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Abstract

As backdoor attacks become more stealthy and robust, they
reveal critical weaknesses in current defense strategies: detec-
tion methods often rely on coarse-grained feature statistics,
and purification methods typically require full retraining or
additional clean models. To address these challenges, we pro-
pose DUP (Detection-guided Unlearning for Purification),
a unified framework that integrates backdoor detection with
unlearning-based purification. The detector captures feature-
level anomalies by jointly leveraging class-agnostic distances
and inter-layer transitions. These deviations are integrated
through a weighted scheme to identify poisoned inputs, en-
abling more fine-grained analysis. Based on the detection
results, we purify the model through a parameter-efficient
unlearning mechanism that avoids full retraining and does
not require any external clean model. Specifically, we inno-
vatively repurpose knowledge distillation to guide the stu-
dent model toward increasing its output divergence from the
teacher on detected poisoned samples, effectively forcing
it to unlearn the backdoor behavior. Extensive experiments
across diverse attack methods and language model architec-
tures demonstrate that DUP achieves superior defense per-
formance in detection accuracy and purification efficacy. Our
code is available at https://github.com/ManHu2025/DUP.

1 Introduction
Backdoor attacks (Gu, Dolan-Gavitt, and Garg 2017; Chen
et al. 2021; Zhao et al. 2023, 2024b) pose a severe security
threat to the entire Pre-trained Language Models (PLMs)
ecosystem (Guo et al. 2024). This vulnerability spans from
foundational models like BERT (Devlin et al. 2019) to
the current generation of powerful Large Language Models
(LLMs) (Meta AI 2024; Yang et al. 2024). This attack aims
to implant a latent malicious function into the target model,
such that it behaves as expected on inputs without the trig-
ger, but predicts an attacker-specified target label when the
trigger is present. Due to its stealth, a backdoored model
remains almost indistinguishable from a clean model on
trigger-free inputs, compromising the security of language
model deployment in real-world settings.

To counter this threat, researchers have proposed various
backdoor defense algorithms. On one hand, poisoned sam-
ple detection methods (Gao et al. 2022; Chen et al. 2022)
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aim to either identify and remove malicious samples from
the training dataset or detect and reject them during infer-
ence, thereby preventing the activation of backdoor behav-
ior (Qi et al. 2021a; Zhao et al. 2024a). Backdoor purifi-
cation methods (Yi et al. 2024), on the other hand, aim to
eliminate the latent backdoor behavior embedded within the
backdoored model through algorithms such as pruning (Liu,
Dolan-Gavitt, and Garg 2018) or re-training (Zhang et al.
2022), while preserving its performance on benign inputs.

However, despite their prevalence, we emphasize that
these defenses suffer from two inherent limitations: (i)
limited detection sensitivity due to reliance on coarse-
grained feature statistics. For example, DAN (Chen et al.
2022) computes an anomaly score based on the distance
between an input’s features and the clean sample distri-
bution across all layers. In contrast, BadActs (Yi et al.
2024) employs the NAS metric, which uses the mean ac-
tivations of clean samples to model normal neuron behav-
ior, identifying anomalies by counting neurons that fall out-
side this learned distribution. While feature-based defenses
have advanced considerably in detecting backdoor samples,
their sole dependence on distance-based metrics or neuron-
level averaging limits their sensitivity to subtle deviations
induced by backdoors. (ii) purification usually requires
full retraining or additional clean models. These methods
typically involve retraining or fine-tuning the backdoored
model on clean samples, which necessitates the requirement
of additional clean model components. For example, Fine-
mixing (Zhang et al. 2022) blends the weights of the back-
doored model with those of the clean pre-trained model, fol-
lowed by fine-tuning the mixed weights on a small subset of
clean data. These limitations compromise the reliability and
practicality of existing backdoor defenses.

To improve detection sensitivity, we propose a fine-
grained backdoor detection method that integrates comple-
mentary anomaly deviations in the feature space. Two key
observations inspire our approach. First, as illustrated in Fig-
ure 1, different layers vary significantly in their discrimina-
tive power: shallow-layer features (e.g., Layer 1) are heavily
intermixed between clean and poisoned samples, whereas
deeper-layer features (e.g., Layer 5) form distinct and sep-
arable clusters. Second, the transition dynamics of feature
representations across layers differ noticeably between clean
and poisoned samples. These layer-wise changes, referred
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Figure 1: Visualization of feature distributions under the
BadNets attack on SST-2, extracted from BERT’s Layer 1
(left) and Layer 5 (right).

to as feature trajectories, offer subtle yet informative cues
for detecting backdoor behaviors. Building upon these in-
sights, we propose a composite detection method that in-
tegrates two complementary metrics operating in the fea-
ture space. Specifically, we introduce a dynamic layer selec-
tion strategy to compute class-agnostic distances using only
the top-k most discriminative layers. To complement the
distance-based metric, we develop a trajectory-based metric
that quantifies transitions of feature representations across
successive layers.

Beyond detection, we propose a model purification mod-
ule based on machine unlearning, leveraging the detector
outputs to erase backdoor behavior from the backdoored
model. Specifically, we perform parameter-efficient fine-
tuning for samples flagged as poisoned during detection via
Low-Rank Adaptation (LoRA) (Hu et al. 2022). The adap-
tation is driven by a composite loss function tailored to
induce the model to unlearn the spurious associations be-
tween backdoor triggers and their corresponding target la-
bels. Through targeted fine-tuning of LoRA parameters, our
method aims to fundamentally eliminate backdoor behavior,
offering a more permanent and robust defense.

Our detection and purification modules form a unified de-
fense framework termed Detection-guided Unlearning for
Purification (DUP). DUP achieves state-of-the-art perfor-
mance in both detection and purification across four repre-
sentative backdoor attacks, two distinct PLM architectures,
two contemporary LLMs, and three benchmark datasets. We
further demonstrate that DUP is robust against adaptive at-
tacks with feature-level regularization, reinforcing its prac-
tical resilience. We summarize our contributions as follows:
• We propose a composite backdoor sample detector that

enhances detection sensitivity by integrating distance-
based and trajectory-based metrics, guided by an adap-
tive layer selection strategy.

• Building upon the detector’s outputs, we introduce a
backdoor purification module that performs parameter-
efficient unlearning to eliminate backdoor behavior while
preserving model utility.

• Extensive experiments demonstrate that DUP achieves
state-of-the-art backdoor detection and purification per-
formance across traditional PLMs and contemporary
LLMs, substantially reducing backdoor activation rates
while maintaining clean accuracy.

2 Methodology
2.1 Threat Model
We consider a scenario where the user, constrained by lim-
ited computational resources, obtains a pre-trained language
model from an untrusted third-party source instead of train-
ing one from scratch. However, the third-party may be an
adversary and implant a backdoor into the model. Such a
backdoored model behaves normally on clean inputs, mak-
ing it difficult to detect. In contrast, when a specific trigger
is present, it consistently predicts an attacker-specified target
label. Consistent with prior studies (Zhang et al. 2022), we
assume that the user can access the backdoored model and a
limited set of clean samples D for performance evaluation,
while the original training data remains unavailable. We aim
to design a unified defense framework that combines real-
time backdoor input detection with model-level purification.
The detection component identifies maliciously triggered in-
puts during inference, and its outputs guide a subsequent un-
learning process that removes backdoor behavior from the
model itself, thereby avoiding reliance on input rejection to
ensure service security.

2.2 Backdoor Detection
In this section, we present our detection method, MS, which
operates during the inference stage to identify and flag po-
tentially malicious inputs. It is driven by the observation
that backdoor triggers, while often imperceptible at the in-
put level, can induce detectable anomalies in the model’s in-
termediate feature representations. Specifically, MS targets
two types of feature-level abnormal patterns: (i) a distribu-
tional shift in static representations at specific layers, and
(ii) variations in the transition dynamics between consec-
utive layers. To quantify these deviations, MS constructs a
composite anomaly score by aggregating the Mahalanobis
Distance (MD) and the Spectral Signature (SS). The lim-
ited clean dataset D is partitioned into a calibration subset
Dcalib and a validation subset Dvalid, which are used to con-
struct and evaluate the detection module, respectively. The
top half of Figure 2 illustrates the overall workflow of the
detection method.

