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Abstract—As power systems evolve with increased 

integration of renewable energy sources  and computer-based 

protection and control systems, they become more vulnerable to 

both cyber and physical threats. This study validates a 

centralized Dynamic State Estimation (DSE) algorithm 

designed to enhance the protection of power systems, 

particularly focusing on microgrids with substantial renewable 

sources integration. The algorithm utilizes a structured 

hypothesis testing framework, systematically identifies and 

differentiates anomalies caused by cyberattacks from those 

resulting from physical faults. This algorithm was evaluated 

through four case studies: a False Data Injection Attack (FDIA) 

via manipulation of Current Transformer (CT) ratios, a single 

line-to-ground (SLG) fault, and two combined scenarios 

involving both anomalies. Results from real-time simulations 

demonstrate that the algorithm effectively distinguishes 

between cyber-induced anomalies and physical faults, thereby 

significantly enhancing the reliability and security of energy 

systems. This research underscores the critical role of advanced 

diagnostic tools for protection and control systems against the 

growing prevalence of cyber-physical threats, enhancing the 

resilience of the grid and preventing potential blackouts by 

avoiding mis-operation of protective relays. 
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I. INTRODUCTION 

Microgrids are flexible energy systems that enhance local 
control over power generation and distribution, improve 
reliability, support the integration of renewable energy 
sources, and provide critical backup for essential services 
during emergencies. Their ability to operate independently 
from the main grid makes them invaluable for critical 
infrastructure and remote locations [1]. However, the 
integration of Distributed Energy Resources (DERs) and 
Inverter-Based Resources (IBRs) into microgrids introduces 
significant challenges to existing protection schemes. These 
systems, characterized by bidirectional power flows and 
variable fault current characteristics, often surpass the 
capabilities of traditional protective methods [2].  

Additionally, the increasing reliance on cyber-physical 
systems within microgrids exposes them to a spectrum of 
cybersecurity threats. Cyber threats, including FDIAs, 
Distributed Denial of Service (DDoS) attacks, and man-in-
the-middle (MiTM) attacks, can severely disrupt critical 
system operations. While FDIAs and MiTM attacks may alter 
or intercept critical system measurements, DDoS attacks 
primarily overwhelm the network, rendering communication 
and control systems unresponsive and compromising the 
integrity and reliability of protection schemes [3]-[7]. 

In addition to the cyber threats outlined, microgrids are 

also vulnerable to traditional electrical faults, such as line-to-

line and line-to-ground faults, among others. These physical 

faults present significant challenges on their own; however, 

the situation becomes even more complex when cyberattacks 

mimic these faults. For instance, cyber attackers may 

generate fake signals or inject false data, leading to the mis-

operation of protection schemes, either falsely triggering 

necessary interventions or failing to activate them when 

needed. This scenario underscores the critical importance of 

distinguishing between actual faults and cyber-induced 

anomalies. Accurately identifying the source of the 

disturbance; whether it is a genuine fault or a cyberattack, is 

essential for ensuring the correct operation of protection 

systems, thereby safeguarding the grid against both 

unplanned outages and potential security breaches [2]. 
 

Recent advancements focus on enhancing fault detection 
and cyber resilience through innovative approaches such as 
DSE-based protection, which improves the reliability of 
microgrid operations by distinguishing between actual faults 
and measurement errors [1], [2], [8]. Other researchers have 
explored passive and active monitoring techniques to protect 
against data injection attacks and to ensure the integrity of 
microgrid communications [6], [9]-[11]. Despite these 
developments, a significant gap exists in the literature 
regarding methods that clearly differentiate between cyber-
attacks and conventional faults in microgrids incorporating 
IBRs and DERs. This differentiation is crucial for reliable 
operations, as the integration of these resources can obscure 
the origins of disturbances, complicating effective microgrid 
security management [1]. This gap underscores the need for 
targeted research to develop sophisticated diagnostic tools 
capable of discerning cyber-induced and fault-induced 
anomalies in advanced microgrid configurations. 

