulnerability detection models.

Based on these findings, we propose SAEL, an LLM-based
smart contract vulnerability detection framework. First, we
design prompts tailored to specific smart contract vulnera-
bilities to guide LLMs in analyzing smart contract code,
detecting vulnerabilities, and providing fine-grained explana-
tions. This addresses the poor generalizability of static analysis
and pre-trained methods. The predictions generated by LLMs
serve as predictive features. We conducted a comprehen-
sive empirical study comparing the performance of different
LLMs on reentrancy and timestamp dependency vulnerability
datasets, as shown in Fig. @ We found that Qwenl.5-72B-
Chat exhibits performance closest to GPT-4-Turbo in smart
contract vulnerability detection. To balance performance and
overhead, we employ it as the LLM model in this study. Yu et

al. [25] demonstrated that using prompt tuning outperforms
fine-tuning on smart contract vulnerability detection tasks,
while CodeT5 [26] achieves better results compared to other
models such as GraphCodeBERT [27]]. Therefore, we adopt
prompt-tuning instead of fine-tuning on CodeT5 [26] and T5
[28] to handle contract code and explanations, respectively.
Finally, to fully leverage the advantages of each component
and effectively incorporate explanations into the detection
model, we introduce Adaptive Mixture-of-Experts, a dynamic
framework that integrates raw code features, LLM-generated
explanations, and LLM predictions. Unlike static ensemble
methods, Adaptive Mixture-of-Experts dynamically adjusts
feature weights through a Gating Network, which selects the
most relevant features by applying a TopK mechanism to
filter the most significant feature dimensions, followed by
Softmax normalization to produce a gating vector. In addition,
a Multi-Head Self-Attention mechanism captures complex
cross-dimensional relationships among the features by com-
puting attention scores across multiple heads and combining
them to enhance contextual understanding. These components
ensure robust and adaptive detection by optimizing a learnable
loss function through gradient descent, allowing the model
to adaptively balance the contributions of different feature
types. The loss function focuses on the independent predictive
performance of each feature and the overall performance of the
weighted predictions. By minimizing the loss function, we can
obtain the optimal combination of feature weights.

We evaluated our SAEL framework on over 200,000 real-
world smart contracts in the SmartBugs Wild dataset [29]]
for reentrancy vulnerabilities and the ESC dataset [30]]. For
integer overflow/underflow and delegatecall vulnerabilities,
we select two largest publicly available vulnerability dataset
for smart contracts [31], [32] and mix them. The results
demonstrate that SAEL outperforms state-of-the-art methods,
with F1 scores 2.33%, 3.16%, 10.67%, and 13.32% higher for
reentrancy, timestamp dependency, integer overflow/underflow,
and delegatecall vulnerabilities, respectively. Moreover, SAEL
exhibits strong zero-shot capabilities across the four vulnera-
bility types.

The main contributions of this paper are as follows:

o We are among the first to incorporate LLM-generated ex-
planations as features to enhance smart contract vulnera-
bility detection, demonstrating their impact on improving
detection performance.

o To fully harness the strengths of each feature, we in-
troduce Adaptive Mixture-of-Experts for smart contract
vulnerability detection. It dynamically adjusts the weights
assigned to the prediction results based on different
features.

e Our approach sets new state-of-the-art performance in
detecting reentrancy, timestamp dependency, integer over-
flow/underflow, and delegatecall vulnerabilities in smart
contracts.

All source code and data in this study are publicly available
at [33]].

II. BACKGROUND AND MOTIVATION
A. Problem Statement

We propose an automated approach to detect vulnerabilities
in individual smart contract functions. Our method assigns
a label § to each function f, where § = 1 indicates a
vulnerability and § = O denotes security. We focus on four
key vulnerability types.

Reentrancy vulnerability occurs when a contract calls
an external contract or sends Ether before completing all
necessary internal state changes. An attacker can exploit this
vulnerability by repeatedly calling the vulnerable function
before the original call is completed, potentially leading to
unexpected behavior such as multiple withdrawals of funds.

Timestamp dependence vulnerability occurs when smart
contracts rely on block timestamps for critical operations.
Miners can manipulate these timestamps, potentially com-
promising contract integrity and leading to financial losses.
This vulnerability often affects contracts using timestamps for
random number generation or key decision-making processes.

Integer Overflow/Underflow occurs when the result of an
arithmetic operation exceeds the storage range of the variable.
In an overflow, the value “wraps around” to the minimum
value for that type, while in an underflow, it “wraps around”
to the maximum value. This can lead to unexpected contract
behavior such as incorrect balances or out-of-control loops.

Delegatecall is a low-level function call that allows a con-
tract to dynamically load code from another contract. While
this provides powerful upgradeability, it can lead to severe
security vulnerabilities if used improperly. The main risk is
that the called contract executes in the context of the calling
contract and can thus modify the calling contract’s storage.

We primarily focus on these four vulnerabilities for the
following reasons: (i) Empirical evidence shows that approx-
imately 70% of financial losses in Ethereum smart contract
attacks are attributed to these vulnerabilities [|34]]. (ii) Exisiting
works [34]]-[36] demonstrates that these vulnerabilities occur
with higher frequency in Ethereum smart contracts compared
to others.

B. Motivating Examples

In this section, we use two real-world smart contract ex-
amples to illustrate the complementary strengths of different
approaches in detecting smart contract vulnerabilities: special-
ized pre-trained models fine-tuned on specific vulnerability
datasets, general-purpose Large Language Models (LLMs),
and the explanations generated by LLMs.

Example 1: Comparative Analysis Reveals Distinct
Strengths of Different Approaches. Static analysis methods
(e.g., Slither) rely on predefined vulnerability patterns and may
struggle with complex scenarios. As shown in Fig. |1} Slither
incorrectly identifies a reentrancy vulnerability by detecting
external calls and state variable modifications, without con-
sidering the onlyOwner modifier that prevents such attacks.
Specialized pre-trained models (e.g., PSCVFinder and Pecu-
liar), fine-tuned on specific vulnerability datasets, demonstrate

high performance in detecting known vulnerability types, often
outperforming general-purpose LLMs on these specific tasks,
as illustrated in Fig. However, they may struggle with
scenarios not well-represented in their training data, showing
poor generalization and failing to understand the onlyOwner
modifier in Fig.[T] In contrast, general-purpose LLMs correctly
comprehend the role of the onlyOwner modifier, leading
to the accurate conclusion that the smart contract does not
contain a reentrancy vulnerability. This comparison highlights
the complementary strengths of different approaches: general-
purpose LLMs offer superior capability in adapting to new
vulnerability patterns, while specialized pre-trained models
provide high performance for well-defined vulnerability types.

