
Performance and Storage Analysis of CRYSTALS-Kyber (ML-KEM)
as a Post-Quantum Replacement for RSA and ECC

Nicolas Rodriguez Alvarez
IES Parquesol

nicolas.rodalv@educa.jcyl.es

Fernando Rodriguez Merino
Department of Theoretical, Atomic and Optical Physics, University of Valladolid

fernando.rodriguez.merino@uva.es

Abstract
The steady advancement in quantum computer error correction technology has pushed the current record to 48 stable
logical qubits, bringing us closer to machines capable of running Shor’s algorithm at scales that threaten RSA and
ECC cryptography. While the timeline for developing such quantum computers remains uncertain, the cryptographic
community must prepare for the transition to quantum-resistant algorithms. CRYSTALS-Kyber, standardized by
NIST in 2022, represents a leading post-quantum cryptographic solution, but widespread adoption faces significant
challenges. If this migration follows patterns similar to the SHA-1 to SHA-2 transition, organizations may experience
prolonged periods of vulnerability, with substantial security and economic consequences. This study evaluates Kyber’s
practical viability through performance testing across various implementation schemes, utilizing only standard built-
in processor acceleration features (AES-NI, ASIMD) without any specialized hardware additions. Our findings
demonstrate that Kyber provides robust security guarantees against quantum attacks while maintaining acceptable
performance profiles for most contemporary applications, utilizing only commodity hardware with manufacturer-
provided acceleration capabilities.

1 Introduction

The theoretical foundations established by Shor and
Grover have evolved from academic concepts to practi-
cal concerns as quantum computing hardware continues
to advance. While experts debate the timeline for achiev-
ing fault-tolerant quantum computers capable of running
Shor’s algorithm at scale, the cryptographic community
faces an urgent imperative: the transition to quantum-
resistant algorithms cannot wait for quantum computers
to become operational. Historical precedents in crypto-
graphic transitions offer sobering lessons about the chal-
lenges ahead. The migration from SHA-1 to SHA-2, ini-
tiated in 2005 following the discovery of collision vul-
nerabilities, took over a decade to complete [PS], with
many organizations maintaining vulnerable systems well
beyond recommended timelines [PS]. This prolonged
transition period exposed numerous systems to security
risks and highlighted the substantial economic and oper-
ational costs associated with delayed cryptographic up-
grades. Suppose the transition to post-quantum cryptog-
raphy follows similar patterns. In that case, organiza-
tions may face extended periods of vulnerability to quan-
tum attacks, with potentially catastrophic consequences
for digital infrastructure, financial systems, and national

security. In response to this challenge, the National In-
stitute of Standards and Technology (NIST) initiated a
comprehensive standardization process for post-quantum
cryptographic algorithms, culminating in the selection
of CRYSTALS-Kyber as the primary Key Encapsulation
Mechanism (KEM) standard in 2022. Unlike RSA and
ECC, which derive their security from number-theoretic
problems vulnerable to quantum attacks, Kyber’s secu-
rity relies on the learning with errors (LWE) problem over
module lattices—a mathematical foundation believed to
be resistant to both classical and quantum computational
attacks. However, theoretical quantum resistance alone
does not guarantee practical adoption. The success of
any cryptographic standard depends critically on its per-
formance characteristics, storage requirements, and com-
patibility with existing hardware infrastructure. Previ-
ous post-quantum proposals have faced significant bar-
riers to adoption due to excessive computational over-
head, prohibitive key sizes, or requirements for special-
ized hardware acceleration. To address these concerns
and evaluate Kyber’s practical viability as a replace-
ment for current cryptographic standards, this study con-
ducts a comprehensive performance analysis across mul-
tiple architectures and implementation scenarios. This
research contributes to the post-quantum cryptography

1

ar
X

iv
:2

50
8.

