
Concrete Security Bounds for Simulation-Based Proofs of
Multi-Party Computation Protocols
KRISTINA SOJAKOVA, Vrije Universiteit Amsterdam, Netherlands

MIHAI CODESCU, Research Group of the NLNet Project IPDL, Romania

JOSHUA GANCHER, Northeastern University Boston, United States of America

The concrete security paradigm aims to give precise bounds on the probability that an adversary can subvert a

cryptographic mechanism. This is in contrast to asymptotic security, where the probability of subversion may

be eventually small, but large enough in practice to be insecure. Fully satisfactory concrete security bounds for

Multi-Party Computation (MPC) protocols are difficult to attain, as they require reasoning about the running
time of cryptographic adversaries and reductions.

In this paper we close this gap by introducing a new foundational approach that allows us to automatically

compute concrete security bounds for MPC protocols. We take inspiration from the meta-theory of IPDL,

a prior approach for formally verified distributed cryptography, to support reasoning about the runtime of

protocols and adversarial advantage. For practical proof developments, we implement our approach in Maude,

an extensible logic for equational rewriting.

We carry out four case studies of concrete security for simulation-based proofs. Most notably, we deliver

the first formal verification of the GMW MPC protocol over 𝑁 parties. To our knowledge, this is the first time

that formally verified concrete security bounds are computed for a proof of an MPC protocol in the style of

Universal Composability. Our tool provides a layer of abstraction that allows the user to write proofs at a high

level, which drastically simplifies the proof size. For comparison, a case study that in prior works required

2019 LoC only takes 567 LoC, thus reducing proof size by 72%.

CCS Concepts: • Security and privacy→ Logic and verification; • Theory of computation→ Equational
logic and rewriting.
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1 INTRODUCTION
Advanced distributed cryptographic protocols such as Multi-Party Computation (MPC) have the po-

tential to enable new, privacy-preserving modes of computing. However, their inherent complexity

introduces new risks, including the risk that the protocol itself (or protocol optimizations employed

by implementations) is insecure. The commonly-used security definition for MPC is simulation-

based security in the style of Universal Composability, or UC [Canetti 2000]. UC provides strong

security guarantees that are robust under an embedding of the protocol into a larger distributed
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system. However, UC-style proofs for MPC protocols are generally very difficult, as they require

complex bisimulation-based security arguments in conjunction with low-level runtime analysis.

While a number of prior approaches for verifying MPC protocols have been proposed [Almeida

et al. 2017; Defrawy and Pereira 2019; Gancher et al. 2023b; Haagh et al. 2018; Stoughton and

Varia 2017], most of these approaches deliver standalone security definitions not compatible with

UC [Almeida et al. 2017; Defrawy and Pereira 2019; Haagh et al. 2018; Stoughton and Varia 2017],

which harms composability. In contrast, the IPDL system [Gancher et al. 2023b] can deliver UC-

style security results for MPC protocols via a convenient equational style of reasoning. Prior work
has shown that IPDL can reason about realistic protocols, including a two-party variant of the

GMW [Goldreich et al. 1987] MPC protocol, along with various Oblivious Transfer [Beaver 1995]

protocols.

However, a number of security-critical caveats remain. None of the prior approaches for verifying

MPC adequately reason about the runtime of adversaries and simulators constructed during the

proof. Reasoning about runtime is essential for security, since nearly all cryptographic proofs contain

reductions of the form “the probability that 𝐴 breaks protocol 𝑃 is bounded by the probability that

the reduced adversary 𝑅(𝐴) breaks indistinguishability assumption 𝑄“. Here 𝑅(𝐴) is an adversary

whose interaction with 𝑄 mimics the interaction of the original adversary 𝐴 with 𝑃 . If 𝑅(𝐴)’s
runtime is not adequately bounded, then the probability that 𝑅(𝐴) breaks the assumption𝑄 may be

1, rendering the security result essentially meaningless. This problem is even more pronounced for

large protocols such as MPC, since the constructed simulators also become increasingly complex.

In this work, we address this issue for MPC protocols. Our method supports concrete security [Bel-

lare et al. 1997], which gives precise bounds on the probability 𝜖 (𝑡) that an attacker running in

time 𝑡 violates the security guarantees of the system. Our novel strategy to obtain these bounds is

to bound the size of the IPDL program context, and analyze the runtime of a Turing Machine that

interprets IPDL programs. This strategy allows us to obtain practical bounds for MPC: indeed, to
our knowledge, there is no other formally verified proof of an MPC protocol that reasons about concrete
security and runtime of adversaries/simulators.
To enable fast and scalable formal proofs, we implemented our proof system in the equational

rewrite tool Maude [Clavel et al. 2007] as an extension of SpeX [Ţuţu 2022] and equipped it with a

Domain-Specific Language (DSL) for concise proofs that automatically compile down to lower-level

Maude code. Using our implementation, we carry out four different case studies. To highlight the

scalability of our approach, we present a new, fully mechanized proof of simulation-based security
for theMulti-Party GMW MPC protocol defined over an arbitrary Boolean circuit and for arbitrarily

many parties. Crucially, our tool automates the computation of concrete security bounds, which

would otherwise be infeasible to carry out for a protocol of this size.

1.1 Contributions
In this work, we develop:

• a proof system that automatically computes concrete security bounds for composable simulation-

based proofs of MPC protocols;

• a formally verified proof of the GMW MPC protocol with 𝑁 parties, which to our knowledge

marks the first time that formally verified concrete security bounds have been computed for

a UC-style proof of an MPC protocol;

• an accompanying Maude implementation that automatically computes the aforementioned

bounds and a DSL for writing proofs that hides most low-level details from the user. This

dramatically simplifies the proof size: e.g., excluding definitions, the proof of the Coin Flip
case study in [Gancher et al. 2023b] takes 1905 LoC, whereas we deliver it in 256 LoC. Our
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proofs also significantly outperform their Coq equivalents from [Gancher et al. 2023b] in

terms of runtime: e.g., 5 seconds vs. a few minutes for the Coin Flip case study.

Limitations of our system. Since we build upon the process calculus in [Gancher et al. 2023b], we

are only able to support protocols expressible in IPDL. Specifically, IPDL only considers protocols

with static communication topologies and static security. Furthermore, it does not consider protocols

that exhibit threshold behavior such as consensus protocols. As IPDL is targeted towards UC security,

it also does not consider proofs that use rewinding.

Limitations of our proof effort. Our proof of the GMW protocol assumes that party 𝑁 is semi-

honest and party 𝑁 + 1 is honest. While this is not fully general, all other cases are either trivial

(all parties honest/all parties semi-honest) or can be essentially reduced to the aforementioned case.

We note that the GMW protocol is not secure against a malicious adversary.

Structure of paper. In Section 3 we briefly review simulation-based security, present IPDL, and

illustrate our DSL on a simple example. In Section 4, we give the syntax and semantics of our cost-

aware proof system for simulation-based security, and present our soundness results. In Section 5,

we outline our proof of the 𝑁 -Party GMW protocol and briefly describe the other case studies. We

conclude by indicating some directions for future work.

2 RELATEDWORK
This paper is part of a long line of formal verification efforts for MPC and similar protocols.

Some works target domain-specific, standalone security notions for protocols [Almeida et al. 2017;

Defrawy and Pereira 2019; Haagh et al. 2018; Stoughton and Varia 2017], while others [Barbosa

et al. 2021; Canetti et al. 2019; Gancher et al. 2023b; Lochbihler et al. 2019] aim to construct general

frameworks for simulation-based security in the style of UC. While runtime analysis is in a sense

required for sound cryptographic reasoning, almost all of the above works (with the exception of

[Barbosa et al. 2021] and [Gancher et al. 2023b]) declare reasoning about runtime out of scope, and

instead defer to the reader to ensure that all relevant cryptographic reductions have a reasonable

running time.

The line of work proposed in [Gancher et al. 2023b] shows that an equational proof strategy is

useful for proving MPC and related protocols secure. However, in lieu of reasoning about runtime,

[Gancher et al. 2023b] relies on symbolic bounds, which provide some measure of complexity

for a syntactic simulation context. However, [Gancher et al. 2023b] does not give a low-level

computational semantics to protocols, nor does it carry out any cryptographic reductions. It is

therefore unclear what such a symbolic bound means for the runtime of adversaries and simulators.

In this paper, we build upon the process calculus introduced in [Gancher et al. 2023b] with a new

cost-aware proof system and semantics that reason explicitly about the runtime of cryptographic

adversaries and simulators. In particular, we prove concrete security bounds of the form 𝜖 (𝑡), where
𝑡 is the running time of the adversary.

The system by Barbosa et al. [Barbosa et al. 2021] extends EasyCrypt [Barthe et al. 2011] by a

cost-aware Hoare logic and uses it to analyze a secure channel protocol. However, this runtime

analysis only applies to sequential programs, while the process calculus of [Gancher et al. 2023b]

natively handles concurrency. Thus, while [Barbosa et al. 2021] considers UC, their computational

model assumes that the protocol follows a stack discipline, which is not a good fit for MPC.

Squirrel [Baelde et al. 2024] and CryptoVerif [Blanchet 2008] are two popular tools that deliver

concrete security bounds for large classes of cryptographic protocols. However, the bulk of the

proof for an MPC protocol consists of manipulations such as inlining the computation from one

channel to another, or removing parts of the protocol that have become unused after simplification.
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The process calculus of [Gancher et al. 2023b] was explicitly designed around such congruences,

which do not have counterparts in Squirrel or CryptoVerif. This design choice enabled us to carry

out the largest formally verified UC-style proof of an MPC protocol that we are aware of.

Overture [Skalka and Near 2024] is a recently-proposed system for proving security properties

of MPC protocols via checking secrecy and integrity hyperproperties. While it offers automatic

proofs, it does not prove UC-style properties, nor analyze the runtime of simulators. Owl [Gancher

et al. 2023a] uses an information-flow type system to deliver modular proofs of protocols that use

cryptographic mechanisms (rather than reason about them, which is required for MPC). Resource-

aware session types (RAST) [Das et al. 2018] allow one to embed runtime guarantees into session-

typed protocols. While RAST and our work both target concurrent process calculi, the protocols

we consider do not naturally carry session types, and instead have a low-level computational

interpretation in terms of Turing Machines. In particular, it is unclear how to embed MPC into

RAST, or use session types in general to perform cryptographic security proofs. GAuV [Xie et al.

2024] uses graph transformations to automate proofs of semi-honest security for concrete instances

of the BGW protocol (i.e., for a fixed number of parties and a fixed circuit).

3 OVERVIEW: SIMULATION-BASED SECURITY AND IPDL
We now briefly describe simulation-based security, give an overview of the IPDL process calculus

from [Gancher et al. 2023b], and illustrate our approach on a simple running example.

3.1 Simulation-Based Security
Simulation-based security relates the behavior of a protocol to that of an idealization, where

cryptographic mechanisms are replaced by trusted resources secure by construction. In this sense,

an idealization is a specification for the behavior that the real-world protocol aims to approximate

with cryptographic methods. For example, a real-world protocol utilizes encryption to securely

send a message from Alice to Bob over a public network. The idealization instead relies on a trusted

third party that securely obtains the message from Alice and forwards it to Bob.

The simulation-based paradigm, as employed e.g. in UC and Constructive Cryptography [Maurer

2012] is very powerful and unifies various other security notions such as secrecy and integrity. In

UC-style security, a protocol is an interactive system consisting of parties, e.g. Alice and Bob, and

functionalities, e.g. a public network that forwards messages from Alice to Bob, or a key generation

mechanism that randomly generates a secret key and securely delivers it to Alice and Bob.

Formal proofs in this setting amount to showing observational equivalences 𝑃 ≈ 𝑄 between a

“real” protocol 𝑃 , and an “ideal” protocol 𝑄 . These proofs typically take the form of a sequence of

exact (=) and approximate (≈) equality steps:

𝑃 = 𝑃1 ≈ 𝑄1 = 𝑃2 ≈ 𝑄2 = . . . = 𝑃𝑛 ≈ 𝑄𝑛 = 𝑄

As observed in [Gancher et al. 2023b], a typical approximate equality step 𝑄𝑖 ≈ 𝑃𝑖 consists of
replacing the left-hand side of an indistinguishability assumption𝐺𝑖 ≈ 𝐻𝑖 by its right-hand side in a

common context 𝑅𝑖 ; i.e., 𝑃𝑖 arises as 𝑅𝑖 [𝐺𝑖 ] and 𝑄𝑖 as 𝑅𝑖 [𝐻𝑖 ]. An example of such an assumption is

IND-CPA, which states that encryptions of adversarially chosen messages are indistinguishable

from encryptions of zeros (in the absence of a decryption oracle).

3.2 Background: IPDL
IPDL [Gancher et al. 2023b] is a process calculus for distributed cryptographic protocols (e.g., MPC)

that enables one to prove simulation-based security results similar to those analyzed in UC. IPDL

protocols are composed of mutually interacting reactions, which are sequential monadic programs

that probabilistically compute an expression. In the context of a protocol, a reaction operates on a
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unique channel and may read from other channels, thereby utilizing computations coming from

other reactions.

Aside from a formal process calculus, the original paper [Gancher et al. 2023b] defines two

equational proof systems: an exact equational logic for proving perfect equivalences between

protocols, and an approximate logic for proving computational indistinguishability results. The

exact equational logic is proven sound in terms of bisimulations, while the approximate logic is

proven sound in terms of computational reductions.
Following [Gancher et al. 2023b], we assume a user-defined signature that specifies the base

types and the (probabilistic) functions we have at our disposal:

Definition 1 (Signature). A signature Σ consists of:
• type constants t,
• function symbols f : 𝜎 → 𝜏 , and
• distribution symbols d : 𝜎 → 𝜏 .

We summarize the syntax of IPDL in Figure 1. Data types and expressions are standard. Here

1 denotes the unit type and ✓ the canonical inhabitant of 1. The expression app𝜎→𝜏 f 𝑒 denotes
the application of the function symbol f : 𝜎 → 𝜏 declared in the signature Σ to an expression 𝑒 .

Similarly, the reaction samp𝜎→𝜏 d 𝑒 denotes the application of the distribution symbol d : 𝜎 → 𝜏

declared in the signature Σ to an expression 𝑒 .

The reaction read(𝑐 : 𝜏) denotes the read of a value of type 𝜏 from the channel 𝑐 . We also have

branching (if 𝑒 then 𝑅1 else 𝑅2) and the standard monadic operations of return (ret 𝑒) and bind

(𝑥 : 𝜎 ← 𝑅; 𝑆). At the protocol level, we have the trivial protocol 0, the single-channel protocol
𝑜 B 𝑅 that assigns a reaction 𝑅 to the channel 𝑜 , the parallel composition 𝑃 ∥ 𝑄 of two protocols,

and the spawning new 𝑜 : 𝜏 in 𝑃 of a new internal channel 𝑜 of type 𝜏 for use in 𝑃 .

In our version of the IPDL syntax, references var(𝑥 : 𝜏) to variables and read(𝑐 : 𝜏) to channels

include a typing annotation. We will need these later on when encoding an IPDL construct as a

sequence of symbols on a Turing Machine tape; knowing the type 𝜏 will allow us to allocate the

correct number of bits for the variable 𝑥 or the channel 𝑐 .

Variables 𝑥,𝑦, 𝑧

Channels 𝑖, 𝑜, 𝑐

Channel Sets 𝐼 ,𝑂 ::= {𝑐1, . . . , 𝑐𝑛}
Data Types 𝜏, 𝜎 ::= t | 1 | Bool | 𝜏1 × 𝜏2
Expressions 𝑒 ::= var(𝑥 : 𝜏) | ✓ | true | false | app𝜎→𝜏 f 𝑒 | (𝑒1, 𝑒2)

| fst𝜎×𝜏 𝑒 | snd𝜎×𝜏 𝑒
Reactions 𝑅, 𝑆 ::= ret 𝑒 | samp𝜎→𝜏 d 𝑒 | read(𝑐 : 𝜏)

| if 𝑒 then 𝑅1 else 𝑅2 | 𝑥 : 𝜎 ← 𝑅; 𝑆

Protocols 𝑃,𝑄 ::= 0 | 𝑜 B 𝑅 | 𝑃 ∥ 𝑄 | new 𝑜 : 𝜏 in 𝑃
Type Contexts Γ ::= · | Γ, 𝑥 : 𝜏

Channel Contexts Δ ::= · | Δ, 𝑐 : 𝜏

Fig. 1. Syntax of IPDL.

