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Abstract—Despite outstanding results, machine learning-based Android malware detection models struggle with concept drift, where
rapidly evolving malware characteristics degrade model effectiveness. This study examines the impact of concept drift on Android
malware detection, evaluating two datasets and nine machine learning and deep learning algorithms, as well as Large Language
Models (LLMs). Various feature types—static, dynamic, hybrid, semantic, and image-based—were considered. The results showed
that concept drift is widespread and significantly affects model performance. Factors influencing the drift include feature types, data
environments, and detection methods. Balancing algorithms helped with class imbalance but did not fully address concept drift, which
primarily stems from the dynamic nature of the malware landscape. No strong link was found between the type of algorithm used and
concept drift, the impact was relatively minor compared to other variables since hyperparameters were not fine-tuned, and the default
algorithm configurations were used. While LLMs using few-shot learning demonstrated promising detection performance, they did not
fully mitigate concept drift, highlighting the need for further investigation.

Index Terms—Android Malware; Machine Learning; Malware Detection, Concept Drift

1 INTRODUCTION

In today’s fast-paced and information-driven world, mobile
apps running on smart devices are central to our modern
life. According to Kaspersky, in the first quarter of 2025,
over 12 million mobile attacks involving malware, adware,
or potentially unwanted applications were blocked, and
more than 180,000 malicious and potentially unwanted in-
stallation packages were identified [1]. Additionally, accord-
ing to a report presented at Mobile World Congress 2025,
Trojan banker attacks on smartphones increased by 196%
compared to the previous year. Over 33.3 million global
attacks targeting smartphone users were detected, as cy-
bercriminals increasingly rely on mass malware distribution
to steal banking credentials [2]. However, mobile malware
is on the rise, highlighting the need to develop effective
approaches for efficiently analyzing, understanding, and de-
tecting such threats. Security analysis of mobile applications
focuses on understanding their behavior and intent to assess
whether an application is malicious with approaches that
use network traffic [3], inner software interactions [4], and
permissions utilization [5]. Each of these approaches can
be implemented using static, dynamic, and hybrid anal-
ysis to generate the intended mobile app artifacts. These
approaches are used to gain information and insights that
can be utilized for the classification task [6].

The static, dynamic, and hybrid techniques provide a
wealth of analysis modalities and data artifacts that can be
used to understand the intent of the software. Manually
sniffing through the generated artifacts is cumbersome and
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does not scale to the size of the problem at hand. To this
end, there has been a growing trend in utilizing machine
learning (ML) algorithms to automatically understand the
intent of mobile apps using static, dynamic, and hybrid
analysis artifacts as features. Those approaches have been
shown to have excellent accuracy in extrapolating malware
labels, sometimes reaching perfect accuracy. For example,
studies that used static features [7] achieved an accuracy of
0.978, while another study [8] reached an accuracy score of
0.959. The dynamic approach achieved high accuracy scores
of 0.97 in [9] and 0.99 in [10].

ML is heavily utilized to detect malware in the context
of Android apps, which brings about an arms race between
malware authors and defenders. With new malware sam-
ples and families emerging, ML algorithms are no longer
effective. This was shown by Chen ef al.,, who found that
after training an Android malware classifier on data for one
year, the F1 score dropped from 0.99 to 0.76 within just
six months of deployment in new test samples [11]. In the
real world, this idea is manifested in a conflicting reality
with the promised accuracy: despite the reported accuracy
of near-perfect detection, malware evolution is still a serious
threat. The main reason is that new malware strains fre-
quently adapt to maximize profit gains, variations emerge as
new vulnerabilities are uncovered, and adversaries quickly
change tactics when encountering defenses. Consequently,
the new test distribution diverges from the initial training
distribution, a phenomenon termed concept drift [12]. As
a result, the classifier performance slowly declines as the
model fails to classify the new sample accurately.

Concept drift has been recognized in the literature on
malware analysis and detection, and several preliminary
strategies have been developed to address the issue that
affects feature space or data space. There are two primary
strategies to address concept drift per the limited litera-
ture. The initial strategy involves creating systems that are
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inherently more resistant to drift by developing stronger
feature spaces. Due to their latent feature spaces, neural
networks have been proposed to offer better generalization
to new variants, thus showing greater resilience to concept
drift [13]. However, creating robust feature spaces remains
an unresolved research issue, and it is unclear whether a
malware representation immune to concept drift can be
developed [14]. Therefore, it is essential to understand the
factors that have a role beyond concept drift in ML and deep
learning detection models, a gap that this work recognizes
and understands by measurement.

Contributions. Our contributions are as follows:

1) Understanding the effect of feature type. We examine
the impact of different feature types—static, dynamic,
and hybrid—as well as the data collection environment
(real device vs. emulator) on resilience to concept drift,
using the Kronodroid [15] and Troid [16] datasets.

2) Investigating the effect of algorithm types on detection
models. To investigate the impact of different algorithms
on detection performance, we employed a variety of clas-
sifiers, including traditional ML models such as Random
Forest (RF) and Gradient Boosting (GB), as well as deep
learning models like Convolutional Neural Networks
(CNN) and Recurrent Neural Networks (RNN). We ana-
lyzed which algorithms demonstrate greater resilience to
concept drift over time. Additionally, we evaluated two
LLMs using a few-shot approach.

3) Understanding the impact of detection approach. We in-
vestigate the effects of various detection methods on con-
cept drift, including image-based techniques, semantic-
based approaches using Term Frequency-Inverse Docu-
ment Frequency (TF-IDF) with API calls, and numeric-
based methods (e.g., permissions and system calls).

4) Studying the role of temporal data imbalance We sim-
ulate concept drift using a cross-year strategy and show
how temporal imbalance affects model performance. We
evaluate balancing strategies and quantify their ability to
reduce drift effects over time.

Organization. The remainder of this paper is structured
as follows. Section 2 outlines the motivation and research
questions. The background on concept drift is covered in
Section 3. Related work is discussed in Section 4. Section 5
details the data collection and analysis methodology. Exper-
imental results and a discussion are in Section 6 followed by
the limitations in Section 7 and conclusion in Section 8.

2 MOTIVATION RESEARCH QUESTIONS

Android malware detection models often struggle with
concept drift, wherein the characteristics of malware evolve
over time, diminishing the effectiveness of existing mod-
els. As malware developers continuously introduce new
obfuscation techniques and functionalities, both static and
dynamic detection approaches experience a decline in ac-
curacy. This presents a critical challenge in maintaining the
security of Android devices, as current detection methods
fail to adapt to the evolving threat landscape. This research
investigates the impact of concept drift on various ML
models for Android malware detection, with the goal of
developing strategies to understand and mitigate its root
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causes. Specifically, our work seeks to answer the following
research question:

RQ. How prevalent is concept drift across different
ML-based Android malware detection approaches, includ-
ing both binary (detection) and multi-class (family-labeling)
classification settings?

We divide this question into three subquestions: RQ-
1.1. To what extent do different feature types and data
collection environments influence the resilience of detection
models to concept drift? RQ-1.2. To what extent do different
classification algorithms and detection approaches influence
model performance and resilience to concept drift? RQ-1.3.
How does temporal data imbalance contribute to concept
drift, and to what extent can data balancing techniques
mitigate its effects on detection accuracy over time?

Although the model demonstrated high accuracy on a
dataset without accounting for temporal factors, variations
in accuracy across classifiers stem from their inherent char-
acteristics and the features employed. These differences can
be mitigated through parameter tuning. The primary focus
is on the impact of temporal factors, particularly when
evaluating the model on new samples. For example, a model
trained on data from 2008-2015 may be tested on data from
2022. To investigate concept drift, we consider:

1) Ignoring temporal factor. Algorithms were tested on all
features with timestamps. Seven algorithms evaluated
static, dynamic, and hybrid features using machine and
deep learning methods and assessed them without drift.

2) Cross years strategy. Models were trained on data from
one year and tested on others (e.g., trained on data from
2008, tested on data from 2009-2020). Static, dynamic, and
hybrid features were evaluated, both with and without
balancing (i.e., Synthetic Minority Oversampling Tech-
nique, or simply SMOTE).

