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Abstract

The proliferation of drones in civilian airspace has raised urgent security concerns, calling for robust real-time surveillance
systems. We propose a dual-stream drone monitoring approach targeting the 2025 VIP Cup challenge tasks of drone detection,
tracking, and payload identification. Our system employs separate You Only Look Once v11-nano (YOLOv11n) object detectors
on parallel infrared (thermal) and visible (RGB) data streams without early fusion. This design allows each model to be optimized
for its modality’s unique characteristics, addressing the challenges of small flying objects in diverse conditions. We tailor data
preprocessing and augmentation strategies to each domain – e.g. restricting color jitter for IR imagery – and fine-tune training
hyperparameters to improve detection of tiny drones and payloads under heavy noise, low light, and motion blur. The resulting
lightweight YOLOv11n models achieve high detection accuracy for distinguishing drones from birds and classifying payload types,
while operating within real-time constraints. In this report, we detail the motivation for a dual-modality solution, the specialized
training pipeline for each sensor, and the architecture and optimizations that enable accurate, efficient drone surveillance using
RGB and IR streams.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have rapidly gained popularity for applications ranging from environmental monitoring
to delivery. However, the misuse of drones poses significant public safety and privacy risks, including unauthorized aerial
surveillance and malicious payload delivery [1]. The ability to detect and track rogue drones – and identify any payloads
they carry – in real time is now critical for security in sensitive areas. This is a challenging task: drones are often small,
fast-moving objects in cluttered outdoor environments, leading to limited feature representation and background noise that
complicate their detection. Moreover, computational constraints demand efficient algorithms deployable on edge devices or
surveillance platforms.

Most vision-based drone detection systems rely on conventional RGB cameras, but visible-spectrum imaging can fail under
adverse conditions such as nighttime, fog, or glare. In such scenarios, infrared (IR) thermal cameras offer complementary
information by capturing the heat signatures of objects, enabling more robust detection when optical cameras are hindered.
For example, an IR sensor can reveal a drone’s presence in darkness or haze that obscures it in RGB footage. On the other
hand, IR imagery alone lacks the spatial detail and color texture of RGB images, which can be crucial for recognizing small
payloads or distinguishing drones from birds. Thus, the two modalities have inherent complementary strengths.

Prior research has shown that combining visible and thermal data can improve detection accuracy and reliability in low-light
conditions [2]. Indeed, an ideal solution would fuse RGB and IR cues to exploit both thermal contrast and visual detail.
However, designing an effective unified multispectral detector is non-trivial, requiring careful balancing of fusion strategies
and modality contributions [2]. In this work, we adopt a simpler dual-stream approach, processing IR and RGB inputs with
separate models. This allows us to tailor the detection pipeline to each domain’s characteristics without the complexity of early
fusion, while still enabling a late integration of results if needed.

Another motivation for multi-modal sensing in drone surveillance is payload identification. Drones can carry hazardous
payloads (e.g. weapons, contraband, explosives), so recognizing the type of payload in real time is essential for threat assessment.
RGB cameras provide visual cues about a payload’s shape or color, whereas IR can highlight heat-emitting components of a
payload (such as powered devices or warm contents). A combination of both can improve payload detection, especially when
payloads are small or camouflaged. The competition dataset reflects these needs, providing paired thermal and visual images
of drones with either harmful or normal payloads. While sensor fusion would ideally enhance payload recognition, our system
currently evaluates payload imagery from each modality separately to simplify the model design. We note that standalone IR
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or RGB analysis may miss certain payload cues (e.g. a non-heated but visually distinctive item, or vice versa), but separating
streams allows independent optimization and analysis of each sensor’s performance.

Recent advances in computer vision and deep learning have started to tackle drone detection in challenging conditions.
Traditional radar or RF-based detection methods exist, but vision-based methods are attractive for their high resolution and
passive sensing. Modern object detection networks like You Only Look Once (YOLO) have demonstrated success in fast,
accurate detection of drones and other small objects [3]. However, many object detectors are developed on everyday RGB
imagery and do not fully leverage the unique characteristics of thermal infrared images [4]. Thermal sensors produce grayscale
heat maps with different noise profiles and contrast properties than color cameras, meaning detection algorithms must be
adapted for IR data [4].

