2507.22447v1 [cs.CR] 30 Jul 2025

arxXiv

Breaking Obfuscation: Cluster-Aware Graph with LLM-Aided
Recovery for Malicious JavaScript Detection*

Zhihong Liang®?, Xin Wang®, Zhenhuang Hu¢, Liangliang Song¢, Lin Chen®?, Jingjing Guo®,
Yanbin Wang®* and Ye Tian“*
@Electric Power Research Institute, CSG, Guangzhou, Guangdong, China

bGuangdong Provincial Key Laboratory of Power System Network Security, Guangzhou, Guangdong, China
“Hangzhou Institute of Technology, Xidian University, Hangzhou, China

ARTICLE INFO ABSTRACT

Keywords: With the rapid expansion of web-based applications and cloud services, malicious JavaScript code
Malicious Code Detection continues to pose significant threats to user privacy, system integrity, and enterprise security. However,
JavaScript detecting such threats remains challenging due to sophisticated code obfuscation techniques and
Graph Neural Networks JavaScript’s inherent language characteristics, particularly its nested closure structures and syntactic
Deobfuscation flexibility. In this work, we propose DeCoda, a hybrid defense framework that combines large
Large Language Models language model (LLM)-based deobfuscation with code graph learning: (1) We first construct a

sophisticated prompt-learning pipeline with multi-stage refinement, where the LLM progressively
reconstructs the original code structure from obfuscated inputs and then generates normalized Abstract
Syntax Tree (AST) representations; (2) In JavaScript ASTs, dynamic typing scatters semantically
similar nodes while deeply nested functions fracture scope capturing, introducing structural noise
and semantic ambiguity. To address these challenges, we then propose to learn hierarchical code
graph representations via a Cluster-wise Graph that synergistically integrates graph transformer
network, node clustering, and node-to-cluster attention to simultaneously capture both local node-level
semantics and global cluster-induced structural relationships from AST graph. Experimental results
demonstrate that our method achieves F1-scores of 94.64% and 97.71% on two benchmark datasets,
demonstrating absolute improvements of 10.74% and 13.85% over state-of-the-art baselines. In false-
positive control evaluation at fixed FPR levels (0.0001, 0.001, 0.01), our approach delivers 4.82X,
5.91x%, and 2.53x% higher TPR respectively compared to the best-performing baseline. These results
highlight the effectiveness of LLM-based deobfuscation and underscore the importance of modeling
cluster-level relationships in detecting malicious code. Our code is available at the following link:
https://github.com/zer@p@intvvv/DeCoda.

which obscure both their syntactic form and semantic intent
Skolka et al. (2019); Wei et al. (2025). While traditional
detection approaches such as signature-based scanning and
sequence-based machine learning models (e.g., BERT Ko-
roteev (2021), LSTM Greff et al. (2016), and CNN Chua
and Roska (2002)) Sun et al. (2021); Zhang et al. (2024)
have proven effective against simpler threats, their reliance
on linear or localized code representations fundamentally
limits their ability to model the hierarchical and relational
dependencies essential for analyzing obfuscated code.

In contrast, Graph Neural Networks (GNNs) Corso et al.
(2024); Xiao et al. (2025) provide a distinct paradigm by
representing source code as structured graphs, such as ab-
stract syntax trees (ASTs) Yamaguchi et al. (2014). These
representations inherently capture syntactic and structural
relationships, enabling models to encode dependencies ef-
fectively. However, existing methods fail to account for
JavaScript-specific language characteristics, such as syntac-
tic flexibility and deep closure nesting structures.

Overall, malicious JavaScript detection faces two critical
challenges: (1) The language’s flexibility facilitates diverse
obfuscation techniques to evade pattern-matching detectors,
while current deobfuscation approaches relying on static
rule-based transformations cannot handle JavaScript’s poly-

1. Introduction

JavaScript Wirfs-Brock and Eich (2020) is a founda-
tional technology for modern web development, powering
dynamic and interactive web applications. However, its
widespread adoption and dynamic nature also make it a
frequent target for malicious exploitation. Attackers inject
obfuscated scripts into vulnerable websites and web ser-
vicesTian et al. (2025); Li et al. (2016); Malik et al. (2019);
Lee and Son (2023); Liu et al. (2025a, 2024); Wang et al.
(2023); Song et al. (2025); Wang et al. (2022); Liu et al.
(2025a), aiming to steal sensitive data, hijack user sessions,
or deploy further payloads. These threats extend beyond
traditional web environments, impacting emerging domains
Zhang et al. (2024) such as IoT devices, cloud platforms, and
even autonomous systems where JavaScript-based interfaces
are increasingly utilized.

To evade detection, these scripts are often obfuscated
using techniques Schrittwieser et al. (2016); Behera and
Bhaskari (2015) such as variable renaming, control flow
distortion, string encoding, and dynamic function calls,

*This document is the result of a research project supported by the
Guangdong Provincial Key Laboratory of Power System Network Security.

*Corresponding author: Yanbin Wang (wangyan-
binl5@mails.ucas.ac.cn), Ye Tian (tianye @xidian.edu.cn)

ORCID(S): 0009-0004-4555-3773 (L. Song); 0000-0003-1682-5712 (Y.
Wang); 0000-0003-0608-8544 (Y. Tian)

morphic code variations. (2) Prior GNN implementations
overlook fundamental JavaScript attributes: (a) they ignore

Zhihong Liang et al.: Submitted to Computers & Security

Page 1 of 13

https://github.com/zer0p0intvvv/DeCoda
https://arxiv.org/abs/2507.22447v1

AST node clustering properties - where JavaScript’s syntac-
tic flexibility causes semantically equivalent nodes to scatter
in feature space, inducing semantic interpretation errors, and
(b) their message passing mechanisms disrupt critical scope-
chain dependencies, while deeper GNN architectures exacer-
bate the oversmoothing of closure hierarchies, progressively
losing granular scope information across network layers.

To address these challenges, we propose a novel hybrid
framework for malicious JavaScript detection that syner-
gizes LLM-guided deobfuscation with cluster-aware graph
learning. Our primary innovation leverages LLM’s seman-
tic reconstruction capability to restore syntactic clarity
and structural coherence through a multi-stage refinement
pipeline, where the language model progressively recov-
ers original code semantics from obfuscated inputs and
generates normalized AST representations. By organizing
these ASTs into hierarchical graph structures, we deploy
a graph transformer with node-to-cluster attention that si-
multaneously captures: (a) semantically consistent node-
level features, and (b) cluster-induced structural patterns,
effectively modeling both lexical syntax and program-wide
dependency relationships unique to JavaScript’s execution
context.

Our key contributions include:

e Our approach achieves 94.64% and 97.71% F1-scores
on the benchmark datasets, with absolute performance
gains of 10.74% and 13.85% over existing meth-
ods. For security-critical low-FPR scenarios (0.0001,
0.001, 0.01), the method demonstrates substantial
TPR improvements of 4.82%, 5.91%, and 2.53X rel-
ative to the strongest baseline.

o Our multi-stage LLM deobfuscation pipeline, guided
by structured prompt engineering (including string
decoding, semantic variable renaming, dynamic in-
vocation reconstruction, and control flow simplifica-
tion), empirically demonstrates significant deobfus-
cation improvements. The systematic prompt design
ensures: (1) complete payload unpacking, (2) behav-
ioral equivalence preservation, and (3) explanatory
metadata generation.

e We uses a robust dual-scale graph learning framework
for JavaScript ASTs that simultaneously models node-
level features and cluster-induced structural patterns
through node-to-cluster attention, effectively address-
ing: (1) semantic equivalence dispersion in feature
space, and (2) scope chain dependency breakdowns in
deep closure nesting.