01
69

4v
3

 [
cs

.C
R

]
 7

 A
ug

 2
02

5

https://orcid.org/0009-0002-6804-386X
mailto:nicolas.rodalv@educa.jcyl.es
https://orcid.org/0000-0002-3991-2563
mailto:fernando.rodriguez.merino@uva.es
https://arxiv.org/abs/2508.01694v3

transition by providing empirical evidence of Kyber’s per-
formance characteristics under realistic deployment con-
ditions. Our evaluation methodology utilizes standard
hardware acceleration features available in commodity
processors (AES-NI, AVX2, ASIMD) without requiring
specialized, quantum-resistant hardware additions, ensur-
ing that our findings accurately reflect the performance
organizations can expect during real-world deployment.
By comparing Kyber’s performance against equivalent-
security implementations of RSA-7680 and SECP384R1
(ECC) across both x86_64 and ARM64 architectures, we
establish benchmarks that inform migration planning and
risk assessment for organizations preparing for the post-
quantum era.

2 Background

2.1 Classical Cryptographic Schemes

Modern public-key cryptography relies on two primary
mathematical foundations that are vulnerable to quan-
tum attacks. RSA (Rivest-Shamir-Adleman) cryptog-
raphy derives its security from the computational in-
tractability of the integer factorization problem—the dif-
ficulty of decomposing large composite numbers into their
constituent prime factors. This problem becomes expo-
nentially harder as key sizes increase, making RSA-2048
and RSA-4096 computationally infeasible to break with
classical computers within reasonable timeframes [LV01]
[RSA78]. Elliptic Curve Cryptography (ECC) of-
fers an alternative approach based on the elliptic curve
discrete logarithm problem (ECDLP) [Mil07]. ECC
achieves equivalent security levels to RSA with sig-
nificantly smaller key sizes—a 256-bit ECC key pro-
vides comparable security to a 3072-bit RSA key. The
SECP384R1 curve, standardized by the Standards for Ef-
ficient Cryptography (SEC), represents a widely deployed
ECC implementation offering 192-bit security strength
according to NIST guidelines [Bar06]. Both RSA and
ECC implementations typically employ hybrid encryption
schemes that combine asymmetric and symmetric cryp-
tography. In these systems, a Key Encapsulation Mech-
anism (KEM) securely exchanges a symmetric key using
public-key methods. At the same time, a Data Encap-
sulation Mechanism (DEM) handles bulk data encryp-
tion using faster symmetric algorithms, such as AES or
ChaCha20, which are theoretically unbreakable.

2.2 Quantum Algorithms

Shor’s algorithm, formulated by Peter Shor in 1994,
marked a milestone in quantum computing theory by
showing that a sufficiently large, error-free quantum com-
puter could factor large integers efficiently. Whereas
the best-known classical algorithms run in subexponen-
tial time, Shor’s algorithm runs in “polynomial” time,
approximately O(log(N)3) depending on implementation

details, making the cryptographic keys based on large-N
factorization effectively breakable in negligible time (RSA
and ECC) [Sho97]. Meanwhile, Grover’s algorithm, in-
troduced by Lov Grover in 1996, provides a quadratic
speedup for unstructured search, reducing the classical
cost of O(N) to O(

√
N). Although not initially intended

for factorization, Grover’s amplitude-amplification tech-
nique can be used to optimize specific subroutines within
Shor’s method or to accelerate searches among partial so-
lutions generated by Shor’s quantum circuit [Gro96]. In
theory, combining Shor’s and Grover’s algorithms could
optimize the number of iterations and resource usage.

2.3 “Standard” hardware accelerations
In this study, the default hardware accelerations provided
by the CPU were utilized. The following section provides
a comprehensive explanation of these accelerations.

2.3.1 Intel

Intel® Advanced Encryption Standard Instructions
(AES-NI): This hardware acceleration provides a
speedup of 3 to 10x over an entirely software implemen-
tation using AES [Int].

Intel® Advanced Vector Extensions (AVX/AVX2):
Intel’s vector instruction set for SIMD vector operations
[Cor21]. The Kyber implementation used in this study
leverages AVX2 instructions to accelerate its core lattice-
based computations, resulting in significant performance
improvements.

Intel® Secure Key (RDRAND/RDSEED):
On-chip, NIST-certified random number generator
instructions for high-quality entropy source in key
generation [Cor21]

Intel® Carry-Less Multiplication (PCLMULQDQ):
Provides a single-cycle, hardware-accelerated carry-less
64x64-bit multiply, used in GCM and other Galois-field
operations [Cor21].