3) Incremental strategy. Models were trained incrementally
by adding years to the training set and testing on new
data. For example, the model trained on data from 2008-
2009 was tested on data from 2010-2020, then retrained
with 2010 added, and so forth.

4) Grouping strategy. Due to the lack of evenly distributed
samples across years, for malware family classification,
we grouped multiple years into subsets for training and
testing. In this strategy, we created three subsets of years:
2008-2012, 2013-2016, and 2017-2020.

3 CONCEPT DRIFT

Concept drift was first introduced in 1986 by Schlemmer
et al. [17] to refer to the unexpected change in the statis-
tical properties or defining features of the target variable
over time in non-stationary data distributions. This change
presents a significant challenge for ML models that assume
stationary input data distributions, where training and test-
ing data are expected to be very similar [18]. In real-world
scenarios, such as malware detection, the evolving data can
lead to concept drift, which impacts the accuracy of the
model over time. Concept drift can arise in multiple cases,
including changes in feature distributions.

Root Causes. Xiang et al. [18] illustrated three causes of
concept drift based on joint probability distribution.



o Virtual concept drift: This type of concept draft happens
in cases where the probability of x changes while the
probability of y given x remains unchanged. In this case,
the decision boundary remains unaffected, and only the
feature space changes. In the malware context, this cause
occurs when the malware evolves, and the adversaries
change the code of the app (static features) or behavior
(dynamic features). However, the malware still belongs
to the same type and family. The case is captured by
Pio(z) # Pu(x) and  Piy(y|z) = Pa(ylx).

e Real concept drift: When the probability of y given
2z changes while the probability of z remains con-
stant. This case can be expressed by Py(ylr) #
Py (y|z) and Pi(x) = Pi(z). This scenario directly
affects the ML model, changing both the feature space
and the decision boundary, for example, the emergence of
a new malware family.

o Hybrid concept drift: This scenario includes both virtual
and real concept drift and can exist in the data stream
simultaneously. This case can be expressed as Py(x) #

Py1(z) and Pyo(y|z) # P (ylz).

Concept Drift Types. Concept drift can take different shapes
over time: abrupt, incremental, gradual, and recurring
drift [18]. Each type represents a different shape of change
in the fundamental concept of the data stream. Abrupt drift
denotes sudden shifts from one concept to another in a short
time frame. However, incremental drift is similar but slow
and there are continuous shifts between concepts. Gradual
drift presents periodic shifts between concepts. The last type
is recurring drift, which includes the periodic reappearance
of previous concepts over time [18].

4 RELATED WORK
4.1 Malware Analysis and Detection

Malware detection can be carried out using three main
approaches: static, dynamic, or hybrid, and there has been
a plethora of work on each direction, which we review in
the following, then highlight the issue of concept drift in
malware analysis and detection.

Static Approach. The static analysis approach decompiles
and disassembles code without executing the application,
extracting features from APK files for malware classification.
Alzubaidi [6] identified three primary feature extraction
methods: signature-based, permission-based, and Dalvik
bytecode. Karbab et al. proposed a resource-based method,
categorizing it as semantic-based rather than Dalvik byte-
code [19]. Vishnoi et al. associated misuse detection with
knowledge-based methods, whereas anomaly detection
aligns with the behavior-based dynamic approach [20]. The
primary objective of static analysis remains feature extrac-
tion for malware detection models.

Signature-based method.. Signature-based detection creates
unique signatures for known malware families by extract-
ing features such as permissions and content strings [21].
Ngamwitroj et al. achieved 0.865 accuracy in malware de-
tection with a method using permissions and transmission
data from the manifest file [22]. Tchakounte et al. introduced
LimonDroid, which combines fuzzy hashing with YARA
rules, achieving 0.978 accuracy on 341 applications [7].
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Permission-based method. Ilham et al. extracted permissions
from the manifest file, and used them to achieve 0.98
accuracy using RF and SMO algorithms in detection [23].
Katos et al.’s method, based on the composition ratio of
permission pairs, achieved 0.97 accuracy on the Drebin
dataset [24]. Other studies combined permission features
with APK features, achieving varying accuracies [25], [26].

Resource-based method. This method relies on meta-data in
the manifest file. Urooj et al. showed that dangerous permis-
sions indicate malware behavior [25]. Millar et al. presented
a CNN-based network, achieving detection rates of 0.91
on Drebin and 0.81 on AMD datasets [27]. Dhalaria et
al. achieved 0.959 accuracy by combining features from
classes.dex and AndroidManifest files [8].

Semantic-based method. This approach uses various data
sources for semantic information extraction. Bai et al. pro-
posed a scheme converting network traffic into text for
feature representation [28]. Zhang et al. used the method-
level correlation of API calls for Android malware de-
tection [29]. Related to that is the image-based approach,
where static features are converted into grayscale images
for further processing [30]. Unver et al. transformed features
from Manifest.xml and DEX files into grayscale images for
malware detection [31]. Although efficient, the image-based
approach remains highly vulnerable to code manipulation
and obfuscation techniques that thwart detection [31]. Ha-
sib et al. proposed MCNN-LSTM, a hybrid model combining
CNNi s for spatial feature extraction and LSTMs for sequence
learning, achieving 0.9971 accuracy and a 0.98 F1 score
on multi-class text classification with imbalanced data [32].
However, their domain differs from ours, and performance
on imbalanced data in one context does not guarantee
similar results elsewhere. Our study of imbalanced data is
a step toward understanding its impact on concept drift,
not classification. While not applied to malware detection,
the architecture is transferable to static analysis tasks with
sequential patterns in tokenized code, API calls, or permis-
sions.

Transformer and LLM-based semantic methods. Recent advances
in Android malware detection increasingly use transformer-
based models and LLMs to extract contextual semantic fea-
tures, improving generalization to new malware. While not
explicitly targeting concept drift, these models offer contex-
tual awareness and adaptability useful for evolving threats.
MalBERT applies BERT to static features like permissions,
intents, and API calls, modeling apps as token sequences to
capture contextual relationships. It achieved 0.976 accuracy
in binary and 0.91 in multi-class classification [33]. Garcia-
Soto et al. used CodeT5-generated embeddings from decom-
piled Java code and trained an LSTM classifier, achieving
an average accuracy of 0.81 over ten runs despite sequence
length constraints [34]. Extending the semantic paradigm,
Li et al. proposed a multimodal malware detection approach
that fuses features from both source code and binaries. Java
code is segmented by GUI structure and processed using a
pre-trained language model, while binary code is converted
to grayscale images and analyzed with a fine-tuned vision
model. The method achieved 0.977 precision and 0.984
recall on two benchmark datasets [35]. Taking an alternative
approach, Tang et al. developed an unsupervised anomaly



TABLE 1: A comparison of a set of the literature works
on static, dynamic, and hybrid analysis. The static tech-
niques are broken down into signature (S), permission (P),
resources (R), semantic (Se), and image (I) based techniques.