Example 2: Explanations Generated by LLMs Can Infer
the Correct Answer. Our case studies reveal that explanations
generated by general-purpose Large Language Models (LLMs)
can provide valuable insights for improving smart contract
vulnerability detection. For example, consider the contract
in Fig. 3] the LLM incorrectly states that the contract may
have a timestamp dependency vulnerability. Despite predicting
a timestamp dependency vulnerability in the smart contract,
the LLM provided relatively comprehensive code analysis as
shown in Fig. [3} 1) It correctly identified the location where
the timestamp is used. 2) It accurately described the structure
and security checks of the function. 3) It correctly identified
the state variables and how they are used in the function (only
read, not modified). Based on the code analysis, we can infer
that: 1) The timestamp is only used for simple comparison
and does not directly affect the state. 2) The function includes
multiple security checks. 3) State variables are not modified.
These inferences based on detailed explanations suggest that
the contract may not actually contain a timestamp dependency
vulnerability, which is consistent with the ground truth. This
example demonstrates how LLM-generated explanations can
serve as a form of code analysis, potentially refining the initial
prediction of the model.

Based on these examples, we observe that while specialized
pre-trained models may outperform general-purpose LLMs in
detecting specific, well-defined vulnerability types, general-
purpose LLMs exhibit superior flexibility in adapting to new
or complex vulnerability patterns. Moreover, the explanations
generated by LLMs provide an additional layer of analysis
that can enhance detection performance, even when the initial
prediction is incorrect. Combining these approaches with
LLM-generated explanations can complement each other and
enhance detection performance.

III. APPROACH

The overall workflow of SAEL is shown in Fig.] The
SAEL framework consists of three key modules: the design
of prompt templates, TS5-based Prompt-tuning, and Adaptive
Mixture-of-Experts (MoE). Each module is carefully designed
to enhance the performance of smart contract vulnerability
detection.

PrelCOProxyBuyer {

The smart contract have a reentrancy
vulnerability.

X,

PSCVFinder
mapping(address => uint) public Peculiar
balances;
bool refunded = true; .
address investor = msg.sender; Slither
address public owner; %

modifier onlyOwner() {
require(msg.sender == owner);

= Determine

SLITHER

}

Reentrancy vulnerability in PrelCOProxyBuyer.refund()
(../../source2/reentrancy/sourcecode/50032.s01#14-19):

o

refund() onlyOwner {

if(balances[investor] == 0)
throw;

uint amount =
balances[investor];

Query LLMs

if(!(investor.call.value(amount)()))
throw;
balances[investor] = 0;
}
}

Determine

This smart contract does not have a reentrancy vulnerability for the
following reasons:

v

Fig. 1. Motivation examples of different methods on smart contract vulnerability detection task.

Timestamp Dependence

Fig. 2. Performance comparison of specialized pre-trained models and

general-purpose LLMs.

This contract may have a timestamp
dependency vulnerability:

contract Safe
{ 1. Timestamp Usage:

afidress owner; Line 8 uses block.timestamp: require(time
uint256 lock; >= lock);

function withdrawal(address to, uint value) | 5 runction Structure:

returns ()i Includes ownership check, timestamp

require(msg.sender == owner);
uint256 = block.timestamp;
require(>=lock); J
require(to 1= address(0)); 3. State Variable Impact:

. The contract defines two public state
return true; ! | , ; !
} variables: 'owner' (address) and 'lock

(uint256). In the withdrawal function,
these variables are only read for access
control and timestamp comparison.

comparison, and address validation,
relying on external inputs and block
information.

D28 ©Y®aaubsw—

Fig. 3. The case related to timestamp where LLMs made incorrect predictions.

A. The Design of Prompt Templates

Smart Contract Vulnerability Detection methods [37]-[39]
based on LLMs typically employ models like GPT-4-Turbo,
but the cost of calling their APIs is high. To reduce costs while
maintaining detection performance, we choose the open-source
Qwenl.5-72B-Chat as the LLM model for our work. We
evaluated the performance of Qwenl.5-72B-Chat and GPT-
4-Turbo on smart contract vulnerability detection tasks and
found that Qwen1.5-72B-Chat achieves comparable detection
effectiveness with significantly lower computational cost, mak-

ing it an ideal choice for our framework.

For four types of vulnerabilities (e.g., reentrancy, timestamp
dependence), we carefully designed prompt templates. Un-
like existing works [37]-[39], which simply provide general
vulnerability descriptions or assign the identity of a “smart
contract security expert” to LLMs, our prompt templates are
tailored for each specific vulnerability type. For instance, as
shown in Fig. [5] the prompt template for detecting reentrancy
vulnerabilities includes: 1. A detailed definition of reentrancy
vulnerabilities and necessary background knowledge. 2. A
description of typical characteristics associated with reentrancy
vulnerabilities (e.g., external calls in loops). 3. Instructions for
analyzing the given code, identifying vulnerabilities, explain-
ing their causes, and locating problematic code sections.

To ensure structured and logical reasoning, the prompt
adopts a Chain-of-Thought reasoning process, guiding the
LLM step-by-step to: (1) understand the vulnerability’s def-
inition and characteristics, (2) analyze the code structure, (3)
identify potential vulnerabilities, and (4) explain the causes
or provide evidence of security. This process helps the LLM
focus on key aspects of the code and ensures reliable detection
results.

Mimic-in-the-Background Approach: To further enhance
consistency, we employ the “mimic-in-the-background” ap-
proach [40]. Specifically, the LLM generates five responses
for the same prompt in the background. The system then
selects the most frequently appearing answer, ensuring the
final response is both representative and reliable.

B. T5-based Prompt-tuning

To extract semantic information from smart contract code,
we utilize two pre-trained models: the code language model
CodeT5 [26] and the text language model TS5 [28]]. CodeT5
processes raw smart contract code, while TS5 processes natural
language explanations generated by the LLM. Instead of fine-

LLM Explanation

LLM Prediction

Code Section with Potential Issue: The
vulnerability specifically exists in these

Large Language lines:
Model

— I N Integrate
— & Query

balance}("");

(bool sent,) = msg.sender.call{value:

require(sent, "Failed to send Ether");
balances[msg.sender] = 0;

y’ N
(\

[The contract has a reentrancy vulnerability |
due to the use of the ‘'msg.sender.call®
function in the ‘withdraw" function.

The contract does not have a timestamp
dependence vulnerability, as the logic does
. not rely on the block timestamp.

il

Prompt

Smart Contract Code

function withdraw() public {
uint balance = balances[msg.sender];
require(balance > 0);
(bool sent,) = msg.sender.call{value: GItHUb
balance}("");
require(sent, "Failed to send Ether");

O Pretraining
|

Prompt-tuning

Prompt-tuning

ﬁ pred

/
= _

Adaptive Mixture-

balances[msg.sender] = 0;
}
}

of-Experts

CodeT5/T5

‘ Detection Results ‘

Fig. 4. The overall architecture of the proposed model SAEL.

Prompt Template

System: You are an experienced smart contract vulnerability
detector. Your task is to analyze the provided smart contract code
and identify potential vulnerabilities. You can mimic answering
them in the background five times and provide me with the most
frequently appearing answer. Please strictly adhere to the output
format specified in the question.