Some works have proposed specialized lightweight YOLO variants for UAV detection. For instance, Wang et al. introduced a
UAV-YOLOv8 model with multi-branch heads to improve small-object detection in drone footage [5], and Zhao et al. developed
G-YOLO with a modified YOLOv8 backbone and depthwise convolutions to better suit infrared UAV images [6]. These efforts
underscore the importance of tailoring architectures and training strategies to the domain (visible vs thermal) to achieve robust
performance.

Building on this trend, we employ the latest YOLO family model – YOLOv11 – as the core of our detection system. We
choose the ultra-compact YOLOv11n (nano) variant to meet real-time processing needs. Despite its small size, YOLOv11n
provides strong baseline accuracy, as evidenced by recent studies using it for drone detection. Our approach consists of two
parallel YOLOv11n detectors: one trained on IR images and one on RGB images. Each is trained to detect drones and
distinguish them from confounding objects (e.g. birds) in its respective domain. Detections from these models can then be
used jointly to cross-verify drone sightings or to hand off tracking from one spectrum to the other in difficult conditions.

We also train dedicated YOLOv11n models for payload detection, formulated as a two-class object detection problem (harmful
vs. benign payload) on infrared and visible imagery respectively. By keeping the RGB and IR pipelines separate, we simplify
the training process and exploit domain-specific data augmentations and hyperparameters for each. The remainder of this paper
details our system design and training methodology. In the Approach section, we describe the data preprocessing steps, the
YOLOv11n architecture and why it suits our application, the training strategies (including augmentation and optimization
choices for IR vs RGB), and how we perform tracking and payload classification using the trained models.

II. APPROACH

A. Data Preprocessing and Augmentation

We trained and evaluated separate detection models for the IR and RGB datasets provided in the VIP Cup 2025 challenge.
Each dataset contains annotated drone images (with drones and birds labeled) and a payload identification subset, with a
consistent resolution of 320×256 pixels. Before training, we organized the data into the required YOLO format: images in
each split (train/val/test) and corresponding annotation text files containing bounding boxes and class labels for each object.

Because YOLOv11n expects three-channel input, the single-channel IR images were replicated across 3 channels to mimic
an RGB format (while preserving the thermal intensity values) [7]. No other color space conversions were needed, since
IR images are essentially grayscale intensity maps. We maintained the native image resolution during training, padding or
letterboxing as needed to fit the 320×256 frames into the network’s input dimension (320×320) without distorting aspect ratio.

Domain-specific data augmentation was a key design choice to handle the challenging conditions of each modality. The
competition data already includes various distortions and adverse scenarios – such as noise, blur, low illumination, and camera
instability – so we adopted a conservative augmentation strategy to avoid over-complicating training examples.

For the RGB model, we applied only minimal color jitter (hue shift of at most 0.5%, saturation variation 10%, and brightness
variation 10%) because the dataset contains many low-light and cloudy scenes where excessive color augmentation could be
unrealistic. The IR model uses no hue or saturation augmentation at all, since thermal images lack color information [8]. We
only allow a modest variation in IR image brightness (value scale ±20%) to account for different thermal contrasts.

Geometric augmentations were also kept limited for both domains: we avoided any rotation or shear transformations (the
drone videos already include arbitrary camera angles and some instability) and used only small random translations (up to 5%
shift) and scaling (±10%). Vertical flips were disabled (since the notion of “up” vs “down” may be fixed for aerial footage),
while horizontal flips were applied with 30% probability to double the range of viewing angles.

We found that aggressive augmentations (like large rotations or heavy distortions) were unnecessary given that the dataset
itself provides challenging examples; instead, our strategy focused on mosaic and copy-paste augmentations to improve small
object detection [9]. We enabled MOSAIC augmentation with a high probability (80%), which randomly combines four images
during training. This helps expose the model to varied backgrounds and multi-object scenarios, addressing cases like drones
appearing alongside birds or against complex terrain.