2.3.2 ARM

AES: ARM v8 Cryptography Extensions add
AESE/AESD/AESMC/AESIMC instructions for
single-round encryption/decryption and key-schedule
support [ARM14].

SHA1/SHA2: SHA1C / SHAP / SHAM /
SHA256H / SHA256SU instructions accelerate SHA-1
and SHA-224/256 hashing [ARM14].

Polynomial Multiply (PMULL): 64x64-bit carry-less
multiply for efficient GCM-mode Galois-field operations
[ARM14].

Advanced SIMD (ASIMD): The “NEON” AArch64
SIMD unit for 128-bit vector arithmetic, logical, and
data-rearrangement operations [ARM14].

Half-Precision SIMD (ASIMDHP): Extension en-
abling SIMD operations on 16-bit floating-point data
types [ARM14].

2

3 Cryptographic Schemes
To ensure a fair comparison, the following widely known
and commonly used algorithms will be employed: RSA-
7680, ECDH-SECP384R1 (ECC), and ML-KEM768 (Ky-
ber). They all have the same security strengths according
to the NIST [Bar06].

For a practical and fair performance evaluation, it is
crucial to test these algorithms as they would be used
in a real-world application. Asymmetric cryptography is
typically used not for bulk data encryption, but to secure
a shared symmetric key or shared secret. This is known
as hybrid encryption [CS01], this was implemented ac-
cording to the NIST recommendations [BCD20].

Therefore, this study evaluates each algorithm within a
hybrid encryption scheme, which combines a Key En-
capsulation Mechanism (KEM) for the asymmetric part,
and a Data Encapsulation Mechanism (DEM) for the
symmetric part.

To ensure consistency, the same DEM was used for all
three schemes: the ChaCha20-Poly1305 authenticated
encryption with associated data (AEAD) cipher [NL18]

A key differentiator between these schemes lies in
the mathematical problems that underpin their security.
RSA’s security relies on the presumed difficulty of the in-
teger factorization problem [RSA78], while ECC’s is
based on the elliptic curve discrete logarithm prob-
lem (ECDLP) [Kob87] [Mil07]. Both of these problems
are known to be efficiently solvable by a sufficiently large
quantum computer using Shor’s algorithm [Gro96].

In contrast, CRYSTALS-Kyber’s security is based
on the hardness of solving the learning with errors
(LWE) problem over module lattices. The LWE prob-
lem is widely believed to be resistant to attacks from both
classical and quantum computers, which forms the foun-
dation of its post-quantum security claims [Nat24].

4 Benchmarking Methodology
This section outlines the environment and procedures
used for evaluating the performance of the cryptographic
schemes.

4.1 Hardware
To ensure the veracity of the results, the two most pop-
ular architectures were tested on two separate systems:
one using the ARM64 architecture—commonly found in
portable devices such as the iPhone, Steam Deck, Apple
Silicon Macs, and the Raspberry Pi—and the other us-
ing the x86_64 architecture, which is prevalent in servers
and desktop computers built with Intel® or AMD® pro-
cessors. This comparison does not consider hardware-
accelerated implementations of certain cryptographic op-
erations, such as RSA ones, which can significantly im-
prove performance [Sha05]. The standard ones that the
CPU manufacturer implements have been enabled.

Table 1: Key Hardware Specifications of x86_64 Test
System

Feature Specification

Architecture x86_64 (64-bit mode)
CPU Vendor Intel®
Processor Model Xeon E5-2686 v4
Base Frequency 2.30 GHz
CPU Cores 1
Threads per Core 1

Cache Hierarchy
L1 Data Cache 32 KiB
L1 Instruction Cache 32 KiB
L2 Cache 256 KiB
L3 Cache 45 MiB

Cryptography-Relevant Instruction Sets
AES-NI Supported
AVX/AVX2 Supported
PCLMULQDQ Supported
RDRAND Supported

Table 2: Key Hardware Specifications of ARM64 Test
System

Feature Specification

Architecture ARM aarch64 (64-bit)
CPU Vendor ARM
Processor Model Neoverse-N1
CPU Cores 2
Threads per Core 1
Stepping r3p1

