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Abstract

The increasing adoption of Cloud-based Large Language
Models (CLLMs) has raised significant concerns regarding
data privacy during user interactions. While existing ap-
proaches primarily focus on encrypting sensitive information,
they often overlook the logical structure of user inputs. This
oversight can lead to reduced data utility and degraded perfor-
mance of CLLMs. To address these limitations and enable se-
cure yet effective interactions, we propose Semantic Encryp-
tion (SE)—a plug-and-play framework designed to preserve
both privacy and utility. SE consists of two key components:
Semantic Encoding and Semantic Decoding. In the encoding
phase, a lightweight local model transforms the original user
input into an alternative semantic context that maintains the
original intent and logical structure while obfuscating sensi-
tive information. This transformed input is then processed by
the CLLM, which generates a response based on the trans-
formed semantic context. To maintain a seamless user expe-
rience, the decoding phase will reconstruct the CLLM’s re-
sponse back into the original semantic context by referencing
the locally stored user input. Extensive experimental evalu-
ations demonstrate that SE effectively protects data privacy
without compromising data utility or user experience, offer-
ing a practical solution for secure interaction with CLLM:s.
Particularly, the proposed SE demonstrates a significant im-
provement over the state-of-the-art InferDPT, surpassing it
across various evaluated metrics and datasets.

Introduction

Cloud-based Large Language Models (CLLMs), which offer
services such as data analysis through Application Program-
ming Interfaces (APIs), are increasingly integrated into ev-
eryday life. However, transmitting data to the cloud via APIs
for processing and analysis by CLLMs has raised signifi-
cant concerns regarding data privacy. In particular, service
providers may collect user data for model training purposes,
further amplifying the risk of privacy leakages (Wang et al.
2024; Wu et al. 2024; Yang et al. 2023).

An increasing body of research has focused on pro-
tecting user data privacy during interactions with CLLMs,
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John 187 John blood reached level and 195 mmol were the 2022 2021 reached
quarter mmol / Lin 2022, and 7.5 mmol / L in 2023 was,

ﬁ Differential Privacy

John Smith's blood glucose measurements were 4.1 mmol/L in 2021, 5.8 mmo
/L in 2022, and 7.5 mmol/L in 2023.

@ Semantic Transformation

The annual average PM2.5 concentration in Greenfield City was 4.1 pg/m? in
2021, 5.8 pg/m? in 2022, and 7.5 pg/m? in 2023.
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Figure 1: A comparative case study of traditional encryp-
tion methods and the proposed semantic transformation in
the context of interactions with CLLMs. It is important to
emphasize that the examples illustrated in the figure are en-
tirely synthetic and do not contain any personal or sensitive
information.

with particular emphasis on encryption-based techniques
(Yan et al. 2024; Yao et al. 2024; Feretzakis et al. 2024).
While encryption-based techniques such as differential pri-
vacy (Hoory et al. 2021; Du and Mi 2021) provide strong
privacy guarantees by introducing randomness, they often
come at the cost of reduced data utility, thereby impairing
the CLLMs’ ability to interpret and analyze user inputs ef-
fectively. As illustrated in Figure 1, the orange box presents
a patient’s blood glucose test record. In the upper section
of the figure, the input is encrypted with a differential pri-
vacy mechanism. Although the differential privacy method
effectively safeguards data privacy, it substantially distorts
the original intent and logical structure of the input, result-
ing in a complete loss of utility and hindering the CLLM’s
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ability to interpret user input.

Similar to the common practice of safeguarding privacy
on public platforms by obscuring only personally identifi-
able information—such as blurring faces in photographs—it
may be unnecessary to encrypt the entirety of user input to
ensure data privacy (Chen et al. 2023a; Dong et al. 2024),
thereby helping to preserve the input’s logical structure and
the user’s intent. Motivated by this observation, we intro-
duce semantic transformation that analyzes the original user
input and transforms it into a logically consistent but se-
mantically different representation. As illustrated in the light
green box of Figure 1, semantic transformation converts the
patient’s blood glucose test record into a context represent-
ing annual average PM2.5 concentration record. This trans-
formation can preserve the data utility for tasks such as trend
analysis, while fully obscuring all the patient’s information,
thereby protecting data privacy.

