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Abstract—Backdoor detection is currently the mainstream de-
fense against backdoor attacks in federated learning (FL), where
malicious clients upload poisoned updates that compromise the
global model and undermine the reliability of FL deployments.
Existing backdoor detection techniques fall into two categories,
including passive and proactive ones, depending on whether the
server proactively modifies the global model. However, both have
inherent limitations in practice: passive defenses are vulnerable
to common non-i.i.d. data distributions and random participation
of FL clients, whereas current proactive defenses suffer inevitable
out-of-distribution (OOD) bias because they rely on backdoor co-
existence effects. To address these issues, we introduce a new
proactive defense, dubbed Coward, inspired by our discovery of
multi-backdoor collision effects, in which consecutively planted,
distinct backdoors significantly suppress earlier ones. In general,
we detect attackers by evaluating whether the server-injected,
conflicting global watermark is erased during local training
rather than retained. Our method preserves the advantages of
proactive defenses in handling data heterogeneity (i.c., non-
i.i.d. data) while mitigating the adverse impact of OOD bias
through a revised detection mechanism. Extensive experiments on
benchmark datasets confirm the effectiveness of Coward and its
resilience to potential adaptive attacks. The code for our method
would be available at https://github.com/still2009/cowardFL,

Index Terms—Backdoor Defense, Backdoor Attack, Federated
Learning, Al Security, Trustworthy ML.

I. INTRODUCTION

EDERATED Learning (FL) [11], [2], [3] has emerged as a
powerful paradigm for privacy-preserving distributed ma-
chine learning, enabling collaborative model training among
many client devices without sharing raw data. Such character
enables secure utilization of massive valuable data from sensi-
tive entities and individuals, unleashing the potential of private
data towards personalized and foundational intelligence [4],
[S], [6]]. Tt has been widely studied across diverse fields such
as healthcare, finance, and edge computing [7], 8], [9].
However, the privacy-preserving nature of federated learn-
ing is a double-edged sword. While it safeguards sensitive
client data by keeping it local, it also restricts the server’s vis-
ibility into client-side behavior. This blind spot opens the door
to backdoor attacks [10], [[L1], [12], which plant malicious
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Fig. 1: Comparison between our collision-based proactive
defense and the existing method via co-existent mechanism.
By developing a backdoor-collided watermark, our method
adopts an inverted detection paradigm with respect to mali-
cious clients that is naturally compatible with OOD prediction
bias, thereby enabling more reliable and accurate detection.

pattern into a model such that it behaves normally on clean
inputs but produces attacker-desired outcomes when exposed
to inputs containing predefined trigger patterns. Exploiting
the server’s inability to observe client behavior, malicious
participants can covertly implant backdoors into their local
models. These compromised updates are then aggregated into
the global model, seamlessly propagating the backdoor behav-
ior and undermining the reliability of FL [13], [14], [[LS].

To tackle this issue, backdoor detection methods has been
proposed to identify and exclude malicious updates during
model aggregation [16[], [17], [18]. Based on the assump-
tion that backdoor training introduces distinct patterns in
model parameter space, they achieve detection by identifying
such anomalies. Specifically, current techniques mainly use
distance-based metrics to assess similarities among client
updates and may incorporate clustering algorithms to further
reveal structural patterns. In either case, updates identified as
outliers are flagged as malicious. However, we reveal that
these defense methods are vulnerable to clients’ non-i.i.d. data
distribution and participation randomness, which are common
settings in practical FL scenarios [3]. These factors lead to
highly dynamic and divergent benign updates that may appear
as outliers, significantly interfering with detection and leading
to a high false positive rate. We refer to this limitation as the
non-i.i.d. blurring challenge, as analyzed in Section [[II-A]

Recently, a new type of defense termed proactive detection,
was introduced by the pioneering work, ¢.e., BackdoorIndi-
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cator [18]]. Unlike prior works passively rely on client model
response, proactive defense actively modifies the global model
to provoke divergent behaviors from malicious and benign
clients. For instance, BackdoorIndicator injects specific OOD
mappings into the global model, which tend to be preserved
by malicious clients while being forget by benign clients.
As such, the attacker can be identified by inspecting the
presence of the injected pattern in local models, where higher
inspection accuracy indicates malicious client while lower
accuracy indicates benign. By shifting the detection basis
from model discrepancies to differences in client behavioral
responses, proactive methods naturally avoid the sensitivity to
non-i.i.d. data that often undermines traditional defenses.