User: Given the following smart contract code:
{contract_code}

Please analyze this smart contract code to determine if it
contains the following vulnerability, and provide your reasoning:

Reentrancy Vulnerability: This occurs when a function
can be interrupted and called again before its execution is completed,
potentially leading to inconsistent data states or unintended fund
withdrawals.

For each vulnerability detected:

- Provide a brief description explaining why this portion of
code may lead to the vulnerability.

- Identify specific lines or sections of code where potential
issues lie.

If no vulnerabilities are found, please explain why the smart
contract code is secure in these aspects.

Please provide your response in the following JSON format:
"vulnerability_detected": <0 or 1>.

"analysis": "Your analysis goes here."

}

Fig. 5. The Prompt Design for Reentrancy Vulnerability.

tuning, we employ prompt-tuning, which has been shown to
outperform fine-tuning on smart contract vulnerability detec-
tion tasks [23]].

Prompt-tuning learns a continuous task-specific prompt
prepended to the input, guiding the model to focus on relevant
information. A cloze-style template fyrompi(2) With an input
slot [X] and an answer slot [Z] is designed as follows:

forompt(2) = ”[X] The code is [Z]”)
A verbalizer V' maps label words to the predicted class:

Vulnerable: [defective, bad]
V= (2)
Secure: [clean, perfect]
The outputs of CodeT5 and TS5 are denoted as hy,, and
hexpl, rEspectively:

Praw = CodeT5 y (2) € RV*4 3)
hexpl = Tsexpl(xexp]) € RNXd (4)

Additionally, the LLM prediction outputs are encoded into
one-hot vectors and transformed into uniform feature embed-
dings hpreq. These three feature representations (Rraw, Pexpls
hpred) serve as inputs to the next module.

Feature Integration: The outputs of CodeT5 (h,y) and
TS5 (hexpt) are concatenated with the LLM prediction em-
beddings (Apreq) to form the combined feature vector x =
[Praw hexpls Piprea]. This vector serves as the input to the Adap-
tive Mixture-of-Experts module for dynamic expert selection.

C. Adaptive Mixture-of-Experts

To maximize the strengths of different feature types and
improve the adaptability of the detection process, we intro-
duce an Adaptive Mixture-of-Experts (MoE) architecture. This

architecture dynamically selects and combines expert outputs
using a gating network and multi-head self-attention mecha-
nisms, ensuring that the most relevant features are utilized for
smart contract vulnerability detection.

Gating Network Design. The Gating Network plays a
critical role in dynamically assigning weights to each expert
based on the combined input features. Specifically, the input
vector z is constructed by concatenating raw code embeddings
(hraw), explanation embeddings (hexpl), and LLM prediction
embeddings (hpreq). The Gating Network processes the input
vector with a multi-layer transformation pipeline, including:

1) Feature Extraction: A linear layer reduces the dimen-
sionality of the input vector x, ensuring computational
efficiency.

2) Key Feature Selection: A TopK function with k = 3 is
applied to retain only the top 3 most significant features
in the vector, improving focus on the most relevant
information.

3) Normalization: The Softmax function normalizes the
retained features, generating the gating vector G(z),
which dynamically determines the weight of each expert.

The final formula for the gating vector G(x) is:
G(z) = Softmax(TopK(H (x), k = 3)) 5)

where H(x) represents the feature vector transformed by the
Gating Network. The TopK function with £ = 3 ensures that
only the most important features contribute to the final gating
vector. This specific value of k was selected to align with
our feature space, which comprises three primary types (raw
code, explanations, and predictions), setting kK = 3 ensures
each feature type has the opportunity to be considered in the
vulnerability detection process.

Multi-Head Self-Attention Mechanism. To further en-
hance feature representation, we leverage a Multi-Head Self-
Attention mechanism. This mechanism enables parallel pro-
cessing of multiple attention heads, each focusing on a differ-
ent subspace of the input vector. The steps are as follows:

o Transform the input vector into query, key, and value

matrices.

o Compute attention weights by applying the scaled dot
product between queries and keys, followed by a Softmax
normalization.

« Use the attention weights to compute a weighted sum of
the value vectors.

o Concatenate outputs from all attention heads and pass
them through a final linear transformation to restore the
original dimension.

This mechanism ensures comprehensive exploration of input
features while preserving cross-dimensional contextual rela-
tionships.

Expert Models and Weighted Accuracy Matrix. The MoE
model includes three specialized expert models:

1) Raw Code Expert: Focuses on syntactic and structural

patterns in h,y, such as loop structures and external
function calls.

2) Explanation Expert: Processes hexpl t0 extract contex-

tual insights from LLM-generated explanations.

3) Prediction Expert: Processes hpq to capture high-level

semantic patterns based on LLM predictions.

Each expert outputs a vector O; representing its prediction
confidence. The outputs from all experts are combined into an
accuracy matrix M, where each row corresponds to an expert,
and each column represents a vulnerability type:

M = [01,04,03] (6)

The gating vector G(x) is then used to weight the accuracy
matrix, producing a weighted accuracy matrix:

Mweighted = G(LU) -M @)

Final Prediction For each vulnerability type, the expert tool
with the highest weighted accuracy is selected to make the
final prediction:

3
Ofinal = »_ Gi(x) - O; ®)
=1

Loss Function Optimization. Our loss function comprises
three components for optimizing the model, where O; means
the output predicted with each individual feature and Ofgya
means the output of weighted features.

Feature Weight Adjustment Loss Ly focuses on the
independent performance of each feature prediction, assessing
their contribution through weighted cross-entropy loss:

Z ’LU; « Leross entropy(Oia Y))

i€ {raw,expl,pred }

L feature —

Overall Cross-Entropy Loss Lpyeq measures the overall
prediction performance for the weighted average prediction

of all features:
> o
1€ {raw,expl,pred }

Lpred = Lcross emropy(Oﬁnala Y) (1 1)

Weight Regularization Loss Ly, is designed to balance the
loss functions to prevent rapid weight updates:

Oﬁnal = (10)

Lreg = (|[fany — Weaw |* + [|10ésp1 — wexpil|* + [1frea — Wpreal|*)

(12)

The final loss function is a weighted combination of these

components, where « denotes the balance coefficient that
minimizes the average final loss:

Llotul =« (Lfeature + Lreg) + (]- - a) . Lpred (13)

Weight Update: We use gradient descent based on the
gradient of the total loss function to adaptively adjust weights
during training:

/ . aLtotall
! ow},

This optimization process ensures that our Adaptive

Mixture-of-Experts dynamically adjusts the importance of

(14)

each feature type according to different smart contracts, fully
leveraging the strengths of each component to achieve optimal
vulnerability detection performance.