Based on the idea of semantic transformation, we pro-
pose Semantic Encryption (SE) that comprises a Semantic
Encoder and a Semantic Decoder. More specifically, the Se-
mantic Encoder transforms the original input into an alter-
native semantic context while preserving its underlying log-
ical structure. Correspondingly, the Semantic Decoder re-
constructs the CLLMs’ response based on the original in-
put, restoring it to the original semantic context. To improve
the deployability of the SE across heterogeneous devices,
efficient and lightweight local models are utilized for both
the encoder and decoder. Furthermore, we propose Semantic
Distillation, a technique that enables local models to effec-
tively learn and replicate the semantic encoding and decod-
ing capabilities of CLLMs. Since all user interactions with
the CLLMs are preserved within their original semantic con-
text, the operation of the SE remains virtually imperceptible
to users.

This paper proposes a method for protecting data privacy
while simultaneously preserving data utility and ensuring a
seamless user experience during interactions with CLLMs.
The primary contributions of this work are summarized as
follows:

* We discuss the challenges of balancing data privacy and
data utility in interactions with CLLMs, which traditional
encryption methods fail to overcome.

* We propose SE that protects data privacy while preserv-
ing data utility by transforming the user’s input into se-
mantically distinct yet logically equivalent contexts.

» Extensive experiments demonstrate that the proposed
method effectively protects data privacy, preserves data
utility, and maintains user experience.

Related Work

How to protect user privacy during interactions with CLLMs
is gradually becoming a hot topic in current research. Pri-
vacyRestore trains restoration vectors for each privacy span
to alleviate insufficient privacy protection with performance
degradation (Zeng et al. 2024). Some studies protect data
privacy by modifying user input keywords using local dif-
ferential privacy mechanisms; however, this often leads to
a degradation in data utility (Li, Tan, and Liu 2023; Hoory

et al. 2021; Du and Mi 2021). InferDPT (Tong et al. 2025)
leverages differential privacy to safeguard data privacy while
concurrently training a decoder to reconstruct the encrypted
content. Although this approach achieves a degree of bal-
ance between data utility and privacy preservation, it in-
evitably incurs degradation in the logical structure of inputs.

Pretrained large models possess extensive prior knowl-
edge and strong reasoning capabilities but face challenges in
being deployed across a wide range of devices (Chen et al.
2024b,a). In contrast, although small models have limited
performance, they are easier to deploy. Thus, some stud-
ies have attempted to develop various techniques to enable
small models to acquire the capabilities of pretrained large
models (Fang et al. 2025; Chen et al. 2025).

In this paper, we propose a plug-and-play framework
where local small models transform the original input from
users and reponses from CLLMs.

Methodology

As illustrated in Figure 2, the proposed Semantic Encryption
(SE) framework enhances data privacy by transforming user
inputs into a logically consistent but semantically different
representation, thereby preserving both privacy and utility.
The response from the CLLM is subsequently mapped back
to the original semantic context with a Semantic Decoder,
enabling seamless and effective user interaction. In order to
support a smooth user experience, Semantic Distillation is
introduced within the SE, allowing a lightweight local model
to approximate the semantic transformation capabilities.

Semantic Encoding

The Semantic Encoder Fsgp is implemented with a
lightweight local model to transform the original input T,
into a logically consistent but semantically different repre-

sentation 7, in other contexts. However, effectively map-
ping original semantic contexts to alternative ones necessi-
tates extensive prior knowledge and strong logical reason-
ing capabilities, which lightweight models often lack. To ad-
dress this limitation, we propose Semantic Distillation that
extracts the prior knowledge and semantic transformation
capabilities of CLLMs and distills them into a lightweight
model.

Specifically, to enable F'sg to acquire the semantic trans-
formation capability of CLLMs Fr, 15 across diverse con-
texts, we first employ a random number generator to produce
random number list A with random lengths and values:

A =Jay,a9,...,a,],
where 1 ~ U (Nmin, Mmax ), (D
a; ~ U Vmin, Umax); t=1,2,...,n

where the list length n follows a discrete uniform distribu-
tion U/ within the range [1min, "max|, €ach element x; is ran-
domly sampled from a given value range [Vmin, Vmax], fol-
lowing a uniform distribution. The generated random num-
ber list, composed of various numerical combinations, is de-
signed to stimulate the CLLM to produce a wide range of
semantic contexts, thereby exploring more possibilities for
semantic transformation.
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Figure 2: The proposed Semantic Encryption (SE) framework. SE consists of Semantic Encoding and Semantic Decoding,

which focus on performance and user experience, respectively.

