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Abstract—Transformers have become the backbone of
many Machine Learning (ML) applications, including lan-
guage translation, summarization, and computer vision. As
these models are increasingly deployed in shared Graphics
Processing Unit (GPU) environments via Machine Learning
as a Service (MLaaS), concerns around their security grow.
In particular, the risk of side-channel attacks that reveal
architectural details without physical access remains under-
explored, despite the high value of the proprietary models
they target. This work to the best of our knowledge is the
first to investigate GPU power and thermal fluctuations as
side-channels and further exploit them to extract informa-
tion from pre-trained transformer models. The proposed
analysis shows how these side channels can be exploited at
user-privilege to reveal critical architectural details such as
encoder/decoder layer and attention head for both language
and vision transformers. We demonstrate the practical
impact by evaluating multiple language and vision pre-
trained transformers which are publicly available. Through
extensive experimental evaluations, we demonstrate that
the attack model achieves a high accuracy of over 89%
on average for model family identification and 100% for
hyperparameter classification, in both single-process as well
as noisy multi-process scenarios. Moreover, by leveraging
the extracted architectural information, we demonstrate
highly effective black-box transfer adversarial attacks with
an average success rate exceeding 93%, underscoring
the security risks posed by GPU side-channel leakage in
deployed transformer models.

Index Terms—side-channel, transformer, model stealing,
GPU.

I. INTRODUCTION

Transformer-based models like Bidirectional Encoder
Representations from Transformers (BERT), Large Lan-
guage Models (LLMs), and Vision Transformers (ViTs)
have significantly advanced natural language processing
(NLP) and computer vision by capturing complex pat-
terns in large datasets.Their high computational demands
have driven companies like NVIDIA to develop special-
ized GPUs, with the growing reliance on such hardware
reflected in NVIDIA’s rising stock prices. Despite this
growing dependence on transformers and GPUs, the
security of both against side-channel attacks remains
limited and largely unexplored. In particular, there is
currently no work examining the potential for model

extraction or model-stealing attacks on transformers ex-
ecuted on GPUs through side-channel vulnerabilities,
highlighting a critical gap in security research as these
models continue to proliferate.

Model extraction or model-stealing attacks aim to
replicate or gain insight into a target deep learning
model’s architecture or parameters without having di-
rect access to it. Broadly, two types of model-stealing
attacks have been studied. The first is the query-based
model-stealing attack, where attackers exploit a model’s
prediction Application Programming Interface (API) to
clone or replicate it, without accessing its parameters
or training data. Query-based attacks have exposed vul-
nerabilities in models like DNNs and CNNs [1]–[4],
and recent work has even extracted embedding layers
from black-box transformer models such as OpenAI’s
ChatGPT using API access alone [5].

The second type of attack, side-channel-based model-
stealing, exploits leakages such as power, thermal, elec-
tromagnetic emissions, and microarchitectural behaviors
(e.g., cache accesses, branch misses) to infer model
architecture. Unlike query-based methods, these attacks
leverage shared hardware resources without directly in-
teracting with the model API. Side-channel attacks use
techniques which include cache-based channels [6]–[8],
and physical leakages like power [9], thermal [10], elec-
tromagnetic emanations [11]–[13], and off-chip memory
access [14]. Prior GPU-based efforts have focused on
extracting DNN/CNN architectures using CUPTI coun-
ters [15] (currently not accessible) and resource-tracking
APIs via CUDA-based spy applications [16]. However,
no prior work has explored GPU side-channels specifi-
cally for transformer model computations.

In this work, we address this gap by exploring
GPU side-channels for transformer models, focusing
specifically on power and thermal channels that remain
accessible without special privileges and cannot be
virtualized, even within virtualized GPU environments.
Our work specifically targets NVIDIA GPUs, which
currently holds 88% of the GPU market share, though
the approach can readily be extended to other GPUs. In
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the literature several side-channel attacks are performed
on older generation of NVIDIA GPUs, including power
and timing side-channel attack on Kepler architecture
[17], [18], as well as timing side-channel attack on Volta
[19], [20] and Maxwell architecture [21]. However, post-
Pascal generations of NVIDIA GPUs have undergone
significant architectural changes, most importantly with
the introduction of Multi-Instance GPU (MIG) (dis-
cussed in Section IV) technology in the Ampere genera-
tion for production-grade GPUs, enables better resource
distribution and improved utilization in cloud environ-
ments. Furthermore, there are not much documented
side-channel experiments on post-Pascal generations of
NVIDIA GPUs in the literature. In our experiment, we
focus on newer generation of NVIDIA GPUs, specifically
those based on the Turing and Ampere architectures.

