arXiv:2507.22611v1 [cs.CR] 30 Jul 2025

DoS Attacks and Defense Technologies in Blockchain
Systems: A Hierarchical Analysis

CHUNYI ZHANG? FENGJIAO DOU* XIAOQI LI

Abstract

Blockchain technology is widely used in various fields due to its ability to pro-
vide decentralization and trustless security. This is a fundamental understanding
held by many advocates, but it is misunderstood, leading participants to fail to
recognize the limitations of the security that blockchain can provide. Among all
current network attacks, Denial of Service (DoS) attacks pose significant threats
due to their ease of execution and destructive potential. This paper, based on the
blockchain architecture hierarchy, categorizes and organizes existing DoS attacks,
with a focus on explaining the principles and methods of contract layer and con-
sensus layer DoS attacks. Furthermore, this paper comprehensively analyzes and
compares commonly used detection methods and defense technologies, which will
contribute to strengthening the security and stability of blockchain systems and
promoting further innovation and application of blockchain systems.

1 Introduction

Blockchain is a new application model of computer technology, such as distributed data
storage, peer-to-peer transmission, consensus mechanism, and encryption algorithm.
Essentially, it is a decentralized shared database that stores data or information that
is unforgeable, traceable, open, transparent, and collectively maintained.

Blockchain technology has made remarkable progress in the international arena and
is widely used in other fields such as smart contracts, supply chain, finance, healthcare,
and government [10]. This trend of wide application has made it a key technology sup-
port in many fields. For example, in the field of smart contracts, blockchain technology
brings increased efficiency, transparency, and security. Within the domain of supply
chains, it has been shown to promote transparency and improve traceability. Moreover,
in the field of finance, blockchain has been found to improve cross-border payments,
asset management, and transaction settlement. Finally, in the area of healthcare, it
provides a secure framework for managing and sharing health data [20].

The development and wide application of blockchain technology have also raised
concerns about its stability and security. In recent years, there have been several DoS

“Chunyi Zhang and Fengjiao Dou contributed equally to this work.

*Authors’ Contact Information: Chunyi Zhang, Hainan University, Haikou, Hainan, China; Fengjiao
Dou, Hainan University, Haikou, Hainan, China; Xiaoqi Li, csxqli@ieee.org, Hainan University, Haikou,
Hainan, China.

https://arxiv.org/abs/2507.22611v1

attacks on blockchain systems that have caused major consequences, including system
failure and property damage, among which the more influential ones are [13]:

(1) Bitcoin Network Transaction Fog Attack. In 2014, the attacker generated a
substantial number of small transactions, each comprising numerous inputs and out-
puts [33]. This led to the accumulation of a large amount of transaction data. These
substantial transactions effectively occupied the available space within the block, thus
impeding the processing of routine transactions. This phenomenon is referred to as
transaction fog, which occurs when the network becomes opaque, hindering the visibil-
ity of the actual transactions.

(2) Bitcoin Network Stress Test. In 2015, the incident was initially conceived as
a stress test to assess the processing capacity of the Bitcoin network. However, the
magnitude of the test precipitated a Distributed Denial of Service (DDoS) attack [4].
During the test, the volume of transactions on the network increased exponentially,
resulting in a substantial number of transactions that could not be processed promptly.
This, in turn, affected the normal transactions of Bitcoin.

(3) DDoS attack on Ether. In 2016, attackers took advantage of vulnerabilities in
smart contracts, resulting in the creation of a substantial number of transactions that
used a significant amount of computational resources [17]. This led to a substantial
reduction in the processing capacity of the Ether network.

(4) KotET Incident. In 2016, the deployment of smart contracts for the KotET
game was completed, in which the player sends the contract some ETH (Ethereum) to
obtain the throne [18]. The Ponzi trap occurs because as the number of kings increases,
the cost of becoming a king also increases.

(5) DDoS attack on the IOTA network. IOTA is a cryptocurrency that uses Directed
Acyclic Graph (DAG) technology, which is different from the traditional blockchain
structure. In 2017, IOTA suffered a DDoS attack in which attackers overloaded IOTA’s
network nodes by sending a large number of transaction requests in succession, pre-
venting them from processing normal transactions [3].

(6) Microsoft suffered a 2.4Tbps DDoS attack. In 2021, Microsoft acknowledged that
it had been subjected to a 2.4Tbps DDoS attack in August, representing a 140 percent
increase compared to the previous highest recorded attack bandwidth by Microsoft in
2020 [22].

These examples demonstrate that, despite the decentralized nature of the blockchain,
which renders it more resistant to DoS attacks than traditional centralized networks,
it is not entirely impervious to vulnerabilities. While it cannot fully incapacitate the
network as can traditional DDoS attacks, it can result in the degradation of network
service quality [28]. Consequently, for blockchain designers and operators, although
blockchain networks generally possess certain mechanisms (e.g., transaction fees, com-
putational difficulty, etc.) to impede such attacks, the prevention and response to DoS
attacks remains an issue that necessitates continuous attention [8].

The advent of blockchain technology and the subsequent revelation of its vulnera-
bilities have prompted the academic community to undertake comprehensive research
endeavors concerning its security [32]. In 2018, Cai Z, Du C, and Gan Y provided a
concise overview of classification, architecture, and key blockchain technologies. They
conducted a preliminary analysis of key management, access control mechanisms, de-
fense mechanisms against DDoS attacks, fragmentation leak prevention mechanisms,
and future blockchain development trends. In addition, they predicted the security

mechanisms of the blockchain. This analysis was intended to facilitate further research
on the blockchain and its security [5]. Subsequently, Gu Xin and Xu Shuzhen et al.
expounded on the archetypal blockchain technology architecture, meticulously analyz-
ing the security of blockchain technology from the perspectives of block data structure,
hash algorithms, digital signatures, and smart contracts. In subsequent years, a num-
ber of researchers and scholars have initiated the discussion of issues pertaining to the
security and privacy of Bitcoin and the blockchain [31]. In 2021, Tian et al. conducted
a comprehensive analysis of the security and privacy of Bitcoin. Their analysis en-
compassed various aspects, including hierarchical classification and attack attribution
analysis, among others. This study aimed to analyze the system architecture, attack
principles, and defense strategies of existing security problems on blockchain by exam-
ining the dimensions of Layer Classification and Attack Correlation Analysis [26]. In
2022, Yang et al. presented a comprehensive analysis of 14 prevalent security vulner-
abilities in smart contracts and summarized methods of vulnerability-related security
prevention. They analyzed four aspects of data storage security, data privacy security,
data access security, and data sharing security, which provided some reference for future
research work of related people in the field of blockchain security [12].

In recent years, many scholars have conducted detailed overviews from the devel-
opment history of blockchain technology, quantitative comparison of consensus algo-
rithms, cryptographic details in public-key cryptography, zero-knowledge proofs used
in blockchain, hash functions, comprehensive lists of blockchain applications, etc., to
assess blockchain security from the perspective of risk analysis and come up with a
more comprehensive category of blockchain security risks [2]. The focus of academic
research is predominantly on the analysis of algorithms, protocols, implementations,
and the utilization of security measures. However, there is a paucity of research on
man-made attacks and external threats that, given the ease with which they can be
implemented, can inflict significant damage through DoS attacks. Among the various
types of network attacks, these external attacks pose the greatest threat.

This study begins with the layered structure of blockchain technology, analyzes
existing DoS attack cases, and investigates typical attack vulnerability principles and
the corresponding defense technologies at each layer. First, the current state of academic
research on attacks and defenses targeting blockchain systems is described, with a
focus on the foundational theories relevant to this paper. Second, starting from the
layered structure, each layer of attacks is analyzed with examples, and classic attack
methods are reproduced. Then, the paper compares the advantages and disadvantages
of common detection and defense schemes across the four layers, with a focus on contract
vulnerability detection. Finally, this paper identifies current challenges and difficulties,
summarizes research findings, and outlines directions for future research improvements.

The main contributions of this study are:

e Layered attack classification framework: We propose a systematic DoS at-
tack classification method based on the seven-layer architecture of the blockchain,
defining potential threat models for each layer.

e Defense technology comparative assessment: We propose the corresponding
defense solutions for attacks at various levels and systematically compare their
advantages and disadvantages.

e Attack reproduction and vulnerability detection: We simulate and repro-
duce a DoS attack on smart contracts and use Mythril to detect timestamp de-
pendency vulnerabilities, providing reproducible vulnerability exploitation paths
and repair solutions.