The primary objective of this study is to evaluate the 
effectiveness of a centralized DSE algorithm designed to 
detect and differentiate cyber-attacks and electrical faults in 
microgrids. Building on the foundational work of researchers 
[1], [2], [8], this research seeks to implement a robust DSE 
framework integrated with a hypothesis testing algorithm to 
enhance the accuracy of anomaly detection within microgrid 
systems. The research conducts a series of targeted case 
studies to validate the proposed scheme, testing the algorithm 
under various disturbance conditions: a FDIA affecting CT 
ratios, a single line-to-ground fault, and a scenario combining 
both disturbances. The findings confirm that the algorithm 
effectively identifies and categorizes these disturbances, 
meeting the study's primary goal. Importantly, the algorithm 
demonstrates a strong capability to distinguish between cyber-
induced anomalies and physical faults, a critical function that 
helps prevent mis-operations of protection relays that could 
lead to unnecessary power outages or system failures. 



 

II. DYNAMIC STATE ESTIMATION-BASED PROTECTION 

Dynamic state estimation-based protection offers a 
"setting-less" approach that effectively monitors protection 
zones without relying on predefined configurations, thus 
avoiding common issues associated with setting-based relays 
[13]. By aligning actual measurements with a dynamic model, 
this method extends beyond traditional differential protection 
to encompass all relevant physical laws, ensuring resilience 
against variations in sources, faults, and loads, particularly in 
inverter-interfaced environments. 

A. Device/Protection zone Model 

The initial step in implementing a DSE-based protection 
system involves developing a high-fidelity model for the 
protection zone, as described in [11]. This process includes 
constructing detailed mathematical representations for all 
devices, such as transmission lines, cables, inverters, energy 
storage systems, and distributed generation units in the 
protection zone. The model is developed in a standard syntax 
in terms of the state and controls of the protection zone, as 
follows: 

 
 

 

(1) 

 

 

Where ( )tx , ( )tu  and i(t) represent the states, controls, 

and interface currents of the model, respectively. Matrices Y, 
D, and F are coefficient matrices, with C being constant 
vectors. For a specific relay, the controls typically remain 
fixed for the duration of the fault. 

B. Measurement Model 

The next step involves developing the measurement 
model, which requires understanding the types and locations 
of measurements, including actual, derived, virtual, and 
pseudo measurements. The general formulation of the 
measurement model is expressed as follows: 

 

 

(2) 

where ( )z t is the measurement vector, ( )h x is the 

deterministic component of the model that computes the 
expected measurement values derived from the state variables, 
and   is the noise introduced by the meter. 

C. The DSE-based Algorthem 

This algorithm utilizes the WLS method to obtain the most 
accurate parameter estimates. The optimization aims to 
minimize the sum of the squared differences between actual 
measurements and their estimates, which is formalized in the 
optimization problem: 

 (3) 

The solution to this optimization problem is given as 
Newton’s iterative algorithm: 

 (4) 

Where 𝜎𝑖 is the standard deviation of the measurements, 
W is the weight matrix with the weights defined as the inverse 
of the variance for each measurement, and H is the Jacobean 
matrix given as: 

 (5) 

A parameterized chi-square test is then conducted to assess 
the consistency between the measurements and the model. 
The goodness of fit between the model and the measurements 
is expressed as follows: 

 (6) 

The confidence level (cl) that the measurements are 
consistent with the dynamic protection zone model is given as 
the probability: 

 (7) 

Where, ( )Pr ,  is the probability function and is the 

degree of freedom. A confidence level close to 100% indicates 
that the measurements are consistent with the protection zone 
model, whereas a confidence level near 0% suggests that the 
measurements do not align with the model.  