2. Related Work

As JavaScript dominates web development, malicious
script detection remains an essential security challenge. This
work provides a methodological taxonomy of learning-based
detectors, analyzing representative approaches across differ-
ent modeling paradigms while positioning our framework’s
structural innovations in context.

2.1. Sequence Model

Sequence-based models employ dominant sequential
learning algorithms (LSTMs, CNNs, and Transformers) to
extract patterns from code sequences. While all process
code as linear sequences, their inductive biases lead to
fundamentally different feature representations.

Recurrent Neural Networks, particularly LSTM Zaremba
et al. (2014), have been adopted for modeling sequential
dependencies in malicious JavaScript detection. Fang et al.
Fang et al. (2018) used static analysis by learning opcode
sequences from compiled JavaScript bytecode using LSTM
networks. Subsequent enhancements by Song et al. Song
et al. (2020) integrated bidirectional LSTMs with program
dependence graphs to analyze semantically sliced execution
paths, improving resilience against basic obfuscation. Fur-
ther improvements incorporated attention mechanisms and
semantic embeddings Fang et al. (2020) to identify critical
code segments in tokenized JavaScript. However, these
approaches fundamentally suffer from three limitations:
(1) linear processing constraints that prevent hierarchical
relationship modeling, (2) limited context windows for long-
range dependency analysis, and (3) inability to effectively
represent non-sequential program structures.

CNNs have been extensively applied to malicious
JavaScript detection through various code representations,
including syntax trees, bytecode, and token sequences. The
JSAC framework Liang et al. (2019) employs parallel CNNs
to process both abstract syntax trees (ASTs) and control
flow graphs (CFGs), capturing complementary syntactic and
semantic features. Rozi et al. Rozi et al. (2020) advanced this
paradigm by introducing a deep pyramid CNN architecture
operating on V8 engine bytecode sequences, augmented
with recurrent layers for improved obfuscation resilience.
Alternative implementations include Sheneamer’s stacked
CNN ensemble Sheneamer (2024) for vulnerability detec-
tion and ScriptNet’s hierarchical CNN Stokes et al. (2019)
for byte-level sequence analysis. While CNNs demonstrate
exceptional proficiency in extracting local code patterns
and achieving strong static analysis performance, their fun-
damental architectural constraints—particularly limited re-
ceptive fields and absence of explicit structural model-
ing—severely impair their capability to analyze long-range
dependencies or complex program semantics.

Transformer architectures, particularly BERT-based
models, have demonstrated promising results in malicious
JavaScript detection through contextual token embeddings.
While hybrid approaches like the BERT-BiLSTM model
Abadeer et al. (2022) improve semantic understanding, they
fundamentally lack mechanisms to capture the localized
syntactic patterns and hierarchical structural relationships
critical for effective malware detection beyond pure semantic
analysis.

2.2. Code Graph learning

Source code’s intrinsic hierarchical graph structure -
encompassing control flows, data dependencies, and lexical
scopes - renders GNNs particularly suitable for learning

Zhihong Liang et al.: Submitted to Computers & Security

Page 2 of 13

& Large Language Model

Calculate S,
http:// obfuscation entropy score

é l..fsubf >7 _é

+
P g—

Prompt Template

aHiet PHoeit PHeor - ScOring Deobfuscation

a). LLM-based Deobfuscation

—>

3
Lexical Analysm . g
.

S tax Anal
yntax Analysis Tokens

\
AST Graph

b). AST Conversion

Generanon

Abstract Syntax Tree

) Z Y
2] ! 8 | & g 2 g g ¢ Classif
= =3 = lassi
Z 2= > 12 2 assity
ud P d S=> 1EE >t] —>
£ 78 Aglst I Fingd -
= =3 5 ! 5 < . 5 3
£ g S T - = £ g
= p— = i Good | Bad |
AST Graph = = ! o
f‘ \ [T
Positional Encoding Metis Graph Partition Bi-level Query & Key > Q’KEIC . Cluster-wise Attention

Generation
Pre-processing Module

¢). AST Graph Partitioning

d). AST Graph Classification

Propagation

S

N2C-Attn Module

Figure 1: Architecture of the our method.

code garph. As demonstrated by Sheng et al. (2025); Liu
et al. (2025b); Sun et al. (2025), GNNs excel at modeling
complex structural patterns in graph data. JStrong Fang
et al. (2022) apply graph convolutional networks to learn
joint structural-semantic features, and JStrack Rozi et al.
(2021) employs hierarchical GNNs to preserve syntactic
information while analyzing nested code structures.

While GNN applications in code analysis are well-
established, their adoption for malicious JavaScript detec-
tion remains limited. Existing approaches often employ
generic graph architectures (e.g., flat message passing or
coarse pooling) that neglect JavaScript-specific character-
istics, potentially losing critical syntactic details or facing
scalability issues. Our method addresses these limitations
through: (1) AST partitioning into meaningful substruc-
tures, and (2) node-to-cluster attention for joint hierarchical
reasoning, enabling multi-granularity feature integration
while preserving structural fidelity. This design demon-
strates superior resilience and practical scalability compared
to conventional GNN implementations.

3. Method

Our proposed method for detecting malicious obfus-
cated JavaScript code integrates LLM-based deobfuscation
with advanced GNN classification. The overall framework
is designed to be modular and extensible, allowing it to
adapt effectively to diverse obfuscation patterns and attack
scenarios. LLMs are leveraged to restore the syntactic and
semantic clarity of obfuscated code, after which structural

representations such as ASTs are extracted and transformed
into graph form. A graph-based classifier, built upon a
cluster-aware transformer architecture, is subsequently ap-
plied to capture the structural relationships among nodes
and clusters, enabling robust and accurate malicious code
detection. An overview of the entire detection pipeline is
illustrated in Fig. 1.

3.1. LLM-based Deobfuscation

We utilize DeepSeek-R1, a cost-efficient state-of-the-art
large language model, for automated JavaScript deobfusca-
tion. The process incorporates three key components:

3.1.1. Semantic Representation and Feature
Extraction
The LLM maps obfuscated code X, to a semantic
space through its pre-trained Transformer architecture:

h = Transformer(X ¢; 0) €))]

where h represents the semantic representation vector, and
0 denotes the model parameters. DeepSeek-R1Guo et al.
(2025)’s Multi-head Latent Attention (MLA) mechanism
extracts key features:
exy =Wy h, kS =Wy ¢ o€ =Wy ey (2)
V; Dgy "t t Ug*KV;> t Uy KV,
This allows the model to capture deep semantic relationships
within obfuscated code patterns.

Zhihong Liang et al.: Submitted to Computers & Security

Page 3 of 13

3.1.2. Obfuscation Entropy Scoring

Before applying deobfuscation, we evaluate the com-
plexity of obfuscation using an entropy-based scoring mech-
anism. The obfuscation entropy score S is calculated as:

Sobf = aHlex + ﬂHstruct + yHcontrol (3)
where:
e H., = - Z!g p; log p; represents lexical entropy

based on token distribution

e H !

struct = Nl
sures structural complexity

Y weast log(depth(n) - children(n)) mea-

|branches|+|loops|
|statements|

e H

control quantifies control flow

complexity
o a =04, =04,y =0.2 are weighting parameters

Only code samples with S, > 7 undergo deobfus-
cation, optimizing computational resources while ensuring
that genuinely obfuscated code is processed.