IV. EXPERIMENTS
A. Research Questions

To evaluate our proposed SAEL approach, we conduct
experiments to answer the following research questions:

e RQI1: How effective does our proposed model SAEL
perform compared to state-of-the-art methods?

e RQ2: What is the contribution of various key components
and different features in the proposed SAEL framework to its
overall performance?

e RQ3: How do the parameters of SAEL affect the perfor-
mance of the model?

e RQ4: Can SAEL identify smart contract vulnerabilities
in a zero-shot manner?

B. Dataset

For the evaluation of our approach in detecting reentrancy
vulnerabilities, we employ the recently introduced SmartBugs
Wild Dataset [29] as our benchmark. This comprehensive
dataset comprises 47,398 distinct Solidity language files, en-
compassing a total of approximately 203,716 contracts with
identified vulnerabilities.

To assess the effectiveness of our method in identifying
timestamp dependency vulnerabilities, we make use of the
ESC (Ethereum Smart Contracts) Dataset [30|]. This dataset
is composed of 40,932 Ethereum smart contracts and con-
centrates on two specific types of vulnerabilities: reentrancy
and time dependence. The dataset includes a total of 307,396
functions, out of which nearly 4,833 functions contain the
block.timestamp match pattern, which serves as a potential
indicator of time dependence vulnerabilities. In our experi-
ments, we specifically focus on the functions that exhibit the
block.timestamp match pattern as our dataset.

For our study on integer overflow/underflow and dele-
gatecall vulnerabilities, we have integrated two of the most
comprehensive publicly available vulnerability datasets for
smart contracts [31]], [32]].

C. Baselines

In our evaluation, we first select a set of baselines specif-
ically designed for Smart Contract Vulnerability Detection.
They can be broadly classified into three categories: rule-based
techniques, pre-trained models-based techniques and LLM-
based techniques.

Baseline methods, categorized as rule-based techniques,
employ predefined heuristics to detect vulnerabilities in smart
contracts. This category includes tools such as Manticore [18]],
Mythril [16], Osiris [17], Oyente [15], Slither [19], Securify
[41], and Smartcheck [20].

Pre-trained models-based techniques, rely on pre-trained
models like CodeT5 [26]], CodeBERT [42]], GraphCodeBERT
[27] and fine-tuning techniques to identify smart contract

TABLE I
TRAINING HYPERPARAMETERS
Hyperparameter Value
Max input length 2048

Large Language Models | Max output length 512

Inference Top-p 1
Temperature 0
Repetition penalty 1.2
Learning rate 5e-5
CodeT5/T5 Max input length 512
Training Max output length 32
Beam size 10
Batch size 32

vulnerabilities, including Peculiar [24], PSCVFinder [25] and
ReVulDL [43]].

LLM-based techniques, which rely on LLMs to identify
vulnerabilties in smart contract, including GPTScan [40|] and
iAudit [44]).

D. Metrics

To evaluate the performance of our proposed model and
other baseline approaches in identifying smart, we employed
widely accepted evaluation criteria, namely Precision, Recall,
and Fl-score. Precision measures the proportion of correctly
identified vulnerabilities among all the predicted positive
cases. Recall, on the other hand, represents the fraction of
correctly detected vulnerabilities out of all the actual vulnera-
bilities present in the dataset. Lastly, the Fl-score provides a
balanced measure by calculating the harmonic mean between
Precision and Recall, giving equal weight to both metrics.

Why we choose these metrics. In real-world scenarios,
secure smart contracts significantly outnumber those with
vulnerabilities, resulting in imbalanced datasets. Under such
circumstances, accuracy measures may yield misleading re-
sults. In contrast, the three metrics can more accurately reflect
model performance on imbalanced data.

E. Implementation Details

We leveraged CodeTS5 [26] and TS5 [28] which followed the
initialization of its pre-training work. As shown in Table[l] for
the training of CodeT5 and TS5, we set the max input length
to 512, the max output length to 32, the batch size to 32, and
the learning rate to Se-5. We used a beam size of 10 during
the training process. We performed a 3:1:1 split for training,
validation, and test to evaluate our model. We implemented
all training with 1 NVIDIA GeForce RTX H800 GPU with
80GB memory and CUDA 12.2 on PyTorch. It took about 4
hours for smart contract vulnerabilities detection training. For
the inference of large language models, we set the max input
length to 2048 and the max output length to 512. To ensure
the deterministic output, we set the temperature to O and top-p
to 1. A repetition penalty of 1.2 was applied to avoid repeated
generation. The inference was performed on a server equipped
with 2 NVIDIA GeForce RTX H800 GPUs, each with 80GB
memory.

TABLE II
THE PERFORMANCE OF OUR METHOD COMPARED WITH 12 BASELINES IN TERMS OF PRECISION, RECALL AND F1-SCORE.

Methods Reentrancy Timestamp Dependency Overflow/Underflow Delegatecall
P(%) R(%) F1(%) Rank| P(%) R(%) F1(%) Rank| P(%) R(%) Fl(%) Rank| P(%) R(%) FI1(%) Rank
Manticore | 50.00 50.36 50.18 13 - - - - - - - - - - - -
Mythril 5035 51.80 51.06 12 | 50.00 41.79 4553 7 2530 46.67 32.81 10 | 4299 7419 5444 5
Osiris 59.06 5396 56.39 10 | 5241 3671 43.18 8 4533 7556 56.57 5 - - - -
Oyente 65.79 5396 59.29 8 45.17 3841 4151 9 60.87 46.67 52.83 6 40.43 30.65 34.86 9
Slither 52.00 6547 57.96 9 6726 7246 69.77 4 3228 4556 37.79 8 39.04 9194 5481 4
Securify | 52.78 54.68 53.71 11 - - - - - - - - - - - -
Smartcheck | 77.87 6835 72.80 6 39.24 3744 3832 10 | 31.25 38.89 34.65 9 3293 4355 3750 8
Peculiar 89.13 88.49 88.81 4 - - - - 7473 7556 75.14 2 66.67 6129 63.87 3
ReVulDL | 91.49 92.81 92.14 2 88.09 8575 86.90 3 - - - - - - - -
PSCVFinder| 92.65 90.65 91.64 3 90.64 88.89 89.76 2 65.00 7222 68.42 3 69.23 7258 70.87 2
GPTScan | 6222 80.58 70.22 7 5741 7488 64.99 6 39.11 7778 52.04 7 3143 88.71 4641 6
iAudit 6579 89.93 75.99 5 57.07 84.78 6822 5 4286 8333 56.60 4 28.80 8548 43.09 7
SAEL | 93.62 9496 9429 1 | 9016 9517 92.60 1 | 79.00 8778 83.16 1 | 7846 8226 80.31 1

F. Experimental Results

In this section, we present experimental results to answer
the research question.