Reference Year Approach Method Accuracy
Ngamwitroj et al. [22] 2018  Static (S) Statistical 0.865
Tchakounte ef al. [7] 2021  Static (S) Rule 0.978
Ilham et al. [23] 2018  Static (P) ML 0.98
Sahin et al. [40] 2021  Static (P) ML 0.960
Millar et al. [27] 2021  Static (P/R) ML 0.959
Shatnawi et al. [26] 2022 Static (P/R) ML 0.940
Bai et al. [28] 2021  Static (Se) DL 0.926
Xing et al. [30] 2022 Static (I) ML,DL 0.96
Unver et al. [31] 2020  Static (I) ML 0.987
Garcia-Soto et al. [34] 2022  Static (Se) DL, LLM 0.810

Li et al. [35] 2025  Static (Se+I) Multimodal Pr: 0.977
Bhatia et al. [41] 2017  Dynamic Statistical 0.88

Hu et al. [42] 2020 Dynamic ML 0.90
Zhang et al. [10] 2022  Dynamic Fuzzy 0.993
Mahindru et al. [43] 2017  Dynamic ML 0.997
Casolare et al. [44] 2021  Dynamic ML 0.89
Mahdavifar et al. [45] 2020 Dynamic ML, DL 0.978
Wit et al. [46] 2022 Dynamic ML 0.72
Tang et al. [36] 2014 Dynamic Unsupervised 0.995
Rahali et al. [33] 2021  Hybrid BERT 0.976
Wang et al. [47] 2022  Hybrid ML F1: 0.975
Tidke et al. [48] 2018  Hybrid ML NA
Zhang et al. [49] 2021  Hybrid ML 0.973
Amer ef al. [9] 2022  Hybrid ML 0.970

detection approach using low-level hardware performance
counters. Their method does not rely on labeled data, mak-
ing it inherently adaptable to evolving threats. Although not
framed in terms of drift, this unsupervised design aligns
well with the core goals of drift-resistant malware detection,
achieving up to 0.995 detection accuracy for shellcode injec-
tions [36]. Additionally, recent surveys by Wang et al. [37],
Al-Karaki ef al. [38], and Lin and Mohaisen [39] provide
broad overviews of LLMs in software and malware analysis.
While these works do not focus on concept drift, they
highlight key factors such as model robustness, zero-shot
generalization, and adaptability—challenges directly rele-
vant to designing effective drift-aware malware detectors.

Dynamic Approach. Dynamic analysis focuses on the run-
time app’s behavior. Features can be extracted at both
hardware (e.g., memory, CPU, sensors) and software (e.g.,
network traffic, API calls) [6]. Sihag et al. used kernel-
level Android logs to generate app signatures, identifying
malware based on dangerous permissions [50]. Bhatia et
al. applied statistical analysis to classify apps using system
calls [41]. Feng et al. developed EnDroid, extracting runtime
behavior to detect malware using the Chi-square test [51].

Hybrid Approach. Hybrid approaches combine dynamic
and static features for Android malware detection. In [47], a
hybrid method was proposed using static analysis to com-
pare permission patterns and dynamic analysis through the
memory heap to extract object relationships. This approach
outperformed others on a dataset of 21, 708 apps. Jang et al.
introduced Andro-Dumpsys, which combines malware and
malware creator data for detection. It uses volatile memory
acquisition and similarity matching with known malware
and creators, enhancing detection accuracy [52].

Summary. A summary of various static, dynamic, and hybrid
approaches from the literature is presented in Table 1. These
methods incorporate a range of techniques, from traditional
ML algorithms to deep learning, fuzzing, and rule-based
classification. In terms of performance, these approaches are
competitive, achieving top accuracy levels as high as 0.997
in certain cases.

4.2 Android Malware Concept Drift

In supervised ML, a classifier predicts a target variable using
a labeled dataset, where concept drift refers to changes in
the relationship between input and target variables over
time [53]. Research on Android malware detection high-
lights the effectiveness of ML in identifying mobile mal-
ware while showing the importance of addressing concept
drift [54]. Previous studies have explored concept drift in
both feature and data spaces. Chen et al. conducted exper-
iments to evaluate the impact of feature space drift com-
pared to data space drift on the deterioration of malware
detection models over time. Their findings were applied to
two malware detectors—one for Android and another for
PE (portable executable)—across different feature types and
configurations [55].

Guerra-Manzanares et al. studied the influence of con-
cept drift on Android malware detection by analyzing dy-
namic features (system calls) and highlighted the impor-
tance of timestamps in modeling concept drift [56]. Later, the
same author examined the temporal data of malware and
benign apps, developing a concept drift handling approach
using a classifier pool, emphasizing the role of timestamp-
ing in detection accuracy without optimizing performance
across feature sets [57]. Their work focused on addressing
concept drift by dynamically selecting the best classifier
ensemble for each period, with results showing that times-
tamping choices significantly impact detection accuracy.

Chow et al. proposed a framework for analyzing datasets
affected by concept drift, focusing on root causes, and
revealed that performance drops are mainly due to the
emergence of new malware families and the evolution of
others [58]. Adversarial attacks are shown to mislead mod-
els by modifying malware features to appear benign [59],
and Abusnaina et al. assessed the resilience of malware
detectors to adversarial attacks over time, showing that
such attacks can reduce accuracy by up to 0.70, taking into
account different drift directions influenced by time [60].

Ceschin et al. investigated the effect of concept drift on
Android malware classifiers using two datasets, DREBIN
and AndroZoo, collected over nine years, employing
Word2Vec and TF-IDF representations, along with adap-
tive random forest and stochastic gradient descent classi-
fiers [61]. Their results showed that malware evolution alters
data distribution, requiring continuous classifier updates
and feature extractors to maintain detection effectiveness.
Their proposed method improved the F1 score by 22.05% on
the DREBIN dataset and 8.77% on the AndroZoo dataset.

Qian et al. [62] introduced LAMD, a context-driven
framework for Android malware detection that addresses
challenges posed by distribution drift, code noise, and
structural complexity. LAMD isolates security-critical code
using static analysis and backward slicing, then applies
tier-wise code reasoning to guide an LLM from low-level
instructions to high-level behavioral patterns. Evaluated on
three time-sequenced test sets simulating increasing drift,
LAMD maintained an F1 score around 0.9, while classical
detectors like Drebin dropped sharply (from 0.813 to 0.616).

This study provides a comprehensive analysis of concept
drift across various factors as shown in Table 2, which
highlights the differences between this and related studies.



TABLE 2: Literature comparison: features (F); static (S), dy-
namic (D), and hybrid (H), environment for data collection
(E), balancing (B), machine and deep learning (MD), times-
tamps (T), and concept drift handling (A) are compared
across different approaches.
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5 DATA REPRESENTATION & LEARNING
5.1 Dataset Overview

KronoDroid. The KronoDroid dataset [15] combines static
and dynamic features from Android applications, sourced
from VirusTotal, Drebin, VirusShare, AMD (malware), and
APKMirror, F-Droid, MARVIN (benign). It spans 2008-2020,
with 489 extracted features. The emulator dataset contains
28,745 malware samples (209 families) and 35,246 benign
samples, while the real device dataset includes 41,382 mal-
ware samples (240 families) and 36,755 benign samples,
encompassing all emulator data. Static features include 185
attributes (permissions, intents), while dynamic features
consist of 288 system calls. KronoDroid also labels malware
families for both real and emulator samples. Fig. 1 shows
the yearly distribution of malware and benign apps.

Troid. Troid is a new Android malware dataset collected
from the Google Play Store between 2019 and 2023 [16].
This dataset consists of 5,028 malware samples, labeled
using VirusTotal and tracking their availability and removal
status on the Google Play Store. The dataset contains a set of
features, including privacy policies, metadata, control flow
graphs, permissions, API calls, strings, function names, hex
dumps, and labels. The distribution of samples in the years
is presented in Fig. 2. Two types of features were selected for
this dataset. First, the API call sequences for each applica-
tion were chosen. The number of benign apps was initially
4,459, which was reduced to 4, 146 after removing apps that
had no API calls. For malware samples, the count started
at 569 and decreased to 358. The second type of feature
was hex dumps, which were converted into grayscale and
RGB images for the classification task. The final number of
samples was 4, 457 benign and 566 malware samples.

5.2 Malware Family

To analyze concept drift in a multiclass classification setting,
we utilized the Knorodroid dataset, which includes 240
malware families from real devices and 209 from emulators.
Two strategies were used: (1) ignoring the temporal factor
when using RE, CNN, and RNN with static, dynamic, and
hybrid features on both real and emulator data, and (2) a
cross-year strategy, where data were divided into three time
periods (2008-2012, 2013-2016, 2017-2020) to assess temporal
shifts by training on a group and testing on others.

5.3 Balancing Algorithm

The datasets exhibit class imbalance, particularly when ap-
plying cross-year and incremental strategies, as illustrated
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in Fig. 1 and Fig. 2. Each year, the balancing algorithm par-
titions the data into features and labels, then determines the
number of malware and benign samples. If the sample count
for either class is below the maximum sample size (i.e., the
highest number of malware samples in a given year), the
algorithm employs SMOTE to augment the samples to the
maximum. Conversely, if the count exceeds the maximum,
RandomUnderSampler reduces the samples accordingly.
This process is applied iteratively to both malware and
benign samples. The balanced data for each year is then
aggregated to form the final balanced dataset. The overall
pipeline of this approach is depicted in Fig. 3.