However, since FL prohibits server access to client training
data, current proactive detection methods including Indicator
inevitably rely on OOD data in practice, either for injecting
patterns during training or evaluating pattern reactions during
inference. Yet, deep neural networks (DNNs) are known to
produce overconfident and biased predictions on OOD in-
puts [19]], [20], [21], which may undermine the reliability
of such detection strategies. Specifically, we reveal that such
learning-based proactive methods are fundamentally vulnera-
ble to OOD prediction bias, which causes benign local models
to exhibit high inspection accuracy and be misidentified as
malicious clients, leading to a high false positive rate. We
provide a detailed analysis in Section [[II-B| and refer to this
limitation as the OOD bias challenge. Naturally, this raises
an important question: can we design a practical proactive
detection method that alleviate this limitation?

Fortunately, the answer is yes, although the solution is
non-trivial. In this paper, we propose a simple yet effec-
tive Collision-based OOD WAtermark for Robust federated
backdoor Defense, termed Coward. Our method is inspired
by the finding of multi-backdoor collision effect where a
consecutively planted different backdoor would significantly
suppress the one previously planted. In general, we detect
attackers by evaluating whether the server-injected conflicting
global watermark has been erased during local training. Clients
whose watermark accuracy falls below a specified threshold
are then marked as malicious. Specifically, we implant a
backdoor-based OOD watermark as the conflicting global
watermark, where OOD samples embedded with a trigger
are redirected from their original class to a designated wa-
termark target class. We refer to the original class mapping
as the base OOD mapping, and the triggered mapping as
the watermark mapping. Concretely, the OOD watermark
is injected by jointly learning: (1) a regulated base OOD
mapping that specifies a fixed class-wise correspondence from
OOD samples to the task label space; and (2) a targeted
watermark mapping that enforces an association between all
triggered OOD samples and the watermark target class. In
general, our method alleviates the OOD bias challenge through
three aspects: (1) Unlike prior approaches, our collision-based
detection treats high inspection accuracy as the signal of
benign behavior, making it naturally compatible with the OOD
bias—induced high confidence predictions; (2) Our watermark-
based detection inspects the presence of the trigger-to-target
mapping rather than the OOD mapping, thereby mitigating

the direct impact of OOD prediction bias. Together, these
designs lead to more reliable backdoor identification and lower
false positive rates. and (3) our base OOD mapping can
mitigates OOD prediction bias by enforcing explicit class-wise
assignments to OOD samples; We demonstrate (1) and (2) in
Figurdl] and verify (3) in Figurd7]

In summary, our contributions are three-fold: (1) We revisit
the limitations of existing methods by identifying and analyz-
ing two key challenges unique to federated learning: non-i.i.d.
blurring challenge and OOD prediction bias. (2) We find an
intriguing phenomenon, dubbed the multi-backdoor collision
effect, where a consecutively planted different backdoor would
significantly suppress the previous implanted one. Based on
this finding, we design a simple yet effective proactive feder-
ated backdoor defense method, i.e., Coward, that effectively
mitigates OOD bias and achieves more accurate detection.
(3) Extensive experiments on benchmark datasets verify and
explain the effectiveness of our Coward method and its
resistance to potential adaptive attacks.