Typing of protocols in IPDL has the form Δ ⊢ 𝑃 : 𝐼 → 𝑂 , where Δ is a channel context assigning

types to channel names, and 𝐼 ,𝑂 are disjoint sets of input and output channels, respectively. Each
output channel in 𝑂 must be assigned a reaction inside 𝑃 . The exact equational logic of IPDL is

parameterized by a finite set of axioms of the form Δ ⊢ 𝑃1 = 𝑃2 : 𝐼 → 𝑂 , where Δ ⊢ 𝑃1 : 𝐼 → 𝑂
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6 Kristina Sojakova, Mihai Codescu, and Joshua Gancher

Δ ⊢ 𝑃 = 𝑄 : 𝐼 → 𝑂

Δ ⊢ 𝑃 : 𝐼 ∪𝑂2 → 𝑂1 Δ, 𝑜 : 𝜏 ⊢ 𝑄 : 𝐼 ∪𝑂1 → 𝑂2 ∪ {𝑜}
Δ ⊢ 𝑃 ∥

(
new 𝑜 : 𝜏 in 𝑄

)
= new 𝑜 : 𝜏 in (𝑃 ∥ 𝑄) : 𝐼 → 𝑂1 ∪𝑂2

comp-new

Δ ⊢ 𝑃 : 𝐼 → 𝑂 Δ ⊢ 𝑄 : 𝐼 ∪𝑂 → ∅
Δ ⊢ 𝑃 ∥ 𝑄 = 𝑃

absorb

Δ; · ⊢ 𝑅 : 𝐼 → 𝜎 Δ; 𝑥 : 𝜎 ⊢ 𝑆 : 𝐼 → 𝜏

Δ ⊢
(
new 𝑐 : 𝜎 in 𝑜 B 𝑥 ← read 𝑐; 𝑆 ∥ 𝑐 B 𝑅

)
=
(
𝑜 B 𝑥 ← 𝑅; 𝑆

) fold-bind

Δ; · ⊢
(
𝑥 ← 𝑅1; 𝑦 ← 𝑅1; ret (𝑥,𝑦)

)
=
(
𝑥 ← 𝑅1; ret (𝑥, 𝑥)

)
Δ ⊢

(
𝑜1 B 𝑅1 ∥ 𝑜2 B 𝑥1 ← read 𝑜1; 𝑅2

)
=
(
𝑜1 B 𝑅1 ∥ 𝑜2 B 𝑥1 ← 𝑅1; 𝑅2

) subst

Δ; · ⊢ 𝑅1 : 𝐼 → 𝜏1 Δ; · ⊢ 𝑅2 : 𝐼 → 𝜏2 Δ; · ⊢
(
𝑥1 ← 𝑅1; 𝑅2

)
= 𝑅2 : 𝐼 → 𝜏2

Δ ⊢
(
𝑜1 B 𝑅1 ∥ 𝑜2 B 𝑥1 ← read 𝑜1; 𝑅2

)
=
(
𝑜1 B 𝑅1 ∥ 𝑜2 B 𝑅2

) drop

Fig. 2. Selected rules for exact equality of IPDL protocols.

and Δ ⊢ 𝑃2 : 𝐼 → 𝑂 . We use these axioms to express example-specific functional assumptions, e.g.,
the correctness of an encryption/decryption scheme. Figure 2 shows a few illustrative rules of the

exact fragment of IPDL.

Rule comp-new allows us to pull a sub-protocol 𝑃 outside the scope of a channel declaration if

the bound channel name does not appear in 𝑃 . Rule absorb allows us to discard a sub-protocol that

has become unused after simplification. Rule subst says that if the computation 𝑅1 assigned to a

channel 𝑜1 is deterministic, then we may replace every occurrence of read 𝑜1 by 𝑅1. Rule fold-bind
states that if we only read from channel 𝑐 once in the context of a protocol, we can soundly replace

read 𝑐 by the computation assigned to 𝑐 , even if this computation is probabilistic. Finally, rule drop

allows us to drop a vacuous dependency on channel 𝑜1 from channel 𝑜2 if the computation 𝑅1
assigned to 𝑜1 does not introduce additional dependencies to 𝑜2.

IPDL protocols come with a natural operational semantics. We slightly generalize the semantics

given in [Gancher et al. 2023b] to support dynamic-length bitstrings. To this end, we use a special

placeholder symbol • and by abuse of terminology we refer to strings 𝑣 ∈ {0, 1, •}★ as bitstrings.

Definition 2 (Interpretation). An interpretation ⟦−⟧ for a signature Σ associates to:
• each type symbol t a subset ⊆ {0, 1, •} |t | of bitstrings of length |t| ≥ 0;
• each function symbol f : 𝜎 → 𝜏 a function ⟦f⟧ from ⟦𝜎⟧ to ⟦𝜏⟧;
• each distribution symbol d : 𝜎 → 𝜏 a function ⟦d⟧ from ⟦𝜎⟧ to distributions on ⟦𝜏⟧.

In the above, we generalize the interpretation ⟦−⟧ to all types in the obvious way. To handle partial

computations, we follow [Gancher et al. 2023b] and augment the syntax of IPDL protocols to

contain intermediate bitstring values

Protocols 𝑃,𝑄 ::= 𝑜 B 𝑣 | . . .
We give semantics to IPDL protocols via two main small-step rules, see Figure 3, where we write

1[𝑃] for the distribution with unit mass at the protocol 𝑃 , and freely use a distribution in place of a
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reaction or a protocol to indicate the obvious lifting of the corresponding construct to distributions

on protocols. As reactions are sequential monadic programs, they admit a straightforward small-

step semantics 𝑅 → 𝜂, which we omit. Big-step operational semantics for protocols 𝑃 ⇓ 𝜂 performs

output and internal steps in an arbitrary order until no more steps are possible, resulting in a

unique distribution 𝜂 on protocols.

𝑃
𝑜 B 𝑣↦−−−−→ 𝑄

𝑃
𝑜 B 𝑣↦−−−−→ 𝑃 ′

𝑃 ∥ 𝑄 𝑜 B 𝑣↦−−−−→ 𝑃 ′ ∥ 𝑄 [read 𝑜 B val 𝑣]

𝑄
𝑜 B 𝑣↦−−−−→ 𝑄 ′

𝑃 ∥ 𝑄 𝑜 B 𝑣↦−−−−→ 𝑃 [read 𝑜 B val 𝑣] ∥ 𝑄 ′

(
𝑜 B val 𝑣

) 𝑜 B 𝑣↦−−−−→
(
𝑜 B 𝑣

) 𝑃
𝑜 B 𝑣↦−−−−→ 𝑃 ′ 𝑜 ≠ 𝑐(

new 𝑐 : 𝜏 in 𝑃
) 𝑜 B 𝑣↦−−−−→

(
new 𝑐 : 𝜏 in 𝑃 ′

)
𝑃 → 𝜂

𝑅 → 𝜂(
𝑜 B 𝑅

)
→

(
𝑜 B 𝜂

) 𝑃 → 𝜂

𝑃 ∥ 𝑄 → 𝜂 ∥ 𝑄
𝑄 → 𝜂

𝑃 ∥ 𝑄 → 𝑃 ∥ 𝜂

𝑃 → 𝜂(
new 𝑐 : 𝜏 in 𝑃

)
→

(
new 𝑐 : 𝜏 in 𝜂

) 𝑃
𝑐 B 𝑣↦−−−−→ 𝑃 ′(

new 𝑐 : 𝜏 in 𝑃
)
→ 1[new 𝑐 : 𝜏 in 𝑃 ′]

Fig. 3. Small-step operational semantics for IPDL protocols.

3.3 Example: Authenticated-To-Secure Channel
We now revisit the running example of [Gancher et al. 2023b]. Alice wants to securely communicate

𝑛 messages to Bob using an authenticated channel which leaks all messages to the adversary. To

do so, we will assume they share a pre-shared key, which enables them to encrypt and decrypt

all messages. We show how to encode this protocol and its proof in our DSL. First, we declare the

number of sessions as a parameter 𝑛 to our case study, with the intended interpretation that 𝑛 is a

function of the security parameter 𝜆:

parameter n : nat .

3.3.1 The Assumptions. We use a version of the IND-CPA assumption, which states that encoding

𝑛 context-chosen messages with the same secret key is indistinguishable from encrypting zeros.

For simplicity, we assume a type of messages with constant length, so that the constant zeros need
not depend on the length. We express the assumption as an axiom about the equality between two

protocols:

approx-assumption CPA :

(fam In[i < n] :: msg)

(fam Enc[i < n] :: ctxt)
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inputs: fam In[i < n] |=

new Key : key in
(Key ::= samp gen_key ||

(family Enc[i < n] ::=

m : msg <- read In[i] ;

k : key <- read Key ;

samp enc((m, k))))

∼
new Key : key in
(Key ::= samp gen_key ||

(family Enc[i < n] ::=

m : msg <- read In[i] ;

k : key <- read Key ;

samp enc((zeros, k)))) .

The CPA axiom is parameterized by two families of channels: In[i < n], for n input channels

carrying messages, and Enc[i < n], for n output channels carrying ciphertexts. The left side of
the CPA assumption samples a key on channel Key and, for each i, encrypts In[i] under the key.
We do this by declaring a family of protocols — one for each i less than the parameter n — which

reads from In[i], reads from Key, and samples from the distribution of probabilistic encryptions

under that key and message. We declare the Key channel as internal using new so that the outside

context cannot read it. The right side of the CPA assumption is similar, but encrypts zeros (defined

to be a constant) rather than the message. Importantly, the family Enc[i < n] on the right hand

side still reads from In[i], since the two protocols must have the same (logical) timing behaviors

between the channels.

In addition to the CPA assumption, we also have the assumption about the encryption scheme’s

correctness: encrypting and decrypting must return the same message. We encode this in our DSL

as an assumption similar to CPA, but since we assume that the encryption scheme is perfectly
correct, with zero probability of error, we use the declaration protocol-assumption rather than
approx-assumption:

protocol-assumption enc-dec-correctness :

(chn In :: msg) (chn Key :: key)

(chn Enc :: ctxt) (chn Dec :: msg)

inputs: chn In, chn Key |=

(Enc ::= m : msg <- read In;

k : key <- read Key;

samp enc((m, k))) ||

(Dec ::= c : ctxt <- read Enc;

k : key <- read Key;

return dec((c, k)))

=

(Enc ::= m : msg <- read In;

k : key <- read Key;

samp enc((m, k))) ||

(Dec ::= i : msg <- read In;
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return i).

3.3.2 The Protocol. The Authenticated-To-Secure Channel protocol Real now takes the following

form:

protocol Real =

new Key : key in
newfamily Recv[i < n] : ctxt in
newfamily Send[i < n] : ctxt in
(Keygen || Alice || Channel || Bob)

where Alice =

(family Send[i < n] ::=

m : msg <- read In[i] ;

k : key <- read Key ;

samp enc((m, k)))

and Bob =

(family Out[i < n] ::=

c : ctxt <- read Recv[i] ;

k : key <- read Key ;

return dec((c, k)))

and Channel =

(family Leak[i < n] ::= read Send[i]) ||

(family Recv[i < n] ::=

c : ctxt <- read Send[i] ;

ok : unit <- read Ok[i] ;

return c)

and Keygen =

(Key ::= samp gen_key) .

The body of the protocol is a parallel composition of the key generating functionality Keygen, the
two parties Alice and Bob, and the authenticated channel functionality Channel. Alice encrypts
each input with the shared key stored on the internal channel Key, samples a ciphertext from the

resulting distribution, and sends the result to the authenticated channel functionality on the channel

Send[i]. Bob reads the ciphertext forwarded to him from the authenticated channel functionality

on the channel Recv[i], decrypts it with the shared key, and outputs the plaintext on the channel

Out[i]. The channels Send[i] and Recv[i] are connected by the Channel functionality, which
allows the adversary to read/schedule messages via Leak[i] and Ok[i].

Proving Protocols Secure. Our protocol is named Real because we will compare it to an ideal
version, where Alice and Bob communicate directly through a secure channel, without the need for

encryption. As in UC, we do this by proving that the Real protocol is indistinguishable from the

Ideal protocol composed with a simulator Sim that can emulate the Leak[i] messages without

knowledge of the secret messages:

Real = Ideal || Sim.

The key advantage of IPDL [Gancher et al. 2023b] is that it enables proofs through equational
reasoning principles. Using basic identities of protocols (e.g., inlining definitions of channels into
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other channels) and assumptions (e.g., CPA), one proves a protocol secure by progressively rewriting
the real protocol into its idealization (plus the simulator).

We illustrate some key steps of the proof. The ideal functionality for our secure channel example

has two output channels per session 𝑖: the adversarial output channel LeakMsgRcvdIdAdv[i] reads
the message from In[i] and lets the adversary know that a message has been received – by passing

a term of the unit type – but divulges nothing about the value of the message. The channel Out[i]
first waits to receive a confirmation on the adversarial input channel OkMsgAdvId[i] that gives
the green light to the functionality to process the message. It subsequently reads the message from

In[i] on behalf of Alice, and outputs it on behalf of Bob:

Ideal =

(family LeakMsgRcvdIdAdv[i < n] ::=

m : msg <- read In[i];

return ()) ||

(family Out[i < n] ::=

okMsg : unit <- read OkMsgAdvId[i];

m : msg <- read In[i];

return m)

The simulator turns the adversarial interface of the real protocol into the adversarial interface of

the ideal functionality, thereby converting any adversary for the real protocol into an adversary for

the functionality. In our example, the channels LeakMsgRcvdIdAdv[i] and OkCtxtAdvNet[i] are

the inputs to the simulator, while the channels LeakCtxtNetAdv[i] and OkMsgAdvId[i] are the
outputs.

Hence, upon receiving the information from the ideal functionality that a message has been

received, the simulator must conjure up a ciphertext to leak to the adversary. This is accomplished

by randomly generating a secret key and encrypting the chosen message zeros in each session.

Upon receiving the approval from the adversary for the generated ciphertext, the simulator gives

the approval to the ideal functionality to output the message:

Sim =

new Key : key in
(Key ::= samp gen_key(())) ||

(family LeakCtxtNetAdv[i < n] ::=

x : unit <- read LeakMsgRcvdIdAdv[i];

k : key <- read Key;

samp enc((zeros(()), k))) ||

(family OkMsgAdvId[i < n] ::=

okCtxt : unit <- read OkCtxtAdvNet[i];

return okCtxt)

As the channel OkMsgAdvId[i] carries a deterministic computation, we want to inline the compu-

tation into Out[i] to yield the following:

family Out[i] i < n ::=

okCtxt : unit <- read OkCtxtAdvNet[i];

m : msg <- read In[i];

return m
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This form of substitution is justified by the rule subst from Figure 2, which says that if the

computation 𝑅1 assigned to a channel 𝑜1 is deterministic, then we may replace every occurrence of

read 𝑜1 by 𝑅1. However, for the rule subst to apply, we must first massage the protocol into a form

where OkMsgAdvId[i] appears immediately next to Out[i]. In the implementation of [Gancher

et al. 2023b], this required tedious manual transformations that, e.g., permute channels inside a

parallel composition or move channels in and out of scope of a new channel declaration (lines

87–104 of MultiChan.v). In our tool, all the necessary massaging is performed automatically, and

we can simply write:

subst fam OkMsgAdvId into fam Out then
subst fam LeakMsgRcvdIdAdv into fam LeakCtxtNetAdv then
absorb fam LeakMsgRcvdIdAdv then
absorb fam OkMsgAdvId

A crucial step in simplifying the real protocol is to conceptually separate the encryption and

decryption actions from the message-passing by introducing new internal channels Enc[i] and
Dec[i] along with their definitions:

add internal family Enc i < n typed: ctxt

assigned: m : msg <- read In[i];

k : key <- read Key;

samp enc((m, k)) then
add internal family Dec i < n typed: msg

assigned: c : ctxt <- read Enc[i];

k : key <- read Key;

return dec((c, k))

We can now modify the channels Send[i] and Out[i] to read from Enc[i] and Dec[i] directly:

sym from change fam Send with
e : ctxt <- read Enc[i];

return e

in currentProtocol(
subst fam Enc into fam Send ) then

sym from change fam Out with
okCtxt : unit <- read OkCtxtAdvNet[i];

d : msg <- read Dec[i];

return d

in currentProtocol(
subst fam Dec into fam Out )

We can now invoke the correctness assumption in each individual session to cancel the effect of

encryption followed by decryption. In [Gancher et al. 2023b], the generalization to 𝑛 sessions was

stated as a separate lemma with a nontrivial manual proof (lines 67 – 103 in CPA.v). In our code,

the corresponding proof looks like this:

by induction on i with variable x (

use assumption enc-dec-correctness

on chn Dec[x], chn Enc[x] )

, Vol. 1, No. 1, Article . Publication date: July 2025.



12 Kristina Sojakova, Mihai Codescu, and Joshua Gancher

The above code snippet proves by induction on 𝑖 < 𝑛 that if the channels Dec(i) with 𝑖 < 𝑥 rewrite

from the original formulation that performs the decryption to the new formulation that simply

reads off the message In[i], so does the channel Dec[x].
On the other hand, our CPA assumption is applied just once across all sessions upon encountering

the following protocol snippet:

new Key : key in
((Key ::= samp gen_key(())) ||

(family Enc[i] i < n ::=

m : msg <- read In[i];

k : key <- read Key;

samp enc((m, k))))

We invoke the approximate CPA assumption as shown below:

use approx assumption cpa

This yields the following protocol snippet:

new Key : key in
((Key ::= samp gen_key(())) ||

(family Enc[i] i < n ::=

m : msg <- read In[i];

k : key <- read Key;

samp enc((zeros(()), k))))

A final step in the proof folds the internal channels Enc[i] and Dec[i] that we introduced earlier

into the rest of the protocol:

fold fam Enc into fam LeakCtxtNetAdv then
fold fam Dec into fam Out

This is justified by the rule fold-bind in Figure 2, which states that if we only read from channel 𝑐

once, we can soundly replace read 𝑐 by the computation assigned to 𝑐 , even if this computation is

probabilistic.