5.4 Experiment Setup and Metrics

Environment. All experiments were conducted on Google
Colab, using the default cloud configuration and local
runtime with GPU support. Scikit-learn was used for ML
tasks, including classification reports and confusion matri-
ces, while Keras (running on TensorFlow) was used for deep
learning models. Additionally, we used two freely avail-
able instruct LLMs from the Together platform, accessed
via public APIs: LLaMA-3.3-70B-Instruct-Turbo-Free (Meta)
and Exaone-3-5-32B-Instruct (LG) [63]. For both models, the
maximum token limit was set to 5, and the temperature was
fixed at zero to minimize hallucinations.

Experiments Design. Each model was repeated with sub-
sets of features selected from the Kronodroid and Troid
datasets. Kronodroid features were used without any con-
version. In contrast, two types of features were used from
the Troid dataset: API call sequences, which were prepro-
cessed for use with natural language processing techniques,
and hexadecimal dumps, which were converted into images
for an image-based detection approach.

Parameters. The default settings were used for RF, KNN,
and GB, with a random state set to 42. The deep learning
models utilized binary cross-entropy for loss, the Adam
optimizer (learning rate = 0.001), early stopping, 15 epochs,
a batch size of 64, and a 0.10 validation split. Model perfor-
mance was evaluated using the accuracy and F1 score.

Architecture. The deep learning architectures are as follows:
CNN. A 1D convolutional Neural Network (CNN) architec-
ture was used, including two convolutional layers (64 and
128 filters) with ReLU activation and max pooling. This was
followed by a dense layer (128 units, ReLU), a dropout layer
(rate = 0.2), and an output layer using sigmoid for binary
classification and softmax for family classification.

RNN and Variants (LSTM, GRU). Recurrent Neural Network
(RNN), Long Short-Term Memory (LSTM), and Gated Re-
current Unit (GRU) models were employed, each beginning
with a 1D input layer (8 units) followed by a flattening
layer. A dense layer with 128 units and ReLU activation
was incorporated, along with a dropout layer (rate = 0.2).
The output layer utilized sigmoid activation for binary clas-
sification and softmax activation for family classification.

CNN-Troid. A 2D CNN architecture was employed for
image classification, comprising three convolutional layers
with 32, 64, and 128 filters, each followed by max pooling
layers. A flattening layer transformed the 2D feature maps
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Fig. 2: Troid dataset distribution.
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into a 1D vector, followed by a dense layer with 512 units
and ReLU activation. To mitigate overfitting, a dropout layer
with a rate of 0.2 was included. The final output layer
utilized sigmoid activation.

LLM-Based Evaluation. To assess the robustness of the LLM
under concept drift, we adopt the same cross-year strategy.
For each training year, a fixed set of 30 examples is selected
as few-shot demonstrations and included in the prompt as
labeled vectors. Each test sample is independently evaluated
by appending it to the same prompt structure, resulting in
one model query per test case.

LLM requests are executed in a stateless manner. Each

prompt is self-contained, and the model has no memory of
previous inputs or outputs. This ensures that predictions
are not influenced by prior queries and that the evaluation
reflects true generalization performance.
Token Usage Estimation. To estimate the computational ef-
ficiency of our LLM-based evaluation, we calculated the
approximate number of tokens processed during few-shot
classification across all temporal train-test configurations.

Each sample (either training or test) consists of a 30-
dimensional feature vector derived from PCA, with each
float formatted to 4 decimal places. On average, each float,
along with its delimiter, consumes approximately 2 tokens,
and the label line (LLabel: Malware or Label: Benign)
adds approximately 2 tokens. Therefore, each sample con-
tributes approximately 62 tokens.

usage across the entire evaluation setup is approximately:
156 x 19,220 = 2.99 million tokens.

In each request, we used a prompt for both training and
testing. For LLaMA, the training prompt was: “This sample
is an app feature vector of malware/benign.” During test-
ing, we passed an unseen sample using the prompt: “"Now
classify this sample: [sample vector]. Answer with exactly
one word: Malware or Benign.”

For Exaone, the training prompt was: “Answer with
exactly one word: Malware or Benign. Only return the word
— no punctuation, explanation, or extra text.” The corre-
sponding test vector was then appended for classification.

Evaluation Metrics. The evaluation metrics used in this
study include precision, recall, accuracy, and F1 Score.
1) Precision: Measures the accuracy of correctly classified
malware apps among all predicted positive cases. 2) Recall:
Represents the proportion of correctly identified malware
apps out of all actual malware cases. 3) Accuracy: Com-
putes the overall correctness of the model by measuring
the ratio of correct predictions to total predictions. 4) F1
Score: Provides a balanced measure of Precision and Recall
by calculating their harmonic mean.

6 EXPERIMENTS RESULTS AND DISCUSSION
6.1

In this set of experiments, we ignored the time and trained
and tested on all datasets, which is a common practice in the
literature. We use the results as a baseline to highlight the
impact of correct implementation to capture concept drift.
For the ML models, we split the dataset into 80% for training
and 20% for testing. The same percentage was used for the
deep learning models, with an additional 10% of the training
set used for validation.

Ignoring the Temporal Factor

KronoDroid Dataset. The results in Table 3 compare the
performance of RF, KNN, GB, CNN, RNN, LSTM, and
GRU on data collected from a real device. The classifiers
were evaluated for three feature extraction methods: static,
dynamic, and hybrid, with accuracy and F1 as metrics.

Takeaway 1. Both deep and shallow learning models per-
form well, although feature complexity plays a role, with
hybrid features yielding the most robust classification.



Changing the algorithm minimally impacted the accu-
racy when using the same features and ignoring time.

The results show the type of feature (static, dynamic,
hybrid) plays a significant role in determining the perfor-
mance of different classifiers. In the static feature category,
all classifiers achieve high accuracy, with RF and RNN
performing best, RF achieving an accuracy and F1 score
of 0.977 and RNN following at 0.970. In contrast, KNN
shows the lowest performance with static features, with
an accuracy and F1 score of 0.928. With dynamic features,
performance decreases for most classifiers: RF and RNN
deliver accuracies of 0.940 and 0.904, respectively, but KNN
shows a larger drop, with an accuracy of 0.892. The hybrid
feature approach, which combines static and dynamic data,
produces the best results, particularly for deep learning
models like LSTM and GRU, with an accuracy of 0.983. This
suggests that deep learning models better capture complex
patterns in hybrid data.

Emulator vs. Real Devices. Comparing the results of real
device and emulator, we observe some key differences in
performance across feature types as shown in Table 4. In
particular, we found that models trained on real device
data tend to perform slightly better than those trained on
emulator data, especially in the hybrid feature type. For
example, in real device data, RF achieved an accuracy of
0.986, while the performance dropped to 0.979 with the
emulator. Secondly, despite that, the deep learning models,
LSTM, GRU, and RNN, maintained high performance in
real and in emulators. For instance, RNN achieved identical
F1 scores of 0.982 for hybrid features in both environments.

Takeaway 2. Per our results, deep learning models are more
resilient to variations in real and emulator data collection
methods, with minimal impact on model accuracy.

Malware Family Classification. In our experiments, we se-
lected the top 10 families that dominate the dataset, re-
sulting in a total of 30,522 malware samples out of 41,382
for real devices and 21,831 out of 31,046 for emulators.
The results of the three classifiers are shown in Table 6.
The results indicate that models perform better on real
devices due to the more realistic execution environment,
with RF consistently achieving the highest scores. However,
dynamic analysis revealed a drop in performance across all
models. Despite this trend, RF maintained its lead, while
RNN outperformed CNN. The hybrid analysis significantly
enhanced the performance of all models compared with the
dynamic analysis. RF and RNN benefit the most from this
approach.

Takeaway 3. Static features exhibit greater resilience in
malware family classification, likely due to the consistent
behavior of malware across environments, where feature
convergence may influence performance.