II. BACKGROUND AND RELATED WORKS
A. Federated Learning

Federated learning (FL) enables multiple decentralized
clients to collaboratively train a shared model without ex-
changing their private data [2]]. Based on how data is par-
titioned, FL is typically categorized into horizontal FL. (HFL),
where clients share the same feature space but different
samples, and vertical FL. (VFL), where clients share samples
but differ in input feature fields [22].

In this paper, we focus on the HFL setting, where a central
server coordinates model training and aggregation in iterative
rounds. In each round, a subset of clients is selected to receive
the current global model, train it on their local data, and send
back the updated parameters. The server then aggregates these
updates to form a new global model. This process repeats,
gradually improving model performance while keeping data
decentralized. Specifically, given the selected client set S*~*
in round ¢ — 1, the global model w® in round ¢ is:

wi=wt 4 ) %Awijl, (1)
kest—1

where N, and N denote the data volume of client £ and

the total data volume across participating clients, respectively.

A denotes the model residual with respect to the previously

broadcasted global model. We highlight three key characteris-

tics that distinguish FL from traditional centralized settings:

o Multi-party Participation: The global model is collabora-
tively trained by many clients, who privately contributes to
the final model but can’t control it individually.

o Non-i.i.d. Client Data [1[]: Data distributions vary signifi-
cantly across clients, resulting in inconsistent local updates
and increased optimization difficulty.

« Partial Client Participation [1]: In each training round,
only a subset of clients is selected due to limited commu-
nication resources and dynamic client availability.

These characteristics introduce unique challenges for both

attacks and defenses in FL, as described in subsequent parts.
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B. Backdoor Attacks in Federated Learning

Backdoor attacks aim to implant hidden behaviors into
neural networks, causing them to function normally on clean
data but misclassify inputs containing attacker-specified trig-
gers [10], [23]. Data poisoning is the most common backdoor
injection method, where a subset of training samples is em-
bedded with triggers and mislabeled to a target class [23].
Stealth and persistence are key objectives in backdoor attacks,
motivating the design of invisible [24]], [25], semantic [26],
[27], optimized [28], [29] and sample-specific [30]], [31], [32]
triggers. However, these approaches are limited when directly
applied to FL, due to the unique challenge that adversaries can
only manipulate a limited subset of clients and must ensure
their backdoored updates survive the aggregation process to
impact the global model. Thus, FL-specific backdoor attacks
have emerged, broadly classified into following two categories.

Single-client Attacks. The first backdoor attack for FL in-
troduced the model replacement attack [13], where a mali-
cious client uploaded a scaled local update to dominate the
aggregation. However, the abnormally large update made it
easily detectable under defense [33]]. To improve stealth and
persistence, follow-up works introduced more subtle attack
strategies. For example, PGD [33] constrained malicious up-
dates within an #5-ball to evade norm-based defenses, while
Neurotoxin [34]] injected backdoors into parameters associated
with inactive neurons to minimize noticeable changes. Other
works aimed to further blend backdoor patterns into normal
behavior. For example, Edge-case attacks [35]] utilized natu-
rally occurring features as triggers, reducing the likelihood of
detection, while Chameleon [11] aligned backdoor and benign
features in latent space using contrastive learning.

Multi-client Attacks. The DBA framework [36] leveraged the
distributed nature of FL to spread the backdoor across multiple
clients, with each client using a distinct local trigger. These
independently subtle triggers collectively formed an effective
global backdoor, reducing the detectability of any individual
client. Expanding on this idea, Gong et al. [37] proposed a
coordinated multi-client attack, in which each local trigger
was optimized in a model-aware fashion. This coordination
allowed the attackers to craft triggers that were both less
suspicious and more effective, further amplifying the threat
posed by distributed poisoning. In contrast, Non-Cooperative
Backdoor Attacks (NBA) [38] involved independent attackers
using distinct triggers for different targets, yet still exhibited
enhanced stealth comparable to coordinated methods.