This study aims to fill the gap in the research on DoS attacks in the blockchain field
and promote further innovation and application of blockchain systems.

2 Background

2.1 Blockchain

The fundamental principle of blockchain technology is decentralization, which is the
process of distributing data across multiple nodes in a network, thereby ensuring its
reliability and security. This decentralized approach offers numerous advantages, in-
cluding immutability, transparency, traceability, and retroactivity [15].

2.1.1 Block Structure

Blockchain is a distributed database in which data is linked in the form of blocks. Each
block contains a certain amount of data and metadata associated with it. Blockchain
technology is characterized by a block-to-chain structure that facilitates decentralized,
tamper-proof, transparent, and trustworthy data storage and transmission [21].

Block. The blockchain is composed of blocks as the basic unit and contains meta-
data. Metadata is extremely important data in a block, including timestamps, hashes
of previous blocks, random numbers (Nonce), etc. Each block usually contains data
on one or more transactions, which can be digital currency transfers, smart contract
executions, etc. The block index is shown in Figure 1.

Hash. The hash algorithm is irreversible, thereby excluding the possibility of re-
covering the original data from the encrypted version. According to its underlying
principle, it can be seen that only slightly changing the data in the block will lead to
changes in the hash value. Therefore, the transaction data in the block is encrypted
and verified by hashing, which ensures its integrity and security.

Chain. The blockchain is composed of a series of sequentially linked blocks. Each
block contains data, including the hash value of the previous block. This results in the
data forming a continuous chain on the blockchain. Each node has a complete copy of
the blockchain. The blockchain structure from block to chain is shown in Figure 2.

Consensus Mechanism. The consensus mechanisms ensure that all nodes in the
network agree to a specific action, thus reaching a consensus. These mechanisms also
determine the validity of specific branches, including Proof of Work (PoW), Proof of
Stake (PoS), and Proof of Equity Shares (PoA).

2.1.2 Blockchain Architecture

In blockchain architecture, the blockchain is divided into seven layers: cryptographic
layer, data layer, network layer, consensus layer, incentive layer, contract layer, and
application layer [14]. In the seven-layer architecture of blockchain, each layer has

Key
Pri blﬁck Block hash
as| value

Block
version
number

Back block
hash

Block
height

Merkle
root

Value

Block index @
Random Systgm
ber version

ulin number

Figure 1: Block Index

UNIX time
stamp

Target
value

different functions and roles. The diagram of the blockchain structure is shown in
Figure 3.

Cryptography Layer. The cryptography layer, situated at the foundation of the
blockchain, employs a range of cryptographic theories, including encryption algorithms,
digital signatures, and hash functions, to ensure the security and confidentiality of data
and communications within the blockchain system. The implementation of encryption
technology ensures the confidentiality, integrity, and protection of transaction data,
protecting against potential threats such as tampering and theft.

Data Layer. The data layer is widely involved in the database, transaction data,
smart contract code, and other important information in the blockchain. It is respon-
sible for the management of data storage and retrieval in the blockchain system. The
data layer also includes the processing of encryption, compression, and indexing of data,
with data storage and retrieval functions to ensure the security and integrity of data.

Network Layer. The network layer encompasses the network topology, routing
protocols, peer-to-peer communication protocols, and other related components. The
primary function is to facilitate the establishment and maintenance of connections and
communications between nodes. This plays a pivotal role in determining the scalability,
security, and performance of the blockchain network. The system must provide a secure
and reliable communication environment to ensure that data can be exchanged and
consensus reached between nodes.

Consensus Layer. The consensus layer is the core content of the blockchain sys-
tem, including the consensus algorithm, the rules of the block generation, and the
verification mechanism, providing the technical infrastructure for the blockchain. The
design of the consensus layer affects the security, performance, and decentralization of
the blockchain system. It defines the rules and algorithms for reaching consensus among
nodes and ensures that all nodes agree on the state of the blockchain.

Pre block UNIX time Random
Merkle root Target value
hash stamp number
Block versiont
number

Block Head

Transaction Transaction
number version
1 1 1 n
Block Body Transaction
1
Output
number m
n m

agic numbers any

block sizes

Block File Input Output

Previous output .
Serial numbey (Output value,
ash and inde;

Figure 2: From Block to Chain

Incentive Layer. The incentive layer includes incentives and reward rules that are
designed to facilitate desired behaviors. Common incentive mechanisms include block
rewards and transaction fees. Through the design of the incentive layer, it can promote
the behavior of nodes in line with the interests of the system and guarantee the security
and stability of the blockchain network.

Contract Layer. The contract layer includes the execution environment and re-
lated tools for smart contracts. It is mainly responsible for processing and executing the
code of smart contracts. The existence of the contract layer provides a secure and trust-
worthy execution environment and ensures the correct execution and non-tamperability
of smart contracts.

Application Layer. The application layer is the interface for users to interact with
the blockchain system, including the user interface, applications, and smart contracts.
Users can interact with the blockchain system through applications, sending transac-
tions, querying data, and other operations. The application layer provides users with
a way to access the blockchain network, enabling blockchain technology to be applied
in various scenarios, such as cryptocurrency trading and supply chain management.

2.2 Common Security Threats

Despite the numerous security advantages offered by blockchain technology, including
decentralization, immutability, and transparency, there are still some common security
threats to be considered [9].

Double Spending. Double spending is defined as the transmission of the same
digital currency to two distinct addresses in a single transaction. This occurrence is
typically attributable to network delays or exploitation of system vulnerabilities by

1

1
1

1
: Application Layer | Programmable Currency Programmable Finance Programmable Society :
B e e e el e S
Dottt el e b pliitic et >4 il s wiaaatsatel . alhaatnlink oot]l Oulte Yy
! 1
: Contract Layer Script Code Algorithm Mechanism Smart Contract !
[I
b N N PR e e e SRl . e R T b et el o - o e i Dt pe M e e ety
e e o e e e e e e S e i | T tmlesP i ittt ~AvsPu st s A . it £
! 1
: Incentive Layer Issuance Mechanism Distribution Mechanism Transaction Fee i
- I
e e cvm i ovm . e SERESE SN C N ool . S SN - i P - F RSt A F Yol ~ Pl . - O =
e T s e e e e e T e e e e e e e e e e Yy
! 1
| Consensus Layer PoW PoS DPoS]
[I
A e e B e e g
L e e A G e n e e e e e e s e e e T . T T Tl T e e e e e R e e e e I T ey
! 1
: Network Layer P2P Network Propagation Mechanism Verification Mechanism !
- I
Ly L e e e e e e e e g
e e R e TR T i e e 2 b e e =y
! 1
: Data Layer Data Block Chained Structure Timestamp :
1
IACTIRRR e et —mnaps et iU S ————r——— A S g Pr——" 8y
=t s T T e TTTTTTTsTEEEEEEEEEEEEEEEEEEE A A A ST -
I Cryptograph !
: Lai/,‘e)r grapny Hash Function Merkle Tree Asymmetric Encryption :
1

1
1

Figure 3: Blockchain Architecture

attackers. This phenomenon may lead to a reduction in system trust, thereby eroding
user confidence and, consequently, exerting an adverse effect on the overall reliability
and trustworthiness of the blockchain system.

51% Attack. 51% attack is characterized by the attacker’s possession of more than
half of the computing power in the network, thereby enabling them to exert control
over the consensus process within the network. The repercussions of these actions can
encompass a range of issues, including the manipulation of transactions, the occurrence
of double spending, and the disruption of service. In particularly grave instances, the
integrity and stability of the entire blockchain network may be compromised.

Smart Contract Vulnerability. Smart contracts are based on code execution,
and the existence of coding errors or vulnerabilities may lead to asset theft, contract
deadlock, or abnormal execution. The ramifications of these actions include the forfei-
ture of assets, the execution of contracts that deviate from standard practices, and the
compromise of system security. These factors exert a direct influence on the stability
of the blockchain system and the confidence of its users.

Loss or leakage of the private key. The private key is how the digital asset
is controlled. If the private key is lost or disclosed, attackers may gain control of the
asset, which may result in theft of the asset, impersonation of the user’s identity, and
loss of control of the asset by the legitimate user.

Leakage of transaction information. Transaction information on blockchain is
usually public, but sometimes users want to protect their privacy. After the transaction
information is leaked, attackers can track the user’s identity and behavior through their
analysis of the transaction information, which leads to the exposure of the user’s privacy,
identity theft, and tracking of transaction behavior, and then violates the user’s rights

and interests.