Despite advancements in underlying hardware of
newer generation of NVIDIA GPUs (Turing, Ampere,
Ada Lovelace), to the best of our knowledge, no
GPU manufacturer offers protections against these side-
channels. Our initial experiments show that transform-
ers produce a distinctive staircase-like pattern in side-
channel traces, far more distinctive than those in ear-
lier DNNs like CNNs. This pattern enables accurate
inference of encoder-decoder layers from a single trace.
We train CNNs on these side-channels to predict trans-
former’s architectural details, achieving 95.00% and
91.25% accuracy in classifying language and vision
model families, respectively. In summary, the contribu-
tions of this work are as follows:

• We identify power and thermal traces as potential
side-channels that reveal architectural details of
transformer models and develop CNN-based predic-
tors to infer attributes like encoder-decoder layers
and attention heads.

• Moreover, to showcase the broad applicability of the
observed GPU side-channels, we develop predictive
models to identify the architectural families of 8
publicly available pre-trained language models and
8 vision models.

• We evaluate our attack against a noisy, multi-
process environment and still achieve over 89% ac-
curacy in predicting black-box transformer model’s
parameters.

• We demonstrate that partial architectural leakage
enables building a substitute language transformer
model with a BERT Score over 93, and achieves
93% success in black-box transfer attacks on Vision
Transformers.

Responsible Disclosure: We have responsibly dis-
closed the power and thermal side-channel vulnerability
to NVIDIA. NVIDIA offered to acknowledge us on
product security page stating that telemetry should be
disabled for more security-sensitive use cases such as

Confidential Compute (CC) and MIG, and mentioned
they are cautiously evaluating how much more teleme-
try can be safely exposed. They also approved public
disclosure of our findings.

This paper is organized as follows: Section II presents
background on transformer models. Section III analyzes
GPU power and thermal side-channels during trans-
former inference. Section IV outlines our methodology
for extracting architectural information and presents ex-
perimental results. Sections V and VI cover a black-
box transfer adversarial attack and discuss about some
of the related artifacts respectively. Finally, Section VII
concludes with possible mitigations.

II. BACKGROUND ON TRANSFORMERS

Introduced by Google Brain in their paper Attention Is
All You Need [22], the transformer has become a state-of-
the-art approach in natural language processing, surpass-
ing earlier models like recurrent neural networks (RNNs)
and long short-term memory networks (LSTMs). Unlike
these models, which struggle with long sequences and
slow training speeds, the transformer replaces recurrence
with a fully attention-based mechanism, enabling ef-
ficient parallel processing of entire sequences. In the
following, we briefly discuss about its core architectural
modules.

Transformer Encoder: In a transformer, the encoder
processes the input sequence to generate a representation
that captures contextual relationships among tokens. It
consists of multiple layers stacked together, each re-
ceiving embedded input plus positional embeddings to
retain token positions. Each layer includes a multi-head
attention mechanism and a feed-forward network, both
with residual connections and followed by layer normal-
ization. In the multi-head attention layer, attention scores
are calculated using query, key, and value vectors from
input embeddings. The query-key dot product, passed
through a softmax, yields attention outputs multiplied by
the value vector and sent to the feed-forward network.
The final encoder output is passed to the decoder layers.

Transformer Decoder: The decoder generates the
output sequence using the encoder’s representation and
previously generated tokens. Each decoder layer mirrors
the encoder’s structure but includes masked self-attention
to prevent future tokens from influencing the current
token. The final layer outputs a translated word, which is
added to the decoder input to continue the process. This
cycle repeats until an end-of-sequence token is predicted,
enabling it to handle sequence-to-sequence tasks.