Then, For 1 can generate original input 7, based on the
list A:

T, = Fernm (A, Po) )
where Py is the prompt for generating 7,. Intuitively, the
greater the diversity of T, the more beneficial it is for train-
ing a general-purpose semantic encoder. However, due to
limited computational resources, this paper focuses solely
on task-specific semantic encryption. That is, if existing
datasets for different tasks are available, A in Equation 2
will no longer be necessary, as T, in this case directly serves
as the training data.

Based on the CLLM’s extensive prior knowledge and
powerful reasoning capabilities, the T, can be transformed
to alternative semantic contexts.

T, = Ferom(T,) 3)

By constructing (7, ﬁ) pairs with Equation 3, we can ex-
tract the contexts knowledge and semantic transformation
capability embedded in the CLLM. Subsequently, we fine-
tune the lightweight local model with (7, T,) pairs to en-
able effective transformation of user inputs by the following
equation:
min L(Fsg(T,),T,) “)
Fse
After obtaining the Semantic Encoder by Equation 4, we
can send the transformed input to the CLLM to obtain cor-
responding response 7;.:
T, = Fernm(To) (%)

The response f from the CLLM remains within the trans-
formed semantic context.

Semantic Decoding

Semantic Encoding can protect data privacy and preserves
data utility by transforming the original input 7}, to alter-
native semantic contexts i However, this also causes the
CLLM’s responses 1. to remain within the transformed se-
mantic context, potentially impacting the user experience.
To address this issue, we introduce Semantic Decoding into
the SE framework. By training an efficient Semantic De-
coder, SE)\enables the transformation of the CLLM’s re-
sponses 7;. back to the original semantic context 7..
Specifically, similar to Semantic Encoding, we provide
the CLLM F¢ 1 with the original 1nput T, and response

Tr, enabling it to restore the response T to the original se-
mantic context. This process can be formally expressed as:

T. = Forom (T, Ty) (6)

Subsequently, based on the (To,ﬁ,ﬁ, T,) quadruple, we
train the Semantic Decoder Fisp by:

mln ‘C(FSD (TO71/_'\07 1/_'\1")3T7) (7)
Fsp

Similar to 7}, in Equation 2, if datasets for different tasks are
available, T,. in Equation 7 can be directly replaced by the
labels provided in the datasets.

The whole training process of SE is summarized in Algo-
rithm 1.

Can SE protect data privacy?

In this section, we demonstrate that semantic transformation
achieved through SE can effectively protect data privacy in
the sense of Shannon.



Algorithm 1: Training phase of Semantic Encryption.

Generate diverse context representations ﬁ with CLLMs
based on the training data 7.

Train Semantic Encoder by Equation 4 with 7T}, and T;
Process and analyze ﬁ with the CLLM to obtain the re-
sponse ﬁ

Treat labels 7', in the training data as response in the orig-
inal semantic context.

Train Semantic Decoder by Equation 7 with T, j’;, j’:
and T;,.

Let M denote the orginal context, i.e. the set of all pos-
sible representations in context H. Any m € M represents
one such description. N is the numerical data (e.g. measure-
ments or statistics) that remain unchanged during transfor-
mation. C' denotes the ciphertext space, i.e. the set of all
possible representations in context B. We define a key space
K, where each key £ € K specifies a bijective “semantic
mapping”, i.e. | K| = |C|. Besides, we interpret ® as the
encryption function under key &, and denote:

E, .- M—-C ®)

where k is chosen uniformly at random from /.
For any fixed m € M and ¢ € C,
Pr(Ex(m) = ¢)Pr(M =m)
Pr(C =¢)
=Pr(M =m)

Pr(M=m|C=c) =

&)
so the ciphertext C reveals no information about M. Fur-
thermore, since IV is independent of the mapping K and is
revealed unchanged in this paper, the joint output (C, N)
satisfies

I(M;C,N) =0 (10)

where I(-; -) denotes mutual information. Thus, according to
10, the proposed SE can protect data privacy for the original
content.