Concrete Security Bounds. Such a proof could be carried out in the IPDL logic alone. However,

that proof would only guarantee asymptotic security with respect to the custom symbolic bounds

defined in [Gancher et al. 2023b]. In this work, we aim for concrete security with respect to a low-

level Turing Machine semantics: a precise probabilistic bound for the difference in the probability

that an adversary can distinguish Real from Ideal || Sim.
After encoding the proof in the DSL, our tool computes the following bounds:

indistinguishability assumption cpa :

count: 1

context: n * | msg | * 6 + n * | ctxt | * 3 + n * 96 + 12

Here count denotes the number of times the CPA assumption was applied, and context bounds the
maximal size of the program context in which it was applied. The expressions |msg| and |ctxt|
denote the concrete length of bitstrings needed to represent the two types.
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Given these two quantities, our main theorem allows us to derive the following concrete security

bound on the distinguishing advantage for our protocol:���Pr[Adv −⇀↽− Real = 1

]
− Pr

[
Adv −⇀↽− Ideal | | Sim = 1

] ��� ≤ 𝜀cpa .
Here, Adv −⇀↽− 𝑃 denotes the interaction of the adversary Adv with a protocol 𝑃 . The value 𝜀cpa

is the maximal distinguishing advantage for the CPA assumption against any adversary with

computational “cost” at most P(context). Here P is a fixed polynomial, and “cost” bounds the

runtime of the adversary and the number of states in its Turing Machines (among other quantities).

In other words, our theorem exactly bounds the security error in our protocol’s proof by the error

present in the IND-CPA game against the reduction.

Our novel strategy for computing concrete security bounds is to implement an interpreter for
IPDL programs as a Turing Machine, and compute its cost as the aforementioned polynomial P.
The polynomial takes the size of the interpreted program as its argument, and bounds the number

of Turing Machine states and transitions that the resulting interpretation will need.

3.4 The Main Theorem
Before giving technical details, we now discuss our main result informally. Roughly speaking, if

𝑃 is approximately equal to 𝑄 , then the advantage that an adversary has in distinguishing 𝑃 and

𝑄 is a reasonable combination of the distinguishing advantages against each indistinguishability

assumptions by an adversary whose computational resources are only slightly larger than those of

the original adversary.

Theorem (Soundness of approximate eqality of protocols, informal). There exists a
polynomial P(𝑥,𝑦, 𝑧) with the following property. Given:
• finitely many built-in functions that can be computed with cost at most 𝐶sem ∈ N and can be
approximated by probabilistic Turing Machines with error at most 𝜂sem ∈ Q≥0;
• indistinguishability assumptions ⊢ 𝑃1 ≈ 𝑄1, . . ., ⊢ 𝑃𝑛 ≈ 𝑄𝑛 ;
• a proof of indistinguishability ⊢ 𝑃 ≈ 𝑄 with output bounds count𝑖 and context𝑖 for the 𝑖-th
indistinguishability assumption;
• an adversary Adv for 𝑃/𝑄 that computes with cost at most 𝐶adv ∈ N;
• axiom bounds 𝜀1, . . . , 𝜀𝑛 ∈ Q≥0 with the property that for any adversary Adv𝑖 for 𝑃𝑖/𝑄𝑖 such
that Adv𝑖 computes with cost at most P(𝐶sem,𝐶adv, context𝑖 ), we have���Pr[Adv𝑖 ⟦−⟧−−−⇀↽−−− 𝑃𝑖 = 1

]
− Pr

[
Adv𝑖

⟦−⟧
−−−⇀↽−−− 𝑄𝑖 = 1

] ��� ≤ 𝜀𝑖 ,
we have

Pr
[
Adv

⟦−⟧
−−−⇀↽−−− 𝑃 = 1

]
− Pr

[
Adv

⟦−⟧
−−−⇀↽−−− 𝑄 = 1

] ��� ≤ 𝑛∑︁
𝑖=1

count𝑖 ∗ 𝜀𝑖 .

In other words, we can bound the probability in distinguishing 𝑃 from 𝑄 by the sum of the

maximal probabilities of violating an indistinguishability axiom. The actual theorem we prove

(Thm. 1) is slightly more general, as we allow the distribution symbols to be general distributions

that are only approximated by Turing Machines, which requires an error term to appear in the

theorem.

The probability 𝜀𝑖 must work for every adversary with cost at most P(𝐶sem,𝐶adv, context𝑖 ); thus,
the larger the adversary cost, the looser the bound 𝜀𝑖 must be. Indeed, if P(𝐶sem,𝐶adv, context𝑖 ) =
context500𝑖 , the bound is still polynomial but not particularly meaningful. Crucially, our proof is

constructive: we are able to compute the polynomial as

P(𝑥,𝑦, 𝑧) = 𝑦2 + 8𝑦𝑧 + 15𝑧2 + (|Σ𝑓 | + |Σ𝑑 | + 1)𝑥 + 34𝑦 + 47𝑧 +𝑂 (1).
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This polynomial, where |Σ𝑓 | and |Σ𝑑 | are the number of function and distribution symbols in our

signature, serves as a precise bound on the reduction overhead incurred when using a crypto-

graphic assumption. We are able to achieve such a concrete bound precisely by using a low-level

computational semantics for adversaries as Turing Machines. The exact polynomial, which we

include in the appendix, is computed once and for all, and counts the precise number of steps

that our TMs take, along with binding the TM’s number of states, tapes, and symbols (to encode a

protocol on a tape, we use additional symbols besides 0, 1). This is in contrast to almost all prior

cryptographic work targeting MPC, which either reasons about runtime informally (without being

able to compute the polynomial bound on reduction overhead) or subverts reasoning about runtime

via error terms that contain reductions themselves [Brzuska et al. 2018]. A notable exception is

Barbosa et al. [Barbosa et al. 2021], which adds a Hoare logic for running time to EasyCrypt, at the

cost of being limited to imperative programs (and thus imperative encodings of protocols), and

manual proof effort for each runtime bound.

3.4.1 Overview of Results. In this work, we build a new cost-aware proof system on top of the

existing exact equational logic of IPDL. The rest of our framework diverges significantly. In partic-

ular:

• We carry out explicit cryptographic reductions instead of using symbolic adversaries. We

represent an adversary (Section 4.3) as a tuple of (essentially arbitrary) probabilistic algorithms

for scheduling interactions, updating the adversary’s internal state, querying the protocol for

output channel values, and assigning new input channel values. When absorbing a program

context 𝑄 into the adversary, we explicitly extend the adversary’s state by the encoding of 𝑄

as a sequence of symbols on the Turing Machine tape.

• We deliver concrete security bounds (Section 4.1 and 4.2) instead of symbolic ones. In particular,

the bound induced by invoking an approximate congruence rule, which allows us to conclude

𝑃 ∥ 𝑄 ≈ 𝑃 ′ ∥ 𝑄 from 𝑃 ≈ 𝑃 ′, is the length ∥𝑄 ∥ of the aforementioned Turing Machine

encoding (plus some overhead).

• We give a natural definition of computational indistinguishability (Sec. 4.4) that does not

involve reasoning about syntactic contexts (as in prior work [Gancher et al. 2023b]). Informally,

we define two families of protocols to be indistinguishable if for any polynomial 𝑝 (𝜆) and
negligible function 𝜂 (𝜆), there exists a negligible function 𝜀 (𝜆) such that for any sufficiently

large 𝜆 and any adversary Adv with cost bounded by 𝑝 (𝜆), the distinguishing advantage of
Adv is bounded by 𝜀 (𝜆).
• We carry out an explicit analysis of errors induced by a probabilistic Turing Machine that

ends up in a non-accepting state with a negligible probability. This probability makes an

appearance in the concrete bounds we derive (Thm. 1).

4 COST-AWARE SYNTAX AND SEMANTICS FOR IPDL
In this section, we extend the IPDL logic [Gancher et al. 2023b] to handle cost-aware proofs; that is,
proofs which guarantee precise concrete security bounds. Our main theorem for concrete security

bounds assumes a sound ambient theory for the strict fragment of IPDL.

While the exact fragment of IPDL is exactly what is desired for cryptographic proofs, the

approximate fragment is missing a crucial point of reasoning. In particular, its soundness proof is

in terms of symbolic bounds, which abstract away the underlying cost semantics of IPDL protocols;

in short, it does not reason about runtime. Because of this, the prior approximate logic of IPDL does

not prove the same class of security results generally accepted by the cryptographic community.

For the rest of this section, we assume a fixed signature Σ with type constants t1, . . . , t |Σt | .
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4.1 Approximate Congruence
Our cost-aware equational theory consists of three layers. Firstly, we have approximate conguence,
see Figure 4, which applies a program context to a single approximate axiom, resulting in the

judgment Δ ⊢ 𝑃 � 𝑄 : 𝐼 → 𝑂 ctxt 𝜓 for axiom # 𝑘 . We assume a set of 𝑛 approximate axioms of

the form Δ𝑘 ⊢ 𝑃𝑘 ≈ 𝑄𝑘
: 𝐼𝑘 → 𝑂𝑘

for 1 ≤ 𝑘 ≤ 𝑛, where Δ𝑘 ⊢ 𝑃𝑘 : 𝐼𝑘 → 𝑂𝑘
and Δ𝑘 ⊢ 𝑄𝑘

: 𝐼𝑘 → 𝑂𝑘
.

These axioms capture cryptographic assumptions on computational indistinguishability.

Here, the ctxt parameter tracks the increase in the adversary’s resources incurred by the proof. A

typical proof step in the exact fragment transforms the protocol into a form where an approximate

axiom applies. We subsequently carry out an approximate congruence step, where we use the

approximate axiom to replace a small protocol fragment nested inside an arbitrary program context

by its computationally indistinguishable counterpart.

The program context is formally a part of the adversary, and as such it must be resource-bounded

for the indistinguishability assumption to apply. Some nesting patterns do not effect any change

on the adversary’s resources: for example, a simple renaming of channels (rule embed); the formal

addition of an unused channel 𝑖 to the protocol’s inputs 𝐼 (rule input-unused), in which case any

value assigned by the adversary to channel 𝑖 will leave the protocol unchanged; or the introduction

of an internal channel 𝑜 : 𝜏 (rule cong-new), in which case the adversary will never query 𝑜

because internal channels are only visible in the scope of their declaration.

On the other hand, composing two approximately equal protocols 𝑃 ≈ 𝑃 ′ with another protocol

𝑄 requires the adversary to simulate the interaction of the program context 𝑄 with 𝑃 versus 𝑃 ′.
In other words, the adversary absorbs 𝑄 and the protocol becomes part of the new adversary’s

code. In particular, the number of symbols needed for encoding the adversary’s code on a Turing

Machine tape increases, and the parameter𝜓 approximates this increase. As rule cong-comp shows,

composition with protocol 𝑄 incurs ∥𝑄 ∥ + 3 additional symbols: ∥𝑄 ∥ symbols for encoding 𝑄 ; a

parallel composition symbol to combine the original code with the code for 𝑄 ; and two parenthesis

symbols “(”, “)” for enclosing the composition. We emphasize that the exact numbers here are not

crucial; what matters is that we eventually deliver a (reasonable) polynomial in 𝜆.

We show how to compute the Turing Machine bound of an IPDL construct in Section A. This

bound, and consequently the ctxt parameter𝜓 , is not a natural number but a function𝜓 (𝑡1, . . . , 𝑡 |Σt | ) :
N |Σt | → N that is monotonically increasing in each argument. When encoding a protocol 𝑄 as a

sequence of symbols on a Turing Machine tape, we invariably encounter variables 𝑥 of type 𝜏 . At

this point, we do not know how many bits we will need to encode values of type 𝜏 , because the type

constants t ∈ Σ are yet uninterpreted. Instead, we leave the size of each type constant as a variable

to the function𝜓 , which will later be instantiated by the appropriate natural number according to

⟦−⟧.

4.2 Approximate and Asymptotic Equality
In the approximate equality of protocols, see Figure 5, we chain together a sequence of strict

equalities and approximate congruence transformations to obtain the judgment Δ ⊢ 𝑃 ≈ 𝑄 : 𝐼 →
𝑂 count 𝜉 ctxt𝜓 . The parameter 𝜉 counts the number of axiom invocations for each of the 𝑛 axioms.

One application of the 𝑘-th approximate axiom incurs a count that maps 𝑘 to 1 and all other axioms

to 0. The use of transitivity requires us to add up the respective values of 𝜉 per each axiom (rule

trans). Even though each individual axiom invocation introduces a negligible error, summing

up exponentially many negligible errors might not be negligible, which is why we need to keep

track of the number of times each axiom is applied. The parameter𝜓 tracks the maximum size of a

program context in which each axiom is applied.
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Δ ⊢ 𝑃 � 𝑄 : 𝐼 → 𝑂 ctxt𝜓 for axiom # 𝑘

Δ𝑘 ⊢ 𝑃𝑘 � 𝑄𝑘
: 𝐼𝑘 → 𝑂𝑘 ctxt 0 for axiom # 𝑘

axiom

𝑐 ∉ 𝐼 ∪𝑂 Δ ⊢ 𝑃 � 𝑄 : 𝐼 → 𝑂 ctxt𝜓 for axiom # 𝑘

Δ ⊢ 𝑃 � 𝑄 : 𝐼 ∪ {𝑐} → 𝑂 ctxt𝜓 for axiom # 𝑘
input-unused

𝜙 : Δ1 → Δ2 Δ2 ⊢ 𝑃 � 𝑄 : 𝐼 → 𝑂 ctxt𝜓 for axiom # 𝑘

Δ1 ⊢ 𝜙★(𝑃) � 𝜙★(𝑄) : 𝜙★(𝐼 ) → 𝜙★(𝑂) ctxt𝜓 for axiom # 𝑘
embed

Δ ⊢ 𝑃 � 𝑃 ′ : 𝐼 ∪𝑂2 → 𝑂1 ctxt𝜓 for axiom # 𝑘 Δ ⊢ 𝑄 : 𝐼 ∪𝑂1 → 𝑂2

Δ ⊢ 𝑃 ∥ 𝑄 � 𝑃 ′ ∥ 𝑄 : 𝐼 → 𝑂1 ∪𝑂2 ctxt (𝜓 + ∥𝑄 ∥ + 3) for axiom # 𝑘
cong-comp

Δ, 𝑜 : 𝜏 ⊢ 𝑃 � 𝑃 ′ : 𝐼 → 𝑂 ∪ {𝑜} ctxt𝜓 for axiom # 𝑘

Δ ⊢
(
new 𝑜 : 𝜏 in 𝑃

)
�

(
new 𝑜 : 𝜏 in 𝑃 ′

)
: 𝐼 → 𝑂 ctxt𝜓 for axiom # 𝑘

cong-new

Fig. 4. Approximate congruence of IPDL protocols.

Δ ⊢ 𝑃 ≈ 𝑄 : 𝐼 → 𝑂 count 𝜉 ctxt𝜓

Δ ⊢ 𝑃 = 𝑄 : 𝐼 → 𝑂

Δ ⊢ 𝑃 ≈ 𝑄 : 𝐼 → 𝑂 count (𝑖 ↦→ 0) ctxt (𝑖 ↦→ 0)
strict

Δ ⊢ 𝑃 � 𝑄 : 𝐼 → 𝑂 ctxt𝜓 for axiom # 𝑘

Δ ⊢ 𝑃 ≈ 𝑄 : 𝐼 → 𝑂 count
(
𝑘 ↦→ 1, 𝑖 ≠ 𝑘 ↦→ 0

)
ctxt

(
𝑘 ↦→ 𝜓, 𝑖 ≠ 𝑘 ↦→ 0

) approx-cong

Δ ⊢ 𝑃1 ≈ 𝑃2 : 𝐼 → 𝑂 count 𝜉 ctxt𝜓

Δ ⊢ 𝑃2 ≈ 𝑃1 : 𝐼 → 𝑂 count 𝜉 ctxt𝜓
sym

Δ ⊢ 𝑃1 ≈ 𝑃2 : 𝐼 → 𝑂 count 𝜉1 ctxt𝜓1 Δ ⊢ 𝑃2 ≈ 𝑃3 : 𝐼 → 𝑂 count 𝜉2 ctxt𝜓2

Δ ⊢ 𝑃1 ≈ 𝑃3 : 𝐼 → 𝑂 count
(
𝑖 ↦→ 𝜉1 (𝑖) + 𝜉2 (𝑖)

)
ctxt

(
𝑖 ↦→ max(𝜓1 (𝑖),𝜓2 (𝑖))

) trans

Fig. 5. Approximate equality for IPDL protocols.