Self-Attention: In addition to the encoder and de-
coder, the transformer model uses self-attention, allow-
ing each token in a sequence to focus on others, captur-
ing contextual relationships regardless of position. Multi-
head attention achieves this, with each head learning



different aspects of token relationships. In the encoder,
self-attention gives each token access to all tokens in the
input, while in the decoder, it is masked to prevent future
tokens from influencing the current token.

Each of the transformer’s components impose distinct
computational demands, shaping unique power and ther-
mal profiles. We aim to exploit these patterns to uncover
architectural insights via side-channel analysis.

III. POWER AND THERMAL FOOT PRINTS OF
TRANSFORMER

Power and thermal side-channels have been exten-
sively used to extract secure information such as crypto-
graphic keys [23], plaintext data [24], confidential algo-
rithms [25], and more from various computational sys-
tems. Recently, these side-channels have also been ap-
plied to deep learning models, revealing private informa-
tion including architectural details [26], model weights
[27], and training hyperparameters [28] when executed
on CPUs and edge devices. Traditionally, side-channel
attacks and model fingerprinting techniques have focused
primarily on simpler DNN architectures like CNNs.
However, as complex and widely-used transformer-based
architectures emerge, they remain relatively unexplored
in terms of security and side-channel vulnerabilities. This
work aims to address this gap by investigating side-
channel-based attacks specifically targeting transformer
models, highlighting potential security risks. An impor-
tant aspect of our work is the application of side-channel
analysis on GPUs, as transformers are frequently hosted
on large data center GPUs to enable faster computation
and support larger model sizes.
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Fig. 1: Power Trace of a custom CNN and transformer
model with one encoder/decoder layer and eight attention
heads during single inference.

A. Power Gradient Analysis for Transformer Models
We aim to explore the impact of transformer model

execution on GPU power consumption and as an initial
step, we built a custom language transformer model.
Our first model was trained with a configuration of one
encoder and one decoder with eight attention heads. We
set the embedding vector size to 512, and the maximum
sentence length was limited to 200. The power trace was
collected with user privileges using nvidia-smi query
with GPU temperature stabilized at 28◦C. Our goal was

to collect data at a sampling rate of 10 Hz or 100 Hz,
but the recorded trace length was extremely short due
to faster model inference, and no distinguishable trends
were observed for transformer execution. To address
this, we aimed to set the sampling rate at 1 Hz to
increase the trace length but had to settle for 7 Hz,
as it was the minimum achievable rate. Additionally,
at high temperatures, the GPU consumes more power,
leading to erroneous information for transformer model
inference. To mitigate this, we collected all traces while
keeping the GPU temperature stable and allowed the
GPU to cool down before the next execution cycle
begins, ensuring that previously collected traces do not
influence subsequent ones. Consequently, the overall
trace collection time was increased due to this additional
waiting time required for the GPU to cool down. This
approach is effective as long as the GPU caches and
memory are cleared of the prior process’s data elements.
Such a methodology is commonly employed for reliable
data collection in side channel analysis. In real-world
scenarios for similar analyses, additional GPU cooling
would not be necessary, as traces are typically gathered
from the same process running continuously for infer-
ence workloads.

Using the trained model, we performed an inference
on a consumer-grade GPU (GTX 1660 Ti Mobile GPU)
and plotted its power trace data, as shown in Figure
1a. The first green-shaded zone in the figure represents
power usage during encoder execution, while the con-
secutive red-colored slender areas indicate the decoder
execution as it generates the translated output for each
word in the input phrase. Here, we observe a staircase-
like pattern emerging during transformer model infer-
ence. Notably, the power consumption pattern differs
significantly between the encoder and decoder phases:
during encoder execution, power consumption rises to
6W, whereas, during decoder execution, power demand
increases to 20W. This happens because, during the
execution of the encoder, it processes a fixed-length
input sequence at a time to create the final attention
matrix, which is then used as input to the decoder. This
explains the initial small increase in the power graph
before it stabilizes. In contrast, the decoder operates on
a gradually increasing input sequence to generate each
translated word. As the input size grows, the computation
becomes more complex, leading to a steady step-wise
increase in power consumption until the final translated
word is generated. For comparison, we also present
power readings for a custom CNN model in Figure 1b
and observe no distinctive pattern across its layers, unlike
the unique patterns seen in transformers in Figure 1a.
Instead, the CNN exhibits a steady power reading of
approximately 27.5 W throughout execution. Conse-
quently, in this work, we specifically target transformer
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Fig. 2: Power Trace of single transformer Model inference with varying encoder/decoder and eight attention heads.
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Fig. 3: GPU Power Trace of Transformer Model during
100 Inferences on NVIDIA GTX 1660 Ti (E/D: En-
coder/Decoder).