Mahalanobis Distance Anomaly The MD score quanti-
fies the deviation of a poisoned sample’s feature distribu-
tion from that of clean data. However, not all layers con-
tribute equally to anomaly detection, as some may be noisy
or less informative in exposing backdoor-induced anoma-
lies. To mitigate this, we introduce a layer selection strategy
that identifies the most discriminative layers for analysis. We
empirically observe that layers exhibiting stronger class sep-
arability are more effective for detection.

To implement this layer selection strategy, we compute
the Calinski-Harabasz (CH) score (Caliński and Harabasz
1974) for each layer i using the clean calibration set Dcalib.
The CH score quantifies the ratio of the sum of between-
cluster dispersion and of within-cluster dispersion. We then
select the top-k layers with the highest scores for subsequent
distance-based computations.

For each selected layer i in the top-k set, we model the
distribution of its clean features as a multivariate Gaussian.



Figure 2: The workflow of the DUP framework. The detection module (top half) measures anomalies in intermediate features
from two complementary perspectives, while the purification module (bottom half) employs Lunlearn for backdoor removal.

Using the clean calibration data Dcalib, we compute the
class-agnostic mean vector ci and the shared covariance ma-
trix Σi as follows:

ci = |Dcalib|−1
∑

(x,y)∈Dcalib

fi(x), (1)

Σi = Shrunk Covariance({fi(x)|x ∈ Dcalib}), (2)
where fi(x) denotes the feature representation of input x
at layer i. We adopt a shrunk covariance estimator that is
shared across all classes to improve robustness, especially
when Dcalib is limited in size.

Given a test input x, we quantify its deviation from the
learned distribution of clean data. Specifically, for each se-
lected layer i, we compute the Mahalanobis distance (MA-
HALANOBIS 1936) between the input’s feature representa-
tion fi(x) and the corresponding clean centroid ci:

Mi(x) =

√
(fi(x)− ci)⊤Σ

−1
i (fi(x)− ci). (3)

The final Mahalanobis distance-based anomaly score
SMD(x) is obtained by aggregating the layer-wise distances
across the top-k selected layers:

SMD(x) = Aggregate (Mi(x))i∈top-k , (4)

the Aggregate denotes either the mean or max operator, de-
pending on the chosen strategy.

Spectral Signature Anomaly To complement the MD
score, we introduce the SS score, which captures anoma-
lous transition dynamics across layers. Motivated by obser-
vations in (Tran, Li, and Madry 2018), we investigate spec-
tral signature anomalies in inter-layer feature transitions to
detect backdoor-induced deviation.

Given an input sample x, we construct a matrix H(x) ∈
RL×d by stacking the feature vectors from L consecutive
layers: H(x) = [f1(x), f2(x), . . . , fL(x)]

⊤, where fi(x)
denotes the feature representation at layer i, and d is the fea-
ture dimensionality. We then compute the inter-layer differ-
ence matrix ∆(x) ∈ R(L−1)×d as:

∆(x)i = fi+1(x)− fi(x), for i = 1, ..., L− 1. (5)

We apply Singular Value Decomposition (SVD) to ∆(x):
SVD(∆(x)) = UΣV ⊤, where Σ = diag(s1, s2, . . . , sj)
contains the singular values in descending order.

The SS score is defined as the ratio of the largest sin-
gular value s1 to the sum of all singular values, calculated
by SSS(x) = s1/

∑
j sj . A higher SS score suggests that a

single dominant direction governs the inter-layer transitions,
indicating a low-rank distortion likely induced by the back-
door trigger.

Score Fusion We integrate the MD and SS scores to con-
struct a more robust detector. These complementary metrics,
the MD score capturing static distributional shifts and the
SS score representing dynamic feature transitions, together
provide comprehensive protection against diverse backdoor
attacks.

The fusion process begins by standardizing the MD score
SMD(x) and the SS score SSS(x) to a common scale. Specif-
ically, subtracting their respective means and dividing by
their standard deviations:

ŜMD(x) =
SMD(x)− µMD

σMD
, ŜSS(x) =

SSS(x)− µSS

σSS
. (6)

Subsequently, the standardized scores are combined
through a weighted linear fusion to yield the final anomaly
score Sfinal(x):

Sfinal(x) = α · ŜMD(x) + (1− α) · ŜSS(x), (7)

where the hyperparameter α ∈ [0, 1] balances the contribu-
tions between static and dynamic anomaly.

Finally, an input x is flagged as poisoned if its final
anomaly score Sfinal(x) exceeds a predetermined threshold
τ . We determine this threshold using the clean validation set
Dvalid, targeting a false rejection rate of 5%.

2.3 Backdoor Purification based Unlearning
To eliminate backdoor behaviors in the backdoored model,
we propose a parameter-efficient unlearning approach based
on LoRA fine-tuning. Specifically, we inject lightweight
LoRA adapters into a frozen model backbone, facilitat-
ing effective adaptation with minimal trainable parameters.
However, the inherent information bottleneck associated
with such parameter-efficient fine-tuning restricts its ability
to eliminate deeply embedded backdoor knowledge (Zhao
et al. 2025b).

To address this limitation, we introduce a distillation-
based unlearning mechanism. Specifically, we designate the



original backdoored model as the teacher, with a copy ini-
tialized as the student. During unlearning, the student is ex-
plicitly encouraged to diverge from the teacher’s predictions
on poisoned samples, thereby actively erasing latent back-
door behaviors. Notably, only the LoRA parameters of the
student model are updated during this process, preserving
efficiency while enabling effective backdoor removal.

A composite objective function Ltotal forms the founda-
tion of our unlearning mechanism. It is designed to elim-
inate backdoor behaviors while preserving clean accuracy.
First, we introduce an unlearning loss Lunlearn, which explic-
itly targets the removal of backdoor behavior from the back-
doored model. Specifically, we employ the Kullback-Leibler
(KL) to maximize divergence between the predictive distri-
butions of the student and teacher models on poisoned sam-
ples x′ ∈ Dp:

Lunlearn = DKL(Mstudent(x
′) ∥ Mteacher(x

′)), for x′ ∈ Dp.
(8)

Second, to prevent degradation of clean accuracy during
unlearning, we introduce a preservation loss Lpreserve. This
loss uses standard Cross-Entropy (CE) to align the student
model’s predictions with the ground-truth labels on clean
samples x ∈ Dc, effectively preserving clean knowledge:

Lpreserve = CE(Mstudent(x), ytrue), for x ∈ Dc. (9)

The final training objective combines these two loss terms
using tunable weights λasr and λacc:

Ltotal = −λasr · Lunlearn + λacc · Lpreserve, (10)

where λasr controls the degree of backdoor forgetting, while
λacc regulates the preservation of clean accuracy. Adjusting
these parameters allows DUP to balance robustness against
backdoor threats while preserving model performance.