Troid Dataset. The Troid dataset results, presented in Ta-
ble 5, compare various feature types (API call, grayscale, and
RGB images) under the same settings. Overall, RF performs
best with API call features, achieving 0.93 accuracy and an
F1 score of 0.64. However, its performance declines with
grayscale and RGB images, reaching 0.88 accuracy and a
significantly lower F1 score of 0.48.

7

GB performs better with RGB images, achieving 0.91 ac-
curacy and an F1 score of 0.64, compared to its performance
with API calls and grayscale images. Deep learning models,
including CNN, RNN, LSTM, and GRU, maintain stable
accuracy across feature types but generally exhibit lower
F1 scores, particularly with grayscale and RGB images. This
decline in F1 score is attributed to dataset imbalance, an
issue addressed in the next strategy.

Takeaway 4. Classifier performance varies based on feature
types and the chosen classification approach.

6.2 Cross Years Strategy

In this set of experiments, we investigate the drift in ac-
curacy of ML models over time. We trained the classifiers
for each algorithm on all samples from specific years and
tested the models on data from both future and past years
in our dataset. To avoid the impact of data imbalance,
we applied a balancing algorithm using undersampling or
oversampling, depending on the number of samples in each
year. In addition, to demonstrate concept drift and the effect
of time on model performance, we adopted various types of
features and approaches.

KronoDroid Dataset. This dataset contains samples sorted
over 13 years (2008-2020). The evaluation of each model
is based on feature types (static, dynamic, hybrid) and the
collection environment (real device vs. emulator).
Static Feature. Fig. 4 illustrates the time effect on RF model
performance, measured by accuracy and F1 score, be-
fore and after applying the balancing algorithm with real
and emulator data. The results reveal temporal variations
over 13 years, demonstrating how training in different
years impacts performance. Pre-balancing, significant fluc-
tuations appear, particularly when training on earlier years
(2008-2013) and testing on later years. This suggests that
despite achieving 0.977 accuracy with static features, the
RF model struggles to generalize across distinct temporal
contexts, indicating concept drift.
Balancing. Post-balancing results are consistent, especially
on the real device data, indicating that balancing the dataset
helps mitigate the negative impact of temporal drift but fails
to solve the problem entirely, as clearly shown in the results.
Emulation. Emulator data exhibit greater performance in-
stability, emphasizing the pronounced impact of time on
model performance, particularly without balancing. Even
after balancing, accuracy and F1 score fluctuate over time,
indicating concept drift as the model’s predictions degrade.
The instability and variations are captured in Fig. 4.
The pre-balancing box plots show wider spreads in both
accuracy and F1 scores for early years for emulator and
real device testing. These wide spreads highlight high in-
consistency and imply that models trained on older data
cannot reliably predict on newer samples, emphasizing tem-
poral instability. Moreover, while the spread of the results
becomes narrower, showing that balancing improves the
reliability of the classification, the persistence of variability,
irrespective of the data extraction mechanism, indicates that
time remains a factor that influences model performance.

Takeaway 5. Concept drift occurs in both real device- and
emulator-based data collection. However, real device-



TABLE 3: Performance of various
models with real device features.

TABLE 4: Performance of various mod- TABLE 5: Performance of various al-
els using emulator device features.

gorithms/features types over Troid.

Model Static Dynamic Hybrid Model Static Dynamic Hybrid Model  APIs Call Grayscale RGB
A F1 A F1 A F1 A F1 A F1 A F1 A F1 A F1 A F1

RF 098 098 094 094 098 098 RF 097 097 093 093 098 098 RF 093 064 0.88 048 0.88 048
KNN 093 093 090 090 092 092 KNN 094 094 0.88 087 090 0.90 KNN 092 054 085 049 089 047
GB 095 095 089 08 097 097 GB 095 095 08 084 096 096 GB 092 054 090 066 091 0.64
CNN 096 096 090 090 097 097 CNN 095 095 083 08 097 096 CNN 092 066 08 047 089 047
RNN 097 097 090 090 098 098 RNN 097 097 090 090 099 098 RNN 091 045 088 047 089 047
LSTM 097 097 093 092 098 098 LSTM 097 097 089 089 097 097 LSTM 092 051 088 047 089 047
GRU 097 097 093 093 098 098 GRU 097 097 093 093 098 098 GRU 092 048 088 047 089 047

TABLE 6: The performance for malware family classification
using various models, data collection type, and feature type.

Real Device Emulator
Model Static Dynamic Hybrid Static Dynamic Hybrid
A F1 A F1 A F1 A F1 A F1 A F1
RF 094 092 086 082 093 091 | 093 089 0.8 083 093 0.90
CNN 090 087 070 061 09 086 | 091 08 068 058 089 0.83
RNN 092 089 079 074 091 087 | 092 088 081 074 092 087

based data collection shows more resistance to concept
drift than emulators, especially after balancing.

Dynamic Features. The GRU model achieves high perfor-
mance on both real devices and emulators with dynamic
features. Fig. 5 illustrates the performance evolution under
the cross-year strategy, highlighting fluctuations in pre- and
post-balancing accuracies. These variations indicate concept
drift, particularly in the early years, where the accuracy
drops significantly when trained on older data and tested
on newer samples. Additionally, Fig. 5 further reflects this
drift, showing inconsistent performance over time due to
temporal shifts in the underlying data.
Takeaway 6. The models were susceptible to drift over time
for both static and dynamic data collection mechanisms.

Hybrid Features. The hybrid feature set nearly doubled in
size to illustrate concept drift across various algorithms
and its impact over time. When time was ignored, RNN
achieved the highest accuracy of 0.982 on both real devices
and emulators. Fig. 6 highlights drift trends by plotting
RNN model accuracy with hybrid features, revealing dis-
tinct pre- and post-balancing patterns. Before balancing,
accuracy fluctuates significantly over the years, particularly
early on (2008-2012), indicating performance instability.
Upon balancing, accuracy stabilizes across both environ-
ments, as the balancing technique mitigates some adverse
effects of the imbalance. However, variations persist, brac-
ing that while balancing improves stability, it does not
eliminate the drift’s impact on performance over time.

For other algorithms employing this strategy, the results
were similar, though detection accuracy varied across mod-
els. The Troid dataset was used, as the Kronodroid dataset
does not support the relevant features.

Takeaway 7. Expanding the feature set did not mitigate
concept drift. Additionally, while balancing improves
performance, it does not eliminate the drift’s impact on
accuracy.

LLM-Based Results. We evaluated two LLMs using few-
shot learning approaches. Each model was assessed using
three types of features: static (169 features), dynamic (288
features), and hybrid (457 features). Principal Component
Analysis (PCA) was applied to each feature set for dimen-
sionality reduction, with the number of components fixed at
30.

Figure 7 presents the F1 score distributions for all feature
types across real and emulator datasets. Since the primary
objective is to investigate whether LLMs can help mitigate
concept drift, we observe that drift effects remain visible
across different data types and feature categories. Although
the models were trained using few-shot samples, the results
demonstrate their ability to capture meaningful patterns
and perform reasonably well on the classification task.

Under emulator-based settings, Exaone consistently
achieved near-perfect median F1 scores (=1.00) across all
years and feature types(7d, 7h, 71). To validate this appar-
ent drift resilience, we repeated the experiments with an
increased training size (50/20 split). As shown in Figure 8,
Exaone maintained high performance overall. However, a
closer examination of the lower whiskers and outliers re-
veals performance degradation in specific years, indicating
that the model is not entirely immune to drift, especially in
more variable data contexts.

Takeaway 8. While LLMs show promise in few-shot mal-
ware detection, concept drift remains evident across
years and feature types. Moreover, their effectiveness
is constrained by token limits, restricting the feature
information that can be processed during inference.

Troid Dataset. Two sets of features were selected from Troid:
(1) the API call sequences were converted into vectors using
TF-IDF and then fed into classifiers, and (2) the hexadecimal
data from malware and benign applications, which were
used to generate grayscale and color images (RGB) for
image-based classification.