Finally, analogously to [Gancher et al. 2023b], we define the asymptotic equality of two protocol

families, see Figure 6, as functions of the security parameter 𝜆 ∈ N. Informally speaking, if two

protocol families are asymptotically equal, then any resource-bounded adversary cannot distinguish

them with greater than negligible error. Formally, we assume a finite set of approximate axiom
families of the form

{
Δ𝜆 ⊢ 𝑃𝜆 ≈ 𝑄𝜆 : 𝐼𝜆 → 𝑂𝜆

}
𝜆∈N, where {𝑃𝜆}, {𝑄𝜆} are two protocol families

with pointwise-identical typing judgments. If the axiom families comprising our asymptotic theory

are clear from the context, we will omit them from the asymptotic equality judgment.
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{
Δ1

𝜆
⊢ 𝑃1

𝜆
≈ 𝑄1

𝜆
: 𝐼 1

𝜆
→ 𝑂1

𝜆

}
𝜆
, . . . ,

{
Δ𝑛
𝜆
⊢ 𝑃𝑛

𝜆
≈ 𝑄𝑛

𝜆
: 𝐼𝑛

𝜆
→ 𝑂𝑛

𝜆

}
𝜆
⊢ {

Δ𝜆 ⊢ 𝑃𝜆 ≈ 𝑄𝜆 : 𝐼𝜆 → 𝑂𝜆

}
𝜆

∀𝜆,Δ𝑖
𝜆
⊢ 𝑃𝑖

𝜆
≈ 𝑄𝑖

𝜆
: 𝐼 𝑖

𝜆
→ 𝑂𝑖

𝜆
, 𝑖 = 1, . . . , 𝑛 ⊢ Δ𝜆 ⊢ 𝑃𝜆 ≈ 𝑄𝜆 : 𝐼𝜆 → 𝑂𝜆 count 𝜉𝜆 ctxt𝜓𝜆

∀𝑖, 𝜉𝑖( ·) = O(poly(𝜆)) ∀𝑖,𝜓 𝑖
( ·) = O

(
poly(𝜆, 𝑡1, . . . , 𝑡 |Σt | )

){
Δ1

𝜆
⊢ 𝑃1

𝜆
≈ 𝑄1

𝜆
: 𝐼 1

𝜆
→ 𝑂1

𝜆

}
𝜆
, . . . ,

{
Δ𝑛
𝜆
⊢ 𝑃𝑛

𝜆
≈ 𝑄𝑛

𝜆
: 𝐼𝑛

𝜆
→ 𝑂𝑛

𝜆

}
𝜆
⊢ {

Δ𝜆 ⊢ 𝑃𝜆 ≈ 𝑄𝜆 : 𝐼𝜆 → 𝑂𝜆

}
𝜆

Fig. 6. Asymptotic equality for IPDL protocol families.

For any fixed 𝜆, we obtain an approximate theory by selecting from each axiom family the

particular axiom corresponding to 𝜆. Similarly, from each of the two protocol families we select

the protocol corresponding to 𝜆, which gives us two concrete protocols to equate approximately.

We recall that an approximate equality judgment is tagged by a pair of parameters 𝜉 and𝜓 , and

for each axiom 1 ≤ 𝑖 ≤ 𝑛 we have 𝜉𝑖 ∈ N and 𝜓 𝑖
: N |Σt | → N, where |Σt | is the number of type

constants declared in our ambient signature Σ. Fixing the axiom 𝑖 and letting the security parameter

𝜆 vary thus gives us two functions N→ N and N |Σt |+1 → N, and we require that these be bounded

by polynomials in the appropriate number of variables. Unlike [Gancher et al. 2023b], we do not

impose a bound on the channel context Δ, which can be particularly burdensome to check in a

formal tool. Instead, our definition of an adversary ensures that it only interacts with the protocol

via a bounded number of channels.

4.3 Adversaries for IPDL Protocols
To seamlessly account for the possible renaming of channel names, an adversary for protocols of

type Δ ⊢ 𝐼 → 𝑂 is allowed to operate in a larger context Δ′ that subsumes the original context

Δ via an embedding 𝜙 : Δ′ → Δ. Here 𝜙 is an injective, type-preserving mapping that specifies

how to rename channels in Δ to fit in the larger context Δ′. In this larger context, we specify the

adversarial input channels 𝐼 ′ that the adversary will query for a value, and the adversarial output

channels𝑂 ′ that the adversary will assign values to. The adversarial inputs 𝐼 ′ will be a subset of the
protocol outputs 𝑂 , appropriately translated along 𝜙 . Dually, the protocol inputs 𝐼 , appropriately

translated along 𝜙 , will be a subset of the adversarial outputs 𝑂 ′. In the interaction between the

adversary and the protocol, every query for a value of a channel 𝑜 ∈ 𝐼 ′ will extract the value of the
channel 𝑜 ∈ 𝜙★(𝑂) as computed by the the protocol, and pass it on to the adversary. Conversely,

an input on channel 𝑖 ∈ 𝜙★(𝐼 ) to the protocol occurs after the adversary computes the value of the

channel 𝑖 ∈ 𝑂 ′.
Since our adversaries will be resource-bounded, we need to bind the number of interactions or

rounds between the adversary and the protocol. In each round, the adversary examines its internal

state to determine the type of interaction to perform next, and steps to a new state. This transition

function is a partial probabilistic function of type St ⇀
(
{⊥}∪ 𝐼 ′∪𝑂 ′

)
×St. That is, for any internal

state 𝑠 the adversary probabilistically decides among: 1) no interaction, coupled with stepping to a

new state 𝑠′; 2) querying a channel 𝑜 ∈ 𝐼 ′, coupled with stepping to a new state 𝑠′; 3) an assignment

to a channel 𝑖 ∈ 𝑂 ′, coupled with stepping to a new state 𝑠′; or 4) halting, in which case the game

between the adversary and the protocol ends without a decision Boolean. We use this last option

to capture probabilistic computations that only succeed up to a negligible error.

If the adversary queries channel 𝑜 ∈ 𝐼 ′ and receives a value 𝑣 as a response to the query, it

updates its internal state according to an input assignment function of type ⟦𝜏⟧ × St→ St, where
𝜏 is the type of the channel 𝑜 in Δ′. That is, for any value 𝑣 ∈ ⟦𝜏⟧ and any state 𝑠 , the adversary
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steps to a new state 𝑠′ that records the value 𝑣 as a result of the query. If the adversary chooses a

value assignment to a channel 𝑖 ∈ 𝑂 ′, the value 𝑣 – if any – is determined by an output valuation

function of type St→ ⟦𝜏⟧ ∪ {⊥}, where 𝜏 is the type of the channel 𝑖 in Δ′. After completing the

designated number of rounds, the adversary converts its internal state to a final decision Boolean

according to a function of type St→ {0, 1}.
To bind the complexity of the aforementioned operations, we implement them as Turing Ma-

chines
1
. For convenience, we allow TMs with multiple tapes. As is standard, in the initial configura-

tion all tapes except the first are fully blank. The internal state of the adversary is typically encoded

as a bitstring, containing e.g., register values together with the sequence of instructions to be

executed, if we wish to view the adversary as an essentially arbitrary probabilistic program. For our

purposes, it is convenient to allow additional symbols besides 0, 1 on our TM tapes: when justifying

the comp-cong rule of our theory, we suitably compose the adversary with the common context

𝑄 . The protocol 𝑄 thus becomes integrated into the new adversary’s code. Instead of encoding

protocols as bitstrings, we will suitably enrich our baseline set of symbols so that we can faithfully

capture IPDL code.

Definition 3 (Adversary). Fix an interpretation ⟦−⟧ for Σ. An adversary for protocols Δ ⊢ 𝐼 → 𝑂

is a tuple
(
Δ′, 𝐼 ′,𝑂 ′, 𝜙, #rnd, #tape, Symb, St, 𝑠★, T,

{
I𝑜
}
𝑜 ∈ 𝐼 ′ ,

{
O𝑖

}
𝑖 ∈𝑂 ′ ,D

)
, where

• Δ′ is a channel context;
• 𝐼 ′ ⊆ Δ′ is a set of channels that the adversary can query for a value;
• 𝑂 ′ ⊆ Δ′ is a set of channels to which the adversary can assign a value;
• 𝜙 : Δ′ → Δ is an embedding of Δ into Δ′;
• #rnd ≥ 1 is the number of rounds the adversary will perform;
• #tape ≥ 1 is the number of TM tapes at our disposal;
• Symb is a finite set of additional symbols that will be used to encode the adversary’s internal
state;
• St ⊆

(
{0, 1} ⊔ Symb

)𝑙 is a set of strings of a fixed length 𝑙 ≥ 1 consisting of symbols drawn
from the disjoint union of the sets {0, 1} and Symb;
• 𝑠★ ∈ St is the initial state;
• T is a probabilistic TM that computes a partial function St ⇀

(
{⊥} ∪ 𝐼 ′ ∪ 𝑂 ′

)
× St, with

#tape-many tapes using symbols from the set {0, 1} ⊔ {⊥} ⊔ (𝐼 ′ ∪𝑂 ′) ⊔ Symb,
• I𝑜 where 𝑜 : 𝜏 ∈ Δ is a TM that computes a function St × ⟦𝜏⟧ → St, with #tape-many tapes
using symbols from the set {0, 1} ⊔ Symb,
• O𝑖 where 𝑖 : 𝜏 ∈ Δ is a TM that computes a function St→ ⟦𝜏⟧ ∪ {⊥}, with #tape-many tapes
using symbols from the set {0, 1} ⊔ {⊥} ⊔ Symb,
• D is a TM that computes a function St→ {0, 1}, with #tape-many tapes using symbols from the
set {0, 1} ⊔ Symb.

We furthermore require that 𝐼 ′ ⊆ 𝜙★(𝑂), 𝜙★(𝐼 ) ⊆ 𝑂 ′, and 𝜙★(𝑂) ∩𝑂 ′ = ∅.

The probabilistic TM T that computes the transition function can terminate in a non-accepting

state with probability > 0. We will be interested in families of adversaries where this error as a
function of the security parameter is negligible.

Definition 4 (Adversarial error). We say that an adversary Adv has error up to 𝜀 ∈ Q≥0,
written err(Adv) ≤ 𝜀, if for any state 𝑠 ∈ St the transition function T(𝑠) is undefined with probability
1
When using Turing Machines to compute (probabilistic) functions, we only consider (probabilistic) Turing Machines that

have a finite runtime 𝑁 ∈ N; i.e., for every input in the domain, after 𝑁 (probabilistic) transitions the TM ends up in a

configuration where no further transitions are possible. That is, the TM has either reached an accepting state or it has

halted after reading a symbol for which no transition is possible in the current state.
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≤ 𝜀. In other words, when T is run with the initial tape contents 𝑠 , it halts in a non-accepting state
with probability ≤ 𝜀.

To ensure that the adversary does not have access to computationally expensive functions such

as the discrete logarithm, we need to impose a bound on its computational resources. We will be

interested in families of adversaries where the bound as the function of the security parameter is

polynomial.

Definition 5 (Resource-bounded adversaries). We say that an adversary Adv has cost at
most 𝐾 ∈ N, written |Adv| ≤ 𝐾 , if:
• #rnd, #tape ≤ 𝐾 ;
• |𝐼 ′ | ≤ 𝐾 and for each 𝑜 ∈ 𝐼 ′ with 𝑜 : 𝜏 ∈ Δ′, we have |𝜏 | ≤ 𝐾 ,
• |𝑂 ′ | ≤ 𝐾 and for each 𝑖 ∈ 𝑂 ′ with 𝑖 : 𝜏 ∈ Δ′, we have |𝜏 | ≤ 𝐾 ,
• |Symb| ≤ 𝐾 ;
• the length 𝑘 of a state 𝑠 ∈ St is ≤ 𝐾 ;
• the number of states of each2 TM T, I𝑜 ,O𝑖 ,D is ≤ 𝐾 ;
• the runtime of each TM T, I𝑜 ,O𝑖 ,D is ≤ 𝐾 .

Definition 6 (Interaction). Fix an interpretation ⟦−⟧ for Σ. LetAdv be an adversary for protocols

Δ ⊢ 𝐼 → 𝑂 and let Δ ⊢ 𝑃 : 𝐼 → 𝑂 . We define Adv
⟦−⟧
−−−⇀↽−−− 𝑃 to be the probability sub-distribution on

Booleans induced by the algorithm in Figure 7.

Algorithm Adv
⟦−⟧
−−−⇀↽−−− 𝑃 :

𝑠 := 𝑠★; 𝑃 := 𝜙★(𝑃)
for #rnd rounds

𝑃 ′ ← 𝑃⇓; (𝑞, 𝑠′) ← T(𝑠)
if 𝑞 = ⊥ then 𝑠 := 𝑠′; 𝑃 := 𝑃 ′

else if 𝑞 = 𝑖 ∈ 𝑂 ′ then
if O𝑖 (𝑠′) = 𝑣 for some 𝑣 then

𝑠 := 𝑠′; 𝑃 := 𝑃 ′ [read 𝑖 := val 𝑣]
else 𝑠 := 𝑠′; 𝑃 := 𝑃 ′

else if 𝑞 = 𝑜 ∈ 𝐼 ′ then
if (𝑜 B 𝑣) ∈ 𝑃 ′ for some 𝑣 then 𝑠 := I𝑜 (𝑣, 𝑠′); 𝑃 := 𝑃 ′

else 𝑠 := 𝑠′; 𝑃 := 𝑃 ′

return D(𝑠)

Fig. 7. Interaction of an an adversary Adv with an IPDL protocol 𝑃 .

In Figure 7, the adversary interacts with the protocol through the specified number of rounds.

The algorithm maintains a state variable 𝑠 along with a protocol variable 𝑃 , which we respectively

2
Instead of having a separate Turing Machine I𝑜 for each channel 𝑜 ∈ 𝐼 ′ we could have required a single Turing Machine

that performs the computation across all channels in 𝐼 ′ , and analogously for O𝑖 . However, this is unnecessary as the number

of channels in both 𝐼 ′ and𝑂 ′ is O(poly(𝜆) ) , and the current formulation is more convenient for our purposes.
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initialize to the initial state 𝑠★ and the original protocol 𝑃 , appropriately embedded in Δ′. In each

round, the protocol 𝑃 probabilistically evolves to a new protocol 𝑃 ′. Independently, the adversary
probabilistically computes the type of interaction 𝑞 ∈ {⊥} ∪ 𝐼 ′ ∪𝑂 ′ together with a new state 𝑠′

according to T(𝑠). If 𝑞 = ⊥, in which case no interaction takes place, the state and the protocol are

updated to 𝑠′ and 𝑃 ′. If 𝑞 = 𝑖 for some 𝑖 ∈ 𝑂 ′, we compute O𝑖 (𝑠′) to see if in the adversary’s current

state 𝑠′ the channel 𝑖 carries a value 𝑣 . If this is the case, we update the state to 𝑠′ while computing

a new protocol 𝑃 ′ [read 𝑖 := val 𝑣]. Otherwise we update the state and the protocol to 𝑠′ and 𝑃 ′.
Finally, if 𝑞 = 𝑜 for some 𝑜 ∈ 𝐼 ′, we examine the protocol 𝑃 ′ to see if the output channel 𝑜 carries a

value 𝑣 . If this is the case, we compute a new adversary state I𝑜 (𝑣, 𝑠′), while updating the protocol

to 𝑃 ′. Otherwise we update the state and the protocol to 𝑠′ and 𝑃 ′. After completing the prescribed

number of rounds, we obtain a decision Boolean
3 D(𝑠) based on the adversary’s current state.

4.4 Computational Indistinguishability
A family of interpretations is PPT (probabilistic polynomial-time) if it assigns polynomial lengths

to type symbols t, and PPT-computable functions to function symbols f and distribution symbols

d. A small caveat is that a random distribution on a subset 𝑆 ⊆ {0, 1}𝑛 of bitstrings is in general

computable by a probabilistic Turing Machine only up to a small error 𝜀, which is the probability

that the TM does not end up in an accepting state. In effect, the TM computes a distribution 𝜇 on

𝑆 ∪ {⊥} with 𝜇 (⊥) = 𝜀. To relate 𝜇 to our original distribution on 𝑆 , we introduce the following:

Definition 7 (Approximating distributions). Let 𝑆 ⊆ {0, 1}𝑛 be a subset of bitstrings of a
fixed length. We say that a distribution 𝜇1 on 𝑆 ∪ {⊥} approximates a distribution 𝜇2 on 𝑆 with error
0 ≤ 𝜀 ≤ 1 if there are distributions 𝜂1, 𝜂2 on 𝑆 such that 𝜇1 = (1−𝜀)𝜂1 +𝜀1[⊥] and 𝜇2 = (1−𝜀)𝜂1 +𝜀𝜂2.

A function 𝜀 : N→ Q≥0 is negligible if it is eventually smaller than the inverse of any polynomial:

for any 𝑛 ∈ N, there exists 𝑁 ∈ N such that for all 𝜆 ≥ 𝑁 we have 𝜀 (𝜆) ≤ 1

𝜆𝑛
.

Definition 8 (PPT family of interpretations). We say that a family
{
⟦−⟧𝜆

}
𝜆∈N of interpre-

tations for Σ is PPT if there is a polynomial 𝑝 (𝜆), a negligible function 𝜂 (𝜆), and a natural number
𝑁 ∈ N such that the following holds:
• For all type symbols t, |t|𝜆 ≤ 𝑝 (𝜆) if 𝜆 ≥ 𝑁 .
• For all function symbols f : 𝜎 → 𝜏 , the function ⟦f⟧𝜆 from bitstrings ⟦𝜎⟧𝜆 to bitstrings ⟦𝜏⟧𝜆
is computable by a deterministic Turing Machine TM𝜆 with symbols 0, 1. Both the number of
states and the runtime of TM𝜆 are ≤ 𝑝 (𝜆) if 𝜆 ≥ 𝑁 .
• For all distribution symbols d : 𝜎 → 𝜏 , the function ⟦d⟧𝜆 from bitstrings ⟦𝜎⟧𝜆 to distributions
on bitstrings ⟦𝜏⟧𝜆 is computable up to an error 𝜂 (𝜆) by a probabilistic Turing Machine TM𝜆

with symbols 0, 1. Specifically, for every 𝑣 ∈ ⟦𝜎⟧𝜆 , the distribution TM𝜆 (𝑣) on ⟦𝜏⟧𝜆 ∪ {⊥}
approximates ⟦d⟧𝜆 (𝑣) with error ≤ 𝜂 (𝜆). Both the number of states and the runtime of TM𝜆

are ≤ 𝑝 (𝜆) if 𝜆 ≥ 𝑁 .