III. PROTECTION SCHEME METHODOLOGY 

A. Overview of the Protection Algorithm 

The flowchart in Fig. 1 provides an overview of the steps 
involved in the proposed microgrid protection algorithm. This 
algorithm was initially developed by Albinali and 
Meliopoulos [8] and has since been refined by Vasios [1, 2]. 
It is designed to detect and isolate faults while distinguishing 
between genuine faults and cyberattacks that lead to erroneous 
measurements. This study further enhances the algorithm by 
integrating a hypothesis testing module with the centralized 
DSE module, resulting in a unified central algorithm.  

The algorithm begins with initialization, followed by the 
collection of individual device models to define their expected 
behaviors under normal conditions. A model of the microgrid 
is constructed as a baseline for anomaly detection, after which 
a counter is initialized to control the data collection and 
analysis iterations. Current and voltage measurements from 
the microgrid devices are then gathered to form an initial 
measurement model. Once this model is established, the DSE 
is conducted to analyze the current state of the microgrid 
based on the latest data. The algorithm checks for 
convergence; if the DSE does not converge, necessary updates 
are made to the measurements and model. Upon convergence, 
the algorithm assesses the confidence levels, indicating 
normal operation if above a predetermined threshold   (80% in 
this study). Conversely, if the confidence level falls below the 
threshold, the hypothesis testing module is triggered to 
determine whether the anomaly stems from a fault or a cyber-
attack. Lastly, to prevent excessive computation, the 
algorithm stops and return if the iteration counter exceeds a 
specified limit, denoted as N. 



 

B. Hypothesis testing module 

The hypothesis testing module is crucial in determining 
the underlying causes of anomalies in microgrid 
measurements, whether they arise from cyberattacks, physical 
faults, or both. Here's a condensed overview of the testing 
approach: 

1) Cyberattack Hypothesis: This hypothesis considers a 
cyberattack affecting the measurement channel, 
causing data deviations. The suspected channel is 
isolated, and DSE is performed. If the confidence 
level after this exceeds a set threshold, it confirms a 
cyberattack, prompting a system declaration of a 
cyber incident. 

2) Fault Hypothesis: If results from the initial test are 
inconclusive, the hypothesis shifts to a potential 
physical fault within the suspect measurement's 
protection zone. The zone is then isolated, and DSE is 
repeated. A high confidence level indicates a 
localized fault, leading to a declaration of a power 
fault. 

3) Combined Cyberattack and Fault Hypothesis: When 
neither a cyberattack nor a physical fault can be 

distinctly identified, this hypothesis tests for the 
simultaneous occurrence of both. Both the channel 
and zone are removed for further DSE. A high 
confidence level supports the presence of both a fault 
and a cyberattack, prompting declarations 
accordingly. If the confidence level remains low, 
further investigation or alternative hypotheses may be 
needed.  

In addition to the proposed hypotheses, it is acknowledged 
that other factors, such as calibration issues and 
instrumentation faults, can also contribute to anomalies in 
microgrid measurements. These issues are currently under 
investigation and will be integrated into future studies to 
enhance the comprehensiveness and accuracy of the 
proposed detection and classification framework. 

 

IV. VALIDATION THROUGH MICROGRID CASE STUDIES  

The proposed protection scheme was evaluated using a 
microgrid test system illustrated in Fig. 2. This system, linked 
to the distribution network at Bus 2, includes multiple 
components: single-phase and three-phase loads at Buses 6 
and 8, a 0.05 MVA microgrid PV system at Bus 7, and a 0.03 
MVA Battery Energy Storage System (BESS) at Bus 8. The 
microgrid also features various lengths of cables, organized 
into protection zones isolated by circuit breakers to enhance 
reliability and fault isolation. Data collection for the protection 
scheme was performed using 10 merging units, which 
provided a combination of four current and three voltage 
readings each. 

A. Case Studies 

To assess the effectiveness of the proposed protection 
algorithm, four case studies were conducted, each simulated 
over a separate five-second interval, with events beginning at 
2 seconds and lasting for 2 seconds. Fig. 3 illustrates the 
resulting phase A current waveforms for each scenario. 