Experiments

In our experiments, we aim to (1) validate that SE can pre-
serve data utility, (2) validate that SE can maintain the user
experience, (3) validate that SE can protect data privacy,
(4) demonstrate the specific workflow of SE through a case
study,

Datasets and Settings

In this work, we conduct experiments on three mathematical
reasoning datasets and one natural language inference (NLI)
dataset:

Gsm8K (Cobbe et al. 2021): Gsm8K is a high-quality bench-
mark dataset comprising elementary school-level math word
problems, with 7,473 training samples and 1,319 testing
samples. Each problem necessitates multi-step arithmetic
reasoning, typically involving between 2 and 8 steps.

Table 1: Data utility after user input encrypted by different
privacy protection methods. The values in the table represent
the accuracy of the CLLM in handling encrypted queries.
For Gsm8K and Metamath, the values denote the probabil-
ity that the CLLM generates the correct output. For ANLI,
the values indicate the probability that the CLLM correctly
identifies the underlying logical relationship.

Method Gsm8K  Metamath ANLI

SANTEXT 0.00% 0.08% 33.38%
SANTEXT+ 1.29% 3.36% 33.47%
CUSTEXT 4.09% 17.78% 34.59%
CUSTEXT+ 7.66% 23.64% 42.53%
HaS 1.97% 16.46% 45.59%
SE(Ours) 83.02% 84.08%  55.78%

OrcaMath (Mitra et al. 2024): OrcaMath is a synthetic
dataset comprising mathematics problems reformulated us-
ing the GPT-4-Turbo model within the Agent-Instruct
framework. From this dataset, 10,000 samples are selected
for training and 5,000 samples for testing.
MetaMath (Yu et al. 2023): MetaMath is an augmented
dataset derived from Gsm8K and MATH (Hendrycks et al.
2021) through techniques such as problem restatement and
reverse reasoning, comprising a total of 395,000 samples.
From this dataset, 10,000 samples are used for training and
5,000 for testing.
ANLI (Nie et al. 2020): ANLI is a NLI dataset constructed
with multi-round human-and-model-in-the-loop adversarial
training. It comprises three label categories: entailment, neu-
tral, and contradiction. From this dataset, 15,000 samples are
used for training, while 3,200 samples are used for testing.
We compare the proposed Semantic Encryption (SE)
method with several differential privacy-based methods, in-
cluding SANTEXT, SANTEXT+ (Yue et al. 2021), CUS-
TEXT, and CUSTEXT+ (Chen et al. 2023b), as well as HaS
(Chen et al. 2023c) and InferDPT (Tong et al. 2025), which
employs an encoder-decoder architecture. In all the follow-
ing experiments, the CLLM is Qwen-Plus, and both the Se-
mantic Encoder and Semantic Decoder in SE are Qwen3-
0.6B (Yang et al. 2025). We train models with LoRA (Hu
et al. 2022), the rank is 8, the learning rate is 2e-5, the batch
size is 2. All experiments are conducted on a single NVIDIA
RTX A6000 GPU. For more details on the experimental set-
tings, please refer to the accompanying code. All prompts
used in the experiments are provided in the Appendix A.
The code and data for the proposed method are provided for
research purpose '

Data Utility of Encrypted User Input for CLLMs

In this section, we evaluate the effectiveness of CLLM in
handling queries encrypted by different methods across var-
ious tasks to verify that SE can preserve data utility.

As shown in Table 1, SE consistently achieves the best

!Code is included in the supplemental material. Code will be
released upon the paper acceptance.



Table 2: Impact of various privacy protection methods on user experience. All methods encrypt the user queries prior to process-
ing by the same CLLM. The responses returned by the CLLM are subsequently post-processed according to the specifications
of each method. Finally, the differences between the user-received responses and manual annotations are analyzed to evaluate
the impact of the various encryption methods on user experience. BLEU denotes the average score from BLEU-1 to BLEU-4.
BERTScore (Zhang et al. 2019) quantifies the overall similarity between the responses and manual annotations.