architectures due to their uniquely observable patterns.
Following the observed results, we extended our

analysis to larger transformer models to see if similar
behavior could be replicated. We created and trained
four additional transformer models with varying encoder-
decoder configurations. Next, we collected power trace
data for each model running on the same GPU, as shown
in Figure 2. The power trace data reveals a clear re-
lationship between power consumption and transformer
size (number of encoder/decoder blocks). As the number
of encoder/decoder blocks increases, so does the power
consumption during execution. When the transformer’s
decoder becomes active during inference, power con-
sumption increases to as much as 30 W across nearly
all model inferences. Additionally, we observed that the
number of staircase steps in the power trace grows pro-
portionally with the number of encoder/decoder blocks
in the transformer model.

B. Power Side-channel on Data Center GPUs

With above knowledge and understanding of trans-
former power trace characteristics, we extend our exper-
iments on a larger scale with practical use cases using
server-grade GPUs. For this, we replicate the scenario
of transformer models running on a data center GPU,
where multiple batch inferences are typically executed
concurrently. To simulate this, we collect power trace
data from our custom transformer models by performing
100 continuous inferences on each model. In Figure 3,
we observe a clear difference in power consumption
across each configuration of the transformer model.

To further demonstrate the impact of this side-channel,
we built and trained four custom models with configura-
tions similar to those of popular pre-trained language
models on Hugging Face, as shown in Table I. This
time, we extended our observations to data center GPUs
commonly used for running large transformer models in
various AI tasks. Therefore, all subsequent experiments
are conducted on the NVIDIA A40 GPU. We collected
power trace data for 120 seconds while running inference
with our previously trained custom models. In this setup,
we observed a similar pattern in Figure 5a (Custom
Transformer Power Trace) as in our earlier experiment
(Figure 3), though power consumption differences are
significantly higher, while differences between models
remain apparent. Additionally, to gain insights into prac-
tical applications, we collected GPU power trace data
while running inference on popular pre-trained models
from Hugging Face. In Figure 5a (Pre-trained Trans-
former Power Trace), we observe distinct power traces
for each transformer model, depending on model size
(number of encoder/decoder layers and attention heads).
Each model exhibits a unique power consumption pattern
that can aid in its identification when executing on GPUs.

C. Thermal Side-channel on Data Center GPUs

Given the observed variations in power consumption
based on the size and complexity of transformer models
on GPUs, we anticipate similar effects on other side-
channel metrics, such as thermal data. To verify this,
we conducted an experiment similar to the previous
one, collecting temperature data over 120 seconds during
transformer model inference. In the resulting temper-
ature trace graph (Figure 5b), we observe a stepwise,
gradual increase in temperature throughout the inference
duration. This indicates that the rate of temperature rise
correlates with the transformer model’s size on the GPU,
similar to our findings from the power traces.

Takeaway : Based on the above observations, we
conclude that each transformer model exhibits distinct
temperature and power consumption patterns, which
can uniquely differentiate them from other models
running on consumer or production-grade GPUs.