1) RQ1: To evaluate the effectiveness of our proposed SAEL
method, we compared it with state-of-the-art baseline methods.
The experimental results are presented in Table

For reentrancy vulnerability detection, SAEL achieved the
best performance in terms of Precision, Recall, and F1-
score, reaching 93.62%, 94.96%, and 94.29%, respectively,
significantly outperforming all other baseline methods. Re-
VulDL, a pre-trained model-based method, was the second-
best performer with an Fl-score of 92.14%. For timestamp
dependency vulnerability detection, SAEL also demonstrated
superior performance, ranking first in all three evaluation
metrics with a Precision of 90.16%, Recall of 95.17%, and
F1-score of 92.60%, surpassing all baseline methods. Another
pre-trained model-based method PSCVFinder achieved the F1-
score of 89.76%, ranking second in this task. This demon-
strates the effectiveness of explanations for smart contract
vulnerability detection tasks. In the detection of integer over-
flow/underflow vulnerabilities, SAEL continued to show excel-
lent performance, achieving the highest Fl-score of 83.16%.
This surpassed the second-best method, Peculiar, which had an
Fl-score of 75.14%. For delegatecall vulnerability detection,
SAEL maintained its leading position with an Fl-score of
80.31%, outperforming the next best method, PSCVFinder,
which achieved an Fl-score of 70.87%.

[RQ1]: SAEL consistently outperformed 12 state-of-
the-art baseline methods across all four types of vul-
nerabilities (reentrancy, timestamp dependency, integer
overflow/underflow, and delegatecall).

2) : We explore the influence of various components and
features on the performance of smart contract vulnerability
detection in SAEL. The framework utilizes three key features:

raw smart contract code features (R), explanations generated
by LLMs (E), and predictions provided by LLMs (P).

Fig. E] demonstrates the effectiveness of the REP feature,
which is obtained by integrating R, E, and P features through
Adaptive Mixture-of-Experts. The REP feature achieves the
highest Fl-scores for all three vulnerability types: 94.29% for
reentrancy, 92.60% for timestamp dependency, and 83.16%
for integer overflow/underflow. When R, E, and P features
are used individually, they result in lower Fl-scores across
all vulnerability types. The raw code features (R) consistently
contribute the most, followed by explanations (E), with predic-
tions (P) having the least impact. This finding suggests that
the incorporation of explanations (E) and prediction results
(P) generated by LLMs significantly boosts performance com-
pared to using raw code features (R) alone.

The explanations and prediction results generated by LLMs
plays a crucial role in the smart contract vulnerability detection
task. Detecting vulnerabilities in smart contracts requires a
deep understanding of the semantics and context of the code.
LLMSs, pre-trained on vast amounts of code and natural lan-
guage data, possess the ability to comprehend code semantics
and context. The explanations generated by LLMs highlight
potential vulnerabilities and provide the reasons behind the
predictions. These explanations offer a high-level understand-
ing of the behavior of the code and potential security risks,
compensating for the limitation of lacking semantic under-
standing when relying solely on raw code features.

The impact of different modules on the performance of
SAEL is analyzed in Fig.[/| The complete SAEL model (Base)
achieves the best results across all three vulnerability types,
with Fl-scores of 94.29% for reentrancy, 92.60% for times-
tamp dependency, and 83.16% for integer overflow/underflow.
When the language model module (w/o LLM) is removed,
the F1-scores decrease across all vulnerability types. Here, w/o
LLM refers to performing prompt-tuning only on the raw code
without utilizing LLM-generated explanations and predictions.
Further removing the Adaptive Mixture-of-Experts module
(w/o MOE) results in a more significant performance drop.

The w/o MOE condition indicates direct averaging of the
prediction results from the three feature types without dynamic
weight adjustment.

These findings highlight the positive contributions of both
modules to the overall performance across all vulnerability
types. The Adaptive Mixture-of-Experts module appears to
have a more pronounced impact, especially for reentrancy and
timestamp dependency vulnerabilities, where its removal leads
to a larger performance drop compared to removing the LLM
module.

[RQ2]: The explanations and predictions generated
by LLMs significantly enhance vulnerability detec-
tion performance. The Adaptive Mixture-of-Experts
module further optimizes detection by dynamically
adjusting feature weights.

Reentrancy Timestamp Integer Overflow/Underflow

F1-Score (%)

REP R

. Analysis of Different Features

Reentrancy Timestamp Integer Overflow/Underflow

B Base
= wollM
95 m woMOE | 95 9

F1-Score (%)

70
Base wjo LLM wfo MOE Base wio LLM wfo MOE Base wfo LLM wfo MOE

Fig. 7. Analysis of Different Modules

F1-Score vs a Fl-Score vsy

FL-Score
FL-Score

Fig. 8. Performance of SAEL with different parameters.

3) RQ3: Based on the experimental results shown in Fig.
[B] our SAEL exhibits parameter sensitivity across four types

of vulnerabilities: reentrancy, timestamp dependency, integer
overflow/underflow, and delegatecall. As the two key param-
eters « and v in Adaptive Mixture-of-Experts vary, the F1-
scores for these vulnerability types show different trends.

The parameter « balances the feature weight adjustment loss
L feature and the overall cross-entropy loss Li.cq in the loss
function design. For reentrancy and timestamp dependency
vulnerabilities, the Fl-scores peak when « is around 0.4-0.6,
indicating that a moderate balance between the two losses
improves detection performance. Integer overflow/underflow
vulnerabilities show a relatively stable performance across
different o values, while delegatecall vulnerabilities exhibit
more fluctuations.

Furthermore, the parameter ~ controls the proportion of
weight regularization loss Lreg in the total loss to prevent
rapid changes in feature weights. When ~y is between 1072
and 10°, the detection performance for all vulnerability types
is relatively stable, indicating that moderate weight regu-
larization aids convergence and generalization. However, as
7 increases beyond 10°, the model performance generally
declines across all vulnerability types, with reentrancy and
timestamp dependency showing the most significant drops.
This suggests that these two vulnerability types require more
flexible feature weight adjustments, which are hindered by
excessive regularization. Integer overflow/underflow and dele-
gatecall vulnerabilities show less sensitivity to high ~ values,
maintaining relatively stable performance even at v = 10*. This
could indicate that the detection of these vulnerabilities relies
more on consistent, general patterns that are less affected by
strict weight regularization.

[RQ3]: Regarding to the four vulnerabilities, the loss
function balance parameter v and weight regulariza-
tion parameter 7y in Adaptive Mixture-of-Experts have
a significant impact on model performance and need
to be properly adjusted.

4) RQ4: To evaluate the zero-shot performance of SAEL on
smart contract vulnerability detection, we randomly selected
400 labeled samples from various datasets: 100 contracts for
reentrancy vulnerability detection from the Ethereum Smart
Contract Dataset [22], and 300 contracts from the Ethernet
Open Dataset [31] (100 each for timestamp dependency,
integer overflow/underflow, and delegatecall vulnerability de-
tection). All selected contracts were excluded from the train
and test datasets. The ratio of vulnerable to non-vulnerable
contracts for each vulnerability type is as follows: reentrancy
(32:68), timestamp dependency (43:57), and both integer over-
flow/underflow and delegatecall (22:78).