3.1.3. Prompt Engineering for Deobfuscation
We design a specialized prompt template that guides the
LLM to systematically deobfuscate JavaScript code:

JavaScript Deobfuscation Prompt Template

Task Description:

Analyze the following obfuscated JavaScript
code and provide a clean, readable version while
preserving exact functionality.

Instructions:

1. Decode all string obfuscations (hex, base64,
unicode escapes)

2. Replace meaningless variable names with
descriptive ones

3. Unpack compressed/encoded payloads (e.g.,
eval expressions)

4. Simplify control flow (remove dead code,
flatten conditionals)

5. Reconstruct function calls from dynamic in-
vocations

6. Preserve original logic and behavior exactly

Input: Obfuscated Code
{obfuscated_code}
Expected Output:

Provide the deobfuscated version with explanatory
comments that describe:

_ J

()

e The original obfuscation techniques detected
e The deobfuscation steps applied
e The restored functionality and control flow

L J

3.1.4. Probabilistic Generation and Optimization

The deobfuscation process is modeled as a sequence-
to-sequence transformation, where the model predicts the
probability distribution of clean code Y,

lean*

T
P(Y jean] Xobr) = HP(yt|Y<t’Xobf; 0) 4)

t=1

DeepSeek-R1’s Mixture of Experts (MoE) architecture
enhances generation capability:

N N,
=+ Y FENO @)+ Y g FFN () (5)

i=1 i=1

s

where g; , is the gating function selecting appropriate experts
for deobfuscation patterns.

3.1.5. Training and Loss Function
The model is optimized using a deobfuscation-specific
loss function:

N
Lgeons = — Z log P(Yclean,i |X0bf,i; 0)+ AL emantic (6)
i=1

where L. .nic €0sUres semantic preservation between ob-
fuscated and deobfuscated versions.

3.1.6. Code Structure Restoration
The model restores obfuscated structures through syntax
tree parsing and semantic inference:

ASTclean = fdecode(h'; Gdec) (7)

where AST.,, is the restored abstract syntax tree, and
Sdecode 18 the decoding function leveraging the model’s
generation capabilities.

The deobfuscation pipeline is automated via scripts
that interact with the DeepSeek-R1 API, supporting batch
processing with configurable parameters (temperature=0.1,
max_tokens=4096) to ensure deterministic and complete
deobfuscation. Quality filtering ensures that only success-
fully deobfuscated samples with semantic equivalence are
retained for downstream analysis.

3.2. AST Conversion

The deobfuscated code is parsed into ASTs using the
Esprima parser for JavaScript. ASTs serve as a natural bridge
between source code and graph neural networks by encoding
the syntactic structure of programs in a hierarchical graph
format.

Zhihong Liang et al.: Submitted to Computers & Security

Page 4 of 13

Given deobfuscated code Y.,,, we construct an AST
T = (V,E) where V represents AST nodes (e.g., Function-
Declaration, VariableDeclarator) and £ represents parent-
child relationships. The AST is then transformed into a graph
representation:

G=W, &4 X, A) ®)

where €. = €U Egara Y Econtrol includes extended edges for
data flow and control flow.

Node features are encoded through multi-component
embedding:

X; = etype(ti) @ evalue(si) 2] epos(li’ ci))

where €., €, and e
positions respectively.
Finally, the AST graph is converted to PyG format:

pos €mbed node types, values, and

Data = {x, edge_index, edge_attr, y} (10)

This representation preserves the rich structural information
inherent in code while enabling direct application of GNN
architectures.

3.3. AST Graph Partitioning

To handle large-scale AST graphs and enhance model
expressiveness, we apply graph partitioning techniques to
divide each AST into multiple patches or subgraphs. This
partitioning enables multi-granularity analysis while main-
taining computational efficiency.

We employ the METIS algorithm to partition the AST
graph into m clusters. The cluster assignment is defined by
matrix C € R™":

1
Metis _) v |
Cnnf‘“ = {(I)le
(1D

where |V,,| denotes the number of nodes in cluster m,
ensuring balanced representation.

The graph coarsening process transforms the original
node features and adjacency matrix to cluster-level represen-
tations:

X =CTx, AP =cCTAC (12)

if the n-th node is in the m-th cluster

otherwise

where X € R™%4 ig the cluster-level feature matrix and
AP € R™" is the cluster-level adjacency matrix.

For our Cluster-GT architecture, we compute cluster-
level queries and keys using the assignment matrix:

K, =W, (Z Csjhs> , 0 =W, (Z Csihs> (13)

This formulation enables the Node-to-Cluster Attention
mechanism to integrate both node-level and cluster-level
information, capturing hierarchical patterns essential for
detecting malicious code structures. The partitioned graphs
retain both local syntactic details and global structural pat-
terns, supporting robust classification even in the presence
of obfuscation.

3.4. Cluster-wise Code Graph Transformer

In JavaScript ASTs, dynamic typing scatters semanti-
cally similar nodes while deeply nested functions fracture
scope capturing, introducing structural noise and seman-
tic ambiguity.To address these challenges, we propose a
cluster-based AST graph learning framework employing
Cluster-wise Graph Transformer Huang et al. (2024), that
employs node-to-cluster attention(N2C-Attn) and cluster-
guided message passing to capture consistent linguistic pat-
terns across node types and bridge semantic relationships
fractured by scope boundaries.

3.4.1. Node-to-Cluster Attention
The general form of the N2C-Attn is defined as:

Z:j Afj Zz Ctj kg({0;,q;}, {Kj, k, D,

2 A,-l,),- 2 Ckp(101,4i} (K K, })
(14)

N2C-Attn(X), =

where A is the cluster-level adjacency matrix, C is the
cluster assignment matrix, kg is the dual-granularity kernel
function, and Q;, ¢q;, K j,k, are the cluster-level and node-
level queries and keys, respectively.

For the tensor product kernel N2C-Attn-T:

kg({Qi, q;}. (K. ki }) = kc(Q;, Kj) k(g5 k) (15)

25 A7 20 €y kc(Qi K kg kv,

% Afj 2 Cikc(0;, K)) k(g k)
(16)

N2C-Attn-T(X), =

For the convex linear combination kernel (N2C-Attn-L):

kg({Qi. ¢, } {Kj. ki }) = akc(Q;, Ky +f ki (g;. k) (17)

2/ AiI:/' 2: er(a kc(Q;, Kj) + P rn(g, k),
Zj Afj Zr er(a kc(Q; Kj) + B (g k)
(18)

N2C-Attn-L(X), =

where a, f > 0 and @ + § = 1 are learnable parameters.

3.4.2. Dual-granularity Kernelized Attention
Framework
The general form of the dual-granularity kernel function
is:
kg (XM Ay™MIM) = £, (™ Y™) (19)
where M = 2 in N2C-Attn, corresponding to node-level and
cluster-level kernels.

Zhihong Liang et al.: Submitted to Computers & Security

Page 5 of 13

3.4.3. AST Graph-level Embedding
The final graph-level embedding is obtained by average
pooling over the cluster outputs of the N2C-Attn module:

Z N2C-Attn(X), (20)

1
h = —
graph P
|N | ieNP

where NP denotes the set of clusters and N2C-Attn(X)i is
the attention output for the i-th cluster.

3.4.4. Multi-Layer Perceptron for Classification

A Multi-Layer PerceptronRiedmiller and Lernen (2014)
is a feedforward neural network used for classification tasks,
consisting of an input layer with m neurons (features), L — 1
hidden layers with n; neurons each, and an output layer with
K neurons (classes).