TABLE I: Popular Pre-Trained Language Transformer Configurations
Family Transformer Name #E/D #Attention Embedding

Heads Dimension
T5 t5-small 6 / 6 8 512
T5 t5-base 12 / 12 12 768
T5 t5-large 24 / 24 16 1024
T5 t5-3b 24 / 24 32 1024

MarianMT Helsinki-NLP/opus-mt-en-fr 6 / 6 8 512
META facebook/nllb-200-distilled-600M 12 / 12 16 1024
META facebook/nllb-200-distilled-1.3B 24 / 24 16 1024
Google madlad400-3b-mt 32 / 32 16 1024

Fig. 4: nvidia-smi query output dis-
playing power and thermal data for
NVIDIA A40 GPU.

IV. EXTRACTING TRANSFORMER ARCHITECTURE
USING GPU SIDE-CHANNELS

Building on observations from the previous section,
we now aim to leverage power and thermal side-channels
to extract architectural details of well-known transformer
models, including both language and vision models. To
proceed, we first define our threat model.

A. Threat Model:
We consider a scenario with multiple users on a

remote cloud server. To provide single-GPU access to
multiple clients, cloud providers use GPU virtualization
technologies like NVIDIA vCS combined with Multi-
Instance GPU (MIG) backend technology, in contrast to
traditional time-shared setups. Modern cloud providers
like AWS and Google Cloud offer dedicated GPU in-
stances per VM, allowing multiple users to run tasks
independently. According to NVIDIA’s MIG documenta-
tion, each GPU instance has isolated compute, memory,
and bandwidth resources, minimizing interference and
context-switching issues. In addition, users can access
power and thermal metrics via tools like nvidia-smi
and pynvml without root privilege. These metrics are
directly obtained from physical GPU sensors and cannot
be virtualized, even with MIG.

In this setup, a victim runs an unknown model on
one virtualized GPU instance, while an adversary in a
separate VM tries to infer victim model’s architecture
through other GPU instances. Below, we outline the
adversary’s capabilities and objectives in detail:
Adversary’s capabilities : The adversary can continu-
ously monitor thermal and power data for its assigned
virtual GPU using tools like nvidia-smi (Figure 4) or
the Python library pynvml. Notably, the adversary does
not need sudo/root privileges to access this information.
Adversary’s Objective : The adversary’s goal is to
extract architectural information about the transformer
model running on the victim’s VM by monitoring power
and thermal data from their own VM using the tools
mentioned above.

B. Transformer Architecture Extraction
We now aim to demonstrate the process of building a

prediction model to extract key architectural parameters
of transformer models based on our defined threat model.

We present results using our custom models, pre-trained
language and vision transformers from Hugging Face,
aiming to extract key architectural details such as the
number of attention heads, and encoder/decoder layers.
Both power and thermal traces are utilized as inputs
to the prediction model. These traces were collected
over 120 seconds at a sampling rate of 7 Hz, with
an initial GPU base temperature of 28◦C. In total,
we gathered 100 traces for each model in our work,
splitting the data into an 80:20 ratio for training and
testing the prediction model, and utilized stratified K-fold
cross-validation for building and validating the model.
For clarity, transformer configurations are denoted as
X/Y, where X represents the number of encoder-decoder
layers and Y the number of attention heads.

1) Custom Language Transformer: We created and
trained a total of nine custom transformer models with
the following configurations: 6/8, 12/8, 12/12, 12/16,
24/16, 32/16, 48/16, 24/32 and 32/32. Our objective is
to build machine learning models capable of predicting
hyperparameter of an unknown transformer model, using
power and thermal traces as inputs. This is done in two
steps: first classifying number of attention heads, fol-
lowed by predicting encoder/decoder counts. To achieve
this, we built a prediction model consisting of three
convolutional layers with sizes 32, 16, and 8, each
followed by batch normalization and ReLU activation.
The model also includes two max-pooling layers and two
fully connected layers with a softmax activation function.
The Adam optimizer with a learning rate of 0.00001
was used for training. The first model was trained for
attention head classification, achieving 100% accuracy
(Figure 6a) on test sets using both thermal and power
traces. Subsequently, the prediction model further sub-
categorized each attention head family based on the
number of layers. The attention head count of 8 (two sub-
classes) and 32 (two sub-classes) were classified with
100% accuracy (Figure 6b and 6d), while the 16 attention
head model (four sub-classes) achieved 96.25% accuracy
(Figure 6c).