Cache Hierarchy
L1 Data Cache 128 KiB (64 KiB/core)
L1 Instruction Cache 128 KiB (64 KiB/core)
L2 Cache 2 MiB (1 MiB/core)
L3 Cache 32 MiB (shared)

Cryptography-Relevant Instruction Sets
AES Supported
SHA1/SHA2 Supported
PMULL (Polynomial Multiply) Supported
ASIMD (Advanced SIMD) Supported
ASIMDHP (FP16 support) Supported

The benchmarking environment employs two distinct
systems representing prevalent computing architectures:
an x86_64 platform (Intel® Xeon E5-2686 v4) and an
ARM64 platform (ARM Neoverse-N1). Both configura-
tions deliberately emulate general-purpose CPU scenarios
by disabling hardware acceleration for asymmetric cryp-
tographic operations (e.g., RSA modular exponentiation

3

units), ensuring fair algorithmic comparisons under stan-
dardized software implementations. The x86_64 system
reflects server/desktop profiles with a single-core setup
(2.3 GHz base frequency) and a large 45 MiB shared L3
cache, while the ARM64 system mirrors edge/IoT con-
straints with a dual-core design and 32 MiB shared L3
cache. Crucially, both platforms support modern cryp-
tographic instruction sets: x86_64 leverages AES-NI,
AVX/AVX2, and PCLMULQDQ, whereas ARM64 uti-
lizes AES, PMULL, and ASIMD extensions. For these
benchmarks, all available accelerations, including AVX2
for the Kyber implementation, were used where appli-
cable by the cryptographic libraries. These instructions
were fully enabled during testing to reflect real-world de-
ployment conditions. The absence of dedicated asym-
metric hardware acceleration ensures results reflect base-
line CPU performance relevant to widespread software
deployments, with cache hierarchies (L1-L3) and single-
threaded execution isolating per-core computational bot-
tlenecks inherent to cryptographic workloads.

4.2 Benchmarking Software

The two systems have utilized the Ubuntu Linux distri-
bution, specifically the 24.04.2 LTS version. On the pro-
gramming side, Rust was used as the programming lan-
guage for the benchmarks. The openssl crate provided
the implementations of RSA and SECP384R1, while the
oqs crate, which enables the use of ML-KEM via the Rust
bindings for the Open Quantum Safe’s liboqs library.

The benchmarks are consolidated into two main sec-
tions: Performance and Storage. The Performance sec-
tion measures the necessary computational resources re-
quired to execute a specific operation, measured in CPU
cycles obtained through the use of the iai-callgrind crate.
It is essential to note that the CPU cycles are an ap-
proximation due to the noise generated by the CPU
boost; however, they closely approximate the actual value
with a high degree of accuracy. On the other hand,
the Storage section measures the size of the outputs
of the ciphers, with a given message. The complete
benchmarking source code is publicly available on
this repo nichokas/kyber-performance. Implemen-
tations leverage platform-supported hardware accelera-
tion (AES-NI, PMULL, ASIMD) for relevant operations.
Asymmetric-specific hardware (e.g., RSA modular expo-
nentiation units) was turned off to ensure algorithmic fair-
ness.

5 Comparison

For reproducibility, the version of the source code used
for this paper is Commit 6fa6b0c.

5.1 Speed benchmarks
5.1.1 Key Generation

Measurement of the required computational resources to
create a new public-private keypair.

21.3M

7.4M

152.1B

19.5M

7.3M

24.7B

SECP384R1 Kyber RSA

100k

1M

10M

100M

1B

10B

100B

1T

x86_64
ARM64

Key Generation

E
st

im
at

ed
 C

yc
le

s
(L

og
ar

ith
m

ic
 s

ca
le

)

Kyber demonstrates superior efficiency in key genera-
tion. On both x86_64 and ARM64 architectures, Ky-
ber requires the fewest cycles (7.4M and 7.3M, respec-
tively), making it approximately 2.7 to 3 times faster than
SECP384R1 (21.3M and 19.5M cycles). The perfor-
mance gap with RSA is staggering. On the x86_64 plat-
form, Kyber is over 20,500 times faster than RSA, and
on ARM64, it remains over 3,400 times faster. This vast
difference is due to the underlying mathematics of the al-
gorithms. RSA key generation relies on the computation-
ally intensive and time-consuming process of finding large
prime numbers, which scales poorly. In contrast, Kyber’s
lattice-based arithmetic allows for much more efficient key
creation. Although the ARM64 architecture significantly
reduces RSA’s key generation time by a factor of six com-
pared to x86_64, it remains orders of magnitude slower
than both Kyber and ECC.