C. Backdoor Defenses in Federated Learning

In centralized settings, backdoor defenses typically focus
on either removing the backdoor from the model [39], [40] or
filtering trigger samples during training or inference [41]], [42].
However, these approaches often become impractical in FL
due to the limited capabilities of the defender (i.e., the central
server). Specifically, (1) the server lacks access to clean and
in-distribution data, making data-dependent removal methods
like pruning, retraining, or fine-tuning infeasible. (2) the server
cannot control the local training process, rendering sample
filtering and robust training strategies infeasible. To address

these limitations, FL-specific defense mechanisms have been
developed, generally falling into below two categories.

Backdoor Effect Mitigation methods aim to reduce the
impact of backdoors in the global model by suppressing
anomalous neurons across local updates. Early works such
as Weak-DP [33] applied norm clipping and noise injection
to weaken abnormal neuron effects. Statistical approaches
like geometric median [43] and Trimmed-Mean [44]] enforced
robustness by aggregating updates in a statistically neutral
manner. RLR [45] further enhanced mitigation granularity
by assigning parameter-wise adaptive learning rates. FLPu-
rifier [46] achieved stronger backdoor suppression by per-
forming adaptive aggregation at the classifier level under a
modified FL protocol that decoupled encoder and classifier
training. However, these methods operate all client updates
equally, often diminishing benign contributions and harming
overall model performance under the standard FL protocol.
This limitation has led to the rise of the following detection-
based approaches as a mainstream alternative.

Malicious Client Detection methods aim to identify and
exclude poisoned updates during aggregation by quantifying
the differences between benign and malicious clients, typically
through distance-based metrics on model parameters. Clients
whose update patterns deviate significantly from the majority
are flagged as malicious. For instance, Multi-Krum [47] lever-
aged Euclidean distance, while Foolsgold [48]], FLTrust [49],
and ShieldFL [50] adopted cosine similarity, all applied di-
rectly on full model weights. Rflbat [S1] extended this by
computing distances in a top-k PCA-projected space, aiming
to reduce noise and improve efficiency, though at the cost
of some information loss. Beyond model parameters, Deep-
Sight [[16] incorporated prediction-level discrepancies of local
models, enabling a more comprehensive analysis. Extending
beyond pure detection, Flame [[17] combined clustering-based
client identification with gradient norm-based mitigation, po-
sitioning itself at the intersection of detection and mitigation
strategies and demonstrating strong empirical performance.
FLGuardian [52], a recent study addressing untagged backdoor
attacks, performed layer-wise model analysis using similarity
metrics and clustering algorithms, reflecting a growing shift
toward more fine-grained detection in the parameter space.
However, these methods assume malicious models are natu-
rally distinguishable, making them sensitive to data hetero-
geneity and ineffective against stealthy attacks.

Building on the shared characteristic that prior methods rely
on passive server-side detection without any preparatory inter-
vention, we categorize them as passive detection. In contrast,
proactive detection, such as Indicator [18] and our proposed
approach, take an active role by modifying the global model to
provoke distinguishable behaviors from clients. By leveraging
multi-backdoor interaction mechanisms that is less sensitive
to data heterogeneity, these methods improve detection robust-
ness. While Indicator marks a key advance and outperforms
passive baselines, as we will show in the next section, it still
suffers from OOD bias and high false positives. How to design
an effective proactive federated backdoor defense in practice
is still an important open question.
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Fig. 2: The distraction effect of non-i.i.d. data on passive
backdoor detection. Divergent client data distributions (left
of Figure (a)) substantially reduce the suspiciousness of mali-
cious clients, as reflected in both gradient norms (middle) and
the update directions of benign models (right). In contrast,
it increases the perceived suspiciousness of benign clients,
particularly those with larger gradient norms, as evidenced by
the positive correlation observed in Figure (b).

IITI. REVISITING EXISTING DEFENSES AND
MULTI-BACKDOOR INTERACTIONS

In this section, we first revisit the limitations of existing
passive and proactive defenses, respectively. We then delve
into the multi-backdoor interaction effects, a key underlying
mechanism that drives the design of proactive defenses.