2) Pre-trained Language Model: Additionally, we
present power/thermal-based prediction results for four
pre-trained language transformer families: T5, Google,
MarianMT, and META. As shown in Table I, T5 family
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Fig. 6: Confusion matrices for attention head and encoder/decoder layer prediction for attention head families.

TABLE II: Popular Pre-Trained Vision Transformer Basic Configuration (E/D: Encoder/Decoder)

Family Transformer Name #E/D #Attention Heads Embedding Dimension Input Image Size
Google vit-base-patch16-224 12 12 768 224× 224
Google vit-large-patch16-225 24 16 1024 224× 224
Apple mobilevit-small 12 4 384 256× 256
META deit-tiny-distilled-patch16-224 12 3 192 224× 224
META deit-small-distilled-patch16-224 12 6 384 224× 224
META deit-base-distilled-patch16-224 12 12 768 224× 224

Microsoft swin-tiny-patch4-window7-224 12 3 96 224× 224
Microsoft swin-base-patch4-window7-224 12 12 768 224× 224

includes four models, while Meta has two, and Google
and MarianMT each contributes one model. Unlike cus-
tom transformers, we consider eight pre-trained models
across four research labs. Consequently, our first objec-
tive is to identify the target model’s family, followed
by classification of architectural details such as attention
heads and encoder/decoder layers. This is feasible as
models within the same family exhibit similar power and
thermal patterns due to shared architectures and training
methodologies. Following this plan, we constructed our
first prediction model to classify the families of pre-
trained models using the same CNN architecture as
before, achieving up to 95% accuracy and an average
of 89% across five folds. To identify additional archi-
tectural details, we focus on two families: T5 and Meta,
developing separate prediction models for each of them.
TABLE III: Pre-Trained Language Transformer Archi-
tecture Prediction Accuracy (Thermal & Power Traces)

Transformer Family Prediction Criteria Max Acc.(%) Avg. Acc.(%)
All Models Root Family 95% 89%

META Encoder/Decoder 100% 100%
T5 Attention Head 100% 100%

As shown in Table I, the T5 family models differ only
in attention heads and layers, so we train a model to
distinguish between the four variants based on attention

heads. In contrast, the models from Meta family share
the same number of attention heads but vary in the
number of encoder/decoder and total layers. Therefore,
we build a predictive model for encoder/decoder layers
to differentiate between the two possible models in this
family. As shown in Table III, both the T5 and Meta
prediction models achieve 100% accuracy in identifying
attention heads and encoder/decoder layers, respectively,
from the test samples.

3) Pre-trained ViT Model: We further investigate
popular ViT models from several renowned research
labs on Hugging Face (refer to Table II). Unlike lan-
guage transformers, which feature an encoder-decoder
structure, ViT models utilize a simpler encoder-only
architecture. These models are also smaller and less
complex than other transformer variants, allowing ef-
ficient execution on lower-end consumer GPUs. Most
ViT models consist of 12 layers, with 3 to 16 attention
heads, and variable embedding dimensions depending on
the model’s size. Nearly all the models studied accept
input images of size 224×224. For our experiments, the
input to these transformers is derived from the CIFAR-
10 dataset [29], which includes 60,000 color images of
size 32× 32, distributed across 10 classes.



TABLE IV: Pre-Trained Vision Transformer’s Architec-
ture Prediction Accuracy

Transformer Family Prediction Criteria Max Acc.(%) Avg. Acc.(%)
All Models Root Family 91.25% 84.75%

META Attention Head 100% 100%
Google Attention Head 100% 100%

Microsoft Attention Head 100% 100%

Architectural differences in ViT models are shaped
by attention heads, embedding dimensions, optimization
methods, and tokenization strategies. We focus on four
model families: Apple, Google, Facebook, and Microsoft.
ViT models from Google vary in the number of attention
heads, encoders/decoders, and embedding dimensions,
while those from Facebook and Microsoft differ mainly
in attention heads and embedding sizes. Based on these
distinctions, our initial prediction model classifies the
models by their respective families followed by family-
specific models that predict attention head counts. Fol-
lowing the same approach, our first prediction model (us-
ing the same CNN architecture as for custom transformer
model prediction) for ViT models achieved a maximum
accuracy of 91.25% with an average of 84.75% across
five folds. Additionally, as shown in Table IV, predic-
tion models for remaining three families achieve 100%
accuracy in predicting attention head counts using both
thermal and power traces.