Additionally, we used a moderate amount of copy-paste augmentation (20% chance), wherein small objects (drones or birds)
are cut from one image and pasted into another. This specifically boosts the occurrence of tiny flying objects in varied contexts
and improves the detector’s ability to recognize drones even when they appear in swarms or near other distractors.



Overall, our augmentation policy was tuned to each modality’s needs: the IR pipeline preserves thermal patterns (no hue/sat
shifts) and avoids geometric warping, while the RGB pipeline applies slight color variability. Both pipelines rely on mosaic
and copy-paste to enrich the training data without introducing artificial artifacts that could confuse the models.

Prior to feeding images into the network, we normalize pixel values and, in the case of the payload dataset, ensure that
images without any payload still have corresponding “no object” labels to not confuse the model. The payload identification
data was handled similarly in separate IR and RGB streams. Since payloads are often much smaller than drones, we paid
special attention during annotation parsing to include those small objects (some payloads are only a few pixels in size) and
used the same augmentation strategy (minus color for IR) to slightly perturb payload appearances.

III. MODEL TRAINING AND INFERENCE PIPELINE

Our drone detection and payload identification system utilizes the YOLOv11n detector— the lightweight, nano variant of
the YOLOv11 one-stage object detection architecture. YOLOv11 is known for its efficient CNN backbone, enhanced multi-
scale detection head, and optimized attention mechanisms, providing strong performance for small-object detection in cluttered
environments. Despite being compact, YOLOv11n achieves real-time inference speeds with high accuracy, making it ideal for
deployment on edge devices and modest hardware.

A. Training Drone Bird
We trained separate YOLOv11n models for RGB and Infrared (IR) image modalities. Both models were trained independently

using modality-specific training datasets to learn distinct visual and thermal signatures of drones and payloads. Payload
identification models were separately trained to recognize payload types—harmful or normal—based on clearly annotated
bounding boxes around payload regions.

The RGB and IR models utilized PyTorch’s Automatic Mixed Precision (AMP) to accelerate training, maintaining accuracy
while improving efficiency. We standardized training input sizes to 320×320 to optimize computational resources and minimize
unnecessary upscaling.

Fig. 1: System overview with training and inference pipeline.

During inference, our system dynamically handles three scenarios: RGB-only, IR-only, or combined RGB-IR inputs. The
inference pipeline is as follows:

• Both RGB and IR images available: Each modality passes through its respective YOLOv11n backbone, producing sep-
arate detection outputs. The RGB detection is processed through Non-Maximum Suppression (NMS) to filter overlapping
bounding boxes effectively, while IR detection leverages confidence-based activation, optimized for thermal signatures.
Both outputs enter the Decision Layer independently, enabling complementary detection results from both modalities.

• Only IR image available: The IR input is processed normally through the YOLO backbone. Simultaneously, a white
image (RGB: 255,255,255) is passed as a placeholder to the RGB channel to maintain the integrity of the dual-input
system architecture. The IR output proceeds to the Decision Layer via confidence-based detection, as NMS-based scoring
is suboptimal in this scenario.



• Only RGB image available: Similarly, the RGB input undergoes standard processing, while the IR backbone receives
a white placeholder image. Detection results are subsequently refined using NMS activation, ensuring accurate bounding
box selection before entering the Decision Layer.

The Decision Layer finalizes outputs from each channel based on their respective activation methods, producing bounding
box detections and confidence scores. This approach efficiently adapts to single or dual-modality inputs without requiring
complex feature-level fusion, significantly reducing computational overhead and latency.

(a) RGB-IR channel Inference

(b) RGB-only inference (c) IR-only inference

Fig. 2: Inference modes: IR-only, RGB-only, and dual modality handled uniformly via placeholder injection and parallel
backbone execution.If only IR is available , white image is passed to RGB channel (b). If only RGB is available , white image
is passed to IR channel (c) .