API Calls. Experimental results demonstrate the detection
performance of RF and GB models over time using API
call sequences, both before and after applying a balancing
algorithm. Fig. 9 shows that classification performance is
influenced by concept drift and class imbalance. Before
balancing, both models maintained consistent performance
due to the dominance of benign samples. After balancing,
accuracy fluctuated, indicating that while class imbalance
was addressed, instability was introduced. The F1 score, a
more comprehensive metric, exhibited greater fluctuation,
highlighting the algorithm’s impact on correctly identify-
ing both malware and benign samples. Post-balancing box
plots reveal a wider range, particularly for the F1 score,
suggesting increased variability in model performance. Ad-
ditionally, median accuracy and F1 score slightly declined,
indicating a potential trade-off between mitigating class
imbalance and maintaining overall performance.

Takeaway 9. Contrary to expectations based on prior results,
balancing API call features exacerbates the concept drift
issue, resulting in a decline in both F1 score and accuracy,
as evidenced by their average and variance.
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Fig. 4: Cross-year RF pre- and post-balancing results with static features using real and emulator data.
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Fig. 5: Cross-year pre- and post-balancing GRU accuracy with dynamic features from real/emulator data. (F1 in Fig. 15).
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Fig. 6: Cross-year pre- and post-balancing RNN accuracy with hybrid features from real/emulator data. (F1 in Fig. 16)
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Fig. 7: LLaMA (L) and Exaone (E) results with Static (S), Dynamic (D), and Hybrid (H) features using real/emulator data.

Image Features. This approach explores image-based detec-
tion to address concept drift, utilizing images derived from
hexadecimal values in both grayscale (GS) and RGB formats.
The CNN model’s performance before and after applying a
balancing algorithm is evaluated, with Fig. 10 providing a
detailed statistical comparison through box plots.

Pre-balancing accuracy and F1 scores for grayscale and
RGB images, shown in Fig. 10a and Fig. 10f, exhibit greater
variability and lower median values than post-balancing.
The observed difference in accuracy and F1 scores suggests
model bias toward the majority class due to imbalance,
evident in a parallel improvement pattern where higher

accuracy coincides with a decline in F1 scores. This confirms
improved performance while reducing its variability.

Another key observation in the image-based approach
is the model’s tendency to enter a “forgetting state,” where
accuracy increases over time while previously learned data
is lost. This phenomenon is particularly relevant in the
malware landscape, where older malware or its compo-
nents are repurposed in new attacks, impacting the model’s
effectiveness in detecting threats. This behavior is further
illustrated in Fig. 10d-Fig. 10h.

Takeaway 10. There is a slight correlation between algo-
rithm type and concept drift, regardless of whether
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models use shallow learning or deep learning.

6.3

To represent the real-world scenario of how data is collected
and used in ML-based detection pipelines, we implement
an incremental (or cumulative) strategy for model training
and testing. In this strategy, the model is trained on data
from a set of consecutive years and tested on the subsequent
years, one at a time. For instance, a model was trained with
data obtained from 2010 to 2015 (as a single fold) and tested
individually with 2016, 2017, and so forth. This is analogous
to training a model with data up to 2015 and operating it on
incoming data streams for the subsequent years.

Incremental Strategy

KronoDroid Dataset. All algorithms displayed the same
pattern with differences in accuracy based on the feature
types. This indicates that the overall performance is influ-
enced by the features’ nature rather than the used algorithm.
Static Features. Besides the model drift over time, additional
insights related to the real device and emulator data are
shown. These findings suggest that feature selection sig-
nificantly impacts both accuracy and F1 score. While some
differences exist, emulator data can reasonably approximate
real-world performance. The results emphasize the impor-
tance of feature engineering, addressing the class imbalance,
and accounting for emulator limitations when developing
and deploying time-dependent detection models. The out-
comes of this approach are presented in Fig. 11.

Dynamic Features. The results in Fig. 12 indicate the presence
of concept drift over time. The RF model, utilizing dynamic
features, is analyzed before and after applying a balancing
algorithm. In the real dataset, pre-balancing results show
significant fluctuations in accuracy and F1 score, with in-
consistencies as new data samples are introduced. Post-
balancing, these variations decrease, suggesting that the bal-
ancing algorithm mitigates concept drift, resulting in more
stable and reliable performance metrics. Additionally, em-
ulator data and pre-balancing results exhibit considerable
variations in accuracy and F1 score, showing the challenge
of maintaining consistent model performance as the data
evolves, further confirming concept drift impact.

Hybrid Features. The hybrid features outperform static and
dynamic features, achieving an accuracy of 0.99 (per Ta-
ble 3). Fig. 13 offers insights into concept drift over time
by illustrating how model performance evolves as training
data from different years is incrementally added. Notably,
it reveals fluctuations across training years, particularly in

earlier periods, highlighting performance instability and
reinforcing the presence of concept drift.

Takeaway 11. The incremental strategy for malware detec-
tion, reflecting real-world scenarios, clearly shows the
presence of concept drift and its impact on performance.

Troid Dataset. The results, presented in Table 7-Table 12,
demonstrate the effectiveness of incremental strategies us-
ing the GB model across different approaches, including se-
mantic and image-based methods (grayscale and RGB). Both
pre- and post-balancing results reveal concept drift under
various conditions. Among the evaluated methods, image-
based approaches exhibit the most stable performance post-
balancing, with accuracy and F1 scores approaching 0.8 in
2023, outperforming the semantic approach. This suggests
that RGB-based features may be more resistant to drift and
imbalance when combined with ML models. Conversely,
while the approach also stabilizes after balancing, it experi-
ences greater fluctuations and a notable accuracy drop from
0.96 to 0.55 (Table 7, Table 8), indicating that textual features
may be more susceptible to drift.

Takeaway 12. RGB-based features are more resistant to drift
and imbalance, whereas the textual features appear to be
more susceptible to drift.

6.4 Grouping Years Strategy

To classify malware into their respective families, we se-
lected only malware samples from the KronoDroid dataset.
The dataset was then divided into three groups based on the
distribution of malware applications over the years: Group 1
(2008-2012), Group 2 (2013-2016), and Group 3 (2017-2020).
Classification models were trained on one group and tested
on the others. The top ten malware families, selected from
both real devices and emulators, accounted for 0.75 and 0.71
of the samples, respectively.

The results indicate temporal drift across all models (RF,
CNN, and RNN). Models trained on older datasets, e.g.,
Group 1 (2008-2012), performed poorly when tested on
newer data (2017-2020), with noticeable declines in both
accuracy and F1 score, as shown in Fig. 14. Even models
trained on intermediate data (2013-2016) failed to maintain
performance, showing the continuous evolution of malware.

Static features generally outperformed dynamic features,
but hybrid features yielded further improvements. For
Group 1 (2008-2012), accuracy increased from 0.37 (static)
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to 0.47 (hybrid). Similarly, for Group 2 (2013-2016), accu-
racy improved from 0.46 to 0.54. However, for Group 3
(2017-2020), accuracy declined, indicating model drift.

Regarding the class imbalance, we notice that balancing
improved the F1 score, as illustrated in Fig. 14p. However,
the accuracy improvements were less pronounced and, in
some cases, declined post-balancing, as shown in Fig. 14k.
This is expected in imbalanced multi-class settings, where
balancing improves minority class predictions, which may
not be reflected in the overall accuracy. Since accuracy can
be misleading in such settings, the F1 score is a more appro-
priate performance metric. A key insight emerges from com-
paring real device and emulator data. Surprisingly, models
trained on emulator data sometimes outperformed those
trained on real device data in adapting to new malware
samples. This contrasts with previous binary classification
results, where real device data was more resistant to concept
drift than emulator data. This divergence underscores the
importance of selecting an appropriate data source for a
given task to mitigate drift.

Takeaway 13. The data source is crucial, and aligning it with
the task objective enhances model robustness.

Among the classification models, the differences in ad-
dressing temporal concept drift appear small but provide
valuable insights into their specific strengths. RNN showed
a slight edge in adapting to concept drift, particularly

e ssatne §%%@$E?E9§

(d) Post-Emu- ACC
Fig. 13: RNN accuracy with incremental training, real/emulator data, and hybrid features. (F1 in Appendix; Fig. 19)

(c) Pre-Emu-Acc.

when working with dynamic and hybrid features. CNN
also showed competitive performance, such as with hybrid
features, highlighting its ability to model complex features
effectively. Despite RF being a simpler algorithm, it out-
performed them in many scenarios and remained a solid
baseline, especially when using static features.