C. Model Extraction in Noisy Environment:

We have further evaluated the practicality of our ap-
proach for real-world scenarios where multiple processes
run concurrently on the GPU.

1) Model Extraction Against Variable Number of
Background Process: In server-grade GPUs, we focus
on scenarios where a cloud GPU is partitioned into
more than one independent GPU instances, with mul-
tiple processes are running independently within each
instances. Under this setup, we executed transformer
model inference and matrix multiplication in parallel and
collected corresponding power and thermal traces. As
shown in Figure 7, despite the added workload noise,
our classification model achieved an average accuracy of
89.25% for identifying the transformer model family, and
92% and 87% accuracy in distinguishing between META
and T5 architectures—closely aligning with results from
the ideal scenario. We further extended our experiments
to include three and four concurrent processes, observ-
ing only a minimal drop in performance across tasks
such as model family and attention head identification.
Still, these results confirm that even in complex, noisy
environments with multiple simultaneous processes, our
attack model can reliably extract architectural details of
black-box transformer models.

2) Model Extraction Against Different Categories
of Background Process: Additionally, we also want
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Fig. 7: Prediction Model performance with increasing
number of background process: Maximum Accuracy
with Average as Dashed Line.

to verify our attack model against different noisy envi-
ronments. In a realistic scenario, MIG instances often
handle various categories of machine learning tasks
simultaneously for specific users. To replicate this en-
vironment, we ran a transformer inference workload
in parallel with large matrix multiplication, CNN-based
image classification, and vision transformer inference, in
three independent scenarios. The inclusion of these kind
of resource hungry tasks allowed us to assess how well
our generalized prediction model performs in a complex,
high-noise setting where GPU utilization is consistently
high across multiple instances on a single physical
device. Under this setting, we observe (Figure 8) a
4% drop in root family identification accuracy when
large matrix multiplication runs in parallel. However, this
scenario outperformed the others in detecting META’s
encoder/decoder and T5’s attention heads. Although per-
formance varied across tasks in different scenarios, our
prediction model consistently identified key architectural
parameters of transformer models with high accuracy,
even in noisy, MIG-enabled GPU environments.
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Fig. 8: Prediction Model performance with different
types of background process: Maximum Accuracy with
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V. EXPLOITATION OF EXTRACTED TRANSFORMER
ARCHITECTURE

In this section, we show how an adversary can exploit
leaked architectural information—obtained through ther-
mal and power side-channel analysis—to compromise a
black-box transformer model. We highlight two possible
consequences of such leakage. First, an adversary could
build substitute models that closely mimic the behavior
of the original model and use them for their own pur-
poses. Second, the leaked information could enable more



effective black-box transfer adversarial attacks, where
adversarial examples crafted using a similar surrogate
model are used to mislead the target model into making
incorrect predictions.

A. Creation of Substitute Model

In our first experiment, we built a substitute language
transformer model replicating the MarianMT Helsinki
architecture using side-channel-extracted details such as
the number of encoders/decoders and attention heads.
This model achieved a BLEU1 score of 44.12 on the
test set, indicating high-quality translations. As shown
in Table V, it also attained a BERT2 score of 93.53,
closely matching the original model’s outputs when
architectures aligned. These findings highlight that even
partial architectural leakage can enable the creation of
a shadow model that closely replicates the performance
and outputs of the target model.