For each hidden layer! € {1, ..., L—1}, the computation
is:

20 = Wal=D 4 pO (21)
al) = f(z®), (22)

where W) € R™*"-1 ig the weight matrix, b e R™ is
the bias vector, and f is an activation function (e.g., ReLU,
tanh).

For the output layer (I = L):

¢ Binary Classification: The output is

1

L)

$= G(W(L)a(L_l) + b(L)) -
1+e

where o is the sigmoid function.

e Multi-class Classification: The output is
)
et
LD’
j=1¢"

V= softmax(z(L))i = fori=1,...,K.

¢ Binary Cross-Entropy: For binary classification, the
loss is:

L =—[ylog(p) + (1 = y)log(l -)] .

e Categorical Cross-Entropy: For multi-class classifi-
cation, the loss is:

K
£==Y ylog®,).
i=1

4. Experimental Setup

4.1. Dataset

To evaluate our JavaScript detector, we constructed two
new datasets to assess its performance. These datasets are
designed to provide a balanced and diverse representation of
both benign and malicious JavaScript samples. The detailed
class distribution of these datasets is summarized in Table 1.
The datasets are described as follows:

Table 1

Composition of the Dataset, and Dataset,
Source Benign Malicious Total
JS150 150 000 0 150000
JS-Malicious-Dataset 0 1357 1357
Dataset, 150000 1357 151 357
JavaScript_ Datasets 8079 8500 16579
Dataset, 8079 8500 16579

e Dataset;: This corpus is composed of a large-scale
benign dataset, JS150 Raff et al. (2021), and a publicly
available malicious corpus, JS-Malicious-Dataset Geek-
sOnSecurity (2022). A subset of samples from JS150
is included to ensure balanced coverage of both classes
while preserving real-world diversity.

e Dataset,: Sourced from a GitHub repository ZZN0508
(2023), this dataset separates benign (goodjs) and
malicious (badjs) scripts. It includes all 8,079 benign
and 8,500 malicious samples.

We employ the DeepSeek code model to automatically
deobfuscate obfuscated JavaScript code. We utilize carefully
crafted prompt templates to detect and decode string encod-
ings (e.g., Hex or Base64), standardize variable names, and
reconstruct control flows while preserving the original func-
tionality. The deobfuscated code is then transformed into
an Abstract Syntax Tree (AST) with data flow annotations
using the Esprima parser. For sequence-based models (e.g.,
BERT or LSTM), we perform language feature segmenta-
tion, while for graph-based models (e.g., GNN), we apply
the METIS algorithm to partition the AST into 8 subgraphs
compatible with the PyG format. For model development,
we randomly partition the combined corpus, allocating 80%
for training, 10% for validation, and 10% as a held-out test
set, ensuring the benign-to-malicious ratio is maintained
across all splits.

For model development we randomly sample 80% of
the combined corpus for training, 10% for validation, and
retain 10% as a held-out test set whilst preserving the be-
nign/malicious ratio.

4.2. Baselines
We compare our method against the following baseline
models:

e BERT: A Transformer-based pre-trained language
model that revolutionized natural language processing
through bidirectional contextual awareness. Its core
architecture employs 12 Transformer encoder layers
(768 hidden dimensions), pre-trained on text corpora
(e.g., Wikipedia) using Masked Language Modeling
(MLM) and Next Sentence Prediction (NSP) objec-
tives.

Zhihong Liang et al.: Submitted to Computers & Security

Page 6 of 13

o CodeBERTFeng et al. (2020): A specialized pre-
trained language model designed for programming-
related tasks, building upon the Transformer archi-
tecture. Unlike general-purpose language models like
BERT, CodeBERT is uniquely trained on both pro-
gramming languages and natural language text, en-
abling it to understand the nuanced relationship be-
tween code and human language. The model employs
innovative training objectives including MLM and
RTD, which specifically enhance its ability to com-
prehend code syntax and semantics.

e LSTM: A bidirectional LSTM with 2 layers, 256
hidden dimensions, dropout of 0.2, and an embedding
dimension of 128. The model is trained using a batch
size of 32 and an initial learning rate of le-3 with a
step-wise decay schedule.

e CNN: A 1D convolutional architecture with 3 layers,
kernel sizes of [3, 5, 7], 128 filters per layer, ReLU
activations, and global max pooling. The model is
trained with a batch size of 32 and a learning rate of
Se-4.

e GCNKipf and Welling (2016): A Graph Convolu-
tional Network with 3 layers, 128 hidden dimensions,
ReLU activations, and dropout of 0.5. The model
processes AST graphs using message passing between
adjacent nodes, with graph-level pooling for final clas-
sification. We train with a batch size of 16 and a
learning rate of Se-4 with weight decay of le-5.

All baseline models process tokenized code sequences
and are trained using the Adam optimizer with weight decay
of le-5. Early stopping with a patience of 10 epochs based
on validation F1-score is employed across all models.

4.3. Evaluation Metrics
We evaluate model performance using the following
metrics:

e Accuracy: The proportion of correctly classified sam-
ples.
TP+TN

Accuracy = (23)
TP+TN+FP+FN

e Precision: The proportion of true positive predictions
among all positive predictions.

Precision = _TIp 24)
TP+ FP

e Recall: The proportion of true positive predictions
among all actual positives.

Recall = _re (25)
TP+ FN

e F1-score: The harmonic mean of precision and recall.

Fl-score = 2 x Prec?s?on X Recall (26)
Precision + Recall

e AUC-ROC: The area under the Receiver Operating
Characteristic curve, which plots the true positive rate
against the false positive rate at various threshold
settings.

1
AUC-ROC = / TPR(FPR™ (1) dt (27)
0

where T' PR is the true positive rate and F PR is the
false positive rate.

For malicious code detection, we consider the malicious
class as the positive class. These metrics provide a compre-
hensive evaluation of model performance, with F1-score be-
ing particularly important due to the security implications of
both false positives and false negatives in malware detection.

4.4. Implementation Details

All experiments were conducted using PyTorch 1.12.0
and PyTorch Geometric 2.2.0 on an NVIDIA RTX 3090
GPU with 24GB RAM. Our proposed Cluster-GT model
uses 3 Cluster-GT layers with 128-dimensional hidden
states, 8 attention heads per layer, and dropout rate of 0.1.
We employed the METIS algorithm to partition each AST
into 8 clusters depending on graph size. Hyperparameters for
all models were optimized via grid search on the validation
set using a 10-fold cross-validation strategy. For the dual-
granularity kernelized attention mechanism, we used the
tensor product kernel (N2C-Attn-T). The DeepSeek-Coder-
7B-InstructGuo et al. (2024) model was accessed through an
API interface for the deobfuscation pipeline.

5. Results and Discussion

5.1. Overall Performance Comparison

To evaluate the comprehensive performance of our pro-
posed method, we conducted a comparative analysis against
a suite of baseline models on Dataset; and Dataset,, with
the results presented in Table 2. In this evaluation, our
method leverages its integrated LLM-based deobfuscation
pipeline, whereas all baseline models (BERT, CodeBERT,
LSTM, CNN, and GCN) were evaluated on the original,
potentially obfuscated datasets. This experimental design
aims to simulate a realistic scenario, pitting our end-to-end
solution against existing standard methodologies.

The results clearly demonstrate the decisive superiority
of our method. On Dataset;, our method achieves an F1-
score of 0.9464 and an AUC of 0.9750, significantly out-
performing the best baseline, CodeBERT, which recorded
an F1-score of 0.8551 and an AUC of 0.9242. This equates
to a relative improvement of approximately 9.13% in F1-
score and 5.08% in AUC. The performance gap widened on
the more challenging Dataset,, where our method attained
an F1-score of 0.9771 and an AUC of 0.9818. In contrast,
CodeBERT achieved an F1-score of 0.8605 and an AUC of
0.9430, marking a relative improvement for our method of
approximately 11.66% in F1-score and 3.88% in AUC.