Real-Time Performance: Our implementation achieves real-time performance even on modest hardware. On NVIDIA
RTX GPUs, the YOLOv11n models comfortably exceed 30 FPS for 320×256 video streams, processing single frames within
milliseconds. CPU inference remains viable, achieving near-real-time performance beneficial for embedded systems or edge
scenarios. By parallelizing RGB and IR backbone processing, our pipeline ensures balanced computational load and minimal
latency.

B. Tracking and Payload Identification
Drone tracking is achieved using a lightweight Intersection-over-Union (IoU)-based tracker. After YOLOv11n detects drones

in either the RGB or IR image stream, consecutive detections are linked by comparing bounding boxes from frame to frame.



Tracks are maintained through short detection gaps (up to 10–15 frames) to handle brief occlusions or intermittent detection
failures, ensuring reliable trajectory continuity.

For payload identification, we implement a modality-aware approach tailored for the availability of input streams:
• When both RGB and IR modalities are available: RGB and IR images each feed their respective YOLOv11n backbones,

and their outputs jointly undergo Non-Maximum Suppression (NMS) before entering the final decision layer. This fusion
strategy maximizes accuracy by combining complementary information from both modalities.

• When only the RGB modality is available:
A grayscale version of the RGB input image is generated and passed to the IR backbone as a surrogate, ensuring both
backbones receive valid inputs. Both outputs still proceed jointly to NMS and the decision layer, preserving consistency
in inference regardless of IR input availability.

(a) RGB-IR channel Inference

(b) RGB-only inference (c) IR-only inference

Fig. 3: Inference modes in Payload Detection: IR-only, RGB-only, and dual modality handled uniformly via placeholder
injection and parallel backbone execution.If only IR is available , triplet image is passed to RGB channel (b). If only RGB is
available , grayscale image is passed to IR channel (c) .

• When only the IR modality is available:
The IR image is replicated across three channels (forming a pseudo-RGB triplet) and passed through the RGB backbone,
while the IR backbone receives the original IR input. As before, the outputs undergo joint NMS processing, maintaining
the system’s structural uniformity.



Real-Time Performance: Each backbone outputs bounding boxes and confidence scores independently, and subsequent
payload classification models trained specifically for RGB and IR streams detect and categorize payloads (harmful or normal).
Due to intrinsic modality differences, dual inputs provide complementary advantages—for example, IR excels in low-light or
visually obscured scenarios, while RGB better captures visible detail and color information.

During practical inference, the fusion logic for payload identification employs a logical OR: if either RGB or IR payload
detection is confident in classifying a payload as harmful, the payload is flagged accordingly. This approach effectively mitigates
individual modality blind spots and significantly enhances payload classification reliability.

This structured yet flexible pipeline achieves robust drone surveillance performance by intelligently adapting to modality
availability, effectively balancing accuracy, computational efficiency, and inference consistency.
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Fig. 4: Overall Video Tracking and Direction Estimation Architecture

C. Video Tracking and Direction
We propose a real-time, multi-stage pipeline for video-based drone tracking and direction estimation. This framework integrates
fast object detection, appearance-based multi-object tracking, and a hybrid visual reasoning module to robustly infer the motion
direction of aerial targets. Each component is designed for responsiveness and computational efficiency, with particular attention
to how it scales in real-world deployment.

• Object Detection: Each video frame is processed using a real-time object detector to localize aerial entities such as
drones or birds. The detector produces class-specific bounding boxes with high speed and precision, enabling downstream
modules to operate reliably under real-time constraints.

• Multi-Object Tracking: A tracker associates detected objects across frames using both motion prediction and appearance
embeddings. This allows for stable identity maintenance over time, even in the presence of occlusions, viewpoint changes,
or sudden object motion.

• Direction Estimation: Each tracked object is passed through a multi-cue direction estimator, which combines several visual
indicators—including changes in object area, movement of object centroids, scale variation, and optical flow vectors. To
maintain computational efficiency, the optical flow is applied selectively and sparsely over a small grid within the object



region. This minimizes the per-frame workload, ensuring real-time operability even when multiple objects are tracked
simultaneously.