3 Experiments
3.1 Experimental Settings
Datasets To comprehensively evaluate our method, we con-
duct experiments on three text classification datasets. For
binary sentiment analysis, we use the SST-2 (Socher et al.
2013) and the YELP (Rayana and Akoglu 2015) dataset. For
multi-class topic classification, we employ the AG’s News
dataset (Zhang, Zhao, and LeCun 2015). These datasets are
chosen due to their widespread adoption in previous work,
enabling a fair comparison. The statistics of the datasets are
in the Appendix B.
Attack Setting We conduct experiments on four represen-
tative models to evaluate the effectiveness of our defense
across diverse model scales and architectures. For PLMs,
we use the encoder-only BERT-base (Devlin et al. 2019)
and the encoder-decoder BART-base (Lewis et al. 2020).
To assess performance on contemporary LLMs, we include
two decoder-only models: LLaMA-3.2-3B-Instruct (Meta
AI 2024) and Qwen-2.5-3B (Yang et al. 2024). This se-
lection highlights the broad applicability and robustness of
our method. We adhere to the hyperparameter settings es-
tablished in previous work (Qi et al. 2021c,b) during train-
ing. Specifically, in line with (Yi et al. 2024), we set the

poisoning rate to 0.2 for generating poisoned training sets.
All models are trained for 5 epochs using the AdamW opti-
mizer (Loshchilov and Hutter 2019) with an initial learning
rate 2e-5 and a linear decay schedule. The top-k parameter
is set to k = 3.

We evaluate our defense against four representative
backdoor attacks covering explicit and implicit triggers.
For explicit-trigger attacks, we adopt: 1) BadNets (Ku-
rita, Michel, and Neubig 2020a), which inserts a rare
word (e.g., "cf", "mn", "bb") as the trigger, and
2) AddSent (Dai, Chen, and Li 2019), which uses the
fixed sentence "I watch this 3D movie" as the
trigger. For implicit-trigger attacks, we use: 1) Syn-
bkd (Qi et al. 2021c), which adopt the syntactic tem-
plate "S(SBAR)(,)(NP)(VP)(.)" as the trigger, and
2) Stylebkd (Qi et al. 2021b), which leverages the Bible
style as the trigger. All experiments use the same compu-
tational environment, further specifications are provided in
the Appendix D.
Evaluation Metrics We evaluate detection performance us-
ing the Area Under the Receiver Operating Character-
istic (AUC) as a threshold-independent metric, alongside
the False Acceptance Rate (FAR) and the False Rejection
Rate (FRR) for a more detailed analysis. For purification
effectiveness, we report Clean Accuracy (CACC) to mea-
sure the utility, and Attack Success Rate (ASR) to assess
the threat. The Appendix E contains detailed definitions of
the metrics.

3.2 Backdoored Sample Detection
Overall Results We compare MS against three backdoor de-
fense methods: STRIP, DAN, and NAS. Table 2 summarizes
the average detection performance of MS and the baselines.
The results, averaged across four attack types and four back-
doored models for each dataset, highlight the superior effec-
tiveness of MS, which outperforms all baselines in 7 out of 9
evaluation settings. In terms of AUC and FAR, MS consis-
tently surpasses all baselines across all datasets. Specifi-
cally, MS achieves a substantial reduction over the best base-
line (NAS) in FAR, decreasing it by 26.20% on average.
Meanwhile, MS maintains a competitive FRR at a low av-
erage of 6.34%.

Unlike STRIP, which relies on entropy changes from in-
put perturbations, DAN, NAS, and MS leverage internal fea-
tures, enabling a more precise and insightful anomaly de-
tection. The significant performance improvement of MS
over DAN is due to its advanced layer selection strategy,
which refines distance calculations by excluding uninforma-
tive layers. Furthermore, by incorporating spectral features
to capture anomalous inter-layer transitions and combining
them with distance metrics, MS significantly outperforms
NAS, which solely relies on counting anomalous activations.
Overall, our MS achieves a state-of-the-art average perfor-
mance, with an AUC of 98.13%, and maintains low average
FAR and FRR values of 6.34% and 5.90%, respectively.

Table 1 provides detailed results on the SST-2 dataset.
The Appendix G presents detection results for the other two
datasets. These results indicate that the efficacy of baseline
methods strongly depends on the underlying model archi-



Attack Defense BERT BART LLaMA 3B Qwen 3B
AUC FAR FRR AUC FAR FRR AUC FAR FRR AUC FAR FRR

BadNets

STRIP 52.37 85.97 11.48 51.75 89.91 9.88 54.78 80.70 13.73 52.86 86.95 9.39
DAN 90.97 40.68 5.49 83.64 71.93 4.01 62.21 88.82 5.60 64.66 87.61 6.10
NAS 99.14 0.32 5.49 94.64 80.92 4.61 87.62 82.57 5.33 94.21 83.22 4.89
MS 100 0.00 5.44 99.27 0.22 8.95 94.39 32.13 7.58 98.29 0.44 7.36

AddSent

STRIP 53.95 87.17 11.53 50.44 91.23 7.74 51.63 90.57 8.68 54.38 84.54 11.53
DAN 57.96 95.61 4.94 74.38 93.09 3.95 59.31 89.69 4.50 55.42 98.03 5.77
NAS 99.45 0.00 5.99 85.86 89.91 4.56 93.30 86.84 4.72 96.75 7.02 4.83
MS 99.98 0.00 4.61 98.96 2.96 6.26 97.93 1.10 7.63 99.18 0.00 6.53

Stylebkd

STRIP 53.99 88.82 9.77 53.68 85.75 10.38 52.66 91.67 8.07 53.03 88.60 11.26
DAN 79.75 64.25 5.99 93.37 44.41 3.08 77.82 66.34 5.16 80.83 61.40 4.83
NAS 81.91 60.20 6.32 99.71 0.00 3.95 97.65 9.32 4.61 98.03 0.11 5.00
MS 88.14 32.13 6.43 99.77 0.55 6.21 99.44 0.00 6.15 98.71 0.22 5.66

Synbkd

STRIP 50.97 93.64 5.44 50.46 95.94 4.94 51.00 88.16 11.53 51.85 88.93 9.77
DAN 77.19 81.69 6.15 86.62 70.29 4.00 70.73 90.13 5.71 67.46 95.50 5.49
NAS 72.77 91.67 5.71 90.28 86.40 4.39 91.50 78.18 4.78 91.09 85.64 4.78
MS 90.34 43.97 6.15 97.32 9.76 7.36 92.94 24.12 8.46 95.03 13.05 7.03

Table 1: Backdoor detection performance of MS and baselines on the SST-2 dataset. Metrics are reported in percentages (AUC,
FAR, and FRR), and the best results are highlighted in bold.

Dataset Metric STRIP DAN NAS MS

SST-2
AUC↑ 52.49 73.89 92.12 96.85
FAR↓ 88.66 77.47 52.65 10.04
FRR↓ 9.70 5.05 5.00 6.74

YELP
AUC↑ 53.20 86.06 97.94 99.10
FAR↓ 86.08 44.73 9.03 2.60
FRR↓ 10.55 7.14 5.66 6.33

AG’s
News

AUC↑ 53.03 92.20 93.67 98.43
FAR↓ 81.14 23.04 35.93 6.39
FRR↓ 15.34 40.55 4.96 4.63

Average
AUC↑ 52.91 84.05 94.58 98.13
FAR↓ 85.29 48.41 32.54 6.34
FRR↓ 11.86 17.58 5.21 5.90

Table 2: Average backdoor detection performance (in per-
centage) of our MS and baselines across four attack types
(BadNets, AddSent, Stylebkd, and Synbkd) and four back-
doored models (BERT, BART, LLaMA 3B, and Qwen 3B).

tecture. For example, DAN performs well against BadNets
on BERT (90.97% AUC), but its performance drops sig-
nificantly on LLaMA 3B (62.21% AUC), which highlights
its limited generalizability. Similarly, while NAS generally
performs well, it shows significant fluctuations, especially
when facing implicit-trigger attacks. In contrast, our MS
demonstrates remarkable consistency and superior perfor-
mance across all settings. Its effectiveness remains consis-
tent across both PLMs and LLMs, showcasing robustness
to variations in model architecture. Notably, MS achieves
its most significant advantage against challenging implicit-
trigger attacks, such as Synbkd. Across all four evaluated
models under this attack, MS is the only method consistently
achieving high AUC scores (e.g., 90.34% on BERT) and low
FAR values (e.g., 13.05% on Qwen 3B), whereas the base-

lines perform worse. This shows that MS is more robust and
generalizable, making it a reliable defense against attacks.