Dataset | Method | BLEUT METEOR?  R-11 R-2% R-Lt BERTScoret
SANTEXT 0.0572 0.0509 0.0939 0.0012 0.0646 0.3676
SANTEXT+ | 0.0728 0.0987 0.1323 0.0141 0.0899 0.4148
CUSTEXT 0.0972 0.2061 0.2197 0.0486 0.1372 0.5166

Gsm8K CUSTEXT+ | 0.1146 0.2793 0.2869 0.0799 0.1741 0.5758
HaS 0.1299 0.2716 0.3713 0.1120 0.2385 0.6293
InferDPT 0.1947 0.3687 0.4996 0.2139 0.3443 0.7149
SE (ours) 0.2294 0.4368 0.5380 0.2524 0.3682 0.7243
SANTEXT 0.0133 0.0379 0.1255 0.0023 0.0609 0.3827
SANTEXT+ | 0.0452 0.0898 0.1859 0.0282 0.1019 0.4390
CUSTEXT 0.1216 0.2266 0.3340 0.1032 0.1936 0.5757

OrcaMath | CUSTEXT+ | 0.1687 0.3091 0.4173 0.1590 0.2449 0.6354
HaS 0.2019 0.3171 0.4933 0.2077 0.2850 0.6628
InferDPT 0.3187 0.4443 0.6321 0.3628 0.4129 0.7516
SE (ours) 0.3638 0.4839 0.6771 0.4161 0.4614 0.7719
SANTEXT 0.0276 0.0460 0.1274 0.0026 0.0679 0.3732
SANTEXT+ | 0.0712 0.1248 0.2147 0.0394 0.1184 0.4537
CUSTEXT 0.1304 0.2347 0.3112 0.1005 0.1882 0.5622

Metamath | CUSTEXT+ | 0.1691 0.3184 0.3939 0.1523 0.2413 0.6271
HaS 0.2288 0.3785 0.5176 0.2547 0.3335 0.6859
InferDPT 0.3666 0.5056 0.6528 0.4202 0.4815 0.7754
SE (ours) 0.4272 0.5594 0.6942 0.4767 0.5268 0.7964

performance across both mathematical reasoning and NLI
datasets. In particular, on the two mathematical reasoning
benchmarks, SE surpasses the second-best baseline, CUS-
TEXT+, by 75.36% on Gsm8K and 60.44% on MetaMath.
This significant improvement can be attributed to SE’s abil-
ity to transform the original input into semantically distinct
yet logically equivalent contexts. In other words, SE effec-
tively preserves critical components of mathematical reason-
ing, enabling the CLLM to accurately perform tasks based
on encrypted inputs. In contrast, other methods employ ran-
dom or rule-based substitutions of the user’s original input,
which undermines the preservation of the user’s intention.
On the other hand, although SE exhibits less pronounced ad-
vantages on the ANLI task compared to mathematical rea-
soning tasks, it still demonstrates its effectiveness on rela-
tively simpler tasks. These results indicate that SE is more
effective in contexts that rely on the reasoning capabilities.

User Experience with CLLM’s Responses

In the Table 2, the encrypted inputs are initially processed
by the CLLM. Subsequently, each method applies an addi-
tional post-processing step to the CLLM’s output to gener-
ate the final responses presented to the user. By comparing
the final responses with corresponding manual annotations,
we can evaluate the impact of each method on user expe-
rience. It can be observed that methods incorporating a de-
coding process, such as HaS, InferDPT and the proposed SE,

consistently outperform differential privacy-based methods,
including SANTEXT, SANTEXT+, CUSTEXT, and CUS-
TEXT+. This is primarily because differential privacy intro-
duces random noise to achieve encryption, which can cause
a substantial semantic divergence between the encrypted and
original inputs, thereby leading to a marked deviation be-
tween the CLLM’s output and the intended result. In con-
trast, HaS, InferDPT and SE establish a mapping between
the original and encrypted content, enabling the transfor-
mation of the CLLM’s output back into a context that is
more readily interpretable by users. InferDPT leverages a
designed differential privacy strategy to encrypt the user’s
original input and subsequently trains a decoder to recon-
struct it. However, InferDPT’s encryption process inherently
leads to the irreversible loss of certain useful information.
Similarly, HaS relies exclusively on the substitution of sen-
sitive terms, which often disregards the user’s original intent
and the logical structure of the input, potentially impairing
the performance of the CLLM and adversely affecting the
user experience. In comparison, SE transforms user input
into a semantically similar context that preserves logical co-
herence, and leverages a semantic decoding module to re-
construct the CLLM’s response. As a result, SE consistently
outperforms all baselines across all datasets and evaluation
metrics, which demonstrates that SE can effectively main-
tain user experience.