Fork Attack. Fork attack refers to the occurrence of a fork in the blockchain
network, which is used by attackers to implement malicious behaviors such as double
spending and canceling transactions. It may lead to chaotic transactions, compromised
asset security, and reduced system credibility, directly threatening the stability and
reliability of the blockchain system.

Malicious Smart Contracts. Malicious smart contracts are contracts designed
to attack users, which may include theft of assets, denial of service, market manipula-
tion, and other malicious behaviors, which can lead to loss of assets, damage to users’
rights and interests, and decline in system trust, directly affecting the security of the
blockchain system and the interests of users.

2.3 DoS Attack

Denial of Service (DoS) attack is a kind of by transmitting a large number of illegal ap-
plication packets to the designated destination host, to occupy or consume the resources
of the target host, so that the computer or network cannot provide normal services and
the system of the target of the attack stops responding or even crashes [25]. DoS attacks
can be traced back to the early days of the Internet. As technology evolves, attackers
continue to innovate and improve DoS attack methods to make them more threatening
and complex, such as the SYN flood attack, the reflection amplification attack, and the
DDoS attack.

DoS attack is a relatively low-cost form of cyberattack with the potential to have
more severe consequences. Attackers can use relatively simple tools and techniques to
cause network performance degradation, node unavailability, smart contract unavail-
ability, and data loss in blockchain systems.

2.4 Classification of Common DoS Attack
2.4.1 SYN Flood Attack

SYN flood attack is a common DoS attack, in which the attacker exploits a vulnerability
in the TCP protocol’s three-handshake process by sending a large number of forged
SYN packets to the target server, but does not send subsequent ACK packets. Since
the server receives a large number of connection requests but is unable to complete the
three handshakes, it will remain connected while waiting for the client’s ACK packet.
The attacker keeps sending forged connection requests, which makes a large number
of half-connected states (SYN_RCVD states) appear on the server, consuming server
resources and ultimately causing the server to be unable to respond to normal user
requests [11].
The following are common defenses:

e SYN cookie. It is a server-side application technology that generates a tempo-
rary cookie when establishing a TCP connection to replace the traditional half-
open connection state, thus reducing the load on the server.

e Limit the number of connections. Set firewall rules or server parameters
to limit the number of connections to a single IP address to prevent too many
connections from a single IP.

e Traffic filtering. Filter suspicious SYN packets through network devices or
firewalls to reduce the load on the server.

e Network device optimization. Adjust network device parameters to increase
network capacity and performance to handle a large number of connection re-
quests.

e Monitoring and response. Regularly monitor the status of the server to detect
anomalies and take appropriate countermeasures.

2.4.2 ICMP Attack

The ICMP protocol is used to send diagnostic and error messages, while ICMP attacks
utilize some features or vulnerabilities of the ICMP protocol to attack the target system,
including destination unreachable, timeout, etc. The attacker can use these messages to
send a large number of false ICMP messages, thus consuming the network bandwidth
and processing power of the target system and causing network congestion or resource
exhaustion of the target system [19].

The following are common defenses:

e Firewall settings. Set firewall rules to restrict access to the ICMP protocol.

e Traffic filtering. Use network devices or firewalls to filter malicious ICMP mes-
sages.

e Enable ICMP Echo request response limit. Set a limit on the target system
to restrict the frequency or number of system responses to ping requests.

e Updates and patches. Update the software of the system and network devices
in a timely manner to fix known vulnerabilities in the ICMP protocol.

e Traffic monitoring. Regularly monitor network traffic and system performance
to detect anomalies and take the corresponding countermeasures promptly.

2.4.3 Reflection Amplification Attack

Reflection Amplification Attack (RAA) is one of the common DDoS attack methods
that exploits the reflection properties and amplification effects in some network pro-
tocols, often utilizing protocols such as DNS, NTP, SSDP, and others. The attacker
sends forged requests to open servers in the network, causing the servers to send a large
number of responses to the victim, thus exhausting the network bandwidth [7].

The following are common defenses:

e Filtering and blocking attack traffic. Filter out traffic characterized by re-
flection amplification attacks through network devices or firewalls, and prevent
attack traffic from entering the victim’s network promptly.

¢ Restrict access to open server ports. Implement access control lists (ACLs)
or network access control (NACs) for publicly available server ports to restrict
requests from unknown sources.

e Update and configure servers. Update and configure servers regularly to
patch known vulnerabilities and weaknesses and reduce the attack surface.

e Network monitoring and traffic analysis. Use network monitoring tools to
monitor network traffic in real time, quickly detect anomalies, and take appropri-
ate countermeasures.

e Protocol optimization and configuration adjustment. Adjust network pro-
tocols and server configurations to limit or disable protocol functions that have
amplification effects and reduce the impact of reflection amplification attacks.

2.4.4 DDoS Attack

DDoS attack refers to an attack in which an attacker controls a large number of in-
fected computers, IoT devices, or servers located in different geographical locations,
forming a massive attack network. These infected devices are referred to as ”zombies”
or "bots” [16]. The attacker remotely controls these devices, concentrating them to
launch attacks, and uniformly sends a large amount of malicious traffic to the target
system, rendering it unable to provide normal services. This attack method enables
larger-scale attacks that are more difficult to trace and defend against [34].
The following are common defenses:

e DDoS firewall and intrusion detection system. Deploy specialized DDoS
firewall and intrusion detection system to detect and block DDoS attack traffic
in time.

e Traffic filtering and cleaning. Use traffic filtering and cleaning services to
filter out malicious DDoS attack traffic and deliver normal traffic to the target
server.

e Load balancer. Use a load balancer to spread the traffic to increase the capacity
of the system and its ability to withstand DDoS attacks.

e DDoS attack monitoring and warning. Regularly monitor network traffic
and system performance to detect abnormal traffic and attacks in time and take
the corresponding countermeasures.

e Update and maintenance. Regularly update systems and applications to patch
known vulnerabilities and weaknesses to reduce the risk of DDoS attacks.

3 DoS Attacks in Blockchain Systems

The blockchain network’s decentralized architecture is characterized by the uniformity
of status and role among all nodes. It is challenging to terminate the service of this
blockchain network unless an attacker launches a coordinated attack on all nodes. If
some nodes are omitted, the blockchain network is still able to operate normally [27].
There are two reasons why traditional DoS attacks cannot be employed against
blockchain networks. Firstly, nodes are dynamic and can access new nodes at any time,
making it difficult for an attacker to find all nodes. Secondly, the presence of tens of

10

Figure 4: DDoS Attack Process

thousands of nodes complicates the ability of an attacker to launch an attack on all of
them simultaneously. Consequently, achieving a complete denial of service in blockchain
systems is difficult. Instead, the objective of DoS attacks is to compromise or disrupt
the functionality of the blockchain system.

3.1 Network Layer

Denial-of-service attacks at the blockchain network layer aim to prevent the proper
functioning of the blockchain network by taking up network bandwidth, disrupting
communication between nodes, or rendering nodes inoperable, preventing communica-
tion between nodes and causing network fragmentation or delays.

3.1.1 Common Attack Principles

e Occupying bandwidth: The attacker sends a large amount of network traffic to
the target node or network, consuming bandwidth resources, resulting in network
congestion or delay, so that legitimate users cannot be accessed normally.

e Blocking communication: The attacker tries to prevent communication be-
tween nodes by sending error or malicious messages, or interfering with the net-
work connection so that nodes cannot exchange data or participate in the con-
Sensus process.

3.1.2 Distributed Denial of Service

Denial-of-service attacks typically necessitate the utilization of a substantial amount
of network resources by the attacker to attack the target network or computer system.
This results in the target system’s inability to respond promptly to normal access, or
even the system’s failure. However, in the context of the blockchain system, the user
nodes are tens of thousands, and the resources of each node are limited. Consequently,
the attacker generally opts to integrate network bandwidth fragmentation to implement
distributed denial-of-service (DDoS) attacks. The principle of DDoS attacks based on
the blockchain network is shown in Figure 4.

11

3.2 Consensus Layer

Denial-of-service attacks at the blockchain consensus layer aim to disrupt or interfere
with the consensus mechanism of the blockchain network, thereby preventing nodes from
agreeing on the correct blockchain state. The most prevalent attack methods include
the 51% attack and the network splitting attack. In this section, we methodically
analyze the 51% attack as a paradigmatic case.

3.2.1 51% Attack Principle

In blockchain, transactions and blocks are validated by numerous network nodes through
a consensus process, thereby ensuring the integrity and validity of the transactions and
blocks. The prevailing consensus mechanism is Proof of Work (PoW). In the PoW
consensus protocol, the blockchain system allows the concurrent existence of multiple
forked chains, with each chain having the capacity to externally assert its correctness
[30].