Takeaway 14. The small differences in performance across
classification algorithms propose that factors like feature
selection, data balancing, model adapting, and retraining
to address concept drift may be more crucial to attaining
strong performance than only selecting an algorithm

6.5 Discussion and Results Summary

The empirical evidence driven by our results strongly indi-
cates that concept drift is very prevalent in Android mal-
ware detection across various feature types (static, dynamic,
hybrid) and different representations such as image, textual,
or numeric data. Two datasets were evaluated using seven
ML algorithms and two LLMs to address research questions.
By this result, we answer RQ1 positively.

To answer RQ1.1, we summarize our findings as follows:

1) Feature Types. Static, dynamic, and hybrid feature types
were analyzed. Concept drift was evident across all types
under both cross-year and incremental strategies. Dynamic
features were more susceptible to drift, as they capture



TABLE 7: Incremental strategy using GB
and TF-IDF approach pre balancing.
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TABLE 8: Incremental strategy using GB  TABLE 9: Incremental strategy using GB
and TF-IDF approach post balancing. and gray-scale image pre balancing.

Test Year 2021 2022 2023 Test Year 2021 2022 2023 Test Year 2021 2022 2023
Train Years A F1 A F1 A F1 Train Years A F1 A F1 A F1 Train Years A F1 A F1 A F1
2019-2020 093 060 093 049 096 049 2019-2020 0.63 062 052 046 049 044 2019-2020 0.88 058 0.89 057 091 0.66
2019-2021 - - 093 049 096 0.54 2019-2021 - - 055 053 051 048 2019-2021 - - 090 066 093 0.75
2019-2022 - - - - 096 049 2019-2022 - - - - 055 0.51 2019-2022 - - - - 094 077

TABLE 10: Incremental strategy using TABLE 11: Incremental strategy using TABLE 12: Incremental strategy using

GB and gray-scale image post balancing. GB and RGB image pre balancing. GB and RGB image post balancing.
Test Year 2021 2022 2023 Test Year 2021 2022 2023 Test Year 2021 2022 2023
Train Years A F1 A F1 A F1 Train Years A F1 F1 A F1 Train Years A F1 A F1 A F1
2019-2020 059 052 054 042 057 047 2019-2020 089 062 089 062 092 0.69 2019-2020 062 056 062 056 067 0.62
2019-2021 - - 066 062 073 071 2019-2021 - - 091 0.66 094 075 2019-2021 - - 068 065 077 076
2019-2022 - - - - 0.80 0.80 2019-2022 - - - - 094 076 2019-2022 - - - - 0.81 0.80
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Fig. 14: Grouping strategy performance of RF pre- and post-balancing for real device (R) and emulator (E), and static (S),

dynamic (D), hybrid (H) features.

malware behavior and runtime characteristics, which evolve
over time. In contrast, static features remained more sta-
ble. As shown in Fig. 11b, models trained on static data
from 2008-2014 achieved 0.95 accuracy, whereas the RF
model trained on dynamic features during the same period
achieved only 0.76. For malware family classification, static
features remained more stable but were less responsive
to malware behavior changes. In contrast, dynamic and
hybrid features captured evolving patterns more effectively
but were more vulnerable to concept drift. On the other
hand, when using LLMs, hybrid features proved to be the
most robust-especially when combined with Exaone and
emulator data.

2) Data Collection Environments. Data were collected from
both real and emulated devices. Performance on real device
data was generally comparable to emulator data when
time was not considered. However, when accounting for
temporal variations, real device data demonstrated greater
resilience and exhibited less concept drift. In contrast, for
malware family classification, emulator data performed
slightly better than real device data, indicating its potential
for improved adaptability in family classification. For LLMs

trained with emulator data, they generally outperformed
those using real device data.
To answer RQ1.2 we found the following;:

3) Classifiers. Seven ML and deep learning models were
used to assess the impact of algorithms on concept drift.
While some influence was observed, it was not substantial
enough to be the primary driver of concept drift, as mea-
sured by performance metrics across both the KronoDroid
and Troid datasets. For the malware family, the impact of
drift varied based on feature type. RF performed best with
static features, while RNN excelled with hybrid features.
Both LLMs, LLaMA and Exaone, showed performance vari-
ation over time, indicating sensitivity to concept drift.

4) Detection Approach. Various Android malware detection
strategies were examined for concept drift. Numeric-based
approaches (e.g., binary values for requested permissions
and intents) were classified as static data. The dynamic
approach analyzed system call frequency using the Kro-
nodroid dataset. For the semantic approach, TF-IDF tech-
niques were applied to API calls, while the image-based
method examined grayscale and RGB images.

All methods were tested with nine classifiers to assess



the extent of concept drift. Results showed discrepancies
across approaches, with static data being the most resis-
tant, followed by dynamic data. RGB-based image methods
exhibited similar resistance to grayscale methods in cross-
year analysis but were more resilient under incremental
strategies. The semantic-based method was the most suscep-
tible to concept drift, although it outperformed image-based
methods in general. However, a significant gap remained
between its baseline performance and other strategies. For
multi-class, we found that malware family classification is
highly susceptible to concept drift due to the increasing
complexity of distinguishing evolving families. Both LLMs
showed promising results using the few-shot approach,
though their performance was affected by concept drift,
highlighting the need for more investigation.

To answer RQ1.3, we found that the effect of balanced
data generally improved the model’s reliability. Where no
significant differences between accuracy and F1 scores were
observed with the Kronodroid dataset before balancing,
the accuracy of the models improved after balancing the
data. The Troid dataset, which originally had high accuracy
and a low F1 score before balancing, was more consistent
with the F1 score, indicating an overall improvement in
model reliability. This suggests that the balancing algorithm
effectively addresses class imbalance, improving the results.
These findings emphasize the importance of balancing tech-
niques, although they do not solve the issue of concept drift.

7 LIMITATIONS AND FUTURE WORK

Malware Evolution and Concept Drift. Concept drift can
be categorized into several types based on how the data
distribution changes over time [18]. Incremental drift oc-
curs when the malware feature space evolves gradually—
for example, as new Android APIs or permissions are intro-
duced and slowly adopted by malware authors. In contrast,
gradual drift is observed when old and new behaviors co-
exist temporarily, such as when malware developers exper-
iment with both traditional and obfuscated payloads before
fully shifting to the newer technique. Abrupt drift results
from sudden changes, such as when Google deprecates
key permissions (e.g., WRITE_SMS, CALL_LOG in Android
9), immediately affecting feature availability and rendering
older model assumptions invalid. Finally, recurring drift
arises when older malware behaviors re-emerge, such as
the reappearance of SMS-based Trojans that had previ-
ously declined. A fully fledged line of analysis remains an
open direction for future work to comprehensively evaluate
how platform-level changes, particularly deprecated and
restricted permissions, contribute to concept drift.

Recommendation. While this study focuses on understand-
ing the factors that lead to concept drift, the results sug-
gest that some approaches, such as LLMs, show promising
potential for addressing it. Several studies have explored
transfer learning [64], [65], online learning [55], active learn-
ing [66], and unsupervised learning [36], which are suitable
directions for handling evolving data distributions. Addi-
tionally, it is worth investigating MLLMs and vision trans-
formers for a deeper analysis of feature representations and
drift-resilient detection. These approaches will be further
explored in future work using our experimental strategies.
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Threats to Validity. Despite the promising results, several
limitations must be addressed in future research.

External Validity One limitation of this study is the limited
size of the Troid dataset, particularly in terms of mal-
ware samples. The dataset includes 4,146 benign apps
for API call features and only 358 malware samples. For
the hex dump features, there are 4,457 benign samples
and 566 malware samples. This imbalance may limit the
generalizability of our findings to real-world malware
detection scenarios in the context of TF-IDF and image-
based approaches. To mitigate this issue, we applied
balancing techniques and relied on the F1 score to better
reflect performance on unbalanced data. However, the
relatively small malware sample may still impact the
model’s ability to generalize.