• Output Generation: The final system output includes annotated video frames and structured logs capturing object tracks,
spatial metadata, direction labels, and confidence levels. These outputs facilitate both visual inspection and downstream
analytics such as trajectory forecasting or threat detection.

Performance Characteristics:
The direction estimator is built with real-time performance as a central design goal. Among the most computationally intensive

components is the optical flow computation, which has been carefully constrained by limiting the number of analyzed points
and keeping the spatial search region small. This ensures that the motion estimation step remains efficient even in multi-
object scenarios. Importantly, the estimator avoids redundant processing by handling each tracked object independently and
reinitializing motion cues relative to the object’s updated position.

Memory usage is optimized by retaining only a short, fixed-length history of relevant features for each tracked object.
Efficient queue-based data structures are employed to manage these histories, providing constant-time updates and avoiding
memory bloat. This ensures that system performance remains stable across prolonged video sequences.

The estimator also employs lightweight arithmetic operations to evaluate visual trends, such as area changes or velocity.
These operations are bounded and applied over short time windows, ensuring consistent and predictable frame-wise runtime
regardless of video length. Logic for combining directional cues is similarly efficient, relying on simple statistical comparisons
and minimal branching, without introducing significant computational overhead.

The algorithm’s complexity grows linearly with the number of tracked objects per frame. However, because the work
per object is capped and does not grow with video length, the system gracefully scales to increased target counts without
compromising responsiveness. When object counts become large, potential enhancements such as batch processing of motion
cues or GPU acceleration may be considered—but the current implementation performs robustly under typical aerial monitoring
conditions.

Additional trade-offs are introduced to balance accuracy and speed. For example, very small objects, which are likely to be
distant or noisy detections, are excluded from motion analysis to save processing time. Similarly, by using a uniform grid for
motion tracking rather than dynamically selected feature points, the estimator reduces variability and avoids extra computation.
Temporal smoothing and confidence aggregation further help stabilize outputs, reducing the impact of transient anomalies
without adding significant delay or memory overhead.
Overall, the system achieves real-time performance through careful design choices that minimize per-frame cost, bound memory
use, and scale predictably with scene complexity. These characteristics make it well-suited for embedded or field deployment
scenarios where computational resources are limited but fast, reliable tracking and directional inference are essential.

IV. EXPERIMENTS AND RESULTS

A. Drone and Bird Detection

In this study, we evaluated several dual-stream object detection architectures designed for drone and bird detection tasks
under the VIP Cup 2025 Task 3 challenge, utilizing both RGB and infrared (IR) imaging modalities. Our primary objective was
to investigate the effectiveness of different fusion approaches—namely mid-level fusion, transformer-based mid-level fusion,
mid-to-late fusion, and late fusion—in improving detection performance within challenging multimodal surveillance scenarios.

a) Baseline and Architectural Variants.: We employed and adapted the Ultralytics YOLO11 object detection framework to
support dual-path processing for RGB and IR modalities. Our base architecture utilized dual independent YOLO11 backbones
to extract multiscale features from each modality. We implemented several variants based on different feature fusion stages:

• Mid-Fusion (Basic): Features from both modalities at levels P3, P4, and P5 were concatenated and subsequently processed
through SPPF and C2PSA modules before reaching the detection heads. This approach enabled efficient cross-modal spatial
context integration while preserving individual modality features.

• Mid-to-Late Fusion: Each modality underwent independent head processing up to the final layers, at which point feature
maps at levels P3, P4, and P5 were concatenated just before the detection head. This method aimed at maintaining
modality-specific representations longer.