We show a simplified case in Fig. [0] The reentrancy
vulnerability in this contract differs from traditional ones
in the following aspects: the triggering conditions are more
hidden, requiring password checks and prize pool condition
judgments; exploiting the vulnerability requires cross-contract
interactions; complex reward calculation logic may interfere

The claim_reward function in the smart contract contains a reentrancy
vulnerability. The issues lie in the following points:

1.The function starts by requiring a minimum amount of ether to be sent
with the transaction (linc 4).

2.It then checks the correctness of the passcode (line 5).

1 claim_reward(uint uid, bytes32 passcode)
public payable{

[N}

4 (msg.value >= parameters["price"]); ' © .
I 3.Next, it calculates the final reward and checks if it exceeds the prize pool
5 (is_passcode_correct(uid, passcode)); (ine59)
es 7-9).
6 . . 4.The vulnerability lies in the external call on line 11 using
7 uint final_reward = get_reward(uid) + msg.value; | o sender.call.value(final_reward)(). This call can trigger the fallback
8 if (final_reward > parameters["price_pool"]) function of a malicious contract, which can then recursively call
9 final_reward = parameters["price_pool"]; claim_reward before the balance is updated, allowing the attacker to drain

10 the contract's funds.

1 (msg.sendercall.value(final_reward)());
- Line of code to focus o

Line 11 (msg.sender.call. value(final_reward)());

13 parameters["price_pool"] -= final_reward;
14| if (uid + 1 < users.length) To mitigate this vulnerability, the contract should use the transfer function
15 users[uid] = users[users.length - 1]; instead of call.value(). The transfer function prevents reentrancy by only

16 users.length -= 1; transferring a fixed amount of gas. Alternatively, the contract can use a state
17} variable to track whether the reward has been claimed and update the state
before making any external calls.

Fig. 9. A simplified real-world smart contract with a complex reentrancy
vulnerability and its explanation generated by SAEL.

TABLE III
THE RESULTS OF SAEL IN A ZERO-SHOT MANNER.
Vulnerabilities Precision(%) Recall(%) F1(%)
Reentrancy 93.50 90.60 92.00
Timestamp 88.60 90.70 89.60
Overflow/Underflow 85.70 81.80 83.70
Delegatecall 85.00 77.30 81.00

with the ability of detection tools to identify key vulnerability
points; the location of contract state updates is uncommon,
increasing detection difficulty. Usually reentrancy vulnera-
bilities are caused by updating the balance status after the
transfer, but in this case the bonus pool balance is deducted
before deleting the user information. Traditional tools based
on rule matching and program analysis including Oyente [15]],
Securify [41]], Smartcheck [20], Slither [[19]] and Mythril [16]
fail to accurately detect such complex vulnerabilities, mainly
due to the difficulty of rule matching in covering all vari-
ants, the difficulty of program analysis in understanding code
semantics, and complex logic interfering with vulnerability
localization. As shown in Table [T, SAEL demonstrated strong
vulnerability detection capabilities in a zero-shot manner.

SAEL addresses the above challenges by leveraging LLMs
for in-depth code understanding and combining them with
the Adaptive Mixture-of-Experts to dynamically adjust differ-
ent features. Specifically, LLMs can deeply understand code
semantics, accurately grasping vulnerability triggering condi-
tions. Adaptive Mixture-of-Experts enables flexible capture of
key features which can adapt to complex vulnerability sce-
narios. Furthermore, the analysis generated by SAEL provide
detailed explanations of vulnerability principles.

[RQ4]: Our findings demonstrate the strong zero-shot
capability of SAEL. Through a case study, we show-
case the superior ability of SAEL to detect complex
vulnerabilities compared to rule-based methods, while
also providing the comprehensive explanation.

V. RELATED WORK

In this section, we review four key areas of related work
for smart contract vulnerability detection and related appli-

cations: rule-based methods, pre-trained model approaches,
LLM-based methods, and applications of LLMs in broader
software engineering tasks.

A. Rule-based Methods

Various studies have employed traditional program analysis
methods to identify particular vulnerabilities in smart con-
tracts. Oyente [15] leverages symbolic execution to uncover
four types of vulnerabilities by exploring different execution
paths within smart contracts. Mythril [16] and SmartCheck
[20] rely on pattern matching techniques to detect vulner-
abilities based on a set of predefined rules. Securify [41]]
utilizes formal verification using logical languages to ensure
the security of smart contracts. Osiris [17] and Manticore [|18]]
combine symbolic execution and taint analysis, while Maian
[45] uses symbolic analysis and concrete validation. Slither
[19] is a static analysis framework that employs data flow and
taint analysis.

B. Pre-trained models-based Methods

Several studies have leveraged pre-trained models in var-
ious ways to enhance smart contract security. Peculiar [24]]
focused on improving generalization through pre-training, and
ReVulDL [43] utilized a graph-based pre-training model to
capture propagation chain relationships. PSCVFinder [25]]
utilizes prompt-tuning to bridge the gap between pre-training
task and smart contract vulnerability detection task.

C. LLM-based Methods

Recent studies [38], [[39]] have evaluated the performance of
LLMs on real-world datasets, revealing that LLMs encounter
performance-related challenges due to a high prevalence of
false positives. Hu et al. [37] investigated the application
prospects of LLMs in smart contract vulnerability detection
from new perspectives. Sun et al. [40]] introduced GPTScan,
the first tool that combines GPT with program analysis for
detecting logic vulnerabilities in smart contracts. GPTScan
breaks down each logic vulnerability type into scenarios and
properties, utilizes GPT to match candidate vulnerabilities, and
then confirms them through static analysis. Ma et al. [44]
introduced iAudit, a two-stage framework leveraging large
language models for detecting vulnerabilities and providing
explanations. These works demonstrate the great potential of
LLMs in the field of smart contract security.

D. Applications of LLMs in Software Engineering

Large Language Models (LLMs) have been increasingly
applied to various software engineering tasks. For code review
automation, Lu et al. [46] introduced DeepCRCEval, integrat-
ing LLMs to improve evaluation quality and efficiency. Lu
et al. [47] proposed LLama-Reviewer, which uses parameter-
efficient fine-tuning for effective and resource-efficient code
review. In code understanding, Shen et al. [48] designed a
dependency-aware framework for method naming and con-
sistency checking, showing LLMs can enhance these tasks
through advanced sampling strategies. For issue resolution,

Zan et al. [49]] developed SWE-bench-java, a benchmark for
evaluating LLMs on GitHub issue resolution, demonstrating
LLMs’ potential in automated software maintenance. These
works reflect the versatility and effectiveness of LLMs in
modern software engineering.