A. Revisiting Passive Defenses

Many existing passive defenses assumed that malicious up-
dates deviated from benign updates in the parameter space due
to the additional optimization of the backdoor objective during
local training [44]. Based on this assumption, many methods
leveraging clustering and outlier filtering were proposed to
detect malicious clients [43], [17]. To evaluate the validity
of this assumption under the practical non-i.i.d. settings, we
analyzed the statistical characteristics of model updates, and
show its correlation to misjudgements of benign clients.

Settings. We revisit gradient norm distribution for each client,
under a highly non-i.i.d. partitioned CIFAR-10 dataset with
label distribution generated by Dirichlet prior with o = 0.3,
and 10 out of 100 random clients participation in each round.
There is one malicious client performing a backdoor attack
using a pixel-style trigger targeting class 0.

Results. As shown in Figure [J[a), the suspicion toward
attackers is significantly reduced due to the severity of data
heterogeneity: (1) in the first column, we present the size and
label skewness of local datasets. The blue line indicates the
dataset size, while the bar height represents the skewness,
measured by the standard deviation of class-wise sample
counts. We can observe that client data distributions are highly
diverse. Notably, malicious clients do not exhibit abnormal

characteristics in either size or skewness; their distributions
fall within a typical range. In contrast, some benign clients
show extreme distributions with both large data volumes and
high skewness. (2) In the second column, we plot the mean
and standard deviation of gradient norms uploaded by all 100
clients across training rounds, sorted by their mean values. The
results reveal that the malicious client’ updates have slightly
smaller gradient norms compared to most benign clients and
appear inconspicuous amid the naturally diverse benign client
updates. (3) In the third column, we visualize the top-2 PCA
component of local and global models (based on the last-layer
weights) during training. The results show that the attacker’s
update direction and distance lie in a moderate region, appear-
ing unharmful due to the diverse update directions introduced
by the non-i.i.d. distribution. Figure [2(b) further presents a
correlation analysis, revealing a clear association between
model update norms and misjudgement. Specifically, the x-axis
shows the mean gradient norm, the y-axis indicates the number
of misjudgments (i.e., times a benign client was incorrectly
flagged), and the bubble size reflects the standard deviation
of the gradient norm. The evident upward trend suggests that
clients with larger and more variable gradient norms are more
susceptible to be misjudged. In conclusion, we have:

Takeaway 1: Data heterogeneity (i.e., non-i.i.d.) amplify
client model variance, blurring distinctions between ma-
licious and benign clients, diminishing the effectiveness
of passive backdoor detection.

To mitigate this limitation, proactive backdoor defenses shift
the detection focus from parameter differences to client-side
reactions against defender-planted patterns, which effectively
alleviate sensitivity to data heterogeneity.

B. Revisiting Proactive Defenses

As a pioneering work in proactive defense, Indicator iden-
tified a co-existing (i.e., maintaining) effect, where a subse-
quently planted backdoor with the same target label could
preserve the effect of a previously injected one. However, due
to the privacy-preserving constraint of federated learning, it
could not access client data and had to rely solely on OOD
data to modify the global model. To address this constraint,
Indicator implanted random OOD mappings (i.e., assigning
labels to OOD samples via uniform random sampling) into the
global model to activate the co-existing effect. During detec-
tion, it evaluated each client’s class-wise prediction accuracy
on these OOD data: any class exceeding a predefined threshold
flagged the client as malicious, and the corresponding class
was assumed to be the attacker’s backdoor target. Such a
detection mechanism no longer relies on parameter space,
making it less susceptible to the distraction effect of non-i.i.d.
data and thus more effective than passive detection methods.