5.1.2 Outgoing Shared Secret Derivation

15.2M

210.8K

5.2M

13.6M

288.2K

3.7M

SECP384R1 Kyber RSA

5

100k

2

5

1M

2

5

10M

2

x86_64
ARM64

Outgoing Derivation

E
st

im
at

ed
 C

yc
le

s
(L

og
ar

ith
m

ic
 s

ca
le

)

4

https://crates.io/crates/openssl
https://crates.io/crates/oqs
https://crates.io/crates/iai-callgrind
https://github.com/Nichokas/kyber-performance
https://github.com/Nichokas/kyber-performance/tree/6fa6b0ca39312755fc228b50978184df88ca6fb7

This chart illustrates the performance of deriving a shared
secret from the initiator’s (the “outgoing” party’s) per-
spective. This process typically involves using one’s own
private key and the recipient’s public key to establish
a mutual secret. The y-axis is on a logarithmic scale
to properly visualize the performance differences in esti-
mated CPU cycles.

The data reveals that Kyber is the most efficient al-
gorithm for this operation on both tested platforms. On
x86_64, Kyber’s cost of approximately 210,800 cycles is
roughly 25 times faster than RSA (5.2 million cycles)
and 72 times faster than SECP384R1 (15.2 million cy-
cles). On the ARM64 architecture, Kyber (288,200 cy-
cles) maintains its lead, proving to be about 13 times
faster than RSA (3.7 million cycles) and 47 times faster
than SECP384R1 (13.6 million cycles).

It is important to note that for RSA, this “public-key”
operation is significantly less costly than the “private-
key” operation shown in the “Incoming Derivation” chart,
which is an expected characteristic of the algorithm. Nev-
ertheless, Kyber still surpasses it by a substantial margin.
For SECP384R1, the computational workload is identi-
cal for both the incoming and outgoing phases, which
explains its consistently high cycle count. Kyber’s ef-
ficiency, requiring fewer than 300,000 cycles, facilitates
near-instantaneous symmetric key establishment, drasti-
cally reducing the latency of cryptographic handshakes
compared to both RSA and ECC.

5.1.3 Incoming Shared Secret Derivation

15.2M

236.7K

764.0M

13.6M

329.9K

529.6M

SECP384R1 Kyber RSA

2

5

1M

2

5

10M

2

5

100M

2

5

1B
x86_64
ARM64

Incoming Derivation

E
st

im
at

ed
 C

yc
le

s
(L

og
ar

ith
m

ic
 s

ca
le

)

On the x86_64 architecture, Kyber requires only about
236,700 cycles. This is approximately 64 times more ef-
ficient than SECP384R1, which takes 15.2 million cy-
cles, and over 3,200 times more efficient than RSA, which
needs 764 million cycles for the same task. A similar
trend is observed on the ARM64 platform, where Kyber’s
329,900 cycles outperform SECP384R1 (13.6 million cy-
cles) by a factor of 41 and RSA (529.6 million cycles) by
a factor of over 1,600.

It is important to note that for
SECP384R1, the derivation procedure is identical for

both the outgoing and incoming phases, which explains
its consistently high computational cost compared to Ky-
ber in both scenarios. This gap stems from Kyber’s foun-
dation in module lattice-based arithmetic, which avoids
the expensive elliptic curve point multiplication used by
SECP384R1 and the even more costly modular exponen-
tiation of RSA.

While the ARM64 architecture reduces the absolute
cycle count for classical algorithms, it does not alter the
fundamental performance hierarchy.