However, if an attacker gains control of more than half (i.e., 51%) of the network’s
computing power, they can significantly influence the network’s behavior. To illustrate
this phenomenon, one may envision a group of individuals engaged in a collective ac-
tivity in which each participant is tasked with determining the subsequent action in
unison. The collective decision-making process is facilitated by a voting system that
ensures equitable representation for all participants. In the event that the majority
agrees, the aforementioned action is to be executed. It is reasonable to hypothesize a
scenario in which a single individual acquires a dominant share of the voting power in
the game, which amounts to more than half of the total. This means that he can decide
his next steps because he has enough votes to override the opinions of the others. He
can choose to ignore the advice of the others altogether or make his own decisions that
the others cannot oppose.

In blockchain, computing power is analogous to voting power. If an attacker controls
more than 51% of the computing power, he can control the network consensus process
and agree on decisions and behaviors. This makes it possible for an attacker to carry
out malicious behaviors such as double spending, blocking transaction confirmations, or
tampering with transaction records, thus undermining the security and trustworthiness
of the blockchain network.

3.2.2 51% Attack Process

It is hypothesized that an attacker, who exerts control over 50% of the computing
power, disseminates his initial transaction to half of the network and his subsequent
transaction to the remaining half of the network. In each network segment, two miners
almost simultaneously obtain accounting rights, and then the miners broadcast their
respective accounting blocks. At this point, the initial unified ledger forks, yielding
blocks A and B, as illustrated in Figure 5.

Subsequently, if the next miner chooses branch A to continue accounting, according
to the PoW consensus mechanism, branch A, which is longer than branch B, will be
recognized, while branch B will be discarded, as illustrated in Figure 6.

If branch A is recognized, the first transaction is recognized. At this point, if the
attacker gets the transaction item, he will use his arithmetic power to become a miner

12

» Block:10004A

Block:10000 » Block:10001 » Block:10002 » Block:10003
Block:100048
Figure 5: Broadcast Fork
—>| Block:10004A » Block:10005A
Block:10000 Block:10001 » Block:10002 Block:10003
» Block:10004B

Figure 6: Recognize Branch A, Discard Branch B

and perform two consecutive bookkeeping operations on the discarded branch B, as
illustrated in Figure 7.

At this point, it is observed that branch B has a greater length than branch A.
Consequently, branch A is then discarded, the transaction in branch A is not established,
the first transaction recorded by the attacker in branch A is invalid, and the currency
paid is returned to the original account. However, the attacker has obtained the goods.
This means that he has expended one currency to obtain two goods, thereby successfully
executing the double-spending attack.

3.3 Data Layer

Denial-of-service attacks at the blockchain data layer aim to make the network unable
to provide services properly or create chaos by maliciously corrupting or tampering
with blockchain data.

3.3.1 Attack Principle

Attackers perpetrate malicious operations on the data structures and transaction mech-
anisms of blockchain systems to consume network resources, interfere with the normal
operation of nodes, or affect user operations. This results in nodes being prevented
from processing data or verifying transactions normally, causing a denial of service or
reduced system availability.

3.3.2 Attack Methods

e Invalid transaction. Attackers send a large number of invalid transactions,
incorrectly formatted transactions, or transaction requests to the blockchain net-
work. These transactions consume significant processing power and network band-

13

Block:10004A » Block:10005A

Block:10000 Block:10001 » Block:10002 » Block:10003

v

Block:10004B Block:10005B Block:10006B

Figure 7: Forced Renewal of Branch B

width resources on the nodes, leading to network congestion or delays. These de-
lays can further impede the nodes’ ability to process valid transactions, resulting
in delayed or discarded transactions.

e Tampering with data. Attackers maliciously modify or tamper with data in the
blockchain, including transaction records or status, transaction amounts, trans-
action initiators, transaction recipients, and other information, to interfere with
or disrupt the system’s transaction records and account balances. Attackers can
modify the content of confirmed transactions or tamper with transaction infor-
mation during the transaction broadcasting process, making it difficult for nodes
to confirm the correct transaction records or leading to data inconsistency, which
in turn affects the stability and security of the system.

e High-volume transaction attack. Attackers send high-volume transactions,
such as large money transfers or data transfer transactions, which makes nodes
require more resources, such as computational and storage resources, to process
these transactions. This results in a reduction in the processing speed and per-
formance of the network, which affects its normal operation.

3.4 Contract Layer

Denial-of-service attacks at the blockchain contract layer aim to exploit vulnerabilities
or design flaws in smart contracts, as well as limit performance during contract execu-
tion, to consume node resources, prevent transactions from taking place, or prevent the
contract from functioning properly.

3.4.1 Attack Principle

An attacker exploits vulnerabilities or performance limitations of a smart contract to
consume node resources or prevent normal interactions of other users for the purpose of
consuming node resources, preventing transaction execution, or rendering the contract
inoperable, thereby disrupting the functionality or services of the contract layer.

3.4.2 Attack Methods

e Circular Call Attack. The attacker writes a malicious contract, which contains
the operation of cyclic call or recursive call, calls the cyclic function therein,
causing the contract execution to enter into a dead loop, which makes the node

14

unable to end the contract execution normally, resulting in the node’s resource
exhaustion or crash.

e Resource exhaustion attack. The attacker writes a malicious contract that
contains a large number of data storage operations, memory allocation, or com-
putation operations, and uses resource-consuming operations or infinite loop op-
erations in the contract to consume the node’s storage space, memory, or com-
putation resources, resulting in the node’s inability to continue performing other
operations.

e Denial of service attacks. An attacker writes a malicious contract that denies
service by preventing other users from accessing or interacting with the contract
normally by utilizing performance-limiting operations or error-handling mecha-
nisms in the contract, such as refusing to accept a transaction, refusing to perform
a function, or refusing to respond to a request.

e Contract status tampering. An attacker tampers with the state or data of
a contract by sending a malicious transaction or calling a contract function that
uses state variables or storage operations in the contract, resulting in inconsistent
contract execution results or a contract that fails to operate properly.

3.4.3 Smart Contract Attack

A DoS attack on the smart contract means that an attack is used to stop the service,
rather than a sustained network traffic attack. Attacking the smart contract requires
continuous invocation, so direct attacks are infrequent. Instead, vulnerabilities in the
smart contract code are typically exploited.

(1) Attack Principle

In many cases, attackers exploit vulnerabilities in network protocols to launch brute-
force attacks, which can quickly deplete target resources. For example, if a website
can handle a maximum of 100 user requests, an attacker could send 100,000 or more
requests per second. In such cases, regardless of how fast the website server processes
requests, how much memory it has, or how wide its network bandwidth is, the server
will immediately crash or cease service. Even if the website does not crash, during the
attack, normal users will be unable to access the website.

(2) Attack Methods

Denial-of-service attacks in smart contracts consist of at least six types: external
calls without a set gas rate, calls relying on an external, owner misoperation, overly
long arrays or mappings, logic design errors, and lack of dependent libraries.

(3) Attack Reproduction

In this section, a basic smart contract is used as an example to reproduce the attack.
An auction contract is developed using the Solidity language in the Remix-Ethereum
IDE. Subsequently, an attacker contract is designed to simulate the attack.

A. Auction contract

1 contract Auction {
2 address public winner;
uint256 public amount;

15

function bid() external payable{
6 require (msg.value > 0,"amount is not 0");
7 require(msg.value > amount,"amount is too small");

9 payable (winner) .transfer (amount) ;

11 winner = msg.sender;
12 amount = msg.value;

13 }

15 function balance () external view returns (unit256){

16 }

18 receive () external payable {}

19 }

Code Analysis:

The principle of bidding for contracts is that the highest bidder wins (i.e., WIN-
NER). Consequently, the individual or entity with the highest bid is awarded the con-
tract.

The address of the WINNER is:

1 address public winner

The bid amount of the WINNER is:
1 uint256 public amount
The bid function is modified with the payable keyword, indicating that the function

can receive ETH (Ethereum). This means that when users call this function, they must
also specify the bid amount.

1 require(msg.value > 0,"amount is not 0");
This line of code constructs a conditional statement that requires the bid amount
to be greater than 0.
I require(msg.value > amount,"amount is too small");
This line of code constructs a conditional statement that requires the bid amount
to be greater than the highest bid amount currently recorded in the contract.
If the bid price is lower than the existing bid amount, the bid is rejected as it does

not meet the requirements. If the bid price is higher than the existing bid amount, the
program continues.