We are now ready to give the definition of computational indistinguishability. We will be only

interested in indistinguishability with respect to a PPT family of interpretations.

Definition 9 (Computational Indistinguishability). Consider a family
{
⟦−⟧𝜆

}
𝜆∈N of inter-

pretations for Σ. Let
{
Δ𝜆 ⊢ 𝑃𝜆 : 𝐼𝜆 → 𝑂𝜆

}
𝜆∈N and

{
Δ𝜆 ⊢ 𝑄𝜆 : 𝐼𝜆 → 𝑂𝜆

}
𝜆∈N be two protocol families

with identical typing judgments. We say that {𝑃𝜆} and {𝑄𝜆} are indistinguishable under
{
⟦−⟧𝜆

}
,

3
Strictly speaking, the interaction Adv

⟦−⟧
−−−⇀↽−−− 𝑃 is only a sub-distribution on Booleans, since T(𝑠 ) may halt without a result.

As the probability of this happening will be negligible, we gloss over this technical point here.
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written {
⟦−⟧𝜆

}
𝜆∈N ⊨

{
Δ𝜆 ⊢ 𝑃𝜆 ≈ 𝑄𝜆 : 𝐼𝜆 → 𝑂𝜆

}
𝜆∈N

if for any polynomial 𝑝 (𝜆) and negligible function 𝜂 (𝜆), there exists a negligible function 𝜀 (𝜆) and an
𝑁 ∈ N such that for any 𝜆 ≥ 𝑁 and any adversary Adv for protocols Δ𝜆 ⊢ 𝐼𝜆 → 𝑂𝜆 with respect to
the interpretation ⟦−⟧𝜆 such that |Adv| ≤ 𝑝 (𝜆) and err(Adv) ≤ 𝜂 (𝜆), we have4���Pr[Adv ⟦−⟧𝜆−−−−⇀↽−−−− 𝑃𝜆 = 1

]
− Pr

[
Adv

⟦−⟧𝜆−−−−⇀↽−−−− 𝑄𝜆 = 1

] ��� ≤ 𝜀 (𝜆).
If the family of interpretations is clear from the context, we may omit it from the computational

indistinguishability judgment.

4.5 Concrete and Asymptotic Security
We can now present our main result in full:

Theorem 1 (Soundness of approximate eqality of protocols). There exists a polynomial
P(𝑥,𝑦, 𝑧) such that for any
• interpretation ⟦−⟧ for Σ for which there are 𝐶sem ∈ N and 𝜂sem ∈ Q≥0 such that
– for all type symbols t, |t| ≤ 𝐶sem;
– for all function symbols f, ⟦f⟧ is computable by a TM with symbols 0, 1 such that the number
of states and the runtime are ≤ 𝐶sem; and

– for all distribution symbols d, ⟦d⟧𝜆 is computable up to an error 𝜂sem by a probabilistic TM
with symbols 0, 1 such that the number of states and the runtime are ≤ 𝐶sem;

• approximate axioms Δ1 ⊢ 𝑃1 ≈ 𝑄1
: 𝐼 1 → 𝑂1, . . ., Δ𝑛 ⊢ 𝑃𝑛 ≈ 𝑄𝑛

: 𝐼𝑛 → 𝑂𝑛 ;
• derivation Δ ⊢ 𝑃 ≈ 𝑄 : 𝐼 → 𝑂 count 𝜉 ctxt𝜓 ;
• adversary Adv for protocols of type Δ ⊢ 𝐼 → 𝑂 such that |Adv| ≤ 𝐶adv and err(Adv) ≤ 𝜂adv for
some 𝐶adv ∈ N and 𝜂adv ∈ Q≥0,
• context bounds 𝐶1

ctxt, . . . ,𝐶
𝑛
ctxt ∈ N such that𝜓 𝑖 ( |t1 |, . . . , |t |Σt | |) ≤ 𝐶𝑖

ctxt; and
• axiom bounds 𝜀1, . . . , 𝜀𝑛 ∈ Q≥0 with the property that for any adversary Adv𝑖 for protocols
Δ𝑖 ⊢ 𝐼 𝑖 → 𝑂𝑖 such that

|Adv𝑖 | ≤ P(𝐶sem,𝐶adv,𝐶
𝑖
ctxt)

and err(Adv𝑖 ) ≤ max(𝜂sem, 𝜂adv), we have���Pr[Adv𝑖 ⟦−⟧−−−⇀↽−−− 𝑃𝑖 = 1

]
− Pr

[
Adv𝑖

⟦−⟧
−−−⇀↽−−− 𝑄𝑖 = 1

] ��� ≤ 𝜀𝑖 ,
we have ���Pr[Adv ⟦−⟧−−−⇀↽−−− 𝑃 = 1

]
− Pr

[
Adv

⟦−⟧
−−−⇀↽−−− 𝑄 = 1

] ��� ≤ 𝑛∑︁
𝑖=1

𝜉𝑖 ∗
(
𝜀𝑖 + 2 ∗𝐶𝑖

ctxt ∗ 𝜂sem
)
.

We briefly explain where the error term 2 ∗ 𝐶𝑖
ctxt ∗ 𝜂sem comes from. The original error 𝜂sem

is multiplied by 𝐶𝑖
ctxt because 𝐶

𝑖
ctxt provides an upper bound on how many times we perform

probabilistic samplings when executing the absorbed protocol, and hence serves as a proxy for

how much the total error accumulates. Finally, we multiply the overall error term by two because

computing the distinguishing advantage of an adversary 𝐴 for protocols 𝑃1 ∥ 𝑄 versus 𝑃2 ∥ 𝑄 ,
we accumulate errors twice: once when comparing 𝐴 −⇀↽− (𝑃1 ∥ 𝑄) against 𝐵 −⇀↽− 𝑃1 (where 𝐵 is the

reduced adversary obtained from 𝐴 by absorbing the program context 𝑄), and then again when

4
Instead of comparing probabilities for 1, we could have likewise used 0: the probability Pr[𝑏 = 0] that the decision Boolean

𝑏 is 0 is only negligibly different from 1 − Pr[𝑏 = 1], since the probability that the game ends without a decision Boolean is

negligible. This follows from the fact that the error is negligible and the number of rounds is O(poly(𝜆) ) .
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comparing 𝐵 −⇀↽− 𝑃2 against𝐴 −⇀↽− (𝑃2 ∥ 𝑄). Our proof of Theorem 1 relies on two intermediate results.

The first one says that strict equality of protocols implies perfect indistinguishability against any

adversary (not just a resource-bounded one); for proof see Section D.

Lemma 1 (Perfect indistinguishability). For any interpretation ⟦−⟧ for Σ, derivation Δ ⊢ 𝑃 =

𝑄 : 𝐼 → 𝑂 , and adversary Adv for protocols Δ ⊢ 𝐼 → 𝑂 , we have���Pr[Adv ⟦−⟧−−−⇀↽−−− 𝑃 = 1

]
− Pr

[
Adv

⟦−⟧
−−−⇀↽−−− 𝑄 = 1

] ��� = 0.

The next result is the absorption lemma, the proof of which we sketch in Section F, which allows

us to absorb a protocol into an adversary at the cost of correspondingly increasing its cost and

error. This is precisely where the polynomial P(𝑥,𝑦, 𝑧) in Theorem 1 comes from:

Lemma 2 (Absorption). There exists a polynomial P(𝑥,𝑦, 𝑧) ≥ 𝑦 such that for any

• interpretation ⟦−⟧ for Σ for which there are 𝐶sem ∈ N, 𝜂sem ∈ Q≥0 such that
– for all type symbols t, |t| ≤ 𝐶sem,
– for all function symbols f, ⟦f⟧ is computable by a TM with symbols 0, 1 such that the number
of states and the runtime are ≤ 𝐶sem, and

– for all distribution symbols d, ⟦d⟧ is computable up to error 𝜂sem by a probabilistic TM with
symbols 0, 1 such that the number of states and the runtime are ≤ 𝐶sem,

• adversaryAdv for protocols of typeΔ ⊢ 𝐼 → 𝑂1∪𝑂2 such that |Adv| ≤ 𝐶adv and err(Adv) ≤ 𝜂adv
for some 𝐶adv ∈ N and 𝜂adv ∈ Q≥0,
• protocol Δ ⊢ 𝑄 : 𝐼 ∪𝑂1 → 𝑂2,

we have an adversary AdvR for protocols Δ ⊢ 𝐼 ∪𝑂2 → 𝑂1 with

|AdvR | ≤ P
(
𝐶sem,𝐶adv, ∥𝑄 ∥(|t1 |, . . . , |t |Σt | |)

)
and err(AdvR) ≤ max(𝜂sem, 𝜂adv) such that for any protocol Δ ⊢ 𝑃 : 𝐼 ∪𝑂2 → 𝑂1 we have���Pr[Adv ⟦−⟧−−−⇀↽−−− 𝑃 ∥ 𝑄 = 1

]
− Pr

[
AdvR

⟦−⟧
−−−⇀↽−−− 𝑃 = 1

] ��� ≤ ∥𝑄 ∥(|t1 |, . . . , |t |Σt | |) ∗ 𝜂sem.
The high-level idea behind the proof of Theorem 1 is to restructure the derivations of approximate

equality so that all invocations of the rule embed are carried out first, followed by applications of

the rule input-unused, which are in turn followed by invocations of the rule cong-comp, and

finally by applications of the rule cong-new. The new layered form of our approximate judgments

is shown in Figures 9 and 10.

Crucially, we collapse a sequence of applications of the cong-comp rule with common contexts

𝑄1, . . . , 𝑄𝑛 into a single application with the combined common context 𝑄1 | | . . . | | 𝑄𝑛 . This is

necessary because every time we absorb a protocol into the adversary, we increase the adversary’s

resources: e.g., the number of rounds that AdvR takes is more than double the original number of

rounds. Thus, if we carried out this process 𝜆-many times, we would see an exponential increase in

the adversary’s resources.

Our second result (Theorem 2; for proof see Section E) concerns asymptotic security and serves

as a sanity check for the concrete bounds we derived. Our asymptotic theory is said to be sound if

each of its axioms is sound:

Definition 10. We say that an approximate axiom family
{
Δ𝜆 ⊢ 𝑃𝜆 ≈ 𝑄𝜆 : 𝐼𝜆 → 𝑂𝜆

}
𝜆∈N is sound

with respect to a family of interpretations
{
⟦−⟧𝜆

}
𝜆∈N if

{
⟦−⟧𝜆

}
𝜆∈N ⊨

{
Δ𝜆 ⊢ 𝑃𝜆 ≈ 𝑄𝜆 : 𝐼𝜆 → 𝑂𝜆

}
𝜆∈N.

Theorem 2 (Soundness of asymptotic eqality of protocols). For any
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• protocol families
{
Δ𝜆 ⊢ 𝑃𝜆 : 𝐼𝜆 → 𝑂𝜆

}
𝜆∈N and

{
Δ𝜆 ⊢ 𝑄𝜆 : 𝐼𝜆 → 𝑂𝜆

}
𝜆∈N with identical typing

judgments;
• PPT family of interpretations

{
⟦−⟧𝜆

}
𝜆∈N for Σ; and

• an asymptotic theory that is sound with respect to
{
⟦−⟧𝜆

}
𝜆∈N;

we have that
⊢ {

Δ𝜆 ⊢ 𝑃𝜆 ≈ 𝑄𝜆 : 𝐼𝜆 → 𝑂𝜆

}
𝜆∈N

implies
⊨
{
Δ𝜆 ⊢ 𝑃𝜆 ≈ 𝑄𝜆 : 𝐼𝜆 → 𝑂𝜆

}
𝜆∈N.

5 CASE STUDIES
We now briefly describe our four case studies, focusing on the Multi-Party GWM protocol. In Fig. 8,

we summarize our case studies by lines of code (second number in columns 2 and 3) and runtime

to verify (column 4). Whenever applicable, we compare against the corresponding case study from

[Gancher et al. 2023b] implemented in Coq (first number in columns 2 and 3). Our largest case

study currently takes 12 minutes to verify. This number can likely be reduced with performance

optimizations and/or by splitting the proof across multiple files that can be verified in parallel
5
.

Case Study

Proofs (LoC) Defs (LoC) Runtime

Coq DSL Coq DSL DSL

Auth-To-Secure Channel [Maurer 2012] 128 61 97 143 1.38s

DHKE-OTP [Barbosa et al. 2021] 532 164 183 371 3.3s

Multi-Party Coin Flip [Blum 1983a] 1905 256 114 311 5.1s

Multi-Party GMW [Goldreich et al. 1987] - 9102 - 5738 12.08m

Fig. 8. Case Studies: size of proofs and definitions, and runtime to verify.

Authenticated-To-Secure Channel. Our smallest case study constructs a secure channel from an

authenticated one. Alice wants to communicate 𝑞 messages to Bob using an authenticated channel.

The authenticated channel is not secure: it leaks each message to the adversary, and waits to receive

an ok message back from the adversary before delivering the in-flight message. Thus, the adversary

cannot modify any of the messages but can read and delay them for any amount of time. To transmit

information securely, Alice sends encryptions of her messages, which Bob decrypts using a shared

key not known to the adversary. The indistinguishability assumption states that the encryption

scheme is CPA-secure.

One-Time Pad (OTP) From Diffie-Hellman Key Exchange. In symmetric-key encryption, the sender

(Alice) and the receiver (Bob) need to agree on a shared secret key. One such key-agreement

protocol is the Diffie-Hellman Key Exchange (DHKE), which assumes a cyclic group 𝐺 of a prime

order with generator 𝑔. The indistinguishability assumption is the decisional Diffie-Hellman (DDH)
assumption: as long as the exponents 𝑘, 𝑙 are generated uniformly, even if the adversary knows the

values 𝑔𝑘 and 𝑔𝑙 , they will be unable to distinguish (𝑔𝑘 )𝑙 from a uniformly generated element of 𝐺 .

We subsequently use the DHKE protocol to turn an authenticated channel into a one-time pad

(OTP) that delivers a single secret message from Alice to Bob. Our proof is modular: in the first

step, we establish that the DHKE protocol can be replaced with its idealization. In the second step,

we prove that the resulting OTP protocol itself reduces to an idealization.

5
The case studies and the sources can be found at https://github.com/concrete-bounds-for-mpc-proofs/concrete-bounds-

for-mpc-simulation-proofs.
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Multi-Party Coin Flip. We implement a protocol (originally due to [Blum 1983b]) where 𝑁 + 2
parties labeled 0, . . . , 𝑁 − 1 reach a Boolean consensus. At the start of the protocol, each party

commits to a randomly-generated Boolean. After all parties have committed, each party opens its

commit. The consensus is the Boolean sum of all commits. We prove the protocol secure against a

malicious attacker in the case when party 𝑁 is corrupt, party 𝑁 + 1 is honest, and any other party

is arbitrarily honest or corrupt. As this protocol is perfectly secure, there are no indistinguishability

assumptions.

Multi-Party GMW Protocol. In the multi-party GMW protocol [Goldreich et al. 1987], 𝑁 +2 parties
securely compute the value of a given Boolean circuit built out of xor-, and-, and not gates. The
inputs to the circuit are divided among the parties, and no party has access to the inputs of any

other. Each party maintains its share of the value 𝑣 computed by each gate, and summing up the

shares of all parties yields 𝑣 . We prove the protocol secure in the case when party 𝑁 is semi-honest,

party 𝑁 + 1 is honest, and any other party is arbitrarily honest or semi-honest.

The protocol consists of the 𝑁 + 2 parties, plus an instance of the 1-Out-Of-4 Oblivious Transfer

(OT) protocol for each gate and each pair of parties 𝑛 < 𝑚, where 𝑛 is the sender and𝑚 is the

receiver. The code for each party is separated into three parts: in the initial phase, each party

computes and distributes everyone’s shares for each of its inputs. In the inductive phase, each party

computes their share of each gate by induction on the ambient circuit. At last, in the final phase,

parties send their shares of each output wire to one another and add them up to compute the result.

The shares of each gate are computed as follows. In the case of an input gate, the parties use the
corresponding input share from the initial phase. In the case of a not gate, parties 0, . . . , 𝑁 simply

copy their share of the incoming wire, whereas party 𝑁 + 1 negates its share. If the gate is an xor
gate, the resulting share is the sum of the shares of the incoming two wires. The case of an and gate

is the most complex. The sum of everybody’s shares must equal

(
𝑥0 ⊕ . . .⊕𝑥𝑁+1

)
∗
(
𝑦0 ⊕ . . .⊕𝑦𝑁+1

)
,

where 𝑥𝑛, 𝑦𝑛 are the respective shares of party 𝑛 on the incoming two wires. We have(
𝑥0 ⊕ . . . ⊕ 𝑥𝑁+1

)
∗
(
𝑦0 ⊕ . . . ⊕ 𝑦𝑁+1

)
=
⊕
𝑖

⊕
𝑗

𝑥𝑖 ∗ 𝑦 𝑗

Parties 𝑛 and𝑚 engage in a 1-Out-Of-4 OT exchange to compute (𝑥𝑛 ∗ 𝑦𝑚) ⊕ (𝑥𝑚 ∗ 𝑦𝑛). There
are four possible combinations of values that 𝑥𝑚, 𝑦𝑚 can take, and party 𝑛 computes the value of

(𝑥𝑛 ∗ 𝑦𝑚) ⊕ (𝑥𝑚 ∗ 𝑦𝑛) for each. This offers party𝑚 four messages to choose from, and he selects

the one corresponding to the actual values of 𝑥𝑚, 𝑦𝑚 . A small caveat: in the exchange as described

above, party𝑚 would still be able to infer the value of party 𝑛’s shares in certain cases: e.g., if
𝑥𝑚 = 0 and 𝑦𝑚 = 1, party𝑚 gets the share 𝑥𝑛 as the result of the exchange. To prevent this, party 𝑛

encodes her messages by masking them with a random Boolean 𝑏 that only she knows. To offset

for the presence of this Boolean, she includes it in her own share 𝑏 ⊕ (𝑥𝑛 ∗ 𝑦𝑛).
We assume four opaque protocols representing four implementations of the 1-Out-Of-4 Oblivious

Transfer, one for each of the possible combinations of an honest/semi-honest sender and receiver.