However, leveraging OOD samples to activate the co-
existing effect introduces a vulnerability to OOD prediction
bias, where deep neural networks inevitably tend to classify
OOD samples into arbitrary classes with high confidence [19],
[21]. Specifically, it leads to a high false positive rate of this
method, as analyzed in the following parts.
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Fig. 3: The misdirection effect of OOD bias against the
existing proactive backdoor detection. With the attacker-
specified target class set to ‘0’ (red), we show five clients from
the same round, presenting their OOD prediciton distribution.
The gray subfigure shows the local data distribution. The
red dashed line marks the detection threshold; classes with
inspection accuracy above this line are flagged as malicious
and highlighted in red border. The results indicate that: (1)
Even without server-side planting, non-target classes may
exhibit OOD-induced high inspection accuracy ( ) on
benign clients; (2) With planting, misjudgment increases, and
more classes tend to exhibit higher inspection accuracy.
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Fig. 4: Exacerbation of OOD bias induced by existing
proactive methods. The Indicator method intensifies both the
magnitude and variation of OOD bias across training rounds.

Settings. We analyze the prediction distribution of OOD sam-
ples under Indicator [18]], both with and without the watermark
planting process. The main FL task is CIFAR-10 classification,
with EMNIST used for proactive pattern planting. During
planting, Indicator randomly partitioned OOD samples in the
label space with same 10% ratio. In each round, 10 clients
are sampled from a total of 100, with one attacker targeting
class 0. The data heterogeneity is controlled by a Dirichlet
distribution with o = 0.3.

Results. As shown in Figure |§|, we find that: (1) under
the no-planting setting, for the malicious client, OOD sam-

ples successfully activate the learned backdoor pattern with
high accuracy, revealing an empirical correlation between
the backdoor trigger and the OOD pattern. Meanwhile, for
benign clients, certain classes exhibit inspection accuracy that
approaches or even exceeds the predefined detection threshold
of 95%, resulting in significant misjudgment; (2) Under the
with-planting setting, the pre-planted OOD pattern leads to
similar effects and, in some cases, causes even more classes
keep higher accuracy among benign clients (i.e., tending to be
treated as malicious clients). These phenomena indicate that:

Takeaway 2: OOD prediction bias is an inherent vul-
nerability of deep neural networks [[I9], [20], [21],
where OOD samples tend to be classified with high
confidence into arbitrary classes. This causes benign
clients to exhibit unexpectedly high inspection accuracy
during Indicator’s detection phase, leading to to frequent
yet unpredictable false positives.

Going further, we hereby demonstrate how the planting
action intensifies OOD prediction bias in Figure [ from
which we draw the following key observations. (1) Disruption
of temporal consistency: In subfigure (a), we present the
prediction distributions of a specific client across multiple
global rounds. The no-planting setting maintains a stable bias
toward a particular class over time, whereas the planting
setting exhibits a highly variable trend, i.e., the class with
the highest prediction accuracy fluctuates significantly across
rounds. This instability is likely caused by the random label
assignment used in the Indicator method, where OOD samples
with similar semantic content may be mapped to different
labels during the planting process, creating an disordered
association between the OOD space and the task label space;
(2) Amplified bias level and variation: As shown in subfigure
(b), we quantify the overall bias level and its temporal variation
across all 100 clients, sorted by bias magnitude. The results
show that Indicator’s planting introduces significantly higher
bias intensity and instability compared to the no-planting case.
We further analyze the correlation between OOD bias levels
and false positive rates in Section [V(Figure [7), showing a
strong positive relationship. Building on above evidence, we
arrive at the conclusion that:

Takeaway 3: BackdoorIndicator exacerbates OOD pre-
diction bias through random mapping planting, which not
only disrupts bias patterns but also introduces temporal
inconsistency across rounds, ultimately undermining the
reliability of its detection.

Given the limitations of OOD-based planting, the effec-
tiveness of leveraging the behind multi-backdoor coexistence
effect introduced by Indicator becomes questionable. This
naturally leads to a deeper question: Does an alternative multi-
backdoor interaction mechanism exist, and if so, can it offer a
more robust foundation for utilizing OOD data? Accordingly,
we shift to revisit multi-backdoor interactions.
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TABLE I: Types of multi-backdoor interaction.