VI. THREATS TO VALIDITY

Internal Validity: Recent research indicates that the precise
influence of hyperparameters on the performance of LLMs and
Deep Learning models remains unclear [28]], [S0], [51]]. In our
work, we have applied the Tree-structured Parzen Estimator
(TPE) [52]] to enhance our model performance. However,
we recognize that alternative configurations could potentially
deliver comparable or better results. Consequently, we plan to
explore further settings in our subsequent research.

External Validity: The SAEL model requires substantial
labeled training data to extract sufficient features, which may
restrict its ability to detect new categories of vulnerabilities
where traditional approaches may prove more effective. To
overcome this limitation, we can reduce the reliance on
labeled data by continuing the pretraining task on unsupervised
datasets of smart contracts.

VII. CONCLUSION

In this paper, we propose SAEL, a smart contract vulnerabil-
ity detection approach based on LLMs. Unlike the prior work,
SAEL novelly utilizes explanations generated by general-
purposed LLMs as a feature to enhance the performance of
smart contract vulnerability detection. Furthermore, we intro-
duce Adaptive Mixture-of-Experts to dynamically adjust the
weights of prediction results for LLMs, explanation features,
and contract code features. Our approach outperforms state-
of-the-art methods. For future work, we aim to decrease
our dependency on labeled data by furthering the pretraining
process using unsupervised datasets of smart contracts.

VIII. ACKNOWLEDGEMENT

This work was supported by the Alliance of Interna-
tional Science Organizations Collaborative Research Program
(No.ANSO-CR-KP-2022-03).

REFERENCES

[11 M. Swan, Blockchain: Blueprint for a new economy. O’Reilly Media,
Inc.”, 2015.

[2] T. Hewa, M. Ylianttila, and M. Liyanage, “Survey on blockchain based
smart contracts: Applications, opportunities and challenges,” Journal of
Network and Computer Applications, vol. 177, p. 102857, 2021.

[3] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1-32, 2014.

[4] L. Yu, F Zhang, J. Ma, L. Yang, Y. Yang, and W. Jia, “Who are
the money launderers? money laundering detection on blockchain via
mutual learning-based graph neural network,” in 2023 International Joint
Conference on Neural Networks (IJCNN). 1EEE, 2023, pp. 1-8.

[5]1 Y. Yang, L. Yang, L. Li, X. Ma, L. Yu, and C. Zuo, “Dccgraph: Detecting
criminal communities with augmented criminal network construction
and graph neural network,” in 2023 International Joint Conference on
Neural Networks (IJCNN). 1EEE, 2023, pp. 1-8.

[6] J.Zhang, L. Yu, Z. Huang, L. Yang, and F. Zhang, “Topology augmented
multi-band and multi-scale filtering for graph anomaly detection,” ACM
Transactions on Knowledge Discovery from Data, 2025.

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

W. Zou, D. Lo, P. S. Kochhar, X.-B. D. Le, X. Xia, Y. Feng, Z. Chen,
and B. Xu, “Smart contract development: Challenges and opportunities,”
IEEE Transactions on Software Engineering, vol. 47, no. 10, pp. 2084—
2106, 2019.

V. Dhillon, D. Metcalf, M. Hooper, V. Dhillon, D. Metcalf, and
M. Hooper, “The dao hacked,” blockchain enabled applications: Un-
derstand the blockchain Ecosystem and How to Make it work for you,
pp. 67-78, 2017.

M. 1. Mehar, C. L. Shier, A. Giambattista, E. Gong, G. Fletcher,
R. Sanayhie, H. M. Kim, and M. Laskowski, “Understanding a revo-
lutionary and flawed grand experiment in blockchain: the dao attack,”
Journal of Cases on Information Technology (JCIT), vol. 21, no. 1, pp.
19-32, 2019.

L. Yu, S. Chen, H. Yuan, P. Wang, Z. Huang, J. Zhang, C. Shen,
F. Zhang, L. Yang, and J. Ma, “Smart-llama: two-stage post-training
of large language models for smart contract vulnerability detection and
explanation,” arXiv preprint arXiv:2411.06221, 2024.

L. Yu, Z. Huang, H. Yuan, S. Cheng, L. Yang, F. Zhang, C. Shen,
J. Ma, J. Zhang, J. Lu et al., “Smart-llama-dpo: Reinforced large
language model for explainable smart contract vulnerability detection,”
Proceedings of the ACM on Software Engineering, vol. 2, no. ISSTA,
pp. 182-205, 2025.

H. Yuan, L. Yu, Z. Huang, J. Zhang, J. Lu, S. Cheng, L. Yang, F. Zhang,
J. Ma, and C. Zuo, “Mos: Towards effective smart contract vulnerability
detection through mixture-of-experts tuning of large language models,”
arXiv preprint arXiv:2504.12234, 2025.

M. Alharby and A. Van Moorsel, “Blockchain-based smart contracts: A
systematic mapping study,” arXiv preprint arXiv:1710.06372, 2017.

P. Hegediis, “Towards analyzing the complexity landscape of solidity
based ethereum smart contracts,” in Proceedings of the 1st International
Workshop on Emerging Trends in Software Engineering for Blockchain,
2018, pp. 35-39.

L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, 2016, pp. 254-269.

B. Mueller, “Mythril-reversing and bug hunting framework for the
ethereum blockchain,” 2017.

C. F. Torres, J. Schiitte, and R. State, “Osiris: Hunting for integer bugs in
ethereum smart contracts,” in Proceedings of the 34th Annual Computer
Security Applications Conference, 2018, pp. 664—676.

M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,
T. Brunson, and A. Dinaburg, “Manticore: A user-friendly symbolic
execution framework for binaries and smart contracts,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). 1EEE, 2019, pp. 1186-1189.

J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis framework
for smart contracts,” in 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB).
IEEE, 2019, pp. 8-15.

S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” in Proceedings of the Ist international
workshop on emerging trends in software engineering for blockchain,
2018, pp. 9-16.

Y. Chen, Z. Sun, Z. Gong, and D. Hao, “Improving smart contract
security with contrastive learning-based vulnerability detection,” in 2024
IEEE/ACM 46th International Conference on Software Engineering
(ICSE). IEEE Computer Society, 2024, pp. 940-940.

Y. Zhuang, Z. Liu, P. Qian, Q. Liu, X. Wang, and Q. He, “Smart contract
vulnerability detection using graph neural network.” in IJCAI, 2020, pp.
3283-3290.

F. Luo, R. Luo, T. Chen, A. Qiao, Z. He, S. Song, Y. Jiang, and S. Li,
“Scvhunter: Smart contract vulnerability detection based on heteroge-
neous graph attention network,” in 2024 IEEE/ACM 46th International
Conference on Software Engineering (ICSE). 1EEE Computer Society,
2024, pp. 954-954.

H. Wu, Z. Zhang, S. Wang, Y. Lei, B. Lin, Y. Qin, H. Zhang, and
X. Mao, “Peculiar: Smart contract vulnerability detection based on
crucial data flow graph and pre-training techniques,” in 2021 IEEE 32nd
International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 2021, pp. 378-389.