1) Case Study 1: Increased CT Ratio Cyberattack on 

MU54: A false data injection attack manipulated the CT ratio 

to 3:1, significantly increasing the amplitude of current 

measurements. Fig. 3a illustrates the waveform during the 

initial cycles of this event. 

 

2) Case Study 2: Single Line-to-Ground Fault: A fault 

was simulated between Bus 3 and Bus 4, as shown in Fig. 3b. 

The line was intentionally not tripped to allow for detailed 

observation and analysis of the system’s response. 

 

3) Case Study 3: Increased CT Ratio Cyberattack and 

Fault: This scenario examined the system’s response to a 

simultaneous CT cyberattack (ratio 3:1) and an SLG fault 

occurring within the same 2-second interval. The system’s 

response is depicted in the zoomed-in view of Fig. 3c 

 

4) Case Study 4: Decreased CT Ratio Cyberattack and 

Fault: This scenario evaluated a cyberattack that reduced the 

CT ratio to 1:5, starting at t = 2 seconds. An SLG fault was 

subsequently introduced at t = 2.55 seconds, lasting until t = 

2.8 seconds, as shown in Fig. 3d. A different x-axis scale was 

used to adequately cover the event’s time period.  

 

Fig. 1. Overview of the protection scheme 



 

 

B. Hypothsis testing and results 

The effectiveness of the proposed algorithm was evaluated 
through hypothesis testing in four distinct case studies, as 
depicted in Fig. 4. The confidence level curve, cl(t), was 
analyzed before and after applying the DSE-based hypothesis 
testing module. In Case 1, the confidence level significantly 
oscillated below the predefined threshold of 80%, averaging 
around 40% as shown in Fig. 4a, indicating substantial data 
inconsistencies. The proposed algorithm responded by 
identifying and isolating the affected measurement channels, 
which were contributing to high residuals. After re-running 
the DSE with these channels excluded, the confidence level 
promptly stabilized to near 100%. 

 In Case 2, as depicted in Fig. 4b, the SLG fault caused a 
sharp initial drop in confidence, followed by minor 
fluctuations, indicating system instability. Initial attempts to 
exclude only high-residual channels were insufficient to 
restore confidence. The algorithm refined the microgrid model 
by removing all measurements from the affected protection 
zone and adjusting related components. This restored the 
confidence level to near 100%, confirming a physical fault and 
validating the system’s ability to handle localized disruptions. 
This process ultimately confirmed the presence of a fault, 
necessitating relay tripping to protect the system. 

In Case 3 (Fig. 4c), the confidence level dropped 
persistently below 50%, indicating simultaneous combined 
anomalies. Initial isolation measures, as in Case 2, were 
insufficient to restore confidence. The algorithm tested a third 
hypothesis—both a cyberattack and a fault were present—and 
refined the dataset by excluding suspect channels and affected 
protection zone data. After rerunning the DSE, the confidence 
level surged to nearly 100%, confirming the dual nature of the 
disturbances and validating the hypothesis testing approach. 

Case 4 presented a complex scenario caused by a CT ratio 
attack that reduced the CT ratio to 5:1, causing a reduction in 
current measurements to 20%. This attack resulted in smaller 
measurements residuals compared to earlier cases and induced 
confidence level oscillations just above 50%, as shown in Fig. 
4d. The attack was effectively detected through the chi-square 
test, which indicated a significant spike followed by 
oscillations, as highlighted in the zoomed-in view of Fig. 5b 
between 2 and 2.3 seconds. The proposed algorithm 
efficiently detected the attack, as evidenced by the confidence 
level oscillations depicted in both Fig. 4d and Fig. 5c and 
issued a decision signal—an alert—within 92 milliseconds 
(ms), depicted in Fig. 5d. This attack alert can be used to 
trigger installed protection schemes to either isolate the 
compromised device or replace the erroneous measurements 
with estimated values, thereby maintaining system integrity. 