I payable(winner) .transfer (amount) ;

A new winner is generated, and the transfer function is called to return the ETH of
the previous winner.

1 winner = msg.sender;
amount = msg.value;

N

Finally, the new winner and bid amount are updated.

1 receive () external payable {}

16

The inclusion of the receive function indicates that the contract has the ability to
receive tokens.

Contract Loophole:

The vulnerability in this contract is located mainly in the transfer function. If the
refund is unsuccessful, the bid function will revert. At this time, the program is no
longer running, with the entire function returning, and the bid is void. Accordingly,
if there is a special address that makes the call to the transfer function fail, then
the bidding function bid of the auction contract will become a pendulum and can not
operate normally, resulting in the auction contract being scrapped. This is a DoS attack
on the auction contract.

B. Attacker contract

1 contract Attacker {

2 constructor () payable{
3 }
4

5 function attack (address target,uint256 amount) external
payable {

6 Auction auction = Auction(payable(target));

7 auction.bid{value;amount} () ;

8 3

o }

There are two types of Ethereum accounts: external accounts (EOA) and smart
contract accounts. If a smart contract account contains a receive or fallback function,
it can be used to make payments and receive payments. If not, it is restricted from
receiving payments. Based on this, the attacker contract cannot be used to receive
payments, while the auction contract can be used to receive payments.

Code Analysis:

1 function attack (address target,uint256 amount) external payable {

This line of code constructs the attack function, where the parameter target rep-
resents the target address of the attack, i.e., the auction contract address, and the
parameter amount represents the bid amount.

i Auction auction = Auction(payable(target));
> auction.bid{value;amountl} () ;

These two lines of code construct an auction contract object and call the auction
contract’s bid function to execute the bid.

Attack Process:

1. Set the bid amount. Set the bid amount to be slightly higher than the highest
bid recorded in the current auction contract to bid successfully to become the winner.

2. Become the winner. Once the attacker becomes the winner, others cannot bid.
Assuming that the attacker is the first user to bid and the highest amount recorded
in the current auction contract is 0, the attacker only needs to invest 0.01 ETH to
immediately become the winner.

3. Bid by others. If there are other users to bid, the bid function is called, and
the bid amount is 100 ETH. This bid amount is greater than 0 and greater than the
current contract’s highest bid amount of 0.01 ETH, so the contract continues. The
execution of the following code will result in the repayment of the attacker’s contract.

17

I payable(winner) .transfer (amount) ;

However, since the attacker contract cannot be used to receive payments, the call
to the transfer function fails, causing the entire function to stop running, roll back, and
void the transaction. The attacker remains the winner, while others are unable to bid.

4 Defense Mechanisms

4.1 Network Layer

The detection and resolution of denial-of-service attacks at the blockchain network layer
mainly involve monitoring network traffic, identifying anomalous behaviors, improving
network protocols, and implementing defensive strategies [24].

4.1.1 Detection Methods

e Network traffic monitoring. It can monitor incoming and outgoing data pack-
ets and detect abnormal traffic and large numbers of requests in the network.
However, the cost of setting up and maintaining a monitoring system is high and
requires professional technical support.

e Packet analysis. It can analyze the header information and load content of
network packets to identify abnormal packets and abnormal behaviors, such as
a large number of invalid requests and high-frequency requests. However, the
analysis process may consume a large amount of computing resources and time,
affecting real-time performance.

e Connection status monitoring. It can monitor the process of establishing and
closing network connections, track the status and life cycle of connections, and
quickly detect abnormal connections and abnormal connection behavior. How-
ever, monitoring connection status requires real-time collection and processing of
large amounts of connection information, which may consume system resources.

e Inter-node communication monitoring. It can monitor the communication
process between nodes and detect abnormal nodes and abnormal messages, includ-
ing node discovery, handshake process, and message passing. However, analyzing
and processing data requires a certain amount of technical and human resources.

4.1.2 Defense Methods

e Packet filtering and limiting. It can filter and restrict abnormal data packets,
intercept malicious requests or invalid data packets, prevent them from enter-
ing the network, and reduce the impact on nodes. However, it cannot address
advanced attacks such as distributed denial-of-service attacks.

e Connection management and denial-of-service defense. It can limit the
number or frequency of connections from a single IP address, preventing malicious
nodes from consuming network resources through large numbers of connections.

18

However, it may mistakenly intercept normal user requests, affecting the user
experience.

e Reverse proxy and load balancing. It can distribute network traffic and
requests, improve system stability and availability, and respond to sudden traffic
spikes and DDoS attacks. However, it may be limited in the face of large-scale
attacks.

e Address filtering and blocking. It can blacklist or block malicious IP ad-
dresses, restrict their access to the network, and prevent them from attacking
the network. However, it cannot prevent attacks from attackers using proxies or
dynamic IP addresses.

e Network protocol improvement. It can enhance the resistance to attacks and
the security of the network, serving as a long-term solution. However, it requires
extensive research and testing, which may take a considerable amount of time
to implement and could potentially impact existing network architectures and
equipment.

¢ Real-time response and automated defense. It can detect and respond to
network attacks promptly, automatically intercepting malicious traffic and mali-
cious behavior. However, false positives or false negatives may occur, affecting
normal system operation.

e Node diversity and decentralization. It can reduce the single point of failure
and attack surfaces, increasing the network’s resistance to attacks and resilience.
However, it has certain requirements for network topology design and optimiza-
tion.

¢ Key management and authentication. It can effectively prevent malicious
nodes from intruding and impersonating, thus enhancing network security and
reliability. However, it requires the establishment of a robust key management
and identity authentication system, which comes at a relatively high cost.

4.2 Consensus Layer

The detection and resolution of denial-of-service attacks at the blockchain consensus
layer mainly involve monitoring the consensus process, identifying anomalous behaviors,
improving the consensus algorithm, and implementing defensive strategies [29].

4.2.1 Detection Methods

e Consensus process monitoring. It can monitor message transmission and
communication between nodes during the consensus process, detect the execu-
tion status of the consensus algorithm and node behavior, and quickly identify
consensus interruptions or abnormal situations. However, false positives or false
negatives may occur, requiring careful adjustment of the monitoring strategy.

19

e Network traffic analysis. It can analyze network traffic patterns and packet
transmission rates to identify anomalous traffic and high-frequency requests, and
discover attacks that may lead to consensus disruption. However, the analysis
process may involve some delay and cannot respond to real-time attacks promptly.

e Node status monitoring. It can monitor the operational status and perfor-
mance indicators of the nodes, thus enabling the timely detection of abnormal
nodes and instances of resource exhaustion. However, it is imperative that mon-
itoring metrics and thresholds are updated promptly. Conversely, the absence of
such a measure may result in the occurrence of false positives or false negatives.

e Message validation and auditing. It can ensure the integrity and correctness
of messages, identify messages that may have been tampered with or forged,
and prevent malicious interference with the consensus process. However, the
audit process may experience some delay and may not be able to detect real-time
attacks promptly.

4.2.2 Defense Methods

e Byzantine Fault Tolerance mechanism. The deployment of Byzantine Fault
Tolerance (BFT) algorithms or other strong consistency consensus algorithms
can improve the system’s fault tolerance against malicious attacks and abnormal
behavior, ensuring the stability and security of consensus. However, the imple-
mentation process is relatively complex and requires a deep understanding and
optimization of the algorithm.

e Randomness introduced. Introducing random elements into the consensus
process, such as randomly selecting validators and delaying rounds, can reduce
the predictability of attackers and increase the cost of attacks. However, the
mechanism for introducing randomness must be carefully designed to avoid intro-
ducing new security risks.

e Message filtering and blocking. It can exclude malicious nodes or tampered
messages, maintaining the purity and credibility of the consensus process. How-
ever, there are certain requirements for the design and optimization of filtering
rules that need to take into account the issues of misjudgment and missed judg-
ment.

e Consensus strategy update. It is a flexible defense mechanism that can adapt
to constantly changing security threats. However, it requires timely tracking of
the latest security research and attack techniques, which may require a significant
investment of human and material resources.

4.3 Data Layer

The detection and resolution of denial-of-service attacks at the blockchain data layer
mainly involve identifying anomalous behavior, implementing defensive strategies, and
improving system architecture.