The baseline models exhibit pronounced limitations
when processing unprocessed data. Sequence-based models

Zhihong Liang et al.: Submitted to Computers & Security

Page 7 of 13

Table 2

Performance Comparison of Our Method Against Baselines on Dataset, and Dataset,. Note: Values in parentheses () indicate
the performance gap between each baseline method and our proposed approach

Model Dataset, Dataset,
Precision Recall F1-Score AUC Precision Recall F1-Score AUC
BERT 0.8216(-13.10) 0.8571(-8.32) 0.8390(-10.74) 0.9150(-6.00) 0.8316(-13.95) 0.8771(-10.61) 0.8537(-12.34) 0.9242(-5.76)
LSTM 0.7552(-19.74) 0.8650(-7.53) 0.8064 (-14.00) 0.8700(-10.50) 0.8000(-17.11) 0.8811(-10.21) 0.8386(-13.85) 0.8911(-9.07)
CodeBERT 0.8489(-10.37) 0.8615(-7.88) 0.8551(-9.13) 0.9242(-5.08) 0.8701(-10.10) 0.8511(-13.21) 0.8605(-11.66) 0.9430(-3.88)
GCN 0.8325(-12.01) 0.8623(-7.80) 0.8471(-9.93) 0.9189(-5.61) 0.8737(-9.74) 0.8611(-12.21) 0.8674(-10.97) 0.9480(-3.38)
CNN 0.8071(-14.55) 0.8485(-9.18) 0.8273(-11.91) 0.8350(-14.00) 0.8471(-12.40) 0.8585(-12.47) 0.8528(-12.43) 0.9150(-6.68)
Our Method 0.9526 0.9403 0.9464 0.9750 0.9711 0.9832 0.9771 0.9818
Table 3
Performance Impact of LLM-based Deobfuscation Across All Models
Model Condition Dataset, Dataset,
Precision Recall F1-Score AUC Precision Recall F1-Score AUC
Obfuscated 0.8216 0.8571 0.8390 0.9150 0.8316 0.8771 0.8537 0.9242
BERT Deobfuscated 0.8914 0.8732 0.8822 0.9112 0.9014 0.8832 0.8922 0.9400
Improvement (%) +6.98 +1.61 +4.32 -0.38 +6.98 +0.61 +3.85 +1.58
Obfuscated 0.7552 0.8650 0.8064 0.8700 0.8000 0.8811 0.8386 0.8911
LSTM Deobfuscated 0.8026 0.9212 0.8578 0.9090 0.8516 0.9351 0.8914 0.9332
Improvement (%) +4.74 +5.62 +5.14 +3.90 +5.16 +5.40 +5.28 +4.21
Obfuscated 0.8489 0.8615 0.8551 0.9242 0.8701 0.8511 0.8605 0.9430
CodeBERT Deobfuscated 0.9087 0.8882 0.8983 0.9422 0.9172 0.8963 0.9066 0.9601
Improvement (%) +5.98 +2.67 +4.32 +1.80 +4.71 +4.52 +4.61 +1.71
Obfuscated 0.8325 0.8623 0.8471 0.9189 0.8737 0.8611 0.8674 0.9480
GCN Deobfuscated 0.9323 0.8611 0.8952 0.9512 0.9223 0.8582 0.8885 0.9611
Improvement (%) +9.98 -0.12 +4.81 +3.23 +4.86 -0.29 +2.11 +1.31
Obfuscated 0.8071 0.8485 0.8273 0.8350 0.8471 0.8585 0.8528 0.9150
CNN Deobfuscated 0.8836 0.8936 0.8886 0.9350 0.9036 0.8936 0.8986 0.9450
Improvement (%) +7.65 +4.51 +6.13 +10.00 +5.65 +3.51 +4.58 +3.00
Obfuscated 0.9100 0.9000 0.9050 0.9423 0.9201 0.9311 0.9256 0.9542
Our Method Deobfuscated 0.9526 0.9403 0.9464 0.9750 0.9711 0.9832 0.9771 0.9818
Improvement (%) +4.26 +4.03 +4.14 +3.27 +5.10 +5.21 +5.15 +2.76

like BERT and LSTM are particularly vulnerable, as code
obfuscation techniques such as variable renaming and con-
trol flow flattening disrupt the sequential semantics upon
which they depend. Even the graph-based GCN model, de-
spite utilizing Abstract Syntax Trees (ASTs), only achieved
an F1-score of 0.8674 on Dataset,, indicating its inability to
capture the multi-granularity structural information that our
node-to-cluster attention mechanism effectively extracts.
To further investigate the models’ behavior under strict
false positive constraints, we evaluated the True Positive
Rate (TPR) at various low False Positive Rate (FPR) levels.
As shown in Table 4, our method consistently outperforms
both CodeBERT and GCN across all FPR thresholds, partic-
ularly excelling in extremely low-FPR regimes (e.g., 0.2473
TPR at 0.0001 FPR). The corresponding ROC curves in

Figure 2 further illustrate this advantage, with our method
achieving the highest AUC of 0.9818 and dominating other
baselines across the entire FPR range, especially in the low-
FPR region relevant to security-critical scenarios.

The exceptional performance of our method is attributable
to its core design principles:

o Integrated Deobfuscation Pipeline: By normalizing
code representations via an LLM prior to feature ex-
traction, our method fundamentally reduces the com-
plexity of the detection task.

e Robust Graph-based Representation: The AST-
based graph structure preserves critical syntactic and
logical relationships, offering resilience against struc-
tural obfuscation that sequence-based models lack.

Zhihong Liang et al.: Submitted to Computers & Security

Page 8 of 13

Table 4

Controlled FPR Evaluation (TPR @ FPR Levels) on Dataset,.
Note: Values in parentheses indicate the performance multiplier
of our method versus each baseline

Model TPR © FPR Level
0.0001 0.001 0.01 0.1
CodeBERT 81%5213) (0509615><5) (02351311) 8%89?)
cn 00189 00425 03813 0.8816
(13.00x) (9.11x) (2.10x) (1.09x)
Our Method 0.2473 0.3872 0.8008 0.9624

True Positive Rate

0.2 — |

—— CodeBERT (AUC = 0.943)
GCN (AUC = 0.948)
0.0 —— Our Method (AUC = 0.9818)

10°° 1072 107! 10°
False Positive Rate (log scale)

Figure 2: ROC curves

e Multi-granularity Feature Fusion: The node-to-
cluster attention mechanism enables the model to
capture features at multiple levels of abstraction, from
local code constructs to global patterns, facilitating a
deeper understanding of the code’s behavior.

These advantages establish our method as a superior solution
in terms of precision and generalization, making it an ideal
choice for demanding security applications.

5.2. Impact of Deobfuscation

Table 3 illustrate the performance of models on Dataset;
and Dataset, before and after applying our LLM-based deob-
fuscation pipeline, revealing substantial improvements that
highlight the effectiveness of this approach in normalizing
code structures and enhancing feature extraction.

On Dataset;, BERT’s Fl-score rises from 0.8390 in
obfuscated code to 0.8822 after deobfuscation, a 4.32%
improvement, while LSTM shows a more pronounced gain,
increasing from 0.8064 to 0.8578, or 5.14%. CodeBERT
improves from 0.8551 to 0.8983, a 4.32% boost, and CNN
advances from 0.8273 to 0.8886, achieving a 6.13% en-
hancement. On Dataset,, similar trends emerge: BERT’s F1-
score grows from 0.8537 to 0.8922, a 3.85% increase; LSTM
improves from 0.8386 to 0.8914, a 5.28% gain; CodeBERT

rises from 0.8605 to 0.9066, up 4.61%; and CNN increases
from 0.8528 to 0.8986, a 4.58% improvement.