At 2.55 seconds into the scenario, an SLG fault occurred 
concurrently with the ongoing attack, causing the confidence 
level to plummet to zero. In response, the proposed algorithm 
issued a tripping signal within 9.4 milliseconds to isolate the 
affected line, as depicted in Fig. 5d, although the trip was not 
executed for simulation purposes. The shaded area in Fig. 5d 
illustrates the elapsed time from the event to the decision-
making. Following the simulated cessation of the fault, the 
confidence level remained low due to the ongoing CT ratio 
attack. In response, the algorithm reapplied hypothesis testing, 
confirming the presence of the cyberattack and identifying the 
continuous confidence level oscillations caused by this 
persistent anomaly. Figure 4d illustrates these post-fault 
oscillations of cl(t) curve. 

 

Fig. 2. Schematic diagram of the test microgrid power system 

Fig. 3. Phase Current IA at MU54 for four case studies. The shaded areas 

in the diagrams highlight when the events started. 

Fig. 4. Confidence levels cl(t) in present before and after applying the 

hypothesis module algorithm  



 

C. Summary of Timing and Calculation 

Detection and decision-making in the proposed algorithm 
depend on sampling rates, processing times, and user-defined 
delays. Using 80 samples per cycle in a 60 Hz system results 
in a sampling period of 208 microseconds (μs). The DSE 
processes two sets of samples, taking 416 μs to complete [14]. 
Decisions to alert or trip are made based on the area under the 

curve (1 ( )lc t− ) exceeding a predefined threshold Td, set at 

40 ms within a 100-ms moving reset window. If the area 
surpasses Td, an anomaly is confirmed and identified, leading 
to a decision.  

In the first three case study simulations, trip/alert signals were 
issued in 2.8 ms for a fault, 2.3 ms for the increased CT attack, 
and 2.6 ms for the combined attack and fault in Case 3. In Case 
4, during the decreased CT ratio attack, the curve required 90 
ms to accumulate the necessary area due to confidence level 
curve cl(t) oscillations above 50%. When the fault was 
introduced alongside the decreased CT ratio, the fault 
detection time under these conditions was 9.4 ms, as 
illustrated by the shaded areas in Fig. 5d, which indicate the 
time elapsed between the occurrence of the anomaly and the 
issuance of the decision signal. This study found that a 
decreased CT ratio extends the decision time by reducing the 
current signal, thereby compromising the system's ability to 
quickly detect and respond to such an attack. 

D. Threat Model Assumptions and Future Study Directions 

This study assumes a threat model in which attackers 
manipulate static and predefined CT ratios through the 
merging unit’s setup interface. Recognizing the limitations of 
this approach, future research should explore more complex 
scenarios, particularly addressing FDIA that involve dynamic 
injections of data packets, source code alterations, or dynamic 
adjustments to the CT ratio to simulate gradual fluctuations in 
current measurements. Investigating variable CT ratio attacks 
is crucial, as these can dynamically change over time, 
mimicking normal operational fluctuations. Such attacks 
could complicate detection processes, delay response actions 
(as demonstrated in Case 4), and potentially compromise 
system protection mechanisms by distorting fault currents or 
suppressing necessary alerts. 

V. CONCLUSION AND FUTURE WORK 

This study introduces a Centralized Dynamic State 
Estimation algorithm designed to enhance microgrid security 
and reliability by effectively detecting and differentiating 
between electrical faults and cyberattacks. Validation was 
achieved through four case studies: a cyberattack 
manipulating CT ratios, a single line-to-ground fault, and two 
combined scenarios of cyberattack and fault. The algorithm 
accurately identified these anomalies, significantly improving 
confidence levels after implementing the hypothesis testing 
framework, confirming its effectiveness in real-time 
environments. Notably, while the algorithm quickly detected 
attacks, it responded more slowly to decreased CT ratio 
attacks, suggesting areas for future optimization.  
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Fig. 5. Case 4: Phase IA current response, Chi-Square test results, and 

decision-making and execution times during attack and fault events. 