5.2 Storage benchmarks

Table 3: Added overhead (without the rust bytes)

nonce Key transport Total added length

SECP384R1 30 30
Kyber 30 1091 1121
RSA 30 963 993

The added overhead refers to the data that an algorithm
adds to the existing data (plaintext length) to encrypt it,
and in some cases, to include the key transport, for exam-
ple, with Kyber, is: plaintext message length + Kyber’s
overhead + Rust’s serialization bytes. The storage over-
head analysis reveals a critical trade-off between quantum
resistance and bandwidth efficiency. While the Poly1305
authentication nonce contributes a constant 30-byte over-
head across all schemes, the key transport mechanism di-
verges significantly: SECP384R1 (ECC) requires zero key
transport overhead due to its elliptic curve key agreement
protocol, resulting in a minimal total added length of 30
bytes. In contrast, Kyber and RSA introduce substan-
tial key transport payloads (1,091 bytes and 963 bytes,
respectively), resulting in total overheads of 1,121 bytes
for Kyber and 993 bytes for RSA. This establishes ECC
as the most bandwidth-efficient scheme—advantageous in
constrained environments, such as IoT—but its quantum

5

vulnerability remains an existential risk. Kyber’s 13.5%
higher transport overhead than RSA is justified by its
quantum resistance and superior computational efficiency
(see Section 5.1), positioning it as the optimal choice for
future-proof systems where bandwidth permits.

Conclusion

The benchmarking results demonstrate CRYSTALS-
Kyber’s decisive computational advantages over classical
cryptographic schemes across both x86_64 and ARM64 ar-
chitectures. These gains reflect Kyber’s natural align-
ment with modern CPU features; its implementation
leverages vectorization instructions such as AVX2 to ac-
celerate core lattice-based computations. Kyber operates
2.7–3× faster than ECC and 3,400×–20,500× faster
than RSA in key generation due to its efficient lattice-
based polynomial arithmetic. For shared secret deriva-
tion, Kyber maintains 41–72× speed advantages over
ECC and 1,600×–3,200× advantages over RSA, ef-
fectively eliminating RSA’s critical bottleneck in receiver-
side operations. These performance gains are consistent
across architectures, with ARM64 partially mitigating the
overheads of classical schemes without altering the funda-
mental performance hierarchy. The sole trade-off emerges
in storage requirements, where Kyber’s 1,121-byte hy-
brid payload exceeds RSA’s 993 bytes and ECC’s min-
imal 30-byte overhead, reflecting the inherent tension be-
tween quantum resistance and bandwidth efficiency. Col-
lectively, these results establish Kyber as delivering NIST-
standardized quantum resistance without computational
penalties.

These highly positive results, obtained using built-in
CPU features like AVX2 and AES-NI, strongly suggest a
path for future innovation: the design and development of
specialized hardware accelerators for lattice-based cryp-
tography. The creation of such hardware could unlock
further performance gains, reducing latency and power
consumption to solidify the viability of post-quantum
cryptography in even the most resource-constrained envi-
ronments, such as IoT devices.

Acknowledgements

I would like to extend my sincere gratitude to Elías F.
Combarro for his invaluable mentorship on the intricacies
of academic writing and for the constructive feedback he
provided during the development of this manuscript. His
support was instrumental in shaping this work.

References

[ARM14] ARM Limited. ARM® Cortex®-A53 MP-
Core Processor Cryptography Extension Tech-
nical Reference Manual (DDI 0501F). Tech-

nical Reference Manual DDI 0501F, ID041316,
ARM Limited, 2014. Optional Cryptography
Extension for AES and SHA on Cortex-A53.

[Bar06] Elaine Barker. Suite B Cryptography, March
2006. (accessed April 26, 2025).

[BCD20] Elaine Barker, Lily Chen, and Richard Davis.
Recommendation for key-derivation methods
in key-establishment schemes. Technical re-
port, National Institute of Standards and Tech-
nology, August 2020.

[Cor21] Intel Corporation. Intel 64 and IA-32 Archi-
tectures Software Developer’s Manual Volume
2: Instruction Set Reference. Intel Corpora-
tion, September 2021.

[CS01] Ronald Cramer and Victor Shoup. Design
and analysis of practical public-key encryption
schemes secure against adaptive chosen cipher-
text attack. Cryptology ePrint Archive, Paper
2001/108, 2001.