Graph-based models also benefit, though to a lesser
extent. GCN’s Fl-score on Dataset; improves from 0.8471
t0 0.8952, a 4.81% increase, and on Dataset, from 0.8674 to
0.8885, a 2.11% gain. Our method, already robust, sees its
Fl-score rise from 0.9050 to 0.9464 on Dataset,, a 4.14%
improvement, and from 0.9256 to 0.9771 on Dataset,, a
5.15% enhancement.

Sequence-based models collectively achieve an average
F1-score improvement of 4.98% on Dataset; and 4.58% on
Dataset,, significantly higher than the 4.48% and 3.63%
averages for graph-based models on the respective datasets.
This disparity underscores the greater sensitivity of sequence-
based models to obfuscation techniques, such as variable
renaming and control flow manipulation, which disrupt se-
quential token relationships. Our method, leveraging robust
graph-based representations and multi-granularity feature
integration, maintains superior performance in both ob-
fuscated and deobfuscated scenarios, with minimal perfor-
mance gaps. The consistent enhancements across all models
affirm the critical role of our LLM-based deobfuscation
pipeline in boosting detection accuracy, particularly for
sequence-based models, while our method’s inherent re-
silience ensures unmatched reliability.

5.3. Analysis of Architectural Advantage

Table 3 demonstrates that our method’s superior perfor-
mance is not solely dependent on its deobfuscation pipeline
but is also rooted in its advanced architectural design.

When all models were evaluated on the original obfus-
cated datasets, our method achieved F1-scores of 0.9050 and
0.9256 on Dataset; and Dataset,, respectively. These results
significantly surpass those of the best-performing baseline,
CodeBERT, which scored 0.8551 and 0.8605. This indicates
that our model’s graph-based structure is inherently more re-
silient to common obfuscation techniques. Furthermore, this
performance gap persists on the deobfuscated datasets. Our
method obtains F1-scores of 0.9464 and 0.9771, while Code-
BERT reaches 0.8983 and 0.9066, confirming our model’s
superior capability to learn from normalized code represen-
tations.

This consistent outperformance is attributable to several
core architectural features:

e Preservation of hierarchical code structure: By
leveraging ASTs, our model effectively preserves the
code’s hierarchical integrity, enabling a more robust
detection of malicious patterns that are agnostic to
superficial changes in code syntax.

e Multi-granularity feature integration: The Node-
to-Cluster Attention mechanism facilitates the inte-
gration of features at various abstraction levels, al-
lowing the model to capture both fine-grained local
patterns and coarse-grained global patterns.

e Superior precision and generalization: The archi-
tecture demonstrates excellent generalization, with the

Zhihong Liang et al.: Submitted to Computers & Security

Page 9 of 13

Table 5

Performance of Our Method Across Different Node Counts and Cluster Kernels

1000 Nodes 2000 Nodes 4000 Nodes
Cluster Kernels
Accuracy Recall F1-Score Accuracy Recall F1-Score Accuracy Recall F1-Score
1 0.9346 0.9281 0.9314 0.9346 0.9192 0.9268 0.9542 0.9242 0.9379
0.9474 0.9374 0.9425 0.9673 0.9573 0.9620 0.9671 0.9671 0.9670
8 0.9671 0.9539 0.9607 0.9769 0.9605 0.9686 0.9868 0.9871 0.9870

Fl-score difference between Dataset; and Dataset,
for our final model being minimal. This showcases
its ability to maintain high performance on diverse
codebases.

These design choices collectively create a more powerful
and reliable model for malicious code detection, independent
of the benefits provided by the deobfuscation pre-processing.

5.4. Scalability Analysis

Table 5 presents the performance of our method across
varying numbers of nodes (1000, 2000, 4000) and cluster
kernels (1, 4, 8) in the Abstract Syntax Tree (AST) graphs,
evaluated using accuracy, recall, and F1-score. These results
demonstrate the scalability of our method, highlighting its
ability to effectively integrate structural information as graph
size increases and its enhanced performance with finer clus-
ter granularity.

As the number of nodes in the AST graph increases from
1000 to 4000, our method consistently improves across all
metrics. For instance, with eight cluster kernels, the F1-score
rises from 0.9607 at 1000 nodes to 0.9870 at 4000 nodes,
a 2.7% improvement. This trend underscores the method’s
ability to leverage richer structural information in larger
graphs, enabling more precise detection of malicious code
patterns. Similarly, accuracy and recall exhibit significant
gains, reaching 0.9868 and 0.9871, respectively, at 4000
nodes with eight clusters, reflecting a balanced performance
that minimizes both false positives and false negatives.

The impact of cluster granularity is particularly pro-
nounced in larger graphs. At 4000 nodes, increasing the
number of cluster kernels from one to eight boosts the F1-
score from 0.9379 t0 0.9870, a 5.2% enhancement, compared
to a 3.1% improvement (0.9314 to 0.9607) at 1000 nodes.
This indicates that finer cluster divisions are more effective
in large-scale graphs, where diverse structural patterns re-
quire nuanced feature integration. In contrast, with a single
cluster kernel, performance remains suboptimal across all
node counts, with an F1-score of only 0.9379 at 4000 nodes,
highlighting the critical role of the Node-to-Cluster Atten-
tion mechanism in capturing multi-granularity features.

Furthermore, the performance gains from increasing
cluster kernels diminish slightly at smaller node counts. For
example, at 1000 nodes, the F1-score improves by 1.9% from
four to eight clusters (0.9425 to 0.9607), compared to 2.1%
at 4000 nodes (0.9670 to 0.9870). This suggests that our
method’s scalability is most pronounced in larger graphs,

where additional clusters yield greater benefits. The bal-
anced performance across metrics at 4000 nodes and eight
clusters, with near-identical accuracy, recall, and F1-score,
further demonstrates the method’s robustness in handling
complex graph structures.

These findings confirm that our method scales effectively
with increasing graph size and cluster granularity, making
it well-suited for real-world applications where AST graphs
may vary significantly in scale and complexity.

6. Limitations and Future Work

The experimental results demonstrate that our method
achieves significant performance improvements over the
baseline approaches. In this section, we analyze the limita-
tions of the proposed method and discuss potential opportu-
nities for future enhancements:

e Limitations of AST-Based Representation: Our
approach primarily leverages Abstract Syntax Trees
(ASTs) for code representation. While ASTs capture
rich structural and syntactic information, alterna-
tive representations such as Control Flow Graphs
(CFGs), Program Dependency Graphs (PDGs), and
bytecode/IR-based features can provide complemen-
tary semantic and behavioral insights. Future work
should explore hybrid representations combining ASTs
with these techniques to enhance detection accuracy
and robustness.

e Limitations in Dynamic Feature Analysis: While
our method incorporates two JavaScript-specific char-
acteristics, its handling of JavaScript’s dynamic na-
ture remains incomplete. Unlike other programming
languages where malicious behavior is often stati-
cally identifiable, JavaScript’s malicious patterns fre-
quently manifest during dynamic execution (e.g.,
through eval(), dynamic property access, or run-
time code generation). Future work could integrate
dynamic analysis through browser instrumentation
or execution tracing to capture runtime behaviors,
subsequently encoding these features as additional
node/edge attributes in our graph representation.

e Limitations in Model Selection: Our approach pri-
marily employs DeepSeek’s base version for deob-
fuscation tasks, with our core contribution lying in
the refined prompt engineering for large language

Zhihong Liang et al.: Submitted to Computers & Security

Page 10 of 13

models. While utilizing more advanced LLM versions
(such as DeepSeek-V2 or GPT-4) could potentially
yield better deobfuscation results, we deliberately fo-
cused on prompt optimization and were constrained
by the prohibitive costs of premium LLM APIs. Fu-
ture work should systematically evaluate the cost-
benefit tradeoffs of state-of-the-art LLMs across dif-
ferent JavaScript obfuscation patterns, particularly for
dynamic features like just-in-time compilation and
prototype pollution that challenge current static anal-
ysis approaches.