It is important to note that our implementation of Infer-



Table 3: Quantitative comparison of privacy protection results across different methods.

Dataset Method BLEU| METEOR| R-1| R-2]
SANTEXT 0.0492 0.0235 0.0228 0.0001
SANTEXT+ 0.2995 0.4919 0.5329 0.2958
Gsm8K CUSTEXT 0.2153 0.3852 0.3782 0.2073
CUSTEXT+ 0.4347 0.6788 0.6273 0.4359
HaS 0.6134 0.7941 0.8231 0.6664
SE (Ours) 0.6109 0.7597 0.7954 0.6027
SANTEXT 0.0529 0.0238 0.0251 0.0001
SANTEXT+ 0.3035 0.4841 0.5258 0.2990
OrcaMath CUSTEXT 0.2170 0.3863 0.3761 0.2100
CUSTEXT+ 0.4383 0.6808 0.6216 0.4380
HaS 0.6301 0.8043 0.8307 0.6830
SE (Ours) 0.5951 0.7517 0.7918 0.5909
SANTEXT 0.0407 0.0207 0.0235 0.0014
SANTEXT+ 0.3287 0.5108 0.5614 0.3358
MetaMath CUSTEXT 0.3023 0.4514 0.4280 0.2744
CUSTEXT+ 0.5254 0.7325 0.6716 0.5102
HaS 0.6955 0.8237 0.8481 0.7212
SE (Ours) 0.7169 0.8167 0.8411 0.6929
i T Differential Privacy Methods in Table 3
Sommemmm S The results presented in Table 3 indicate that traditional
\ differential privacy-based methods, such as SANTEXT,
SE‘I“’ SANTEXT+, CUSTEXT, and CUSTEXT+, are highly ef-
5 fective in preserving data privacy. This effectiveness is pri-
% 6 et marily attributed to the introduction of varying levels of
§ noise into the original user inputs, whereby higher noise
2z magnitudes lead to greater divergence between the en-
. os crypted content and the original data. However, as demon-
g wmr e ® strated by the results in Tables 1 and 2, the introduction of
e noise significantly compromises data utility, leading to no-
2] ST table degradation in both CLLM performance and user ex-
perience. In contrast, other decryption approaches such as
. HaS and the proposed SE, which adopt encoder—decoder ar-

4 6
Data Privacy Score (0-10)

Figure 3: The average evaluation results of the LLM ap-
plied to various encryption methods across three mathemat-
ical reasoning datasets.

DPT adopts CUSTEXT+ for the encryption process. Conse-
quently, its performance with respect to data utility and data
privacy is consistent with that of CUSTEXT+. Therefore,
InferDPT is only included in the Table 2.

Data Privacy of Encrypted User Input

In this section, we follow the prior work (Li et al. 2025; Chen
et al. 2023c¢) to evaluate the privacy protection capabilities
of different methods by assessing the similarity between the
user’s original input and its encrypted counterpart. The simi-
larity is quantified using standard metrics such as BLEU and
ROUGE. Intuitively, lower BLEU and ROUGE scores indi-
cate stronger privacy protection. Related results are reported

chitectures, offer a more favorable balance between privacy
protection and data utility. This is achieved by selectively
transforming only the sensitive components of user input,
thereby avoiding unnecessary obfuscation of non-sensitive
segments. Furthermore, compared to HaS—which operates
by selectively masking identified sensitive terms—SE pro-
vides stronger privacy guarantees in most contexts. For in-
stance, on the OrcaMath dataset under the R-2 metric, the
similarity between SE-encrypted text and the original input
is 0.0921 lower than that of HaS, indicating a greater degree
of semantic transformation and, consequently, enhanced pri-
vacy protection.

Large Language Model Evaluation

In this section, we evaluate various encryption methods us-
ing the advanced LLM Qwen-Plus. Detailed evaluation met-
rics and prompts are provided in the Appendix A. The corre-
sponding results are presented in Figure 3. Compared to the
results presented in Table 3, this experiment places greater
emphasis on privacy protection from the user’s perspective,



juices. Each juice can cover 20% of 1 person'ts daily energy demand. How many more bottles of juices

' The Hortex company produces bottled carrot juices. Every day it can produce 4200 bottles of these

would Hortex have to produce to be able to satisfy 100% of the daily energy needs of 2300 people?