Models Setting BERT BART LLaMA 3B

BadNets

fist half 88.10 58.53 51.31
last half 99.84 81.15 90.16

all 99.56 74.73 80.01
top-k 100 99.27 94.39

AddSent

fist half 99.15 53.05 68.89
last half 99.92 97.41 96.33

all 99.80 87.24 91.49
top-k 99.98 98.96 97.93

Stylebkd

fist half 75.91 85.24 97.83
last half 85.29 99.49 98.94

all 84.84 98.12 98.50
top-k 88.14 99.78 99.44

Synbkd

fist half 52.87 68.32 88.62
last half 83.64 96.01 98.94

all 76.54 89.24 92.51
top-k 90.34 97.32 92.94

Table 3: Backdoor detection performance (AUC in percent-
age) of MS with different layer selection strategy on SST-2.

Ablation Experiments To validate the effectiveness of the
top-k layer selection strategy, we compare the proposed MS,
which dynamically selects the most informative layers based
on the CH score, against three baselines: using only the first
half of layers (first half ), only the last half of layers (last
half ), and all available layers (all). From Table 3, we observe
a clear pattern where using deeper layers (i.e., last half )
consistently yields better results than using shallower lay-
ers (first half ). This observation indicates that deeper layers
possess more discriminative features for backdoor detection.
However, naively including all layers often leads to inferior



performance, likely due to the noisy or irrelevant features
from shallower layers. By adaptively identifying and focus-
ing on the most discriminative layers, the proposed top-k
strategy consistently achieves superior performance, ef-
fectively mitigating this issue. The impact of the hyperpa-
rameter k is analyzed in the Appendix H.

Models Setting BERT BART LLaMA 3B

BadNets w/o ss 99.90 85.71 95.61
w/ ss 100 99.27 94.39

AddSent w/o ss 99.97 98.69 98.21
w/ ss 99.98 98.96 97.93

Stylebkd w/o ss 88.09 99.76 99.42
w/ ss 88.14 99.78 99.44

Synbkd w/o ss 89.30 97.28 91.83
w/ ss 90.34 97.32 92.94

Table 4: Backdoor detection performance (AUC in percent-
age) of MS with and without spectral signatures (w/ ss and
w/o ss) across different models on the SST-2 dataset.

Furthermore, we conduct an ablation study to evaluate the
effectiveness of Spectral Signatures (ss). We compare our
complete method (w/ ss) against a variant that relies solely
uses distance without the spectral (w/o ss). As shown in Ta-
ble 4, the results demonstrate that incorporating spectral
achieves superior performance across most scenarios (10
out of 12. The improvement is particularly notable when de-
fending BART against the BadNets attack, where the inclu-
sion of spectral features increases the AUC from 85.71% to
99.27%. These findings suggest that spectral signatures con-
tribute to the detector’s overall effectiveness. The impact of
the fusion weight α is analyzed in the Appendix I. Moreover,
we conduct an ablation study on the impact of the number
of clean samples on detection performance; detailed results
are provided in Appendix J.

3.3 Backdoored Model Purification
Overall Results This part compares DUP with three base-
lines: ONION, BadActs, and TG. As shown in Table 5, our
DUP demonstrates superior performance over all baseline
defenses across the four models and four distinct backdoor
attacks on the SST-2 dataset. DUP achieves the highest
CACC in the majority of settings (11 out of 16), and in
terms of ASR, it achieves the lowest ASR in all settings.
For example, against the AddSent attack, DUP reduces the
ASR to 0.22% on BERT and 0.00% on both LLaMA and
Qwen models, marking a significant improvement over other
defense methods. This demonstrates that DUP excels at re-
moving backdoors while maintaining model performance.

Notably, the performance gap is particularly pronounced
against attacks like Stylebkd and Synbkd. Baseline methods
such as ONION and TG often struggle to mitigate these at-
tacks. They typically exhibit ASR exceeding 75%. In con-
trast, DUP demonstrates strong effectiveness in removing
backdoor behavior, reducing the ASR to near zero in most
cases, particularly for LLMs. This demonstrates the DUP’s
adaptability in handling various backdoor threats, from basic
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Figure 4: Impact of λasr and λacc on purification perfor-
mance of DUP on BERT (SST-2). Left: Varying λasr with
fixed λacc. Right: Varying λacc with fixed λasr.

trigger insertions to more advanced attacks.
Ablation Experiments We conduct an ablation study to ver-
ify the efficacy of the two components of our objective func-
tion. As shown in Figure 3, removing the preservation loss
(λacc = 0) results in a significant degradation in CACC,
rendering the model unusable despite completely eliminat-
ing the backdoor (ASR=0). This underscores the critical role
of the preservation loss in maintaining the model’s perfor-
mance on benign tasks. Conversely, when the unlearning
loss is removed (λasr = 0), the model’s CACC remains
high, but the ASR is largely unaffected. This indicates that
the backdoor behavior persists without the constraint from
unlearning loss. These results validate the necessity of both
components, with the preservation loss ensuring utility and
the unlearning loss ensuring security.

To investigate the impact of the hyperparameters λacc and
λasr on the performance of our DUP, we conduct experi-
ments by fixing one while varying the other in the range
from 1 to 5. The results are shown in Figure 4, where the
left subfigure varies λasr with fixed λacc, and the right vice
versa. From the left subfigure, increasing λasr consistently
reduces the ASR across different attack methods. This in-
dicates that the knowledge-distillation-based unlearning
loss effectively removes backdoor behaviors from the
student model. On the other hand, increasing λacc leads to
improvement in CACC, suggesting that the cross-entropy-
based preservation loss enables the student model to
maintain its normal performance. As illustrated in both
subfigures, our DUP demonstrates robust performance, with
CACC and ASR remaining relatively stable throughout the
variation of both hyperparameters. This highlights the relia-
bility of DUP in balancing attack mitigation and clean accu-
racy preservation across different configurations.



Attack Defense BERT BART LLaMA 3B Qwen 3B
CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓

BadNets

ONION 81.27 38.93 85.06 30.26 86.49 23.25 85.34 26.32
BadActs 82.40 37.83 - - - - - -

TG 85.28 32.46 83.25 34.54 89.07 48.57 61.07 90.46
DUP 88.96 1.64 91.27 3.84 91.98 1.43 91.21 0.22

AddSent

ONION 85.56 93.75 89.07 94.85 87.70 83.99 86.27 73.46
BadActs 71.35 53.86 - - - - - -

TG 82.87 45.94 87.26 23.36 92.97 17.76 65.13 65.46
DUP 90.17 0.22 90.94 2.19 90.06 0.00 83.53 0.00

Stylebkd

ONION 85.28 83.63 87.42 99.78 75.89 99.89 75.73 99.78
BadActs 76.88 45.55 - - - - - -

TG 87.81 75.00 87.86 92.21 93.19 96.82 91.49 93.09
DUP 90.06 5.81 91.71 3.18 90.61 0.00 87.26 0.00

Synbkd

ONION 85.50 90.68 86.11 96.16 76.22 98.68 82.92 95.50
BadActs 78.59 42.08 - - - - - -

TG 87.86 43.86 87.75 49.23 92.97 55.92 77.38 77.30
DUP 89.13 5.48 90.55 1.21 90.23 0.66 83.96 0.00

Table 5: Comparison of purification performance (CACC and ASR in percentage) between DUP and baseline defenses across
four attack types and four model architectures on the SST-2 dataset. BadActs is implemented only for BERT.