20

4.3.1 Detection Methods

e Transaction record analysis. It can identify abnormal trading behavior, such
as a large number of invalid transactions, high-frequency trading, and non-compliant
transaction formats. However, some attacks may use concealment techniques,
making it difficult to identify abnormal transactions.

e Smart contract audit. It is a preventive measure that can prevent malicious
operations from causing denial-of-service attacks on the data layer. However, the
audit process may take a long time, affecting the system’s launch or update speed.

e Abnormal behavior recognition. It can identify abnormal nodes or patterns
of user behavior through behavioral analysis technology, such as abnormal trans-
action frequency and high-frequency contract calls. However, behavioral analysis
technology requires a certain amount of training and fine-tuning, and there may
be false positives or false negatives.

4.3.2 Defense Methods

e Traffic filtering and restriction. It can effectively filter and restrict abnormal
traffic, reducing the impact on nodes and improving network stability. However,
it may misjudge legitimate traffic, causing legitimate users to be blocked.

e Smart contract upgrade. It can quickly fix vulnerabilities and security issues,
improving the security and stability of contracts.

e Gas cost control. It can limit the consumption of resources during the execu-
tion of contracts, thus preventing the exhaustion of node resources by malicious
contracts. However, gas fees must be set with precision as any inaccuracy may
affect the normal execution of the contract.

e Node load balancing. It can distribute network traffic and requests, improving
the stability and effectiveness of the system, but requires high costs and technol-

ogy.

e Abnormal behavior blocking. It can implement automated systems to pre-
vent abnormal behavior, such as automatically identifying and rejecting abnormal
transactions or malicious contracts. However, it needs to be constantly updated
to respond to new types of attacks.

e Security policy updates. It can enhance the system’s ability to detect and
respond to new types of attacks, thus ensuring network security. However, it is
necessary to continuously monitor new technologies and threats in the security
field and update security policies and rules accordingly.

4.4 Contract Layer

The detection and resolution of denial-of-service attacks at the blockchain contract layer
mainly involve monitoring smart contract execution, identifying abnormal behavior,
improving contract design, and implementing defense strategies [1].

21

4.4.1 Detection Methods

e Contract execution monitoring. It can directly monitor the execution process
of smart contracts, including contract function calls and transaction processing,
track the time and resource consumption of contract execution, and promptly
detect abnormal behavior. However, monitoring the contract execution process is
costly and has a certain impact on system performance.

e Contract call analysis. It can analyze contract invocations and parameter
passing, identify abnormal or frequently invoked contracts, and detect attack
behaviors that may cause contract execution interruptions. Compared to directly
monitoring the contract execution process, it has lower costs and complexity but
may not be able to detect certain abnormal situations promptly.

e (Gas cost monitoring. It can detect contract operations or transactions with
high gas fee consumption and identify attack behaviors that may lead to resource
depletion. Gas cost monitoring is relatively simple, with low costs, but it only
reflects the resource consumption of the contract and cannot provide a compre-
hensive understanding of the contract execution process.

e Contract event monitoring. It can monitor the triggering and handling of
contract events, track contract status changes and abnormal events, and promptly
detect attack behaviors that may cause contract interruptions. However, it may
not be able to promptly detect certain abnormal situations that do not trigger
events.

4.4.2 Defense Methods

e Gas cost control. It can limit the resource consumption of contract execution
and improve the stability and availability of contract execution. However, it may
affect the functionality and performance of the contract, resulting in restrictions
on some normal operations.

e Contract code audit. It can detect and fix vulnerabilities and security issues
in contract code, improving contract security and reliability. However, the au-
dit process can be time-consuming, affecting the speed at which contracts are
launched or updated.

e Abnormal behavior detection and blocking. It can detect and prevent
malicious contracts or transactions promptly, monitor contract execution in real
time, and respond quickly to abnormal events. However, it requires a certain
amount of system resources, which may increase the burden on the system.

¢ Dynamic gas cost adjustment. Dynamically adjusting gas fees based on con-
tract execution status and network load conditions ensures fairness and stability
of contract execution and prevents malicious attacks on contracts. However, im-
plementation is complex and requires consideration of the execution status of the
contract and network load conditions.

22

e Contract upgrades and rollbacks. It is an emergency response measure that
can take swift action when an attack is detected to ensure the normal operation of
contracts and data security. However, it must be operated with caution to avoid
causing a greater impact on the system.

¢ Abnormal event handling. It can suspend contract execution or restore normal
functionality to prevent further losses. It requires manual intervention and a
certain amount of experience and technical support.

e Key management and privilege control. It can restrict contract access per-
missions and scope of operations, preventing malicious contract intrusion and
abuse, thus improving contract security and stability. However, it may increase
system complexity and affect contract flexibility and scalability.

4.4.3 Contract Vulnerability Exploitation Process Analysis

Smart contracts, which function similarly to applets that run on the blockchain to for-
mulate and execute contracts, are distinguished by open code, small code size, and
asset involvement compared to traditional applications [23]. Concurrently, the code of
a smart contract is incorporated as a transaction into a block of the blockchain. Conse-
quently, smart contracts bear a resemblance to ordinary money transfer transactions in
that the code or source code is publicly available and can be viewed at any time and in
any location. In contrast to conventional applications, smart contracts are exclusively
responsible for executing specific business logic on the blockchain. They are required to
be incorporated into a block, a process that incurs computing and data billing charges,
which can be substantial. Consequently, other business logic that is not intrinsically
linked to the blockchain is typically not incorporated into smart contracts, resulting in
relatively compact code volumes.

The three characteristics of smart contracts are also the easiest targets for hackers.
The code is public, which means that there is no need to engage in extensive cracking
and reverse analysis. The concise code requires minimal energy expenditure, and the
cracking cycle is brief. Furthermore, there are assets involved, which can be directly
profited from.

In subsequent practice, the code used contains a timestamp vulnerability, which,
while it cannot cause the blockchain system to cease functioning, can result in a runtime
error if exploited by an attacker. This, in turn, can render the contract unavailable and
prevent it from providing normal service, i.e., denial of service.

(1) Preliminary Preparation

Environment setup: Install Ubantu on Windows 10 system virtual machine VMware
environment, install Docker and Mythril on Linux system.

(2) Tool Preparation

Start the Docker service: the console output is shown in Figure 8.

Install Mythril and view the help: the console output is shown in Figure 9.

(3) Preventive Simulation

The following is a smart contract code for simulation purposes. This code is similar
to a lottery system with the following contract logic: players send the corresponding
number of tokens (1 Ether in this contract) to the contract, which then performs a
logical check. It takes the remainder of the blockchain timestamp modulo 15 within the

23

docker.service - Docker Application Container Engine
loaded (/1ih/systemd/system/docker.service; disabled; vendor preset: enabled)
active (running) |since Mon 2022-87-11 15:42:31 CST; 10s ago

: https://docs.docker.com

: 7115 (dockerd)

: 49

: [system.slice/docker.service
7115 Jusr/bin/dockerd -H fd://
7136 docker-containerd --config /var/run/docker/containerd/containerd.toml
:30 ubuntu dockerd[7115]: ti 2022-07- 0.265154106+08:00" level=warning msg="Your kernel
:30 ubuntu dockerd[7115]: ti 2022-07- 0.265182834+08:00" level=warning msg="Your kernel
:30 ubuntu dockerd[7115]: ti 2-07- 0.265188302+08:00" kernel
:30 ubuntu dockerd[7115]: ti -07- 0.265944815+08:00" contain
:31 ubuntu dockerd[7115]: ti -07- 1.234303093+08:00" i bridge
:31 ubuntu dockerd[7115]: ti -07- 1.651140444+08:00" i contain
:31 ubuntu dockerd[7115]: ti -07- 1.720707812+68:00" i Docker daemon"
:31 ubuntu dockerd[7115]: ti -07-11T15:42:31.721044151+08:00" level=info
:31 ubuntu dockerd[7115]: time="2022-07-11T15:4 .724072306+08:00" level=info msg="API listen on /
:31 ubuntu systemd[1]: Started Docker Application Container Engine.

ines 1-20/26 (END)

Figure 8: Docker console output

usage: myth [-h] [-v LOG_LEVEL]
{safe-functions,analyze,a,disassemble,d,list-detectors,read-storage,function-to-hash,hash-to-ad
dress,version,help}

Security analysis of Ethereum smart contracts

positional arguments:
{safe-functions,analyze,a,disassemble,d,list-detectors,read-storage,function-to-hash,hash-to-address,vers
ion,help}
Commands
safe-functions Check functions which are completely safe using
symbolic execution
analyze (a) Triggers the analysis of the smart contract
disassemble (d) Disassembles the smart contract
list-detectors Lists available detection modules
read-storage Retrieves storage slots from a given address through
rpc
function-to-hash Returns the hash signature of the function
hash-to-address converts the hashes in the blockchain to ethereum
address
version Outputs the version

optional arguments:
-h, --help show this help message and exit
-v LOG_LEVEL log level (6-5)

Figure 9: Mythril output

same block. If the result is 0, the contract sends the remaining Ether in the contract
as a reward to the player.