• Mid-Fusion with Transformer Blocks: Inspired by ICAFusion [12], standard concatenation was replaced with Transformer-
based fusion blocks (TransformerFusionBlock) at levels P3, P4, and P5. This attention-based approach facilitated
robust alignment of features across modalities.
b) Training Setup.: All models were trained from scratch on the VIP Cup 2025 dataset, consisting of synchronized RGB

and IR frames annotated with drone and bird labels. Models were trained for between 100 and 150 epochs, using a batch
size of 16 and employing standard data augmentation techniques with cosine learning rate scheduling. Performance evaluation
adhered to the standard COCO metric of mean Average Precision (mAP@0.5:0.95).

c) Quantitative Results.: Table III presents the performance outcomes of the tested fusion approaches.



(a) Class distribution & bbox stats (b) Normalized confusion matrix (c) Training & validation metrics

(d) Example training batch (e) Validation predictions

Fig. 5: Dataset Statistics and Model Performance Overview for training RGB Drone Image (a) Class distribution and
bounding-box dimension statistics. (b) Normalized confusion matrix. (c) Evolution of training and validation losses & metrics.
(d) Representative training batch with ground truth. (e) Sample validation detections with confidence scores.

TABLE I: Final Training & Validation Results on RGB Dataset (Epoch 293)

Epoch Training Losses Validation Losses Validation Metrics

Box Cls DFL Box Cls DFL Prec. Recall mAP@0.5 mAP@0.5:0.95

293 0.490 0.121 1.042 0.909 0.181 1.122 0.992 0.847 0.992 0.864

TABLE II: Payload Classification Performance on IR Dataset

Raw Counts Normalized Metrics

Dataset Harmful Normal Harmful Normal Prec. Rec. F1

IR 1 992 2 033 0.99 0.99 0.99 0.99 0.99



(a) Class distribution & bbox stats (b) Normalized confusion matrix (c) Training & validation metrics

(d) Example training batch (e) Validation predictions

Fig. 6: Dataset Statistics and Model Performance Overview for training IR Drone Image (a) Class distribution and
bounding-box dimension statistics. (b) Normalized confusion matrix. (c) Evolution of training and validation losses & metrics.
(d) Representative training batch with ground truth. (e) Sample validation detections with confidence scores.

TABLE III: Performance of Fusion Strategies on Drone and Bird Detection

Model Epochs mAP@0.5:0.95
Mid-Fusion (Basic) 100 0.81
Mid-to-Late Fusion 100 0.78
Mid-Fusion + Transformer 150 0.84



(a) Class distribution & bbox stats (b) Normalized confusion matrix (c) Training & validation metrics

(d) Example training batch (e) Validation predictions

Fig. 7: Dataset Statistics and Model Performance Overview for training payload IR Image (a) Class distribution and
bounding-box dimension statistics. (b) Normalized confusion matrix. (c) Evolution of training and validation losses & metrics.
(d) Representative training batch with ground truth. (e) Sample validation detections with confidence scores.

d) Late Fusion with Decision Routing.: Subsequently, we explored a late fusion strategy based on a modular decision-
layer routing mechanism, as illustrated in Fig. 2. Under this setup, RGB and IR streams were independently processed by
their respective YOLO11n backbones. During inference, each modality produced independent bounding box predictions and
associated confidence scores. These outputs were dynamically selected by a decision layer that employed heuristic rules based
on object activation and modality confidence, effectively choosing between RGB, IR, or both depending on input reliability
and environmental conditions.

TABLE IV: Validation Results for Independently Trained RGB and IR YOLO11n Models

Modality mAP@0.5:0.95 mAP@0.5 mAP@0.75 Precision Recall F1-Score
RGB (YOLO11n) 0.807 0.989 0.897 0.981 0.972 0.977
IR (YOLO11n) 0.81 0.988 0.896 0.978 0.97 0.976



e) Fusion via Decision Layer.: In the late fusion mechanism, we employed weighted confidence selection and Non-
Maximum Suppression (NMS) to efficiently combine bounding box predictions from both modalities. The decision layer
dynamically favored the modality providing higher confidence or better contextual conditions—RGB was preferred for drones
under IR-unfavorable conditions, while IR often detected occluded or poorly illuminated birds more reliably. This fusion
method notably reduced redundant detections without the need for retraining or parameter integration. Despite individually
high-performing models, the fusion achieved a slightly lower compared to transformer-based mid-level fusion.