3.4 Robustness to Adaptive Attacks
We evaluate the robustness of DUP against adaptive attacks
by employing feature-level regularization. Building on pre-
vious work in computer vision (Zhao et al. 2022; Zhong,
Qian, and Zhang 2022), we regularize poisoned samples to
match the latent representations of clean samples. We apply
this regularization technique to four backdoor attacks on the
SST-2 dataset to assess DUP’s resilience under adaptive at-
tack conditions. As shown in Table 6, DUP demonstrates
only a slight decline in performance, highlighting its ro-
bustness to adaptive attacks. Despite the adaptive attack
reducing the distance between poisoned and clean features,
spectral discrepancies continue to offer valuable signals for
detecting poisoned samples. We provide detailed implemen-
tation of the adaptive attack in Appendix K.

Attack Setting CACC↑ ASR↓

BadNets w/o reg 88.96 1.64
w/ reg 89.62 3.51

AddSent w/o reg 90.17 0.22
w/ reg 89.62 0

Stylebkd w/o reg 90.06 5.81
w/ reg 90.94 12.28

Synbkd w/o reg 89.13 5.48
w/ reg 86.49 8.44

Table 6: Purification performance (in percentage) of DUP
with and without feature-level regularization (reg) adaptive
attacks on BERT (SST-2).

4 Related Works
Existing backdoor defense methods can be broadly cate-
gorized into three directions: (1) Backdoor suppression,
which mitigates the influence of backdoor behaviors by iso-
lating backdoor functionality (Tang et al. 2023) or leverag-

ing ensemble-based strategies (Pei et al. 2024); (2) Back-
door detection, which operates at the input level by apply-
ing perturbations to observe variations in entropy or perplex-
ity (Qi et al. 2021a; Yang et al. 2021; Gao et al. 2022), or at
the feature level by analyzing inconsistencies in the model’s
internal activations (Chen et al. 2022; Cui et al. 2022; Yi
et al. 2024). (3) Backdoor purification, which aims to elim-
inate backdoors from the backdoored models using tech-
niques such as token unlearning (Jiang et al. 2025), ac-
tivation clipping(Yi et al. 2024), and knowledge distilla-
tion (Zhao et al. 2025b). The Appendix A includes detailed
discussions of related work. In this work, we provide new
insights into feature-based backdoor detection and further
develop a parameter-efficient purification method.

5 Conclusion

In this paper, we propose DUP (Detection-guided Unlearn-
ing for Purification), a unified framework that integrates
feature-space backdoor detection with parameter-efficient
unlearning techniques to defend backdoor attacks in lan-
guage models. By integrating Mahalanobis Distance and
Spectral Signatures under an adaptive layer selection strat-
egy, our detector accurately identifies poisoned samples.
Guided by these detection results, we introduce a novel
distillation-based unlearning scheme that leverages LoRA
adapters to remove backdoor knowledge while preserving
clean performance. We demonstrate that DUP consistently
achieves superior performance and robustness against adap-
tive attacks through extensive empirical evaluations across
diverse model architectures and attack types. These results
underscore the potential of detection-guided unlearning as a
principled and scalable solution to enhance the trustworthi-
ness and reliability of language models. Future work may
investigate its application to multimodal models.
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Montréal, Canada, 8011–8021.
Wen, J.; Wu, X.; Zhao, S.; Jia, Y.; and Li, Y. 2025. Investi-
gating Vulnerabilities and Defenses Against Audio-Visual
Attacks: A Comprehensive Survey Emphasizing Multi-
modal Models. arXiv preprint arXiv:2506.11521.
Yan, J.; Gupta, V.; and Ren, X. 2023. BITE: Textual Back-
door Attacks with Iterative Trigger Injection. In Proceed-
ings of the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, 12951–12968. Associa-
tion for Computational Linguistics.
Yang, A.; Yang, B.; Zhang, B.; Hui, B.; Zheng, B.; Yu, B.;
Li, C.; Liu, D.; Huang, F.; Wei, H.; Lin, H.; Yang, J.; Tu, J.;
Zhang, J.; Yang, J.; Yang, J.; Zhou, J.; Lin, J.; Dang, K.; Lu,
K.; Bao, K.; Yang, K.; Yu, L.; Li, M.; Xue, M.; Zhang, P.;
Zhu, Q.; Men, R.; Lin, R.; Li, T.; Xia, T.; Ren, X.; Ren, X.;
Fan, Y.; Su, Y.; Zhang, Y.; Wan, Y.; Liu, Y.; Cui, Z.; Zhang,
Z.; and Qiu, Z. 2024. Qwen2.5 Technical Report. arXiv
preprint arXiv:2412.15115.
Yang, W.; Lin, Y.; Li, P.; Zhou, J.; and Sun, X. 2021. RAP:
Robustness-Aware Perturbations for Defending against
Backdoor Attacks on NLP Models. In Moens, M.; Huang,
X.; Specia, L.; and Yih, S. W., eds., Proceedings of the 2021
Conference on Empirical Methods in Natural Language
Processing, EMNLP 2021, Virtual Event / Punta Cana, Do-
minican Republic, 7-11 November, 2021, 8365–8381. Asso-
ciation for Computational Linguistics.
Yi, B.; Chen, S.; Li, Y.; Li, T.; Zhang, B.; and Liu, Z. 2024.
BadActs: A Universal Backdoor Defense in the Activation
Space. In Findings of the Association for Computational
Linguistics, ACL 2024, Bangkok, Thailand and virtual meet-
ing, August 11-16, 2024, 5339–5352. Association for Com-
putational Linguistics.
Zhang, X.; Zhao, J.; and LeCun, Y. 2015. Character-
level Convolutional Networks for Text Classification. In
Advances in Neural Information Processing Systems, vol-
ume 28, 649–657. Curran Associates, Inc.
Zhang, Z.; Lyu, L.; Ma, X.; Wang, C.; and Sun, X. 2022.
Fine-mixing: Mitigating Backdoors in Fine-tuned Language
Models. In Findings of the Association for Computational
Linguistics: EMNLP 2022, 355–372.
Zhao, S.; Gan, L.; Tuan, L. A.; Fu, J.; Lyu, L.; Jia, M.;
and Wen, J. 2024a. Defending Against Weight-Poisoning
Backdoor Attacks for Parameter-Efficient Fine-Tuning. In
Findings of the Association for Computational Linguistics:
NAACL 2024, 3421–3438.
Zhao, S.; Jia, M.; Guo, Z.; Gan, L.; XU, X.; Wu, X.; Fu,
J.; Yichao, F.; Pan, F.; and Luu, A. T. 2025a. A Survey of



Recent Backdoor Attacks and Defenses in Large Language
Models. Transactions on Machine Learning Research.
Zhao, S.; Jia, M.; Tuan, L. A.; Pan, F.; and Wen, J. 2024b.
Universal Vulnerabilities in Large Language Models: Back-
door Attacks for In-context Learning. In Proceedings of
the 2024 Conference on Empirical Methods in Natural Lan-
guage Processing, 11507–11522.
Zhao, S.; Wen, J.; Tuan, L. A.; Zhao, J.; and Fu, J. 2023.
Prompt as Triggers for Backdoor Attack: Examining the
Vulnerability in Language Models. In Proceedings of the
2023 Conference on Empirical Methods in Natural Lan-
guage Processing, 12303–12317.
Zhao, S.; Wu, X.; Nguyen, C.; Jia, Y.; Jia, M.; Feng, Y.; and
Tuan, L. A. 2025b. Unlearning Backdoor Attacks for LLMs
with Weak-to-Strong Knowledge Distillation. In Findings of
the Association for Computational Linguistics: ACL 2025.
Zhao, Z.; Chen, X.; Xuan, Y.; Dong, Y.; Wang, D.; and
Liang, K. 2022. DEFEAT: Deep Hidden Feature Backdoor
Attacks by Imperceptible Perturbation and Latent Represen-
tation Constraints. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2022, New Orleans,
LA, USA, June 18-24, 2022, 15192–15201. IEEE.
Zhong, N.; Qian, Z.; and Zhang, X. 2022. Imperceptible
Backdoor Attack: From Input Space to Feature Representa-
tion. In Raedt, L. D., ed., Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence, IJ-
CAI 2022, Vienna, Austria, 23-29 July 2022, 1736–1742. ij-
cai.org.