We also assume four cryptographic hardness axioms, stating that each OT implementation is

approximately equal to an ideal 1-Out-Of-4 OT functionality. In the first step of our proof, we

replace each OT implementation by its the corresponding functionality. The rest of the proof is

carried out in the exact fragment of our proof system.

Since the last party is by assumption honest, the simulator does not have access to its inputs.

Therefore, any computation that depends on the value of the inputs belonging to the last party must

be eliminated. In particular, all shares of the last party must be eliminated. Instead, the simulator

only computes shares for parties 0, . . . , 𝑁 in the inductive part, and replaces every mention of the
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last party’s share in its leakage by the quantity 𝑥 ⊕
(⊕

𝑖≤𝑁 𝑥𝑖
)
. Here 𝑥 is the value carried by the

gate as computed by the ideal functionality, and leaked to the simulator by a semi-honest party.

In this case study, the main challenge for formal verification is how to effectively carry out

proofs by induction nested three levels deep: one for the arbitrary Boolean circuit, and two for

each of the arbitrarily many parties communicating with another party. Additionally, we have to

account for an essentially arbitrary combination of honest/semi-honest parties, as all but the last

two parties can be honest or semi-honest. Every one of these factors reflects into the actual code of

the protocol, and has to be taken into account when computing concrete security bounds. The final

concrete bound computed by our tool is as follows:

indistinguishability assumption HH2HH :

count: |{(n, m, k) s.t. n < N + 2, m < N + 2, k < K,

when isHonest(n) and isHonest(m)}|

context:
N * K * max(N * 434 + 990, N * 434 + 1011, N * 607 + 1329, N * 434 + 983) +

N * N * K * max(|1OutOf4OTReal-Honest-Honest|, 543) + N * N * K * 218 +

N * K * max(|1OutOf4OTReal-Honest-Honest|, 543) * 4 + N * K * 932 +

K * max(N * 434 + 990, N * 434 + 1011, N * 607 + 1329, N * 434 + 983) * 2 +

N * N * maxValue(I, N + 2) * 300 + N * N * 68 + K * 992 + N * 352 +

K * max(|1OutOf4OTReal-Honest-Honest|, 543) * 3 +

(K - 1) * max(|1OutOf4OTReal-Honest-Honest|, 543) +

N * maxValue(I, N + 2) * 1169 + maxValue(I, N + 2) * 1138 + 509

indistinguishability assumption SHH2SHH : ...

indistinguishability assumption HSH2HSH : ...

indistinguishability assumption SHSH2SHSH : ...

Here K is the number of wires in the circuit, HH2HH is the indistinguishability assumption stating

that the 1-Out-Of-4 Oblivious Transfer protocol when both the sender and the receiver are honest

can be soundly replaced by the corresponding functionality, and maxValue(I, N + 2) selects

the maximum of I(0),...,I(N + 1), where I(n) denotes the number of inputs to party n. We

omit the bounds for the other indistinguishability assumptions, as these are entirely analogous.

As expected, the bound context is O(N * N * K), since we have one instance of an OT protocol

for each of the 𝐾 wires and each pair of parties. As we can see from the the bound count, the
total number of times we invoke an indistinguishability assumption is (N + 2) * (N + 2) * K,
since we replace each of the OT protocols with its idealization. The indistinguishability assumption

applicable to a particular OT instance is conditional on whether the sender and receiver are honest

or semi-honest, respectively.

DSL Implementation. Our DSL serves as a layer of abstraction over the implementation internals,

hiding low-level proof details from the user. For each rule, we have language construct in the DSL

that handles its application. For example, an application of the rule subst in Fig. 2 is written in

the DSL as subst o1 into o2. Internally, this translates into a call of a Maude strategy, which

applies the substitution rule over a protocol without explicitly writing applications of congruence

or exchange rules. Moreover, in many cases these strategies are generated on the fly, instead of

requiring the user to manually specify them.
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6 FUTUREWORK
We present a promising formalism for developing verified cryptographic proofs for MPC protocols.

We compute concrete security bounds by bounding the size of the program context in which

indistinguishability assumptions are applied, and analyzing the cost of the interpreter that executes

the program context. Currently, our main source of over-approximation is the runtime of this

interpreter, which is currently quadratic due to using linear scans for inputs (see Section F); however,

reducing the overhead to near-linear is possible using standard techniques.

Our tool can model arbitrary (static) corruption scenarios, including protocols that tolerate

𝑘/𝑁 corruptions (either semi-honest or malicious); formalizing a protocol that demonstrates this

capability is one avenue for future work. In in addition to verifying even more sophisticated MPC

protocols (e.g., garbled circuits), we want to develop new algorithms for automatically synthesizing
cryptographic simulators, rather than requiring them to be manually encoded. Finally, we aim to

extend our system to handle more expressive classes of protocols, such as those exhibiting threshold

behavior (e.g., consensus protocols).

REFERENCES
J. Almeida, M. Barbosa, G. Barthe, François Dupressoir, B. Grégoire, Vincent Laporte, and Vitor Pereira. 2017. A Fast and

Verified Software Stack for Secure Function Evaluation. Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (2017).

David Baelde, Caroline Fontaine, Adrien Koutsos, Guillaume Scerri, and Theo Vignon. 2024. A Probabilistic Logic for

Concrete Security . In 2024 IEEE 37th Computer Security Foundations Symposium (CSF). IEEE Computer Society, Los

Alamitos, CA, USA, 324–339. https://doi.org/10.1109/CSF61375.2024.00046

Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Adrien Koutsos, and Pierre-Yves Strub. 2021. Mechanized Proofs of

Adversarial Complexity and Application to Universal Composability. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security (Virtual Event, Republic of Korea) (CCS ’21). Association for Computing

Machinery, New York, NY, USA, 2541–2563. https://doi.org/10.1145/3460120.3484548

G. Barthe, B. Grégoire, S. Heraud, and Santiago Zanella Béguelin. 2011. Computer-Aided Security Proofs for the Working

Cryptographer. In CRYPTO.
Donald Beaver. 1995. Precomputing Oblivious Transfer. In Annual International Cryptology Conference. Springer, 97–109.
Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway. 1997. A Concrete Security Treatment of Symmetric Encryption.

In Proceedings 38th Annual Symposium on Foundations of Computer Science. IEEE, 394–403.
Bruno Blanchet. 2008. A Computationally Sound Mechanized Prover for Security Protocols. IEEE Trans. Dependable Secur.

Comput. 5, 4 (2008), 193–207. https://doi.org/10.1109/TDSC.2007.1005

Manuel Blum. 1983a. Coin Flipping by Telephone a Protocol for Solving Impossible Problems. SIGACT News 15, 1 (1983),
23–27. https://doi.org/10.1145/1008908.1008911

Manuel Blum. 1983b. Coin flipping by telephone a protocol for solving impossible problems. ACM SIGACT News 15, 1
(1983), 23–27.

Chris Brzuska, Antoine Delignat-Lavaud, Cédric Fournet, Konrad Kohbrok, and Markulf Kohlweiss. 2018. State separation

for code-based game-playing proofs. In Advances in Cryptology–ASIACRYPT 2018: 24th International Conference on the
Theory and Application of Cryptology and Information Security, Brisbane, QLD, Australia, December 2–6, 2018, Proceedings,
Part III 24. Springer, 222–249.

Ran Canetti. 2000. Universally Composable Security: A New Paradigm for Cryptographic Protocols. Cryptology ePrint

Archive, Report 2000/067. https://ia.cr/2000/067.

Ran Canetti, Alley Stoughton, and Mayank Varia. 2019. EasyUC: Using EasyCrypt to Mechanize Proofs of Universally

Composable Security. In 32nd IEEE Computer Security Foundations Symposium. https://eprint.iacr.org/2019/582.

Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José Meseguer, and Carolyn L. Talcott

(Eds.). 2007. All About Maude - A High-Performance Logical Framework, How to Specify, Program and Verify Systems in
Rewriting Logic. Lecture Notes in Computer Science, Vol. 4350. Springer. https://doi.org/10.1007/978-3-540-71999-1

Ankush Das, Jan Hoffmann, and Frank Pfenning. 2018. Work Analysis with Resource-Aware Session Types. In Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. 305–314.

Karim M. El Defrawy and Vitor Pereira. 2019. A High-Assurance Evaluator for Machine-Checked Secure Multiparty

Computation. Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security (2019).

Joshua Gancher, Sydney Gibson, Pratap Singh, Samvid Dharanikota, and Bryan Parno. 2023a. Owl: Compositional Verification

of Security Protocols via an Information-Flow Type System. In 44th IEEE Symposium on Security and Privacy, SP 2023,

, Vol. 1, No. 1, Article . Publication date: July 2025.

https://doi.org/10.1109/CSF61375.2024.00046
https://doi.org/10.1145/3460120.3484548
https://doi.org/10.1109/TDSC.2007.1005
https://doi.org/10.1145/1008908.1008911
https://ia.cr/2000/067
https://eprint.iacr.org/2019/582
https://doi.org/10.1007/978-3-540-71999-1


Concrete Security Bounds for Simulation-Based Proofs of Multi-Party Computation Protocols 27

San Francisco, CA, USA, May 21-25, 2023. IEEE, 1130–1147. https://doi.org/10.1109/SP46215.2023.10179477

Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett. 2023b. A Core Calculus for Equational Proofs

of Cryptographic Protocols. Proc. ACM Program. Lang. 7, POPL (2023), 866–892. https://doi.org/10.1145/3571223

Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play Any Mental Game. In Proceedings of the 19th annual
ACM symposium on Theory of Computing. ACM, 218–229.

Helene Haagh, Aleksandr Karbyshev, Sabine Oechsner, Bas Spitters, and Pierre-Yves Strub. 2018. Computer-Aided Proofs

for Multiparty Computation with Active Security. 2018 IEEE 31st Computer Security Foundations Symposium (CSF) (2018),
119–131.

Andreas Lochbihler, S. Reza Sefidgar, David Basin, and Ueli Maurer. 2019. Formalizing Constructive Cryptography us-

ing CryptHOL. In 32nd IEEE Computer Security Foundations Symposium. http://www.andreas-lochbihler.de/pub/

lochbihler2019csf.pdf.

Ueli Maurer. 2012. Constructive Cryptography – A New Paradigm for Security Definitions and Proofs. In Theory of Security
and Applications, Sebastian Mödersheim and Catuscia Palamidessi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

33–56.

Christian Skalka and Joseph Near. 2024. Language-Based Security for Low-Level MPC. In Proceedings of the 26th International
Symposium on Principles and Practice of Declarative Programming. 1–14.

Alley Stoughton and Mayank Varia. 2017. Mechanizing the Proof of Adaptive, Information-Theoretic Security of Crypto-

graphic Protocols in the Random Oracle Model. 2017 IEEE 30th Computer Security Foundations Symposium (CSF) (2017),
83–99.

Ionut Ţuţu. 2022. SpeX: A Rewriting-Based Formal Specification Environment. In Recent Trends in Algebraic Development
Techniques - 26th IFIP WG 1.3 International Workshop, WADT 2022, Aveiro, Portugal, June 28-30, 2022, Revised Selected
Papers (Lecture Notes in Computer Science, Vol. 13710), Alexandre Madeira and Manuel A. Martins (Eds.). Springer, 163–178.

https://doi.org/10.1007/978-3-031-43345-0_8

Xingyu Xie, Yifei Li, Wei Zhang, Tuowei Wang, Shizhen Xu, Jun Zhu, and Yifan Song. 2024. GAuV: A Graph-Based

Automated Verification Framework for Perfect Semi-Honest Security of Multiparty Computation Protocols. IACR Cryptol.
ePrint Arch. (2024).

A TURING MACHINE BOUNDS
The Turing Machine bound of a type 𝜏 is straightforward:

∥t𝑖 ∥ B 𝑡𝑖

∥1∥ B 0

∥Bool∥ B 1

∥𝜏1 × 𝜏2∥ B ∥𝜏1∥ + ∥𝜏2∥

The encoding of variables 𝑥 of type 𝜏 uses the symbols “(”, “var”, “:”, “)” in addition to the de

Bruijn index of the variable 𝑥 , encoded as a single symbol, and the encoding of the type annotation

𝜏 . For expressions ✓, true, false, we use the corresponding symbols “✓”, “true”, “false” and the

two parenthesis symbols “(”, “)”. For an application f 𝑒 of a function of type 𝜎 → 𝜏 , we use the

symbols “(”, “app”, “→”, “)” in addition to the function symbol f, encoded as a single symbol, and

the encodings of the two type annotations 𝜎, 𝜏 and the expression 𝑒 . To encode a pair (𝑒1, 𝑒2), we
will only need the encodings of the two expressions 𝑒1 and 𝑒2. Finally, to encode first and second

projections, we will use the symbols “(”, “fst”, “snd”, “×”, “of”, )” in addition to the encodings of
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the two type annotations 𝜎, 𝜏 and the expression 𝑒 .

∥var(𝑥 : 𝜏)∥ B ∥𝜏 ∥ + 5
∥✓∥ B 3

∥true∥ B 3

∥false∥ B 3

∥app𝜎→𝜏 f 𝑒 ∥ B ∥𝜎 ∥ + ∥𝜏 ∥ + ∥𝑒 ∥ + 5
∥(𝑒1, 𝑒2)∥ B ∥𝑒1∥ + ∥𝑒2∥
∥fst𝜎×𝜏 𝑒 ∥ B ∥𝜎 ∥ + ∥𝜏 ∥ + ∥𝑒 ∥ + 5
∥snd𝜎×𝜏 𝑒 ∥ B ∥𝜎 ∥ + ∥𝜏 ∥ + ∥𝑒 ∥ + 5

For a ret 𝑒 , we use the symbols “(”, “ret”, )” in addition to the encoding of the expression 𝑒 . For

a sampling samp d 𝑒 from a distribution of type 𝜎 → 𝜏 , we use the symbols “(”, “samp”, “↠”, “)”
in addition to the distribution symbol d, encoded as a single symbol, and the encodings of the

two type annotations 𝜎, 𝜏 and the expression 𝑒 . For a read 𝑐 from a channel of type 𝜏 , we use

the symbols “(”, “read”, “:”, “)” in addition to the de Bruijn index of the channel 𝑐 , encoded as a

single symbol, and the encoding of the type annotation 𝜏 . Furthermore, we will need one extra

symbol: one of “input-to-query”, “input-queried”, “input-not-to-query”. When encoding a protocol

𝑄 : 𝐼 ∪𝑂1 → 𝑂2 coming from the comp-cong rule, we use “input-to-query” or “input-queried” if
we are reading from a channel 𝑜1 ∈ 𝑂1, according to whether we have already queried the channel

𝑜1, and “input-not-to-query” otherwise.
For a conditional if 𝑒 then 𝑅1 else 𝑅2, we use the symbols “(”, “if”, “then”, “else”, “)” in addition

to the encodings of the expression 𝑒 and the two reactions 𝑅1, 𝑅2. Finally, to encode a bind, we use

the symbols “{”, “_”, “:”, “←”, “;”, “}” in addition to the encodings of the type annotation 𝜎 and the

two reactions 𝑅 and 𝑆 . The symbol “_” is used in lieu of the bound variable name 𝑥 and stands for

de Bruijn index 0.

∥ret 𝑒 ∥ B ∥𝑒 ∥ + 3
∥samp𝜎→𝜏 d 𝑒 ∥ B ∥𝜎 ∥ + ∥𝜏 ∥ + ∥𝑒 ∥ + 5
∥read(𝑐 : 𝜏)∥ B ∥𝜏 ∥ + 6

∥if 𝑒 then 𝑅1 else 𝑅2∥ B ∥𝑒 ∥ + ∥𝑅1∥ + ∥𝑅2∥ + 5
∥𝑥 : 𝜎 ← 𝑅; 𝑆 ∥ B ∥𝜎 ∥ + ∥𝑅∥ + ∥𝑆 ∥ + 6

To encode the zero protocol 0, we use the single symbol “0”. For an assignment 𝑜 B 𝑅, we use the

symbols “[”, “B”, “react”, “]” in addition to the de Bruijn index of the channel 𝑐 , encoded as a single

symbol, and the encoding of the reaction 𝑅. For a parallel composition 𝑃 ∥ 𝑄 , we use the symbols

“(”, “∥”, “)” in addition to the encodings of the two protocols 𝑃 and 𝑄 . Finally, for the declaration

of a new channel new 𝑜 : 𝜏 in 𝑃 , we use the symbols “new”, “_”, “:”, “in”, “wen” in addition to the

encodings of the typing annotation 𝜏 and the protocol 𝑃 . The symbol “_” is used in lieu of the

bound channel name 𝑐 and stands for de Bruijn index 0. The symbol “wen” indicates the end of the

binding scope.