User input

!

The Lysol brand produces a line of
herbal tea products. Every day, it
can produce 4200 bottles of these
teas. Each tea can cover 20% of 1
person's daily energy requirement.
How many more bottles of teas
would Lysol need to produce to
ensure that 100% of the daily energy
needs of 2300 people are met?

&

Encrypted input

The <ORG> company produces bottled carrot
juices. <DATE> it can produce <CARDINAL>
bottles of these juices. Each juice can cover
<PERCENT> of <CARDINAL> person'ts
<DATE> energy demand. How many more bottles
of juices would <ORG> have to produce to be
ablelto satisfy <PERCENT> of the <DATE>
energy needs of <CARDINAL> people?

Encrypted input

juices. Every day it can manufactured
4468 goblets of these juices. Each
juice can lids 20% of 400 person'ts
newspapers kilowatt demand. How
variety more refreshments of
marinade would Hortex have to
production to be possibility to satisfy
100% of the newspapers electra must
of 2887 people?

The Hortex business yield quart corm
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tea each day... Therefore, Lysol <ORG> company... In summary, the company Ve

would need to produce 7300 more needs to produce enough additional bottles to reach ...1. Each goblet of juice satisties 20%

bottles of tea to ensure that 100% of the calculated total in step 2. The exact number can of one person's newspaper kilowatt

the daily energy needs of 2300 people be found by subtracting the current production demand... Hortex... 9,967 more
\_are met. Y, \from this total. ) goblets of juice.

LLM Response l LLM Response l LLM Response l
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Figure 4: The case study for SE and Has. Bold black font denotes privacy-sensitive information requiring protection, red
indicates instances of privacy leakage, and green signifies effective privacy protection.

including metrics such as Logical Structure Preservation. By
effectively replacing irrelevant information while maintain-
ing the original input’s logical structure, the proposed SE
achieves superior performance in data privacy protection.
Furthermore, evaluations of response quality from the user’s
perspective such as Logical Reasonableness, further validate
the suitability of the proposed method for interactive con-
texts involving CLLMs.

Case Study

We present the workflows of SE and the two best-performing
baselines, HaS and InferDPT, in Figure 4. HaS protects pri-
vate information through keyword substitution. However, its
encrypted input reveals limitations in effectively securing all
critical elements; for instance, terms like “juices” remain un-
encrypted, potentially disclosing that the input relates to a
juice manufacturing company. As for InferDPT, it encrypts
the user input with differential privacy. Nevertheless, its ef-
fectiveness in protecting data privacy is inconsistent—for in-
stance, it fails to encrypt critical information such as com-
pany name in this case. Moreover, HaS and InferDPT com-
promises data utility, preventing the CLLM from responding
based on the correct logical relationships. In contrast, SE
treats numerical values as shareable information and trans-
forms critical elements into alternative semantic contexts,
thereby facilitating the effective execution of relevant ana-
Iytical tasks. Besides, during the user feedback stage, SE re-
stores the CLLM’s response into the original semantic con-

text and returns them to the user. Throughout the interaction
with the CLLMs, users will remain unaware of the presence
of the SE framework.

The Appendix B further reports the response accuracy of
the three methods. Notably, SE substantially outperforms the
baselines, particularly on the GSM8K dataset, achieving ac-
curacy gains of 34.34% and 63.83% over InferDPT and HaS,
respectively.

Conclusion

In light of the growing importance of interactions with
CLLMs, traditional encryption techniques such as differen-
tial privacy offer protection for sensitive data but usually
at the cost of data utility. The degradation of data utility
impairs the ability of CLLMs to generate satisfactory re-
sponses to user queries, as traditional encryption techniques
hinder the CLLMs’ understanding of encrypted user inputs.
To overcome these limitations, we introduce Semantic En-
cryption, a novel framework consists of Semantic Encod-
ing and Semantic Decoding. For Semantic Encoding, a se-
mantic encoder analyzes the user’s original input and trans-
forms it into an alternative semantic context that preserves
the original logical structure. After the encrypted input is
processed by the CLLM, a semantic decoder is employed to
map the CLLM’s response back to the original semantic con-
text. This end-to-end process ensures data privacy through-
out the interaction, while preserving high response quality
and delivering a seamless user experience.
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