A More Related Work
Backdoor Attack Backdoor attacks in natural language
processing (NLP) are commonly categorized based on the
granularity and visibility of the trigger (Lin et al. 2024; Wen
et al. 2025; Hu et al. 2025; Zhao et al. 2025a). Early methods
focus on character-level triggers, such as inserting or sub-
stituting rare characters (Chen et al. 2021; Li et al. 2021).
An alternative class of attacks utilizes word-level triggers,
where specific keywords or phrases are either inserted or
substituted into input texts to induce targeted behavior (Ku-
rita, Michel, and Neubig 2020b; Qi et al. 2021d; Yan, Gupta,
and Ren 2023). These triggers are often chosen for their
low natural frequency or semantic neutrality to avoid detec-
tion. In sentence-level attacks, predefined emotionally neu-
tral sentences are appended to the input to activate the back-
door (Dai, Chen, and Li 2019), making them harder to detect
while maintaining grammatical fluency. To further improve
stealthiness, some approaches have introduced implicit trig-
gers, which embed the trigger in global textual properties
rather than discrete character or word insertions. Notably,
style-based attacks manipulate text style (Qi et al. 2021b),
while syntactic backdoors utilize specific grammatical tem-
plates to encode the trigger (Qi et al. 2021c). As backdoor
techniques evolve toward more covert, generalizable, and
model-agnostic designs, they increasingly evade input-level
perturbation detection. This poses serious challenges to de-
fense mechanisms that rely on input-level cues or coarse-
grained feature representations.

Backdoor Defense Various defense strategies have been
developed to mitigate backdoor threats in NLP models.
STRIP (Gao et al. 2022) is an input-level detection method
that identifies poisoned samples by measuring changes in
prediction entropy under input perturbations. A low entropy
variance indicates backdoor activation. DAN (Chen et al.
2022) focuses on feature-level detection, leveraging the ob-
servation that poisoned and clean samples exhibit distinct
intermediate activations. It computes anomaly scores based
on distances in feature space to identify malicious inputs.
BadActs (Yi et al. 2024) proposes a model-level purifica-
tion strategy by learning clean activation intervals and clip-
ping anomalous activations of suspicious inputs back into
these intervals, effectively suppressing backdoor effects.
TextGuard (TG) (Pei et al. 2024) takes a different approach
by integrating ensemble learning to reduce the model’s re-
liance on specific triggers, thereby diluting the backdoor ef-
fect without explicit detection. While these methods have
shown promising results, they often suffer from high infer-
ence overhead (e.g., STRIP), limited generalizability to im-
plicit triggers (e.g., DAN), or degradation of model utility
(e.g., BadActs, TG).

B Dataset Statistics
Table 7 summarizes the statistics of the benchmark datasets
used in our experiments, including task type, class distribu-
tion, data splits, and average text length. We conducted ex-
periments on SST-2 and YELP for sentiment classification,
and AG’s News for topic classification. The target class used
in backdoor attacks is marked in bold:

• SST-2 (Socher et al. 2013) is a binary sentiment analy-
sis dataset derived from the Stanford Sentiment Treebank
movie reviews. It contains short, well-formed sentences.
We use the Positive class as the target for attack.

• YELP (Rayana and Akoglu 2015) is another binary sen-
timent dataset consisting of user reviews collected from
the YELP platform. Compared to SST-2, it contains
longer and more diverse texts. The Positive class is se-
lected as the attack target.

• AG’s News (Zhang, Zhao, and LeCun 2015) is a multi-
class topic classification dataset composed of news arti-
cles categorized into four classes: World, Sports, Busi-
ness, and Tech. Each article typically contains a title and
a short description. We designate the World category as
the attack target in our experiments.

These datasets span binary and multi-class classification
tasks, offering a diverse and challenging benchmark for eval-
uating backdoor defenses across text lengths, domains, and
label diversity.

C Algorithmic Description
Algorithm 1 outlines our DUP framework, which puri-
fies backdoored models while preserving clean-task per-
formance. The method consists of two stages, which are
poisoned sample detection and targeted unlearning. First,
we identify informative layers by computing the Calin-
ski–Harabasz score on a calibration set Dcalib. Mahalanobis



Datasets Task Class Split (Train/Dev/Test) Avg. Len.
SST-2 Sentiment Analysis Positive/Negative 6.9K:0.8K:1.8K 19.21
YELP Sentiment Analysis Positive/Negative 14K:3K:3K 29.71

AG’s News News Topic Classification World/Sports/Business/SciTech 108K:12K:7.6K 31.06

Table 7: Statistics of the benchmark datasets used in our experiments. The target class is marked in bold.

distances are computed for each selected layer as a distance-
based anomaly score. In parallel, we extract inter-layer spec-
tral features via singular value decomposition to capture in-
consistencies caused by backdoor triggers. These two scores
are normalized and combined to form a final detection score.
The threshold τ is set by fixing the false rejection rate at
5%, and samples are classified into poisoned or clean sets
accordingly. Next, we fine-tune a student model with LoRA
adapters using a dual-loss objective that includes KL diver-
gence to forget backdoor behavior and cross-entropy loss
to retain clean accuracy. The total loss is formulated as a
weighted combination of the two objectives, with weights
λasr and λacc.

Algorithm 1: Detection-guided Unlearning for Purification

Require: Backdoored model (teacher) M, calibration set
Dcalib, validation set Dvalid, test input x, loss weights
λasr, λacc, FRR=5%;

Ensure: Predicted labels; purified model (student)Ms;
1: Select k layers by Calinski Harabasz score on Dcalib;
2: for each selected layer i do
3: Compute class-agnostic centroids ci and shared

shrunk covariance Σi;
4: end for
5: Extract features fi(x) from each layer;

6: Mi(x)←
√

(fi(x)− ci)TΣ
−1
i (fi(x)− ci);

7: SMD(x)← mean of {Mi(x)}ki=1;
8: Stack hidden states H(x) = [f1(x), . . . , fL(x)]

⊤;
9: Calculate the inter-layer difference matrix ∆(x);

10: Perform SVD: ∆(x) = UΣV ⊤;
11: SSS(x)← s1/

∑
j sj ;

12: Normalize both scores to get ŜMD(x) and ŜSS(x);
13: Sfinal(x) = α · ŜMD(x) + (1− α) · ŜSS(x);
14: Compute threshold τ corresponding to 5% FRR;
15: if Sfinal(x) > τ then
16: labels← poisoned; add x to Dp;
17: else
18: labels← clean; add x to Dc;
19: end if
20: CopyM asMs and insert LoRA adapters;
21: for each batch (x, y) from Dp ∪ Dc do
22: Lunlearn = DKL(Ms(x) ∥ M(x)) on Dp;
23: Lpreserve = CE(Ms(x), y) on Dc;
24: Ltotal = −λasr · Lunlearn + λacc · Lpreserve;
25: end for
26: return labels,Ms

D Experimental Settings
We reproduced six representative baseline defense methods:
STRIP (Gao et al. 2022), DAN (Chen et al. 2022), NAS (Yi
et al. 2024), ONION (Qi et al. 2021a), BadActs (Yi et al.
2024), and TG (Pei et al. 2024). These methods span differ-
ent defense strategies, including backdoor input detection,
model-level purification, and backdoor suppression.

We adopted publicly available implementations for all
baseline methods and followed standardized configurations
to ensure fair comparison. For BadActs, we set the thresh-
old margin δ to 3 and fixed the FRR at 5%. ONION was
configured with a perplexity threshold of 0. For STRIP, we
used five repetitions, a word swap ratio of 0.5, and turned off
the use of opposite-label sets. DAN was similarly evaluated
under an FRR of 5%. TG was trained for five epochs, with
the number of ensemble groups set to 9 for PLMs and 3 for
LLMs due to GPU memory constraints. For our MS, we se-
lected the top-k = 3 layers for Mahalanobis-based scoring
and used all layers for spectral scoring. The final anomaly
score was computed using a weighted fusion with α = 0.9,
and the detection threshold was calibrated to maintain an
FRR of 5%. We fixed all random seeds to 2025 to ensure
reproducibility.