f) Analysis.: Our results indicated that mid-level fusion approaches—particularly transformer-enhanced mid-fusion—demonstrated
superior performance due to early and sophisticated integration of modality-specific features through attention mechanisms.
While the late fusion via decision routing provided adaptability to varying conditions, the absence of jointly optimized training
limited its overall effectiveness. These insights highlight transformer-based mid-level fusion as a highly promising approach
for multimodal object detection. Future investigations may include dynamic fusion weighting and advanced spatiotemporal
attention strategies to further enhance detection performance.

B. Payload Detection

Fig. 8: faster R-CNN Overview

For payload classification under IR and RGB modalities, we firstly employed the Faster R-CNN architecture built upon a
ResNet-50 backbone with Feature Pyramid Networks (FPN), as implemented in the torchvision detection module. The model
was pretrained on the COCO dataset and fine-tuned for our 3-class problem: background, harmful payloads, and normal
payloads. The classification head was replaced using the FastRCNNPredictor to match our custom label set. Training was
conducted separately on RGB and IR image sets, using YOLO-format bounding box annotations converted to Pascal VOC
format for compatibility. A small batch size was used due to GPU memory constraints, and Gaussian noise was applied as
augmentation to improve robustness.

Table V summarizes the validation performance of the trained models on both modalities.

TABLE V: Validation Results of Faster R-CNN Models for Payload Detection

Modality mAP@0.5:0.95 mAP@0.5 Precision Recall F1-Score
RGB (Faster R-CNN) 0.997 0.994 0.930 0.915 0.969
IR (Faster R-CNN) 0.950 0.964 0.949 0.938 0.943

Following this, we leveraged a lightweight YOLOv11n dual-backbone architecture with decision-layer routing for real-
time inference. The architecture, depicted in Fig. 3, supports three modes: RGB-only, IR-only, and RGB-IR. A placeholder
channel injection mechanism ensures consistent tensor shapes across modalities. Each backbone is trained separately, and
during inference, outputs are passed through activation-based Non-Maximum Suppression (NMS) and a decision-layer module
to yield final predictions.

This architecture led to substantial improvements in inference accuracy across all modalities. Table VI presents the validation
scores.



TABLE VI: YOLOv11n Validation Results Using Decision-Layer Late Fusion

Modality mAP@0.5:0.95 mAP@0.5 Precision Recall F1-Score
RGB (YOLOv11n) 0.989 0.995 0.997 0.998 0.999
IR (YOLOv11n) 0.990 0.995 0.969 0.988 0.993

V. CONCLUSION

In this work, we presented SpectraSentinel, a lightweight, real-time dual-stream system for drone detection, tracking, and
payload identification using RGB and infrared (IR) modalities. Our approach integrates modality-specific YOLOv11n detectors,
efficient tracking via DeepSORT, and a hybrid direction estimation pipeline to address the challenges of small aerial object
surveillance in complex environments. By processing RGB and IR streams independently and fusing their outputs at the decision
level, we achieve robustness to modality-specific limitations—enhancing detection in low-visibility scenarios and improving
payload recognition through complementary cues.

We further explored various fusion strategies—ranging from mid-level transformer-based fusion to modular late fusion using
decision layers—and demonstrated that mid-level fusion yields superior accuracy, while late fusion provides architectural
flexibility and operational adaptability. Extensive experimental results on the VIP Cup 2025 dataset validate the effectiveness
of our models, showing strong performance across detection, tracking, and payload classification tasks, even under adverse
conditions.

Our system is designed with real-time constraints in mind, making it deployable on edge devices for practical surveillance
scenarios. Looking ahead, future work may explore joint end-to-end training of multi-modal detectors, advanced spatiotemporal
reasoning for behavior prediction, and integration with broader UAV traffic management systems. The promising results of
SpectraSentinel underline the potential of dual-modality vision systems for intelligent aerial threat monitoring and situational
awareness.
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