∥0∥ B 1

∥𝑜 B 𝑅∥ B ∥𝑅∥ + 5
∥𝑃 ∥ 𝑄 ∥ B ∥𝑃 ∥ + ∥𝑄 ∥ + 3

∥new 𝑐 : 𝜏 in 𝑃 ∥ B ∥𝜏 ∥ + ∥𝑃 ∥ + 5
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B ENCODING PROTOCOLS ON A TURING MACHINE TAPE
To encode protocols on a Turing Machine tape, we make use of the following sets of symbols:

• Punc with symbols “⟨”,“⟩”, “(”, “)”, “{”, “}”, “[”, “]”, “_”, “:”, “·”, “;”, “→”, “↠”, “←”, “×”, “B”,
“∥”, “•”,
• KeyWords with symbols “var”, “✓”, “true”, “false”, “app”, “fst”, “snd”, “of”, “ret”, “samp”,
“read”, “if”, “then”, “else”, “0”, “new”, “in”, “wen”, “input-to-query”, “input-queried”, “input-
not-to-query”.

We also need a finite set of de Bruijn indices in lieu of channel and variable names. To derive an

upper bound on how many indices we will need, we statically count the maximum depth of variable

and channel declarations in the protocol, giving us a variable-index bound and a channel-index
bound, respectively.

To avoid an infinite loop, an adversary executing the absorbed protocol will need to keep track

of which channels have already been queried for a value. We store this information inside the

protocol in the form of an annotation: for each channel read read(𝑐 : 𝜏), we denote whether the
channel 𝑐 has already been queried for a value, if applicable. By erasing the annotations from a

query-annotated reaction or protocol, we obtain the underlying IPDL construct.

Given an ambient interpretation ⟦−⟧ for the signature Σ, we now show how to encode IPDL

constructs as a sequence of symbols on a Turing Machine tape. For types, the encoding Enc[𝜏]
consists of the symbol “·” repeated |𝜏 |-many times. For expressions, we have the encoding below,

where + denotes string concatenation. We recall that each variable name is represented as a de

Bruijn index, and is in particular a natural number.

Enc[𝑣] B 𝑣

Enc[var(𝑥 : 𝜏)] B “(” + “var” + 𝑥 + “:” + Enc[𝜏] + “)”
Enc[✓] B “(” + “✓” + “)”

Enc[true] B “(” + “true” + “)”
Enc[false] B “(” + “false” + “)”

Enc[app𝜎→𝜏 f 𝑒] B “(” + “app” + Enc[𝜎] + “→” + Enc[𝜏] + f + Enc[𝑒] + “)”
Enc[(𝑒1, 𝑒2)] B Enc[𝑒1] + Enc[𝑒2]
Enc[fst𝜎×𝜏 𝑒] B “(” + “fst” + Enc[𝜎] + “×” + Enc[𝜏] + “of” + Enc[𝑒] + “)”
Enc[snd𝜎×𝜏 𝑒] B “(” + “snd” + Enc[𝜎] + “×” + Enc[𝜏] + “of” + Enc[𝑒] + “)”

The encoding Enc[𝑎] of an annotation is the corresponding symbol. For reactions, we have the

following encoding, where we recall that each channel name is represented as a de Bruijn index,

and is in particular a natural number.

Enc[val 𝑣] B “⟨” + 𝑣 + “⟩”
Enc[ret 𝑒] B “(” + “ret” + Enc[𝑒] + “)”

Enc[samp𝜎→𝜏 d 𝑒] B “(” + “samp” + Enc[𝜎] + “↠” + Enc[𝜏] + d + Enc[𝑒] + “)”
Enc[read[𝑎] (𝑐 : 𝜏)] B “(” + “read” + Enc[𝑎] + 𝑐 + “:” + Enc[𝜏] + “)”

Enc[if 𝑒 then 𝑅1 else 𝑅2] B “(” + “if” + Enc[𝑒] + “then” + Enc[𝑅1] + “else” + Enc[𝑅2] + “)”
Enc[𝑥 : 𝜎 ← 𝑅; 𝑆] B “{” + “_” + “:” + Enc[𝜎] + “←” + Enc[𝑅] + “;” + Enc[𝑆] + “}”
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Finally, for protocols we have the encoding below.

Enc[0] B “0”

Enc[𝑜 B 𝑣] B “[” + 𝑜 + “B” + 𝑣 + “]”
Enc[𝑜 B 𝑅] B “(” + 𝑜 + “B” + “react” + Enc[𝑅] + “)
Enc[𝑃 ∥ 𝑄] B “(” + Enc[𝑃] + “∥” + Enc[𝑄] + “)”

Enc[new 𝑐 : 𝜏 in 𝑃] B “new” + “_” + “:” + Enc[𝜏] + “in” + Enc[𝑃] + “wen”
To avoid having to shift the tape contents when executing IPDL protocols on a Turing Machine

tape, we will make use of the white-space symbol “ ”, which we consider as distinct from the symbol

blank. The former will be used as a placeholder so that our protocol encoding remains at a constant

length throughout the execution. For this reason, we extend our notion of encoding to allow extra

white-spaces around the encoding of an expression 𝑒 or a query-annotated reaction 𝑅 occurring

inside a query-annotated protocol 𝑃 .

C LAYERED APPROXIMATE JUDGEMENTS
The layered form of our approximate judgments is shown in Figures 9 and 10.

Lemma 3. We have Δ ⊢ 𝑃 ≈ 𝑄 : 𝐼 → 𝑂 count 𝑘 ctxt 𝑙 iff Δ ⊢ 𝑃 ≈5 𝑄 : 𝐼 → 𝑂 count 𝑘 ctxt 𝑙 for
any protocols Δ ⊢ 𝑃 : 𝐼 → 𝑂 and Δ ⊢ 𝑄 : 𝐼 → 𝑂 .

D PERFECT INDISTINGUISHABILITY: PROOF OF LEMMA 1
Lemma (Perfect indistinguishability). For any interpretation ⟦−⟧ for Σ, derivation Δ ⊢ 𝑃 =

𝑄 : 𝐼 → 𝑂 , and adversary Adv for protocols Δ ⊢ 𝐼 → 𝑂 , we have���Pr[Adv ⟦−⟧−−−⇀↽−−− 𝑃 = 1

]
− Pr

[
Adv

⟦−⟧
−−−⇀↽−−− 𝑄 = 1

] ��� = 0.

Proof. Fix an adversary Adv as in Definition 3. By assumption, we have a proof Δ ⊢ 𝑃 = 𝑄 : 𝐼 →
𝑂 , which means we also have a proof that Δ′ ⊢ 𝜙★(𝑃) = 𝜙★(𝑄) : 𝜙★(𝐼 ) → 𝜙★(𝑂). The soundness
theorem for strict equality of protocols applied to this proof gives us a bisimulation ∼ such that

1[𝜙★(𝑃)] ∼ 1[𝜙★(𝑄)]. Now let ∼adv be a binary relation on sub-distributions on pairs where the

first element is an adversary state and the second is a protocol of type Δ ⊢ 𝐼 → 𝑂 , defined as

follows:

• (𝑠, 𝜂) ∼adv (𝑠, 𝜀) if 𝑠 ∈ St and 𝜂 ∼ 𝜀, where we use a distribution in place of a protocol to

indicate the obvious lifting to sub-distributions on pairs of the the aforementioned form, and

• 1[⊥] ∼adv 1[⊥], where ⊥ indicates that the security game between the adversary and the

protocol halted without a decision Boolean.

Let L∼adv be the closure of ∼adv under joint convex combinations. Explicitly, L∼adv is defined by(∑︁
𝑖

𝑐𝑖 𝜂𝑖

)
L∼adv

(∑︁
𝑖

𝑐𝑖 𝜀𝑖

)
for coefficients 𝑐𝑖 > 0 with

∑
𝑖 𝑐𝑖 = 1 and distributions 𝜂𝑖 ∼adv 𝜀𝑖 . We now establish a loop invariant

for the algorithm in Figure 7. Before starting the first round, the initial distributions are suitably

related: by assumption, we have 1[𝜙★(𝑃)] ∼ 1[𝜙★(𝑄)], which means that

1

[
(𝑠★, 𝜙★(𝑃))

]
L∼adv 1

[
(𝑠★, 𝜙★(𝑄))

]
as the two distributions are already related under ∼adv. Now assume that we have two sub-

distributions related by L∼adv . We prove that performing a single round yields sub-distributions

that are again related by L∼adv . It suffices to show this for the case (𝑠, 𝜂) ∼adv (𝑠, 𝜀), where 𝑠 ∈ St
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Δ ⊢ 𝑃 �0 𝑄 : 𝐼 → 𝑂 ctxt𝜓 for axiom # 𝑘

Δ𝑘 ⊢ 𝑃𝑘 ≈ 𝑄𝑘
: 𝐼𝑘 → 𝑂𝑘

Δ𝑘 ⊢ 𝑃𝑘 �0 𝑄𝑘
: 𝐼𝑘 → 𝑂𝑘 ctxt 0 for axiom # 𝑘

axiom

Δ ⊢ 𝑃 �1 𝑄 : 𝐼 → 𝑂 ctxt𝜓 for axiom # 𝑘

Δ ⊢ 𝑃 �0 𝑄 : 𝐼 → 𝑂 ctxt𝜓 for axiom # 𝑘

Δ ⊢ 𝑃 �1 𝑄 : 𝐼 → 𝑂 ctxt𝜓 for axiom # 𝑘
sub

𝜙 : Δ1 → Δ2 Δ2 ⊢ 𝑃 �0 𝑄 : 𝐼 → 𝑂 ctxt𝜓 for axiom # 𝑘

Δ1 ⊢ 𝜙★(𝑃) �1 𝜙★(𝑄) : 𝜙★(𝐼 ) → 𝜙★(𝑂) ctxt𝜓 for axiom # 𝑘
embed

Δ ⊢ 𝑃 �2 𝑄 : 𝐼 → 𝑂 ctxt𝜓 for axiom # 𝑘

Δ ⊢ 𝑃 �1 𝑄 : 𝐼 → 𝑂 ctxt𝜓 for axiom # 𝑘

Δ ⊢ 𝑃 �2 𝑄 : 𝐼 → 𝑂 ctxt𝜓 for axiom # 𝑘
sub

𝑖 ∉ 𝐼 ∪𝑂 Δ ⊢ 𝑃 �2 𝑄 : 𝐼 → 𝑂 ctxt𝜓 for axiom # 𝑘

Δ ⊢ 𝑃 �2 𝑄 : 𝐼 ∪ {𝑖} → 𝑂 ctxt𝜓 for axiom # 𝑘
input-unused

Δ ⊢ 𝑃 �3 𝑄 : 𝐼 → 𝑂 ctxt𝜓 for axiom # 𝑘

Δ ⊢ 𝑃 �2 𝑄 : 𝐼 → 𝑂 ctxt𝜓 for axiom # 𝑘

Δ ⊢ 𝑃 �3 𝑄 : 𝐼 → 𝑂 ctxt𝜓 for axiom # 𝑘
sub

Δ ⊢ 𝑃 �2 𝑃 ′ : 𝐼 ∪𝑂2 → 𝑂1 ctxt𝜓 for axiom # 𝑘 Δ ⊢ 𝑄 : 𝐼 ∪𝑂1 → 𝑂2

Δ ⊢ 𝑃 ∥ 𝑄 �3 𝑃 ′ ∥ 𝑄 : 𝐼 → 𝑂1 ∪𝑂2 ctxt𝜓 + ∥𝑄 ∥ + 3 for axiom # 𝑘
cong-comp-left

Δ ⊢ 𝑃 �4 𝑄 : 𝐼 → 𝑂 ctxt𝜓 for axiom # 𝑘

Δ ⊢ 𝑃 �3 𝑄 : 𝐼 → 𝑂 ctxt𝜓 for axiom # 𝑘

Δ ⊢ 𝑃 �4 𝑄 : 𝐼 → 𝑂 ctxt𝜓 for axiom # 𝑘
sub

Δ, 𝑜 : 𝜏 ⊢ 𝑃 �4 𝑃 ′ : 𝐼 → 𝑂 ∪ {𝑜} ctxt𝜓 for axiom # 𝑘

Δ ⊢
(
new 𝑜 : 𝜏 in 𝑃

)
�4

(
new 𝑜 : 𝜏 in 𝑃 ′

)
: 𝐼 → 𝑂 ctxt𝜓 for axiom # 𝑘

cong-new

Fig. 9. Layered approximate judgements for protocols.
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Δ ⊢ 𝑃 �5 𝑄 : 𝐼 → 𝑂 ctxt𝜓 for axiom # 𝑘

Δ ⊢ 𝑃 = 𝑃 ′ : 𝐼 → 𝑂 Δ ⊢ 𝑃 ′ �4 𝑄 ′ : 𝐼 → 𝑂 ctxt𝜓 for axiom # 𝑘 Δ ⊢ 𝑄 ′ = 𝑄 : 𝐼 → 𝑂

Δ ⊢ 𝑃 �5 𝑄 : 𝐼 → 𝑂 ctxt𝜓 for axiom # 𝑘
sub

Δ ⊢ 𝑃 ≈5 𝑄 : 𝐼 → 𝑂 count 𝜉 ctxt𝜓

Δ ⊢ 𝑃 = 𝑄 : 𝐼 → 𝑂

Δ ⊢ 𝑃 ≈5 𝑄 : 𝐼 → 𝑂 count (𝑖 ↦→ 0) ctxt (𝑖 ↦→ 0)
strict

Δ ⊢ 𝑃 �5 𝑄 : 𝐼 → 𝑂 ctxt𝜓 for axiom # 𝑘

Δ ⊢ 𝑃 ≈5 𝑄 : 𝐼 → 𝑂 count
(
𝑘 ↦→ 1, 𝑖 ≠ 𝑘 ↦→ 0

)
ctxt

(
𝑘 ↦→ 𝜓, 𝑖 ≠ 𝑘 ↦→ 0

) approx-cong

Δ ⊢ 𝑃1 ≈5 𝑃2 : 𝐼 → 𝑂 count 𝜉 ctxt𝜓

Δ ⊢ 𝑃2 ≈5 𝑃1 : 𝐼 → 𝑂 count 𝜉 ctxt𝜓
sym

Δ ⊢ 𝑃1 ≈5 𝑃2 : 𝐼 → 𝑂 count 𝜉1 ctxt𝜓1 Δ ⊢ 𝑃2 ≈5 𝑃3 : 𝐼 → 𝑂 count 𝜉2 ctxt𝜓2

Δ ⊢ 𝑃1 ≈5 𝑃3 : 𝐼 → 𝑂 count
(
𝑖 ↦→ 𝜉1 (𝑖) + 𝜉2 (𝑖)

)
ctxt

(
𝑖 ↦→ max(𝜓1 (𝑖),𝜓2 (𝑖))

) trans

Fig. 10. Layered approximate judgements for protocols, continued.

and 𝜂 ∼ 𝜀. We first compute the distributions 𝜂′ B 𝜂⇓ and 𝜀′ B 𝜀⇓. By definition of ∼ we have

𝜂′ ∼ 𝜀′. Independently, we probabilistically compute the type of interaction to perform together

with a new adversary state 𝑠′. If no interaction has been chosen, the resulting distributions are

(𝑠′, 𝜂′) and (𝑠′, 𝜀′). We have

(𝑠′, 𝜂′) L∼adv (𝑠′, 𝜀′)
as desired, as the two distributions are already related under ∼adv. If the interaction is an input

on channel 𝑖 , we compute O𝑖 (𝑠′) to see if in the adversary’s current state 𝑠′ the channel 𝑖 carries
a value. If this is not the case, the resulting distributions are (𝑠′, 𝜂′) and (𝑠′, 𝜀′). Here we again
have (𝑠′, 𝜂′) L∼adv (𝑠′, 𝜀′), as desired. On the other hand, if the channel 𝑖 carries a value 𝑣 , the

resulting distributions are

(
𝑠′, 𝜂′ [read 𝑖 := val 𝑣]

)
and

(
𝑠′, 𝜀′ [read 𝑖 := val 𝑣]

)
. Now because 𝜂′ ∼ 𝜀′,

by definition of ∼ we have 𝜂′ [read 𝑖 := val 𝑣] ∼ 𝜀′ [read 𝑖 := val 𝑣]. Thus we have(
𝑠′, 𝜂′ [read 𝑖 := val 𝑣]

)
L∼adv

(
𝑠′, 𝜀′ [read 𝑖 := val 𝑣]

)
as desired, as the two distributions are already related under ∼adv. Finally, if the interaction is a

query for an output channel 𝑜 , we recall that the valuation property of the bisimulation ∼ allows

us to jointly partition the distributions 𝜂′ ∼ 𝜀′ into a joint convex combination

𝜂′ =
∑︁
𝑖

𝑐𝑖 𝜂
′
𝑖 ∼

∑︁
𝑖

𝑐𝑖 𝜀
′
𝑖 = 𝜀

′

with 𝑐𝑖 > 0 and

∑
𝑖 𝑐𝑖 = 1 such that

• the respective components 𝜂′𝑖 ∼ 𝜀′𝑖 are again related, and

• 𝜂′𝑖 |val(𝑜 ) = 𝑣⊥ = 𝜀′𝑖 |val(𝑜 ) for the same 𝑣⊥ ∈ {⊥} ∪ ⟦𝜏⟧ where 𝑜 : 𝜏 in Δ′.
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Therefore, it suffices to consider the respective components 𝜂′𝑖 ∼ 𝜀′𝑖 with the same 𝑣⊥. If 𝑣⊥ is ⊥,
then the resulting distributions are (𝑠′, 𝜂′𝑖 ) and (𝑠′, 𝜀′𝑖 ). Here we again have (𝑠′, 𝜂′𝑖 ) L∼adv (𝑠′, 𝜀′𝑖 ), as
desired. On the other hand, if 𝑣⊥ is a value 𝑣 , then the resulting distributions are

(
I𝑜 (𝑣, 𝑠′), 𝜂′𝑖

)
and(

I𝑜 (𝑣, 𝑠′), 𝜀′𝑖
)
. Thus we have (

I𝑜 (𝑣, 𝑠′), 𝜂′𝑖
)
L∼adv

(
I𝑜 (𝑣, 𝑠′), 𝜀′𝑖

)
as desired, as the two distributions are already related under ∼adv. This proves that after completing

the required number of rounds, we end up with two sub-distributions related byL∼adv . It is now easy

to see that they induce the same sub-distribution on decision Booleans. It suffices to prove this for

the case (𝑠, 𝜂) ∼adv (𝑠, 𝜀), where 𝑠 ∈ St and 𝜂 ∼ 𝜀. But the state 𝑠 is the same for both distributions,

so the resulting distribution on decision Booleans is 1[D(𝑠)]. This finishes the proof. □

E SOUNDNESS OF ASYMPTOTIC EQUALITY: PROOF OF THEOREM 2
Theorem (Soundness of asymptotic eqality of protocols). For any
• protocol families

{
Δ𝜆 ⊢ 𝑃𝜆 : 𝐼𝜆 → 𝑂𝜆

}
𝜆∈N and

{
Δ𝜆 ⊢ 𝑄𝜆 : 𝐼𝜆 → 𝑂𝜆

}
𝜆∈N with identical typing

judgments;
• PPT family of interpretations

{
⟦−⟧𝜆

}
𝜆∈N for Σ; and

• an asymptotic theory that is sound with respect to
{
⟦−⟧𝜆

}
𝜆∈N;

we have that
⊢ {

Δ𝜆 ⊢ 𝑃𝜆 ≈ 𝑄𝜆 : 𝐼𝜆 → 𝑂𝜆

}
𝜆∈N

implies
⊨
{
Δ𝜆 ⊢ 𝑃𝜆 ≈ 𝑄𝜆 : 𝐼𝜆 → 𝑂𝜆

}
𝜆∈N.