All baselines were executed under consistent compu-
tational settings for fair comparison. To efficiently fine-
tune backdoored models, we employed LoRA adapters via
Hugging Face’s PEFT library, with configuration parame-
ters: rank r = 32, α = 64, dropout rate 0.1, and no
bias adaptation. In memory-constrained scenarios, such as
full-parameter fine-tuning of 3B-scale models during back-
door implantation, we utilized Hugging Face Accelerate and
DeepSpeed ZeRO Stage 1 to offload optimizer states to the
CPU. Training was conducted using bf16 precision and a
gradient accumulation step size of 8.

All experiments were implemented using the Py-
Torch (Paszke et al. 2019), OpenBackdoor (Cui et al. 2022),
PEFT (Mangrulkar et al. 2022), and Accelerate (Gugger
et al. 2022) libraries. They were conducted on a machine
equipped with a single NVIDIA RTX 4090 GPU (24 GB
VRAM) and a 32 vCPU Intel(R) Xeon(R) Gold 6430 pro-
cessor. Due to memory constraints, the TG baseline was ex-
ecuted using two RTX 4090 GPUs.

E Evaluation Metrics
We use the Area Under the Receiver Operating Character-
istic (AUC) to evaluate our detection method as a primary,
threshold-independent measure of its overall efficacy. Ad-
ditionally, we report the False Acceptance Rate (FAR), the
proportion of clean samples incorrectly flagged as poisoned,



and the False Rejection Rate (FRR), the proportion of poi-
soned samples missed by the detector. A robust defense must
strike a balance between keeping FAR low to preserve clean
input utility and maintaining FRR low to ensure security
against backdoor attacks. We assess the effectiveness of our
purification method and its impact on model utility through
two key metrics, Clean Accuracy (CACC) and Attack Suc-
cess Rate (ASR). CACC measures the purified model’s ac-
curacy on clean samples, which quantifies its performance
preservation. Conversely, ASR is the percentage of poisoned
samples still misclassified as the target label.

F Effectiveness of Backdoor Attacks Across
Models and Datasets

Table 8 presents the ASR and CACC of four repre-
sentative backdoor attacks (BadNets, AddSent, Stylebkd,
and Synbkd) across different models and datasets. All at-
tacks consistently achieve high ASR while preserving high
CACC, demonstrating their robustness across both PLMs
and LLMs. The strength and stealth of these attacks present
substantial challenges to current defense methods.

G More Details Detection Results
We present detailed detection results of MS and baseline
methods on the YELP and AG’s News datasets in Tables 9
and 10, reporting AUC, FAR, and FRR across various at-
tacks and models for a comprehensive robustness evalua-
tion. MS consistently achieves the highest AUC and main-
tains low FAR and FRR across most settings, demonstrat-
ing strong and stable detection performance. Compared to
STRIP and DAN, MS exhibits superior robustness against
Stylebkd and Synbkd attacks, where other methods often
suffer from elevated FAR. While NAS shows competitive
results in some instances, its performance is less stable, par-
ticularly on complex architectures. A key advantage of MS
is its cross-architecture generalizability. It performs reliably
across a wide range of models, from PLMs (such as BERT
and BART) to LLMs (including LLaMA 3B and Qwen 3B).
Importantly, MS does not require architecture-specific tun-
ing, making it highly suitable for practical deployment.

H Ablation Study on the Number of Selected
Layers

This section investigates the influence of the hyperparameter
k, the number of layers selected using the top-k strategy, on
the detection performance. We adopt k = 3 for both PLMs
and LLMs in our experiments. To assess the impact of k, we
conduct experiments at discrete values: k = 1, 3, 5, and 7.

As illustrated in Figure 5, increasing k generally im-
proves AUC scores up to a certain point, after which the
performance slightly declines. Specifically, for PLMs such
as BERT and BART, the AUC tends to peak or stabilize
around k = 3, with BERT showing robust results at this set-
ting. A similar trend is observed in LLaMA 3B and Qwen
3B, where k = 3 offers competitive performance across dif-
ferent attack scenarios. These results suggest that selecting
the top 3 most informative layers balances effectiveness and
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Figure 5: Impact of varying k on the detection performance
of PLMs (left) and LLMs (right) on the SST-2 dataset.
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Figure 6: Impact of varying α on the detection performance
of PLMs (left) and LLMs (right) on the SST-2 dataset.

efficiency. Therefore, we set k = 3 as the default configura-
tion in all main experiments to ensure high detection perfor-
mance and computational efficiency.

I Ablation Study on the Fusion Weigh
In computing the final anomaly score Sfinal(x), we introduce
a fusion hyperparameter α to balance the static and dynamic
anomaly score. To investigate the impact of α, we conduct
an ablation study by varying its value from 0.5 to 1.0 in in-
crements of 0.1.

As illustrated in Figure 6, the detection performance is
sensitive to the choice of α. When α = 0.9, most models
achieve best or close-to-best AUC scores, especially BART
under the BadNets attack and Qwen 3B across multiple set-
tings. In contrast, lower values of α (e.g., 0.5 or 0.6) often
result in degraded performance, likely due to noise in the
dynamic signal. Overemphasizing SSS in the final score may
amplify this noise and hurt detection accuracy. This confirms
that α = 0.9 provides a good balance between static and dy-
namic signals, and is thus adopted in our main experiments.

J Ablation Study on the Number of Clean
Samples

To evaluate the robustness of our method with respect to the
amount of clean data available, we conduct an ablation study
by varying the number of clean samples. Specifically, we
evenly split the limited clean datasetD into two subsets: one
for calibration Dcalib and the other for validation Dvalid.

As illustrated in Figure 7, our MS maintains consistently
high AUC scores across a wide range of sample sizes for
both PLMs and LLMs, demonstrating strong robustness to
the quantity of clean data. Even with as few as 200 clean



Dataset Attack BERT-base BART-base LLaMA 3B Qwen 3B

CACC ASR CACC ASR CACC ASR CACC ASR

SST-2

BadNets 90.72% 100% 90.12% 100% 94.95% 99.89% 94.23% 100%
AddSent 90.28% 100% 93.08% 100% 94.12% 100% 95.66% 100%
Stylebkd 89.90% 81.69% 92.97% 99.78% 94.84% 99.89% 95.28% 99.56%
Synbkd 90.39% 89.69% 91.93% 96.71% 91.76% 99.34% 93.85% 96.49%

YELP

BadNets 95.54% 100% 96.04% 99.93% 97.10% 99.80% 96.63% 100%
AddSent 95.44% 100% 96.73% 100% 97.23% 100% 95.84% 100%
Stylebkd 94.60% 93.60% 95.40% 100% 97.33% 100% 97.13% 100%
Synbkd 95.44% 99.67% 95.87% 100% 96.70% 100% 97.23% 100%

AG’s News

BadNets 94.43% 100% 94.90% 100% 95.07% 100% 94.53% 99.88%
AddSent 94.33% 100% 94.65% 100% 95.04% 100% 94.65% 100%
Stylebkd 94.24% 94.05% 94.57% 95.86% 94.71% 95.56% 94.67% 96.16%
Synbkd 94.17% 99.75% 94.79% 99.91% 94.90% 99.91% 94.90% 99.91%

Table 8: The performances of different attacks in terms of ASR and CACC in percentage.