7. Conclusion

The proliferation of web applications has intensified
security risks from malicious JavaScript, where advanced
obfuscation techniques and dynamic language features (e.g.,
nested closures) challenge conventional detection methods.
Our work introduces a novel defense framework that syn-
ergizes LLM-based semantic deobfuscation with hierarchi-
cal graph learning: (1) A multi-stage prompt engineering
pipeline reconstructs original code semantics from obfus-
cated inputs, generating normalized AST representations;
(2) To overcome structural noise from JavaScript’s dynamic
typing and scope fragmentation, we develop a Cluster-
wise Graph Transformer that jointly models node-level
semantics and cluster-induced relationships through inno-
vative node-to-cluster attention. Experimental validation
shows our method achieves 94.64% and 97.71% F1-scores
(10.74%/13.85% absolute gains over SOTA) with 4.82x-
5.91x higher TPR at critical FPR thresholds, while main-
taining exceptional cross-dataset consistency (3.07% F1
variance). This hybrid paradigm of semantic-aware LL.Ms
and structure-preserving GNNs establishes a new foundation
for robust malware detection across evolving threat land-
scapes.

References

Abadeer, M., Moeini, B., Sewell, E., Branco, P., Ventura, F., Shi, W.,
2022. Dynamic extraction of bert-based embeddings for the detection of
malicious javascript, in: Proceedings of the 32nd Annual International
Conference on Computer Science and Software Engineering, pp. 110—
119.

Behera, C.K., Bhaskari, D.L., 2015. Different obfuscation techniques for
code protection. Procedia Computer Science 70, 757-763.

Chua, L.O., Roska, T., 2002. The cnn paradigm. IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications 40, 147—
156.

Corso, G., Stark, H., Jegelka, S., Jaakkola, T., Barzilay, R., 2024. Graph
neural networks. Nature Reviews Methods Primers 4, 17.

Fang, Y., Huang, C., Liu, L., Xue, M., 2018. Research on malicious
javascript detection technology based on Istm. IEEE Access 6, 59118—
59125.

Fang, Y., Huang, C., Su, Y., Qiu, Y., 2020. Detecting malicious javascript
code based on semantic analysis. Computers & Security 93, 101764.
Fang, Y., Huang, C., Zeng, M., Zhao, Z., Huang, C., 2022. Jstrong:
Malicious javascript detection based on code semantic representation

and graph neural network. Computers & Security 118, 102715.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin,
B., Liu, T., Jiang, D., et al., 2020. Codebert: A pre-trained model for
programming and natural languages. arXiv preprint arXiv:2002.08155 .

GeeksOnSecurity, 2022. JS-Malicious-Dataset: A Collection of Malicious
JavaScript for Security Research. https://github.com/geeksonsecurity/
js-malicious-dataset. GitHub repository, Accessed: 2025-07-07.

Greff, K., Srivastava, R.K., Koutnik, J., Steunebrink, B.R., Schmidhuber,
J., 2016. Lstm: A search space odyssey. IEEE transactions on neural
networks and learning systems 28, 2222-2232.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R., Zhu, Q.,
Ma, S., Wang, P, Bi, X,, et al., 2025. Deepseek-rl: Incentivizing
reasoning capability in 1lms via reinforcement learning. arXiv preprint
arXiv:2501.12948 .

Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K., Zhang, W., Chen, G., Bi, X.,
Wu, Y., Li, Y.K,, Luo, F., Xiong, Y., Liang, W., 2024. Deepseek-coder:
‘When the large language model meets programming — the rise of code in-
telligence. URL: https://arxiv.org/abs/2401.14196, arXiv:2401.14196.

Huang, S., Song, Y., Zhou, J., Lin, Z., 2024. Cluster-wise graph transformer
with dual-granularity kernelized attention. Advances in Neural Informa-
tion Processing Systems 37, 33376-33401.

Kipf, T.N., Welling, M., 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 .

Koroteev, M. V., 2021. Bert: a review of applications in natural language
processing and understanding. arXiv preprint arXiv:2103.11943 .

Lee, C., Son, S., 2023. Adcpg: Classifying javascript code property
graphs with explanations for ad and tracker blocking, in: Proceedings of
the 2023 ACM SIGSAC conference on computer and communications
security, pp. 3505-3518.

Li, X., Wang, Z., Wang, Q., Yan, S., Xie, T., Mei, H., 2016. Relationship-
aware code search for javascript frameworks, in: Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pp. 690-701.

Liang, H., Yang, Y., Sun, L., Jiang, L., 2019. Jsac: A novel framework to de-
tect malicious javascript via cnns over ast and cfg, in: 2019 International
Joint Conference on Neural Networks (IJCNN), IEEE. pp. 1-8.

Liu, R., Wang, Y., Guo, Z., Xu, H., Qin, Z., Ma, W., Zhang, F., 2024.
Transurl: Improving malicious url detection with multi-layer transformer
encoding and multi-scale pyramid features. Computer Networks 253,
110707.

Liu, R., Wang, Y., Xu, H., Qin, Z., Zhang, F., Liu, Y., Cao, Z., 2025a.
Pmanet: Malicious url detection via post-trained language model guided
multi-level feature attention network. Information Fusion 113, 102638.

Liu, R., Wang, Y., Xu, H., Sun, J., Zhang, F., Li, P., Guo, Z., 2025b.
Vul-Imgnns: Fusing language models and online-distilled graph neural
networks for code vulnerability detection. Information Fusion 115,
102748. URL: https://www.sciencedirect.com/science/article/pii/
$1566253524005268, doi:https://doi.org/10.1016/3.inffus.2024.102748.

Malik, R.S., Patra, J., Pradel, M., 2019. NI2type: Inferring javascript
function types from natural language information, in: 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE), IEEE.
pp- 304-315.

Raff, E., et al., 2021. JS150k: A Dataset of JavaScript Programs with Rich
and Diverse Semantics. Technical Report. SRI International. URL:
https://www.sri.inf.ethz.ch/js150. accessed: 2025-07-07.

Riedmiller, M., Lernen, A., 2014. Multi layer perceptron. Machine learning
lab special lecture, University of Freiburg 24.

Rozi, M.F., Ban, T., Ozawa, S., Kim, S., Takahashi, T., Inoue, D., 2021.
Jstrack: Enriching malicious javascript detection based on ast graph
analysis and attention mechanism, in: Neural Information Processing:
28th International Conference, ICONIP 2021, Sanur, Bali, Indonesia,
December 8-12, 2021, Proceedings, Part II 28, Springer. pp. 669-680.

Rozi, M.F,, Kim, S., Ozawa, S., 2020. Deep neural networks for malicious
javascript detection using bytecode sequences, in: 2020 International
Joint Conference on Neural Networks (IJCNN), IEEE. pp. 1-8.