[Gro96] Lov K. Grover. A fast quantum mechanical
algorithm for database search. In Proceed-
ings of the Twenty-Eighth Annual ACM Sym-
posium on Theory of Computing, STOC ’96,
page 212–219, New York, NY, USA, 1996. As-
sociation for Computing Machinery.

[Int] Intel Corporation. Intel® Advanced Encryp-
tion Standard (Intel® AES) Instructions Set,
Rev 3.01. Online. Last updated August 2, 2012.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems.
Math. Comput., 48(177):203–209, 1987.

[LV01] Arjen K. Lenstra and Eric R. Verheul. Selecting
cryptographic key sizes. Journal of Cryptology,
14(4):255–293, 2001.

[Mil07] Victor S Miller. Use of elliptic curves in cryp-
tography. In Lecture Notes in Computer Sci-
ence, pages 417–426. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2007.

[Nat24] National Institute of Standards and Technol-
ogy. FIPS 203: Module-Lattice-Based Key-
Encapsulation Mechanism Standard. FIPS
Publication 203, National Institute of Stan-
dards and Technology, Information Technology
Laboratory, Gaithersburg, MD, USA, August
2024.

[NL18] Yoav Nir and Adam Langley. ChaCha20 and
Poly1305 for IETF Protocols. RFC 8439, June
2018.

[PS] Chris Palmer and Ryan Sleevi. Gradually sun-
setting SHA-1. Online.

6

[RSA78] R L Rivest, A Shamir, and L Adleman. A
method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM,
21(2):120–126, February 1978.

[Sha05] Ajay C. Shantilal. A faster hardware implemen-
tation of rsa algorithm. Technical report, De-
partment of Electrical & Computer Engineer-
ing, Oregon State University, Corvallis, Ore-
gon, USA, 2005.

[Sho97] Peter W. Shor. Polynomial-time algorithms for
prime factorization and discrete logarithms on
a quantum computer. SIAM Journal on Com-
puting, 26(5):1484–1509, October 1997.

7

6 Raw Obtained Data

Table 4: Consolidated Cryptographic Performance Metrics (x86_64 & ARM64)

Algorithm Operation Arch Instr L1 Hits L2 Hits RAM Hits Est. Cycles

SECP384R1 Incoming Secret x86_64 11658237 15117387 4505 1912 15206832
SECP384R1 Incoming Secret ARM64 10231635 13557483 4534 1859 13645218
SECP384R1 Outgoing Secret x86_64 11658237 15117387 4505 1912 15206832
SECP384R1 Outgoing Secret ARM64 10231635 13557483 4534 1859 13645218
SECP384R1 Key Generation x86_64 15975363 20939189 12050 9278 21324169
SECP384R1 Key Generation ARM64 14259264 19082149 12224 9094 19461559

Kyber Incoming Secret x86_64 177064 212675 2211 370 236680
Kyber Incoming Secret ARM64 268713 319023 413 251 329873
Kyber Outgoing Secret x86_64 152513 184443 2332 419 210768
Kyber Outgoing Secret ARM64 229406 272873 833 318 288168
Kyber Key Generation x86_64 5266214 7050285 10400 9543 7436290
Kyber Key Generation ARM64 5082726 6893944 10393 8955 7259334

RSA Incoming Secret x86_64 609884957 763988457 4563 665 764034547
RSA Incoming Secret ARM64 459230402 528209769 273797 494 529596044
RSA Outgoing Secret x86_64 4229026 5169943 1523 335 5189283
RSA Outgoing Secret ARM64 3124179 3652723 1507 266 3669568
RSA Key Generation x86_64 121603553478 152134665100 942996 20601 152140101115
RSA Key Generation ARM64 21637354719 24672791454 10775986 20933 24727404039

8

	Introduction
	Background
	Classical Cryptographic Schemes
	Quantum Algorithms
	“Standard” hardware accelerations
	Intel
	ARM

	Cryptographic Schemes
	Benchmarking Methodology
	Hardware
	Benchmarking Software

	Comparison
	Speed benchmarks
	Key Generation
	Outgoing Shared Secret Derivation
	Incoming Shared Secret Derivation

	Storage benchmarks

	Raw Obtained Data