Attack Defense BERT BART LLaMA 3B Qwen 3B
AUC FAR FRR AUC FAR FRR AUC FAR FRR AUC FAR FRR

BadNets

STRIP 53.73 83.28 11.83 53.14 84.34 10.16 53.20 83.21 13.96 54.70 82.95 13.36
DAN 93.51 37.64 7.03 77.29 61.89 7.40 66.69 85.08 7.20 75.40 79.08 6.96
NAS 98.49 0.00 5.23 96.07 30.58 4.73 88.21 83.34 5.93 97.43 2.27 6.10
MS 98.10 0.00 6.30 97.54 9.06 5.03 95.62 18.12 6.23 99.62 0.07 6.53

AddSent

STRIP 52.41 85.54 10.83 53.58 84.81 11.00 51.42 94.54 5.26 49.36 93.14 5.43
DAN 77.62 86.01 7.00 90.59 35.98 6.93 65.33 85.81 6.83 69.68 89.07 6.70
NAS 99.72 0.00 5.16 96.22 0.53 5.96 99.17 0.20 5.93 99.56 0.00 5.90
MS 99.92 0.00 5.53 99.38 2.27 5.13 99.84 0.00 6.86 99.87 0.00 6.53

Stylebkd

STRIP 52.10 86.34 10.86 54.82 78.48 15.26 55.68 87.21 9.70 55.17 84.41 12.06
DAN 96.61 13.06 7.60 98.55 4.20 7.70 89.24 35.58 7.33 90.77 32.91 6.36
NAS 97.27 8.39 5.50 99.98 0.00 5.13 99.78 0.00 5.96 99.75 0.00 5.80
MS 98.38 5.13 6.56 99.97 0.07 5.30 99.90 0.00 6.36 99.86 0.00 7.23

Synbkd

STRIP 50.23 93.94 5.53 50.95 86.74 9.33 55.60 82.55 13.06 55.16 85.81 11.16
DAN 92.72 40.77 7.03 99.65 0.20 7.33 99.11 2.00 7.70 94.23 26.38 7.16
NAS 95.84 19.19 5.86 99.70 0.00 5.80 99.99 0.00 5.33 99.78 0.00 6.26
MS 97.73 6.86 6.83 99.99 0.07 5.86 100 0.00 6.96 99.86 0.00 8.06

Table 9: Backdoor detection performance (in percentage) of MS and baselines on YELP. Best results are bolded.
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Figure 7: Impact of clean samples on the detection per-
formance of PLMs (left) and LLMs (right) on the SST-2
dataset.

samples, the detection performance remains competitive,
highlighting our MS’s efficiency and practicality in low-
resource scenarios. Notably, the BART model under the
BadNets attack shows slightly lower AUC than LLMs. This
may be attributed to LLMs’ superior representation and gen-

eralization capabilities, which allow them to construct more
stable feature distributions from limited data.

K Details of Adaptive Attacks
To implement the adaptive attack, we employ a strategy
based on feature-level regularization (Zhao et al. 2022;
Zhong, Qian, and Zhang 2022). The core objective is to force
the latent representations of poisoned samples to mimic
those of clean samples, making them indistinguishable in the
model’s feature space.

We introduce a regularization loss term, Lce, which min-
imizes the distance between the feature representations of
poisoned and clean samples across all L layers of the model.
This loss is defined as:

Lreg =
∑

1≤i≤L

∥f poisoned
i − f clean

i ∥2, (11)

where f poisoned
i and f clean

i are the feature representation vec-
tors of the poisoned and clean samples at layer i, respec-



Attack Defense BERT BART LLaMA 3B Qwen 3B
AUC FAR FRR AUC FAR FRR AUC FAR FRR AUC FAR FRR

BadNets

STRIP 53.14 82.42 14.12 52.44 82.89 14.05 52.21 85.35 12.07 53.81 78.49 18.07
DAN 86.86 70.93 4.87 99.76 0.00 5.33 87.46 32.90 4.75 86.37 36.98 5.33
NAS 95.19 29.65 4.91 80.08 83.25 4.75 92.12 77.14 4.82 95.85 32.90 4.62
MS 93.74 39.54 4.25 99.97 0.00 5.01 99.90 0.00 5.00 98.91 0.26 4.46

AddSent

STRIP 50.78 88.09 10.00 53.11 80.19 15.41 51.75 88.25 10.12 52.73 84.68 13.11
DAN 81.24 82.72 4.76 89.54 41.02 4.97 86.76 34.67 4.61 86.87 42.09 4.95
NAS 96.96 17.33 5.33 81.68 83.19 5.08 95.34 60.74 4.78 90.61 95.35 5.15
MS 96.63 18.61 4.62 99.11 3.68 5.39 99.95 0.00 5.04 99.94 0.00 3.80

Stylebkd

STRIP 50.36 93.11 6.51 51.41 84.91 14.34 53.84 80.84 15.96 54.46 79.10 16.42
DAN 95.41 21.19 4.49 98.33 6.16 4.67 86.69 0.00 100 90.23 0.00 100
NAS 98.22 5.61 4.75 95.14 18.86 4.92 89.61 36.37 4.78 93.30 32.19 5.04
MS 97.36 6.04 4.71 97.66 5.98 4.53 95.14 18.79 4.78 97.10 8.79 4.11

Synbkd

STRIP 52.46 79.56 16.84 54.28 72.63 21.65 55.87 67.51 24.50 55.85 70.23 22.25
DAN 99.89 0.00 100 99.94 0.00 100 99.93 0.00 100 99.91 0.00 100
NAS 99.35 0.79 5.64 99.90 0.11 4.82 98.62 0.09 5.16 96.71 13.16 4.78
MS 99.62 0.30 4.45 99.96 0.09 5.11 99.97 0.09 4.63 99.95 0.09 4.16

Table 10: Backdoor detection performance (in percentage) of MS and baselines on AG’s News. Best results are bolded.

tively, and ∥·∥2 denotes the Euclidean distance (L2-norm).
The clean samples are specifically chosen to have the same
ground-truth label as the backdoor’s target label.

The final training objective combines this regularization
term with the standard cross-entropy loss Lce:

L = Lce + αLreg, (12)

where α is a hyperparameter that balances the primary task
of backdoor injection with the secondary goal of feature con-
cealment. Consistent with prior work (Chen et al. 2022; Yi
et al. 2024), we set α=250 in our experiments to ensure the
regularization is sufficiently strong.

L Analysis of DUP’s Efficiency Advantages
This section analyzes the computational and memory effi-
ciency of the proposed DUP framework, highlighting three
core design choices that contribute to its practical applica-
bility.

Top-k Layer Selection for Efficient Detection. Unlike
many existing feature-space defenses, which rely on rep-
resentations from all layers, DUP adopts a top-k selection
strategy focusing only on the most discriminative layers
(e.g., k = 3 in our experiments). This significantly reduces
the computational overhead by limiting costly operations
such as Mahalanobis distance calculation to a small subset
of informative layers rather than the full model. This design
streamlines detection by avoiding redundant analysis of less
valuable layers.

Parameter-Efficient Unlearning via LoRA. Conven-
tional purification methods typically require full-parameter
fine-tuning, which is computationally demanding, partic-
ularly for large-scale models. DUP leverages Low-Rank
Adaptation (LoRA) to perform unlearning in a parameter-
efficient manner. By freezing the base model and updating

only lightweight LoRA adapters, DUP substantially reduces
the number of trainable parameters, resulting in faster opti-
mization and lower memory usage during training.

Memory-Efficient Self-Contained Distillation. Some
prior methods require loading an external clean model to
guide the purification process, leading to high memory con-
sumption. In contrast, DUP employs a self-contained dis-
tillation scheme where the backdoored model serves as its
teacher, and a LoRA-injected copy acts as the student. This
eliminates the need for additional clean models, thereby re-
ducing peak GPU memory usage, which is particularly ben-
eficial when defending resource-intensive LLMs.

These efficiency-oriented design choices make DUP a
practical and scalable defense framework, particularly suited
for real-world deployment under limited computational and
memory budgets.