1 // SPDX-License-Identifier: MIT
2 pragma solidity >=0.4.22;

i contract Roulette {
5 uint public pastBlockTime;

7 // initially contract
8 constructor () {}

10 // receive function
11 receive () external payable {}

13 // fallback function used to make a bet

14 fallback () external payable {

15 require(msg.value == 1 ether); //must send 1 ether to play

16 require (block.timestamp != pastBlockTime); //only I
transaction per block

17 pastBlockTime - block.timestamp;

18 if (block.timestamp % 15 == 0) { // winner

19 payable (msg.sender) .transfer (address (this) .balance) ;

20 }

24

21 }
22 }

(4) Detection and analysis
Run the following command to analyze smart contracts using Mythril for detection:

1 $ docker run -v $(pwd):/tmp mythril/myth analyze /tmp/Roulette.sol

The detection results are shown in Figure 10. Based on the results of the detec-
tion and analysis, Mythril indicated that the contract code contained two identical
timestamp dependency security vulnerabilities.

The First Security Vulnerability:

Vulnerability name: Dependency on predictable environment variables (timestamp
dependency)

The detection results of vulnerability 1 are shown in Figure 11. From top to bottom,
the information is displayed as follows: the vulnerability classification number, severity
level, contract name, vulnerability function name, program counter address, estimated
gas cost, and the line number and code segment of the vulnerability code in the contract
code, as well as the contract’s initial state and transaction sequence.

The Second Security Vulnerability:

Vulnerability name: Dependency on predictable environment variables (timestamp
dependency)

The detection results of vulnerability 2 are shown in Figure 12. From top to bottom,
the information is displayed as follows: the vulnerability classification number, severity
level, contract name, vulnerability function name, program counter address, estimated
gas cost, and the line number and code segment of the vulnerability code in the contract
code, as well as the contract’s initial state and transaction sequence.

5 Challenges and Limitations

Blockchain technology plays an important role in changing traditional patterns, pro-
moting digital transformation, strengthening data security, and achieving social justice.
Due to its revolutionary technology and powerful advantages, it is widely and rapidly
used in various industries, which undoubtedly brings many positive impacts and op-
portunities for the development of our society. However, we must not ignore that the
blockchain system DoS attack and defense technology is still facing difficulties and
challenges, such as [6]:

e Complex and varied means of attack. DoS attacks have a variety of means,
and attackers constantly change their strategies and techniques, making defense
more difficult. Attacks at different levels require targeted defense strategies.

e The emergence of new types of attacks. With the development of blockchain
technology, new types of DoS attacks are constantly emerging, some of which may
exploit the unique mechanisms of blockchain to launch attacks, making it difficult
for existing defense technologies to respond.

e Difficulty in fixing contract vulnerabilities. Smart contracts, as an impor-
tant part of blockchain systems, are often targeted by attackers. However, fixing

25

==== Dependence on predictable environment variable ====

SWC ID: 116

Severity: Low

Contract: Roulette

Function name: fallback

PC address: 7@

Estimated Gas Usage: 885 - 984

& control flow decision is made based on The bleck.timestamp environment variable.
The block.timestamp environment variable is used to determine a control flow decisio

In file: /tmp/Roulette.sol:16

require(block.timestamp != pastBlockTime)

Initial State:

Account: [CREATOR], balance: Bx2@el@eeless2e38l, nonce:@, storage:{}
Account: [ATTACKER], balance: @x@, nonce:@, storage:{}

Transaction Sequence:

Caller: [CREATOR], calldata: , value: @x@
Caller: [SOMEGUY], function: unknown, txdata: @xe@, value: Bxde@bsb3a7c4o8e0

==== Dependence on predictable environment variable ====

SWC ID: 116

Severity: Low

Contract: Roulette

Function name: fallback

PC address: 12

Estimated Gas Usage: 6185 - 26200

A control flow decision is made based on The block.timestamp environment variable.
The block.timestamp environment variable is used to determine a control flow decisio

In file: /tmp/Roulette.sol:18
if(block.timestamp % 15 == { // winner
payable(msg.sender) .transfer(address(this) balance);

Initial State:

Account: [CREATOR], balance: @x488, nonce:8, storage
Account: [ATTACKER], balance: 8x®, nonce:8, storage:{}

Transaction Sequence:

Caller: [CREATOR], calldata: , value: 8x@
Caller: [SOMEGUY], function: unknown, txdata: exee, value: exdeBbsb3a7edeees

Figure 10: Detection results

26

Severity: Low

Contract: Roulette

Function name: fallback

PC address: 7@

Estimated Gas Usage: 889 - 984

A control flow decision is made based on The block.timestamp environment variable
The block.timestamp environment variable is used to determine a control flow decisioc

In file: /tmp/Roulette.sol:16

require(block.timestamp != pastBlockTime

Figure 11: Vulnerability 1

SWC ID: 116

Severity: Low

Contract: Roulette

Function name: fallback

PC address: 182

Estimated Gas Usage: 5185 - 26280

A control flow decision is made based on The block.timestamp environment variable
The block.timestamp environment variable is used to determine a control flow decisio

In file: /tmp/Roulette.sol:18

if(block.timestamp % 15 == @

payable(msg.sender).transfer(address(this).balance

Figure 12: Vulnerability 2

vulnerabilities in smart contracts is often complex and difficult, making them easy

for attackers to exploit.

Higher defense costs. Implementing effective defenses requires significant in-
vestment in human, material, and financial resources. This may be a challenge

for some small-scale blockchain projects.

Lack of comprehensive research. Current research on DoS attacks and defense
techniques for blockchain systems is still fragmented and lacks systematic and
comprehensive research. Lack of comprehensive understanding and analysis may

lead to the neglect of new types of attacks.

In the face of these difficulties and challenges, the academic community and gov-
ernment departments need to work together to continuously strengthen research and
cooperation, promote the advancement and innovation of DoS attack and defense tech-
nologies of blockchain systems, and improve the security and stability of blockchain
systems. At the same time, it is also necessary for society and individuals to make
efforts to comply with laws and regulations and contribute to the creation of a good

network environment.

6 Conclusion and Future Work

This paper examines blockchain systems from a layered perspective, focusing on the
network layer, the data layer, the consensus layer, and the contract layer. It provides an

27

initial exploration of several typical denial-of-service (DoS) attack methods and defense
techniques within blockchain systems, summarized as follows.

are

¢ Diversified attack types. DoS attacks are of various types, including contract
layer attacks, consensus layer attacks, etc., which are complex and difficult to deal
with.

e Diversity of defense techniques. For different types of DoS attacks, re-
searchers have proposed a variety of defense techniques, including traffic filtering
and restriction, smart contract upgrading, gas cost control, node load balancing,
ete.

However, there are still shortcomings in this paper. For example, the attack types
relatively single, and the summarized and compared defense methods are more

effective for a single attack, while there is no in-depth discussion on composite attacks.
The research on DoS attacks and defense technology of blockchain systems will still
face challenges in the future, but it also has a broad development space and prospects.
Therefore, future research should focus on the following.

e Comprehensive research. More comprehensive and systematic research is
needed to analyze different types of DoS attacks and their defense techniques
in depth, to provide a more comprehensive guarantee for the security of the
blockchain system.

e New technology applications. New technology applications, such as artificial
intelligence, machine learning, etc., can be explored to combine the characteristics
of blockchain systems and propose more effective DoS attack defense techniques.

e Practical application validation. The proposed defense technologies will be
verified through practical application to assess their effectiveness and feasibility
in the actual environment, providing technical support for practical application.

References

1]

Khulud Salem Alshudukhi, Maher Ali Khemakhem, Fathy Elbouraey Eassa, and
Kamal Mansur Jambi. An interoperable blockchain security frameworks based on
microservices and smart contract in iot environment. Electronics, 12(3):776, 2023.

R Anand. Blockchain security in virtual environment. Journal of Intelligent €
Fuzzy Systems, 43(6):8221-8231, 2022.

Jiuyang Bu, Wenkai Li, Zongwei Li, Zeng Zhang, and Xiaoqi Li. Enhancing smart
contract vulnerability detection in dapps leveraging fine-tuned llm. arXiv preprint
arXiw:2504.05006, 2025.