Schrittwieser, S., Katzenbeisser, S., Kinder, J., Merzdovnik, G., Weippl,
E., 2016. Protecting software through obfuscation: Can it keep pace
with progress in code analysis? ACM Comput. Surv. 49. URL: https:
//doi.org/10.1145/2886012, doi:10.1145/2886012.

Sheneamer, A., 2024. Vulnerable javascript functions detection using
stacking of convolutional neural networks. Peer] Computer Science 10,
el838.

Zhihong Liang et al.: Submitted to Computers & Security

Page 11 of 13

https://github.com/geeksonsecurity/js-malicious-dataset
https://github.com/geeksonsecurity/js-malicious-dataset
https://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196
https://www.sciencedirect.com/science/article/pii/S1566253524005268
https://www.sciencedirect.com/science/article/pii/S1566253524005268
http://dx.doi.org/https://doi.org/10.1016/j.inffus.2024.102748
https://www.sri.inf.ethz.ch/js150
https://doi.org/10.1145/2886012
https://doi.org/10.1145/2886012
http://dx.doi.org/10.1145/2886012

Sheng, Z., Song, L., Wang, Y., 2025. Dynamic feature fusion: Combining
global graph structures and local semantics for blockchain phishing
detection. IEEE Transactions on Network and Service Management .

Skolka, P., Staicu, C.A., Pradel, M., 2019. Anything to hide? studying
minified and obfuscated code in the web, in: The world wide web
conference, pp. 1735-1746.

Song, L., Ding, S.H., Tian, Y., Li, L.T., Ou, W., Charland, P., Walenstein,
A., 2025. Obfuscated clone search in javascript based on reinforcement
subsequence learning. ACM Transactions on Software Engineering and
Methodology .

Song, X., Chen, C., Cui, B., Fu, J., 2020. Malicious javascript detection
based on bidirectional 1stm model. Applied Sciences 10, 3440.

Stokes, J.W., Agrawal, R., McDonald, G., Hausknecht, M., 2019. Scriptnet:
Neural static analysis for malicious javascript detection, in: MILCOM
2019-2019 IEEE Military Communications Conference (MILCOM),
IEEE. pp. 1-8.

Sun, H., Chen, M., Weng, J., Liu, Z., Geng, G., 2021. Anomaly detection
for in-vehicle network using cnn-Istm with attention mechanism. IEEE
Transactions on Vehicular Technology 70, 10880-10893.

Sun, J., Jia, Y., Wang, Y., Tian, Y., Zhang, S., 2025. Ethereum fraud
detection via joint transaction language model and graph representation
learning. Information Fusion 120, 103074.

Tian, Y., Yumin, Z., Jia, Y., Sun, J., Wang, Y., 2025. ‘Web-
guard++: Interpretable malicious url detection via bidirectional fusion
of html subgraphs and multi-scale convolutional bert. arXiv preprint
arXiv:2506.19356 .

Wang, Y., Xu, H., Guo, Z., Qin, Z., Ren, K., 2022. Snwf: Website
fingerprinting attack by ensembling the snapshot of deep learning. IEEE
Transactions on Information Forensics and Security 17, 1214-1226.

Wang, Y., Zhu, W., Xu, H., Qin, Z., Ren, K., Ma, W., 2023. A large-scale
pretrained deep model for phishing url detection, in: ICASSP 2023-
2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), IEEE. pp. 1-5.

Wei, L., Wang, Y., Li, X, Li, J., Huang, Y., Liu, Z., 2025. A detection
method for malware communication traffic via encrypted traffic analysis.
IEEE Internet of Things Journal .

Wirfs-Brock, A., Eich, B., 2020. Javascript: the first 20 years. Proc. ACM
Program. Lang. 4. URL: https://doi.org/10.1145/3386327, doi:10.1145/
3386327.

Xiao, W., Shi, C., Chen, M., Liu, Z., Chen, M., Song, H.H., 2025.
Graphedge: Dynamic graph partition and task scheduling for gnns
computing in edge network. Information Fusion , 103329.

Yamaguchi, F., Golde, N., Arp, D., Rieck, K., 2014. Modeling and
discovering vulnerabilities with code property graphs, in: 2014 IEEE
symposium on security and privacy, IEEE. pp. 590-604.

Zaremba, W., Sutskever, L., Vinyals, O., 2014. Recurrent neural network
regularization. arXiv preprint arXiv:1409.2329 .

Zhang, T., Du, C., Zhou, Y., Guan, Q., Liu, Z., Huang, X., Gong, Z.,
Deng, L., Li, Y., 2024. Hybrid transfer and self-supervised learning
approaches in neural networks for intelligent vehicle intrusion detection
and analysis. IEEE Internet of Things Journal .

ZZN0508, 2023. JavaScript_Datasets: JavaScript Malicious Code Dataset.
https://github.com/ZZN0508/JavaScript_Datasets. GitHub repository,
Accessed: 2025-07-07.

Zhihong Liang holds a Master of Engineering in
Computer Applications from South China Univer-
sity of Technology. He is a Senior Professor-level
Senior Engineer, a member of the Artificial Intelli-
gence Committee of the Chinese Society for Elec-
trical Engineering, and a member of the Computer
Security Committee of the China Computer Fed-
eration. His long-term research and engineering
activities focus on network security, data security,
artificial intelligence, and cloud computing. He has
authored or co-authored more than ten academic
papers.

Wang Xin holds a Master of Engineering de-
gree in Mechanical Design and Theory from
Northeast Agricultural University. She is cur-
rently employed at Xidian University, where
she is engaged in the research and develop-
ment of industrial software and intelligent secu-
rity.

Zhenhuang Hu is currently pursuing his graduate
studies at the Hangzhou Institute of Technology
of Xidian University. He obtained his Bachelor’s
degree from Harbin University of Science and
Technology. His primary research interests en-
compass malicious code detection, network se-
curity, and applications of large language mod-
els.

Liangliang Song is a graduate student at the
Hangzhou Institute of Technology of Xidian Uni-
versity. He received his Bachelor’s degree from
Hangzhou Dianzi University. His research focuses
on deep learning, network security, and large
language models.

Lin Chen received his M.E. in Computer
Science and Technology from South China
University of Technology. He is an engi-
neer whose research centers on Al security
in power systems and network security, with
more than ten relevant academic papers pub-
lished.

Jingjing Guo received her B.S., M.S., and Ph.D.
degrees from Xidian University, China. Her re-
search focuses on Al system security, privacy
protection, UAV and IoT security. She has pub-
lished over 50 papers in top journals such as
IEEE JSAC and TMC, and holds more than 60
patents.

Yanbin Wang is currently an Associate Professor
at the Hangzhou Institute of Technology, Xidian
University. He received his Ph.D. in Cybersecurity
from Zhejiang University. His research focuses on
Al-powered web security, software security, and
blockchain security. Dr. Wang has led or partici-
pated in over 10 key research projects, including
National Key R&D Programs and provincial-level
initiatives. With 604 publications in top-tier inter-
national journals and conferences, he previously

Zhihong Liang et al.: Submitted to Computers & Security

Page 12 of 13

https://doi.org/10.1145/3386327
http://dx.doi.org/10.1145/3386327
http://dx.doi.org/10.1145/3386327
https://github.com/ZZN0508/JavaScript_Datasets

served as an editorial board member for three SCI-
indexed journals.

Ye Tian is an associate professor at Xidian Univer-
sity. He received Ph.D. from Harbin Engineering
University. His current research interests include
artificial intelligence security and multimodal in-
formation processing.

Zhihong Liang et al.: Submitted to Computers & Security Page 13 of 13