Proof. Given 𝑛 approximate axioms, the top-level asymptotic equality judgement

⊢ {
Δ𝜆 ⊢ 𝑃𝜆 ≈ 𝑄𝜆 : 𝐼𝜆 → 𝑂𝜆

}
𝜆∈N

gives us functions

𝜉 : N→ {0, . . . , 𝑛 − 1} → N
𝜓 : N→ {0, . . . , 𝑛 − 1} → N |Σt |+1 → N

such that for each 𝜆 ∈ N, we have
Δ𝜆 ⊢ 𝑃𝜆 ≈ 𝑄𝜆 : 𝐼𝜆 → 𝑂𝜆 count 𝜉𝜆 ctxt𝜓𝜆 (★)

and for each 1 ≤ 𝑖 ≤ 𝑛, we have
𝜉𝑖( ·) = O(poly(𝜆))
𝜓 𝑖
( ·) = O

(
poly(𝜆, 𝑡1, . . . , 𝑡 |Σt | )

)
In particular, there are polynomials 𝑝𝑖count (𝜆) with 𝑁 𝑖

count ∈ N such that 𝜉𝑖
𝜆
≤ 𝑝𝑖count (𝜆) if 𝜆 ≥ 𝑁 𝑖

count,

and polynomials 𝑝𝑖ctxt (𝜆, 𝑡1, . . . , 𝑡 |Σt | ) with 𝑁 𝑖
ctxt ∈ N such that

𝜓 𝑖
𝜆
(𝑡1, . . . , 𝑡 |Σt | ) ≤ 𝑝𝑖ctxt (𝜆, 𝑡1, . . . , 𝑡 |Σt | )

if 𝜆 ≥ 𝑁 𝑖
ctxt and 𝑡1, . . . , 𝑡 |Σt | ≥ 𝑁 𝑖

ctxt.

Since

{
⟦−⟧𝜆

}
𝜆∈N is PPT, we have a polynomial 𝐶sem (𝜆), a negligible function 𝜂sem (𝜆), and a

𝑁sem ∈ N such that:

– for all type symbols t, |t|𝜆 ≤ 𝐶sem (𝜆) if 𝜆 ≥ 𝑁sem,
– for all function symbols f, ⟦f⟧𝜆 is computable by a deterministic Turing Machine TM𝜆 with
symbols 0, 1, and both the number of states and the runtime of TM𝜆 are ≤ 𝐶sem (𝜆) if 𝜆 ≥ 𝑁sem,
and
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– for all distribution symbols d, ⟦d⟧𝜆 is computable up to an error 𝜂sem (𝜆) by a probabilistic
Turing Machine TM𝜆 with symbols 0, 1, and both the number of states and the runtime of
TM𝜆 are ≤ 𝐶sem (𝜆) if 𝜆 ≥ 𝑁sem.

To prove {
⟦−⟧𝜆

}
𝜆∈N ⊨

{
Δ𝜆 ⊢ 𝑃𝜆 ≈ 𝑄𝜆 : 𝐼𝜆 → 𝑂𝜆

}
𝜆∈N,

assume a polynomial𝐶adv (𝜆) and a negligible function 𝜂adv (𝜆). Since the ambient asymptotic theory

is sound under the ambient family of interpretations, we have the computational indistinguishability

assumption {
⟦−⟧𝜆

}
𝜆∈N ⊨

{
Δ𝑖
𝜆
⊢ 𝑃𝑖

𝜆
≈ 𝑄𝑖

𝜆
: 𝐼 𝑖

𝜆
→ 𝑂𝑖

𝜆

}
𝜆∈N .

Define

𝐶𝑖
ctxt (𝜆) B 𝑝𝑖ctxt

(
𝜆,𝐶sem (𝜆) + 𝑁 𝑖

ctxt, . . . ,𝐶sem (𝜆) + 𝑁 𝑖
ctxt

)
,

and apply the computational indistinguishability assumption above to the polynomial

P
(
𝐶sem (𝜆),𝐶adv (𝜆),𝐶𝑖

ctxt (𝜆)
)

and the negligible function max
(
𝜂sem (𝜆), 𝜂adv (𝜆)

)
.

This yields a negligible function 𝜀𝑖 (𝜆) with an𝑁 𝑖 ∈ N such that for any 𝜆 ≥ 𝑁 𝑖
and any adversary

Adv𝑖 for protocols Δ𝑖
𝜆
⊢ 𝐼 𝑖

𝜆
→ 𝑂𝑖

𝜆
under the interpretation ⟦−⟧𝜆 with the property that

|Adv𝑖 | ≤ P
(
𝐶sem (𝜆),𝐶adv (𝜆),𝐶𝑖

ctxt (𝜆)
)

and err(Adv𝑖 ) ≤ max
(
𝜂sem (𝜆), 𝜂adv (𝜆)

)
, we have���Pr[Adv ⟦−⟧𝜆−−−−⇀↽−−−− 𝑃𝑖𝜆 = 1

]
− Pr

[
Adv

⟦−⟧𝜆−−−−⇀↽−−−− 𝑄𝑖
𝜆
= 1

] ��� ≤ 𝜀𝑖 (𝜆).
We can now define our desired negligible function as

𝜀 (𝜆) B
𝑛∑︁
𝑖=1

𝜉𝑖
𝜆
∗
(
𝜀𝑖 (𝜆) + 2 ∗𝐶𝑖

ctxt (𝜆) ∗ 𝜂sem (𝜆)
)

The negligibility of 𝜀 (𝜆) follows easily: if 𝜆 ≥ 𝑁 𝑖
count, then

𝜉𝑖
𝜆
∗
(
𝜀𝑖 (𝜆) + 2 ∗𝐶𝑖

ctxt (𝜆) ∗ 𝜂sem (𝜆)
)
≤ 𝑝𝑖count (𝜆) ∗

(
𝜀𝑖 (𝜆) + 2 ∗𝐶𝑖

ctxt (𝜆) ∗ 𝜂sem (𝜆)
)
,

thus it suffices to show that this latter function is negligible. But this is immediate from the negligi-

bility of 𝜀𝑖 (𝜆), the negligibility of 𝜂sem (𝜆), and the fact that 𝑝𝑖count (𝜆) and 𝐶𝑖
ctxt (𝜆) are polynomials.

Define

𝑁 B max
(
𝑁sem, 𝑁

1

ctxt, . . . , 𝑁
𝑛
ctxt, 𝑁

1, . . . , 𝑁𝑛
)
.

Now assume 𝜆 ≥ 𝑁 and take any adversaryAdv for protocolsΔ𝜆 ⊢ 𝐼𝜆 → 𝑂𝜆 under the interpretation

⟦−⟧𝜆 , such that |Adv| ≤ 𝐶adv (𝜆) and err(Adv) ≤ 𝜂adv (𝜆). We aim to show that���Pr[Adv ⟦−⟧𝜆−−−−⇀↽−−−− 𝑃𝜆 = 1

]
− Pr

[
Adv

⟦−⟧𝜆−−−−⇀↽−−−− 𝑄𝜆 = 1

] ��� ≤ 𝑛∑︁
𝑖=1

𝜉𝑖
𝜆
∗
(
𝜀𝑖 (𝜆) + 2 ∗𝐶𝑖

ctxt (𝜆) ∗ 𝜂sem (𝜆)
)

But this is precisely the conclusion of Theorem 1 applied to the derivation (★). It thus suffices to

prove the hypotheses of Theorem 1. Among these, the only non-trivial assumption is

𝜓 𝑖
𝜆

(
|t1 |, . . . , |t |Σt | |

)
≤ 𝐶𝑖

ctxt (𝜆) .
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We show this via the following sequence of inequalities:

𝜓 𝑖
𝜆

(
|t1 |𝜆, . . . , |t |Σt | |𝜆

)
≤

𝜓 𝑖
𝜆

(
𝐶sem (𝜆), . . . ,𝐶sem (𝜆)

)
≤

𝜓 𝑖
𝜆

(
𝐶sem (𝜆) + 𝑁 𝑖

ctxt, . . . ,𝐶sem (𝜆) + 𝑁 𝑖
ctxt

)
≤

𝑝𝑖ctxt
(
𝜆,𝐶sem (𝜆) + 𝑁 𝑖

ctxt, . . . ,𝐶sem (𝜆) + 𝑁 𝑖
ctxt

)
= 𝐶𝑖

ctxt (𝜆).

The first inequality follows since the function𝜓 𝑖
𝜆
: N |Σt | → N is monotonically increasing in each

argument and |t1 |𝜆, . . . , |t |Σt | |𝜆 ≤ 𝐶sem (𝜆) by assumption since 𝜆 ≥ 𝑁sem. The second inequality

is again monotonicity of𝜓 𝑖
𝜆
, and the third follows from the definition of 𝑝𝑖ctxt since 𝜆 ≥ 𝑁 𝑖

ctxt and

𝐶sem (𝜆) + 𝑁 𝑖
ctxt ≥ 𝑁 𝑖

ctxt. □

F ABSORPTION: PROOF SKETCH FOR LEMMA 2
Lemma (Absorption). There exists a polynomial P(𝑥,𝑦, 𝑧) ≥ 𝑦 such that for any

• interpretation ⟦−⟧ for Σ for which there are 𝐶sem ∈ N, 𝜂sem ∈ Q≥0 such that
– for all type symbols t, |t| ≤ 𝐶sem,
– for all function symbols f, ⟦f⟧ is computable by a TM with symbols 0, 1 such that the number
of states and the runtime are ≤ 𝐶sem, and

– for all distribution symbols d, ⟦d⟧ is computable up to error 𝜂sem by a probabilistic TM with
symbols 0, 1 such that the number of states and the runtime are ≤ 𝐶sem,

• adversaryAdv for protocols of typeΔ ⊢ 𝐼 → 𝑂1∪𝑂2 such that |Adv| ≤ 𝐶adv and err(Adv) ≤ 𝜂adv
for some 𝐶adv ∈ N and 𝜂adv ∈ Q≥0,
• protocol Δ ⊢ 𝑄 : 𝐼 ∪𝑂1 → 𝑂2,

we have an adversary AdvR for protocols Δ ⊢ 𝐼 ∪𝑂2 → 𝑂1 with

|AdvR | ≤ P
(
𝐶sem,𝐶adv, ∥𝑄 ∥(|t1 |, . . . , |t |Σt | |)

)
and err(AdvR) ≤ max(𝜂sem, 𝜂adv) such that for any protocol Δ ⊢ 𝑃 : 𝐼 ∪𝑂2 → 𝑂1 we have���Pr[Adv ⟦−⟧−−−⇀↽−−− 𝑃 ∥ 𝑄 = 1

]
− Pr

[
AdvR

⟦−⟧
−−−⇀↽−−− 𝑃 = 1

] ��� ≤ ∥𝑄 ∥(|t1 |, . . . , |t |Σt | |) ∗ 𝜂sem.
Sketch. Let context B ∥𝑄 ∥(|t1 |, . . . , |t |Σt | |), and let 𝑂min

1
be the minimal set of query inputs

to 𝑄 from among 𝑂1. In other words, 𝑂min
1

contains precisely those channels of 𝑂1 that 𝑄 reads

from. The reason for replacing 𝑂1 with 𝑂
min
1

is that we do not have a bound on the size of the

former, but the size of the latter is bounded by the number of occurrences of the query annotation

“input-to-query”, and this is in turn bounded by context. Let

Adv B
(
Δ′, 𝐼 ′,𝑂 ′, 𝜙, #rnd, #tape, Symb, St, 𝑠★, T,

{
I𝑜
}
𝑜 ∈ 𝐼 ′ ,

{
O𝑖

}
𝑖 ∈𝑂 ′ ,D

)
be the adversary for protocols of type Δ ⊢ 𝐼 → 𝑂1 ∪𝑂2. Define the reduced adversary AdvR for

protocols of type Δ ⊢ 𝐼 ∪𝑂2 → 𝑂1 as follows:

AdvR B
(
Δ′, 𝐼 ′R,𝑂

′
R, 𝜙, #

R
rnd, #

R
tape, SymbR, StR, 𝑠R★ , T

R,
{
IR𝑜
}
𝑜 ∈ 𝐼 ′R

,
{
OR𝑖

}
𝑖 ∈𝑂 ′R

,DR
)

Here:

• the set of inputs is 𝐼 ′R B (𝐼
′ ∪ 𝜙★(𝑂1)) ∪ 𝜙★(𝑂min

1
);

• the set of outputs is 𝑂 ′R B 𝑂 ′ ∪ 𝜙★(𝑂2);
• the number of rounds is #Rrnd B #rnd ∗ context + context2 + 2 ∗ #rnd + context + 1;
• the number of tapes is #Rtape B #tape + 1;
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• the set of symbols is

SymbR B
{
𝑟 | 0 ≤ 𝑟 ≤ #rnd

} ⊔
ProtEncSymb

⊔
{“⇌”, “#”}

⊔
Symb,

where ProtEncSymb is the disjoint union of the following sets: {“ ”}, Punc, KeyWords, the
set Σf of function symbols declared in Σ, the set Σd of distribution symbols declared in Σ, the
set {

𝑛 | 0 ≤ 𝑛 < variable-index bound(𝑄)
}
,

and the set{
𝑛 | 0 ≤ 𝑛 < channel-index bound(𝑄)

} ⋃{
𝑚 + 𝑛 | 𝑚 ∈ 𝜙★(𝐼 ∪𝑂min

1
∪𝑂2) and 0 ≤ 𝑛 ≤ channel-index bound(𝑄)

}
;

• the set of states is

StR B
{
“(” + 𝑟 + 𝑏 + prot + “⇌ ” + adv + “)”

}
,

where

– the round counter 0 ≤ 𝑟 ≤ #rnd denotes the number of rounds remaining,

– the Boolean 𝑏 ∈ {0, 1} indicates whether we are processing the adversary code (0) or the

absorbed protocol code (1),

– adv ∈ St is the original adversary code, and

– prot is the absorbed protocol code,

• the initial state 𝑠R★ sets:

– 𝑟 B #rnd,

– 𝑏 B 1,

– adv B 𝑠★, and

– prot is the encoding of the protocol 𝑄 with every channel read from 𝑂min
1

annotated with

“input-to-query”.
The TM TR executes the encoded protocol code by first searching for a channel read annotated

with “input-to-query”; if it finds one, it updates the annotation to “input-queried” and performs

the query. Otherwise all inputs from 𝑂min
1

have been queried. We thus enter a second phase, where

we search for a reaction that computes; if we find one, we perform the computation. Otherwise

the protocol computation terminates and we set the bit 𝑏 to 0. Our proof yields the following

polynomial:

𝑃 (𝑥,𝑦, 𝑧) B 𝑦2 + 8𝑦𝑧 + 15𝑧2 + (|Σ𝑓 | + |Σ𝑑 | + 1)𝑥 + 34𝑦 + 47𝑧 +
(|Punc| + |KeyWords| + |Σ𝑓 | + |Σ𝑑 | + 161)

□
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