Jiuyang Bu, Wenkai Li, Zongwei Li, Zeng Zhang, and Xiaoqi Li. Smartbugbert:
Bert-enhanced vulnerability detection for smart contract bytecode. arXiv preprint
arXiw:2504.05002, 2025.

28

[5]

[16]

[17]

Zengyu Cai, Chunfeng Du, Yong Gan, Jianwei Zhang, and Wanwei Huang. Re-
search and development of blockchain security. International Journal of Performa-
bility Engineering, 14(9):2040, 2018.

Rajasekhar Chaganti, Rajendra V Boppana, Vinayakumar Ravi, Kashif Munir,
Mubarak Almutairi, Furqgan Rustam, Ernesto Lee, and Imran Ashraf. A com-

prehensive review of denial of service attacks in blockchain ecosystem and open
challenges. IEEE Access, 10:96538-96555, 2022.

Ting Chen, Xiaoqi Li, Xiapu Luo, and Xiaosong Zhang. System-level attacks
against android by exploiting asynchronous programming. Software Quality Jour-
nal, 26(3):1037-1062, 2018.

Yourong Chen, Hao Chen, Yang Zhang, Meng Han, Madhuri Siddula, and Zhipeng
Cai. A survey on blockchain systems: Attacks, defenses, and privacy preservation.
High-Confidence Computing, 2(2):100048, 2022.

Li Duan, Yangyang Sun, Kejia Zhang, and Yong Ding. Multiple-layer security
threats on the ethereum blockchain and their countermeasures. Security and Com-
munication Networks, 2022(1):5307697, 2022.

Huaqun Guo and Xingjie Yu. A survey on blockchain technology and its security.
Blockchain: research and applications, 3(2):100067, 2022.

Abhishek Guru, Bhabendu Kumar Mohanta, Hitesh Mohapatra, Fadi Al-Turjman,
Chadi Altrjman, and Arvind Yadav. A survey on consensus protocols and attacks
on blockchain technology. Applied sciences, 13(4):2604, 2023.

Divya Guru, Supraja Perumal, Vijayakumar Varadarajan, and Guillermo L
Taboada. Approaches towards blockchain innovation: A survey and future di-
rections. FElectronics (2079-9292), 10(10), 2021.

Lukas Konig, Stefan Unger, Peter Kieseberg, Simon Tjoa, and Josef Ressel Center
Blockchains. The risks of the blockchain a review on current vulnerabilities and
attacks. J. Internet Serv. Inf. Secur., 10(3):110-127, 2020.

Wenkai Li, Xiaoqi Li, Zongwei Li, and Yuqing Zhang. Cobra: interaction-aware
bytecode-level vulnerability detector for smart contracts. In Proceedings of the 39th
IEEE/ACM International Conference on Automated Software Engineering, pages
1358-1369, 2024.

Wenkai Li, Xiaoqi Li, Yuqing Zhang, and Zongwei Li. Defitail: Defi protocol
inspection through cross-contract execution analysis. In Companion Proceedings

of the ACM Web Conference 2024, pages 786-789, 2024.

Wenkai Li, Zhijie Liu, Xiaoqi Li, and Sen Nie. Detecting malicious accounts in web3
through transaction graph. In Proceedings of the 39th IEEE/ACM International
Conference on Automated Software Engineering, pages 2482-2483, 2024.

Xiaoqi Li et al. Hybrid analysis of smart contracts and malicious behaviors in
ethereum. 2021.

29

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

2]

[30]

Xiaoqi Li, L Yu, and XP Luo. On discovering vulnerabilities in android applica-
tions. In Mobile Security and Privacy, pages 155-166. Elsevier, 2017.

Zongwei Li, Wenkai Li, Xiaoqi Li, and Yuqing Zhang. Guardians of the ledger:
Protecting decentralized exchanges from state derailment defects. IEFEE Transac-
tions on Reliability, 2024.

Zongwei Li, Wenkai Li, Xiaoqi Li, and Yuqing Zhang. Stateguard: Detecting
state derailment defects in decentralized exchange smart contract. In Companion
Proceedings of the ACM Web Conference 2024, pages 810-813, 2024.

Zekai Liu and Xiaoqi Li. Sok: Security analysis of blockchain-based cryptocurrency.
arXiv preprint arXiw:2503.22156, 2025.

Zekai Liu, Xiaoqi Li, Hongli Peng, and Wenkai Li. Gastrace: Detecting sandwich
attack malicious accounts in ethereum. In 202/ IEEFE International Conference on
Web Services (ICWS), pages 1409-1411. IEEE, 2024.

Yuanzheng Niu, Xiaoqi Li, Hongli Peng, and Wenkai Li. Unveiling wash trading
in popular nft markets. In Companion Proceedings of the ACM Web Conference
2024, pages 730-733, 2024.

Benedikt Putz and Giinther Pernul. Detecting blockchain security threats. In 2020
IEEE International Conference on Blockchain (Blockchain), pages 313-320. IEEE,
2020.

Mayank Raikwar and Danilo Gligoroski. Dos attacks on blockchain ecosystem. In
FEuropean conference on parallel processing, pages 230-242. Springer, 2021.

Muhammad Saad, Jeffrey Spaulding, Laurent Njilla, Charles Kamhoua, Sachin
Shetty, DaeHun Nyang, and David Mohaisen. Exploring the attack surface of
blockchain: A comprehensive survey. IEEE Communications Surveys € Tutorials,
22(3):1977-2008, 2020.

Saurabh Singh, ASM Sanwar Hosen, and Byungun Yoon. Blockchain security at-
tacks, challenges, and solutions for the future distributed iot network. leee Access,
9:13938-13959, 2021.

Xiangfan Wu, Ju Xing, and Xiaoqi Li. Exploring vulnerabilities and concerns in
solana smart contracts. arXiw preprint arXiv:2504.07419, 2025.

Ashok Kumar Yadav, Karan Singh, Ali H Amin, Laila Almutairi, Theyab R Alse-
nani, and Ali Ahmadian. A comparative study on consensus mechanism with secu-
rity threats and future scopes: Blockchain. Computer Communications, 201:102—
115, 2023.

Congcong Ye, Guoqgiang Li, Hongming Cai, Yonggen Gu, and Akira Fukuda. Anal-
ysis of security in blockchain: Case study in 51%-attack detecting. In 2018 5th In-
ternational conference on dependable systems and their applications (DSA), pages
15-24. IEEE, 2018.

30

[31]

[32]

[33]

Ehab Zaghloul, Tongtong Li, Matt W Mutka, and Jian Ren. Bitcoin and
blockchain: Security and privacy. IEEE Internet of Things Journal, 7(10):10288—
10313, 2020.

Shi-Qin Zeng, Ru Huo, Tao Huang, Jiang Liu, Shuo Wang, and Wei Feng. Survey
of blockchain: principle, progress and application. Journal on Communications,
41(1):134-151, 2020.

Yongchao Zhong, Bo Yang, Ying Li, Haonan Yang, Xiaoqi Li, and Yuqing Zhang.
Tackling sybil attacks in intelligent connected vehicles: a review of machine learn-
ing and deep learning techniques. In 2023 8th International Conference on Com-
putational Intelligence and Applications (ICCIA), pages 8-12. IEEE, 2023.

Huanhuan Zou, Zongwei Li, and Xiaoqi Li. Malicious code detection in smart
contracts via opcode vectorization. arXiv preprint arXiv:2504.12720, 2025.

31

	Introduction
	Background
	Blockchain
	Block Structure
	Blockchain Architecture

	Common Security Threats
	DoS Attack
	Classification of Common DoS Attack
	SYN Flood Attack
	ICMP Attack
	Reflection Amplification Attack
	DDoS Attack

	DoS Attacks in Blockchain Systems
	Network Layer
	Common Attack Principles
	Distributed Denial of Service

	Consensus Layer
	51% Attack Principle
	51% Attack Process

	Data Layer
	Attack Principle
	Attack Methods

	Contract Layer
	Attack Principle
	Attack Methods
	Smart Contract Attack

	Defense Mechanisms
	Network Layer
	Detection Methods
	Defense Methods

	Consensus Layer
	Detection Methods
	Defense Methods

	Data Layer
	Detection Methods
	Defense Methods

	Contract Layer
	Detection Methods
	Defense Methods
	Contract Vulnerability Exploitation Process Analysis

	Challenges and Limitations
	Conclusion and Future Work