Internal Validity Another potential limitation of this study
is the lack of hyperparameter tuning for the learn-
ing models. Instead of optimizing hyperparameters for
each algorithm, we used default configurations, which
may introduce bias in the results. Some models may
inherently perform better under default settings, while
others might require fine-tuning to achieve better per-
formance. This could impact the comparative evalua-
tion of the models, leading to unintended advantages or
disadvantages for specific algorithms. To mitigate this,
we included a diverse set of nine models—three ML al-
gorithms, four deep learning models, and two LLMs—to
observe consistent trends across different approaches.
However, future work could explore the impact of
hyperparameter optimization on model stability and
effectiveness in addressing concept drift.

8 CONCLUSION

In this work, we examined the causes of concept drift in
Android malware detection using KronoDroid and Troid
across diverse detection approaches—static, dynamic, hy-
brid, textual (TF-IDF), and image-based. The results show
that concept drift consistently degrades performance across
all models, independent of algorithm or feature type. Mod-
els trained on older data perform poorly on newer samples,
primarily due to distribution shifts rather than algorith-
mic flaws. While data balancing offers partial relief, it is
often inadequate or even harmful. LLMs with few-shot
learning show promise but fall short of fully addressing
drift. Additionally, multi-class classification, which requires
distinguishing malware families, exacerbates drift effects
compared to binary classification, increasing model sensi-
tivity to feature shifts.
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APPENDIX A
F1 SCORE FOR CROSS-YEAR STRATEGY

Figure 15 presents the cross-year performance of GRU
models trained with dynamic features under four
configurations—pre- and post-balancing on both real and
emulator data—measured by F1 scores across training years.
In Fig. 15(a), Pre-Real-F1, the F1 scores range approximately
from 0.2 to 0.8, with notable fluctuations across training
years. Earlier years (2008-2012) yield lower and more dis-
persed scores, while models trained on mid-range years
(2015-2018) tend to show improved and more stable perfor-
mance. However, high variance and numerous outliers per-
sist throughout, indicating inconsistent generalization. After
applying class balancing, Fig. 15(b), Post-Real-F1, shows
clear improvement: median F1 scores increase, and vari-
ance across test years decreases. This stability persists until
around 2018, beyond which performance starts to degrade,
potentially due to emerging concept drift or data quality
issues in recent years.

Fig. 15(c), Pre-Emu-F1, exhibits similar trends using em-
ulator data, though with even lower performance in earlier
years—suggesting emulator data may suffer more from
representation noise. Again, models trained between 2013
and 2017 offer better median F1 scores, with reduced spread.
Upon applying balancing, Fig. 15(d), Post-Emu-F1, mirrors
the improvements seen with emulator data. Median scores
rise notably (often exceeding 0.7), and the interquartile
ranges shrink (IQR), indicating enhanced consistency. No-
tably, balancing has a more dramatic impact on emulator
data than real data, highlighting the former’s sensitivity to
class imbalance. Across all settings, the training years 2019
and 2020 remain the most volatile, suggesting these peri-
ods may reflect significant data shifts or evolving malware
behaviors that challenge temporal generalization. Overall,
class balancing significantly improves model robustness
across both data sources, with post-balancing emulator per-
formance approaching that of real data, especially for mid-
range training years.
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Fig. 15: Cross-year GRU pre- and post-balancing perfor-
mance in terms of F1 scores with dynamic features using
real and emulator data.
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Figure 16 presents the cross-year F1 score performance of
RNN-based models trained with hybrid features under four
configurations: pre- and post-class balancing using both real
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Fig. 16: Cross-year RNN pre- and post-balancing F1 score
results with hybrid features using real and emulator data.
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and emulator data. In Fig. 16(a), Pre-Real-F1, the F1 scores
show substantial variability across training years, ranging
from as low as 0.2 to as high as 0.9. Earlier years (2008-2011)
exhibit poor and inconsistent performance, whereas mid-
range years (2013-2017) show higher medians and reduced
variance, indicating improved generalization. After balanc-
ing, Fig. 16(b), Post-Real-F1, demonstrates a marked im-
provement, with median F1 scores approaching or exceed-
ing 0.9 in many years and significantly reduced IQR. How-
ever, a noticeable decline appears in 2019 and 2020, pointing
again to potential temporal drift.

Fig. 16(c), Pre-Emu-F1, reflects similar dynamics with
emulator data: earlier years yield unstable and low per-
formance, while mid-to-late years improve markedly. Post-
balancing results in Fig. 16(d), Post-Emu-F1, show consis-
tently high F1 scores (often above 0.8) with reduced vari-
ance, confirming the benefits of class rebalancing on emula-
tor data. Although performance in recent years (2019-2020)
still lags slightly, the RNN appears generally more resilient
than in the pre-balancing scenario.

Compared to the GRU-based results in Figure 15, the
RNN with hybrid features demonstrates higher peak F1
scores, especially after balancing, and generally tighter dis-
tributions. While both architectures benefit from class bal-
ancing, RNNs paired with hybrid features tend to achieve
better stability and top-end performance across a wider
range of training years. Nevertheless, like GRUs, RNNs are
not immune to recent-year performance drops, underscor-
ing the persistent challenge of drift-aware generalization.

APPENDIX B
F1 SCORE FOR INCREMENTAL STRATEGY

Figures 17-19 present the F1 score distributions for the
RF, GRU, and RNN models under an incremental training
strategy across training years, evaluating both real and
emulator data before and after class balancing. In Figure 17,
the RF model trained with static features shows high and
stable performance across time. In Fig. 17(a), Pre-Real-F1,
the model starts with moderate performance (F1~0.7) and
gradually improves to near-perfect scores (F1~0.99) by the
later years. Fig. 17(b), Post-Real-F1, confirms this trend with
reduced variance and consistently strong scores across all

17

years. The emulator-based settings in Fig. 17(c)—(d) show
similar gains, although the variance is notably higher before
balancing. After balancing, F1 scores stabilize, indicating
improved emulator generalization.

In contrast, Figure 18 shows the GRU model trained with
dynamic features. Fig. 18(a), Pre-Real-F1, reveals an upward
trend in performance as more training years are accumu-
lated, though variance remains high. Fig. 18(b), Post-Real-
F1, shows improved medians and compressed box ranges,
reflecting enhanced learning consistency due to balancing.
The emulator-based settings (Fig. 18(c)—(d)) again highlight
the benefits of balancing, where pre-balancing F1 scores
fluctuate more wildly, while post-balancing yields smoother,
upward trajectories with less dispersion.

Figure 19 illustrates similar incremental training re-
sults for the RNN model using hybrid features. Fig. 19(a),
Pre-Real-F1, starts from modest performance (F1~0.5) and
climbs to around 0.9 as training years accumulate, with
noticeable year-to-year variance. Fig. 19(b), Post-Real-F1,
improves both central tendency and spread, showing that
balancing increases robustness. Fig. 19(c)—(d) demonstrate
similar emulator dynamics: pre-balancing performance is
noisy and less predictable, while post-balancing greatly
enhances consistency and average F1 scores.

Comparatively, the RF model benefits most prominently
from the incremental strategy, achieving near-perfect scores
and low variance with static features. Both GRU and RNN
models show progressive gains over time but with more
fluctuation, especially when using emulator data. Class bal-
ancing consistently improves all models across data types
by reducing variance and boosting median performance.
However, the absolute F1 scores and convergence speed
differ across models and feature types: RF with static
features reaches saturation quickly, while GRU and RNN
require more training years to stabilize, particularly under
emulator data where performance gains are more gradual
and sensitive to imbalance. RNN exhibits more stable and
higher performance than GRU, especially after balancing,
indicating better generalization with hybrid features.
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Fig. 17: The performance of RF algorithm pre- and post-
balancing on real and emulator data with static features.
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Fig. 18: The performance of GRU algorithm pre- and post-
balancing on real and emulator data with dynamic features.
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Fig. 19: RNN performance under incremental training with

real and emulator data and hybrid features.
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