L. Yu, J. Lu, X. Liu, L. Yang, F. Zhang, and J. Ma, “Pscvfinder:
A prompt-tuning based framework for smart contract vulnerability
detection,” in 2023 IEEE 34th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 2023, pp. 556-567.

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding
and generation,” in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, 2021, pp. 8696-8708.

D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, L. Shujie, L. Zhou,
N. Duan, A. Svyatkovskiy, S. Fu et al., “Graphcodebert: Pre-training
code representations with data flow,” in International Conference on
Learning Representations, 2020.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer
learning with a unified text-to-text transformer,” The Journal of Machine
Learning Research, vol. 21, no. 1, pp. 5485-5551, 2020.

J. E Ferreira, P. Cruz, T. Durieux, and R. Abreu, “Smartbugs: A
framework to analyze solidity smart contracts,” in Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering, 2020, pp. 1349-1352.

Z. Liu, P. Qian, X. Wang, L. Zhu, Q. He, and S. Ji, “Smart contract
vulnerability detection: from pure neural network to interpretable graph
feature and expert pattern fusion,” arXiv preprint arXiv:2106.09282,
2021.

Z. Liu, P. Qian, J. Yang, L. Liu, X. Xu, Q. He, and X. Zhang,
“Rethinking smart contract fuzzing: Fuzzing with invocation ordering
and important branch revisiting,” IEEE Transactions on Information
Forensics and Security, vol. 18, pp. 1237-1251, 2023.

P. Qian, Z. Liu, Y. Yin, and Q. He, “Cross-modality mutual learning
for enhancing smart contract vulnerability detection on bytecode,” in
Proceedings of the ACM Web Conference 2023, 2023, pp. 2220-2229.
L. Yu, S. Cheng, Z. Huang, J. Zhang, C. Shen, J. Lu, L. Yang,
F. Zhang, and J. Ma, “Sael: Leveraging large language models with
adaptive mixture-of-experts for smart contract vulnerability detection,”
2025. [Online]. Available: https://zenodo.org/records/16421321

H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A survey on ethereum sys-
tems security: Vulnerabilities, attacks, and defenses,” ACM Computing
Surveys (CSUR), vol. 53, no. 3, pp. 1-43, 2020.

J. Gao, H. Liu, C. Liu, Q. Li, Z. Guan, and Z. Chen, “Easyflow: Keep
ethereum away from overflow,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering: Companion Proceedings (ICSE-
Companion). 1EEE, 2019, pp. 23-26.

P. Praitheeshan, L. Pan, J. Yu, J. Liu, and R. Doss, “Security analysis
methods on ethereum smart contract vulnerabilities: a survey,” arXiv
preprint arXiv:1908.08605, 2019.

S. Hu, T. Huang, F. ilhan, S. F. Tekin, and L. Liu, “Large language
model-powered smart contract vulnerability detection: New perspec-
tives,” arXiv preprint arXiv:2310.01152, 2023.

C. Chen, J. Su, J. Chen, Y. Wang, T. Bi, Y. Wang, X. Lin, T. Chen, and
Z. Zheng, “When chatgpt meets smart contract vulnerability detection:
How far are we?” arXiv preprint arXiv:2309.05520, 2023.

I. David, L. Zhou, K. Qin, D. Song, L. Cavallaro, and A. Gervais,
“Do you still need a manual smart contract audit?” arXiv preprint
arXiv:2306.12338, 2023.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

[51]

[52]

Y. Sun, D. Wu, Y. Xue, H. Liu, H. Wang, Z. Xu, X. Xie, and
Y. Liu, “Gptscan: Detecting logic vulnerabilities in smart contracts by
combining gpt with program analysis,” Proc. IEEE/ACM ICSE, 2024.
P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vecheyv, “Securify: Practical security analysis of smart contracts,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 67-82.

Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” in Findings of the Association for Computational
Linguistics: EMNLP 2020, 2020, pp. 1536-1547.

Z. Zhang, Y. Lei, M. Yan, Y. Yu, J. Chen, S. Wang, and X. Mao,
“Reentrancy vulnerability detection and localization: A deep learning
based two-phase approach,” in 37th IEEE/ACM International Conference
on Automated Software Engineering, 2022, pp. 1-13.

W. Ma, D. Wu, Y. Sun, T. Wang, S. Liu, J. Zhang, Y. Xue, and Y. Liu,
“Combining fine-tuning and llm-based agents for intuitive smart contract
auditing with justifications,” arXiv preprint arXiv:2403.16073, 2024.
W. J.-W. Tann, X. J. Han, S. S. Gupta, and Y.-S. Ong, “Towards safer
smart contracts: A sequence learning approach to detecting security
threats,” arXiv preprint arXiv:1811.06632, 2018.

J. Lu, X. Li, Z. Hua, L. Yu, S. Cheng, L. Yang, F. Zhang, and
C. Zuo, “Deepcrceval: Revisiting the evaluation of code review comment

generation,” in International Conference on Fundamental Approaches to
Software Engineering. Springer Nature Switzerland Cham, 2025, pp.

43-64.

J. Lu, L. Yu, X. Li, L. Yang, and C. Zuo, “Llama-reviewer: Advancing
code review automation with large language models through parameter-
efficient fine-tuning,” in 2023 IEEE 34th International Symposium on
Software Reliability Engineering (ISSRE). 1EEE, 2023, pp. 647-658.
C. Shen, J. Zhu, L. Yu, L. Yang, and C. Zuo, “Dependency-aware
method naming framework with generative adversarial sampling,” in
2024 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2024, pp. 1-8.

D. Zan, Z. Huang, A. Yu, S. Lin, Y. Shi, W. Liu, D. Chen, Z. Qi, H. Yu,
L. Yu et al., “Swe-bench-java: A github issue resolving benchmark for
java,” arXiv preprint arXiv:2408.14354, 2024.

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in Proceedings
of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, 2019, pp. 2623-2631.

Q. Guo, J. Cao, X. Xie, S. Liu, X. Li, B. Chen, and X. Peng, “Exploring
the potential of chatgpt in automated code refinement: An empirical
study,” in Proceedings of the 46th IEEE/ACM International Conference
on Software Engineering, 2024, pp. 1-13.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” Advances in neural information processing
systems, vol. 24, 2011.

https://zenodo.org/records/16421321

	Introduction
	Background and Motivation
	Problem Statement
	Motivating Examples

	Approach
	The Design of Prompt Templates
	T5-based Prompt-tuning
	Adaptive Mixture-of-Experts

	Experiments
	Research Questions
	Dataset
	Baselines
	Metrics
	Implementation Details
	Experimental Results

	Related Work
	Rule-based Methods
	Pre-trained models-based Methods
	LLM-based Methods
	Applications of LLMs in Software Engineering

	Threats to Validity
	Conclusion
	Acknowledgement
	References