Different Target

collision (w./ BN)
collision

Same Target

Different Trigger
Same Trigger

coexistence (w./ BN)
coexistence

C. Revisiting Multi-Backdoor Interactions

Unlike Indicator’s observation of a co-existence effect be-
tween backdoors targeting the same label, we identify a dis-
tinct collision effect, where sequentially implanted backdoors
targeting different labels tend to interfere with one another.
This phenomenon offers new insights and serves as the starting
point for our subsequent defense design.

The Demonstration of Collision Effect. We conduct the
experiment under a centralized setting simulating two entity
sequentially plant backdoors into a same ResNet model on
CIFAR-10 dataset but with different target label. Specifically,
the first backdoor uses a WaNet trigger targeting class 1 while
the second backdoor uses a pixel-pattern trigger targeting
class 0. Following [18]], the batch normalization statistics are
also switched accordingly. As shown in Figure [5 the left
subfigure demonstrates that the ASR of the first backdoor
steadily decreases as the second backdoor is progressively
injected. In contrast, the right subfigure shows that the ASR
decline from normal fine-tuning (due to knowledge forgetting)
remains clearly less severe, highlighting the distinct collision
effect between the two backdoors. Similar observations across
different backdoor settings are also discussed in [S3].

Collision Effect v.s. Coexistence Effect. To this end, we can
get a complete understanding of multi-backdoor interaction
effects under sequential implantation: Backdoors targeting the
same class tend to coexist, while those with different targets
often interfere with each other. To be comprehensive, we
summarize all interaction cases in Table [, where “w./ BN”
denotes for “with BN switch”. Though seemingly opposite,
the two mechanisms can be understood through a unified and
intuitive perspective. As noted by Indicator [[18], backdoor trig-
gers can be interpreted as out-of-distribution features relative
to the benign data distribution, typically residing in a shared
OOD region within the latent space. When multiple triggers
share the same target label, they construct consistent mappings
from the latent OOD region to that label. This alignment
allows backdoors to reinforce each other, resulting in their
coexistence. In contrast, when triggers are associated with
different target labels, the newly implanted trigger disrupts
the existing mapping from the latent OOD region to the prior
label, leading to collision or substitution.

Insights from Collision Effect. Based on the collision effect,
it becomes feasible to design a backdoor-based watermark
that intentionally interferes with the attacker’s trigger while
remaining intact in benign clients. This leads to a new proac-
tive detection paradigm distinct from the existing coexistence-
based methods, where client models that fail to retain the
watermark (z.e., exhibit low inspection accuracy) are identified
as malicious, while those that preserve it (i.e., show high in-
spection accuracy) are considered benign. Under this inverted
paradigm, the high inspection accuracy induced by OOD
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Fig. 5: The collision effect between target-different back-
doors. (Left): A subsequently injected backdoor significantly
degrades the ASR of the first backdoor. (Right): The ASR
degradation of the first backdoor caused by standard fine-
tuning is notably smaller than that caused by backdoor.

prediction bias in benign clients no longer misleads detection,
instead, it becomes beneficial in some cases. Building on
these insights, we propose our collision-based watermarking
method, as detailed in the next section.

IV. METHODOLOGY

Figure [6] presents an overview of our approach, including
three main stages: watermark injection, watermark interaction,
and watermark detection. We begin by clarifying the threat
model, then the detail of three stages.

A. Threat Model

We define the threat model by specifying the goals and
capabilities of both the attacker and the defender.

Attacker’s Goal and Capability. The attacker resides on the
client side and aims to inject a targeted backdoor into the
global model, causing it to misclassify all trigger-embedded
inputs into a designated target class while maintaining normal
performance on benign inputs. Although the attacker cannot
directly access the global model, they may control a subset of
clients and submit arbitrary malicious models or gradients to
the server, thereby influencing the global model updates.