TABLE V: Substitute Language Transformer’s Accuracy
on Different Unknown Parameter Settings

Target Model Substitute Model Extracted Parameters
Unknown Parameters

BERTEmbedding Feed-forward ScoreDimension Network

Helsinki-NLP/ Helsinki-NLP/ Encoder/Decoder: 6
512 512 93.5

opus-mt-de-en opus-mt-de-en Attention Head: 8 512 1024 93.08
512 2048 93.53

B. Black Box Transfer Adversarial Attack

We further evaluated the implications of architectural
leakage by conducting black-box transfer adversarial
attacks on two target Vision Transformer (ViT) models
from Google family. For these models, we constructed
substitute models using architectural information ex-
tracted via side channels and generated adversarial ex-
amples using the FGSM [30] and PGD [31] methods,
evaluating them against the corresponding target models.
As shown in Table VI, both FGSM and PGD achieved
an average attack success rate of 93% for both substitute
model architectures, indicating strong similarity with the
target models. This highlights how leaked architectural
information can enable highly effective adversarial at-
tacks in black-box settings.

TABLE VI: Pre-Trained Vision Transformer’s Classifi-
cation Accuracy in Adversarial Attack Scenarios

Model Attack Success Rate (%)

Google/vit-base-patch16-224 FGSM 83.38
PGD 94.87

Google/vit-large-patch16-224 FGSM 98.63
PGD 98.63

1BLEU score is an algorithm for evaluating the quality of text which
has been machine-translated from one natural language to another.

2BERT score is an evaluation metric that compares candidate and
reference sentences based on cosine similarity of contextual embed-
dings.

VI. DISCUSSION

Our work goes beyond previous methods that mainly
focused on CNNs using CPU side-channels or CUPTI-
based GPU profiling. Transformers, unlike CNNs, have
a more modular design with components like encoder-
decoder blocks and attention heads, which create more
visible patterns in power and thermal traces during
inference. Moreover, while Transformers are typically
larger than CNNs and may introduce more computa-
tional noise, their modular structure—such as repeated
encoder/decoder blocks—creates stronger and more con-
sistent patterns. This makes power and thermal side-
channels more effective for detecting their behavior on
GPUs even in noisy environments. Moreover, as CUPTI
counters are often disabled or require root access on
newer-generation GPUs, prior GPU-based techniques are
becoming less practical. Power and thermal metrics,
however, remain accessible through simple queries with-
out elevated privileges. This makes our approach the first
to successfully extract architectural information from
transformer models on modern NVIDIA GPUs using
side-channel signals alone.

We also observe that the most commonly downloaded
transformers on platforms like Hugging Face share a core
set of architectural parameters—such as the number of
layers, attention heads, and intermediate sizes—which
we summarize in Table I and II of our paper. While
differences may exist in datasets, embedding dimensions,
or optimization methods, the core structure remains con-
sistent. Therefore, our classification models are trained
specifically to detect these known architectural patterns.

VII. MITIGATION AND CONCLUSION

Power and thermal metrics are essential for GPU
stability but can also leak sensitive model details. To
mitigate this, we propose strategies on two fronts. On the
application side, combining model model pruning [32]
and knowledge distillation [33] can generate obfuscated
transformer variants with similar functionality, allowing
random selection during inference to conceal architec-
tural details. On the hardware or system side, GPU ven-
dors can restrict sensor access to admin users, exposing
only key metrics like utilization and memory usage.
In cases of high power or temperature, instance users
can receive warnings, with minor throttling to maintain
stability while limiting side-channel exposure.

In conclusion, this work investigates power and ther-
mal side-channels as a novel approach to extract ar-
chitectural details of transformer models on NVIDIA
GPUs. These side-channels remains accessible without
special privileges and cannot be virtualized, posing se-
rious security risks. Using custom prediction models,
we achieved close to 100% accuracy in identifying key
parameters of both custom and pre-trained transformers.



For language models like T5 and Meta, we accurately
classified encoder/decoder layers and attention heads,
while for vision transformers from Google, Facebook,
and Microsoft, we achieved 100% accuracy in predict-
ing attention head counts. Building on this extracted
information, we successfully created substitute language
transformer model with a BERT Score over 93, and
achieves 93% success in black-box transfer attacks on
Vision Transformers, demonstrating the practical impli-
cations of such side-channel vulnerabilities. This high-
lights the urgent need to address side-channel threats to
safeguard model architectures on GPUs.
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