Defender’s Goal and Capability. The defender is the central
server, whose goal is to identify and exclude backdoored
local models from the aggregation process. The server cannot
access any data from the clients’ local distributions but has
full visibility into all uploaded local models. It also controls
the update and broadcast of the global model. Additionally,
the server is allowed to make arbitrary modifications to the
global model and has access to any out-of-distribution data.

B. Watermark Injection

Watermarking is commonly used for tracing malicious or
valuable sources by embedding identifiable patterns into mod-
els or data [54]], [S5], [56]. Inspired by this idea and our
observation of the backdoor collision effect, we leverage a
backdoor-based watermarking strategy to identify malicious
clients in federated learning. To adapt the idea of backdoor
watermarking to the out-of-distribution setting, we first revisit
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Fig. 6: The overall pipeline of our Coward method. (left) A defensive watermark is carefully embedded into the global
model via low-cost OOD data training. (Middle) Random participants conduct local training based on the watermarked global
model, where attackers tend to remove the watermark while benign clients preserve it. (Right) After local training, the server
inspects the strength of the watermark; models with diminished watermark signals are flagged as malicious.

the conceptual structure of traditional backdoor mechanisms.
In conventional in-distribution scenarios, a backdoor can be
viewed as composed of two parts: (1) a standard task mapping
for clean inputs, and (2) a tampered mapping that redirects
triggered inputs to attacker-specified labels. Following this
intuition, we borrow a similar two-part structure in the OOD
context: an OOD base mapping for clean OOD samples and
an OOD watermark mapping for triggered ones.

Planting a Regulated Base Mapping. In the federated set-
ting, the OOD planting set and client training data share a
global model, thus operating within the same prediction space.
However, their semantic spaces are inherently different. This
misalignment introduces prediction ambiguity, where the same
output index may imply conflicting meanings. For instance,
label “0” might refer to the digit “0” in an EMNIST-based
OOD planting set, but to “airplane” in a CIFAR-10 client task.
Such ambiguity can lead to two negative effects: (1) the OOD
mapping may distort client-learned semantics, reducing benign
accuracy; (2) the non-i.i.d. nature of client training may corrupt
the OOD mapping in different ways.

To address these problems, we manually assign a fix one-
to-one label mapping 71 from the OOD label space ), to the
task label space );. This defines the base mapping planting:

™ Vo — Vi, 2)

Dy = {(zi, m1(yi) | Yi ~ Vol 3)

Lyase = Z CE(f(zi;w), m1(yi)), “4)
ieD,

Here, D, denotes the planting set, w represents the model
parameters, and CE is the cross-entropy loss. Since OOD
samples lack semantic grounding in the task label space, the
mapping’s meaning is not essential, what matters is that it
remains fixed. Our choice of consistent one-to-one assign-
ment stabilizes the ambiguity, reducing uncertainty in both

OOD and task predictions. This contrasts with the design
in BackdoorIndicator, which adopts random and dynamic
base mappings, leading to greater instability. Instead, our
method emphasizes a controlled and interpretable structure,
as supported by the empirical results in Figure [7]

Planting a Targeted Watermark Mapping. Building upon
the established base OOD mapping, we further implant a
targeted watermark mapping, analogous to the all-to-one back-
door setting [10], [11], [12] in centralized learning:

2 :yo_>ym7ym Eyt; (5)

Du) = {(trl(wlvt)aﬂ—Q(yl)) | (wzvyl) ~ Dp}v (6)

Lum = Y CE(f(tri(z;, t);w), ma(y:)), 7
1€Dy,

Here, t denotes the trigger pattern, and tri(-, t) represents the
trigger implanting function. The watermark mapping function
o assigns all watermark samples to a fixed target label y,,.
The watermark set D,, is generated by sampling a fraction
pw of the planting set, i.e., |Dy| = puw - |Dpl. Since the base
mapping 7 aligns OOD samples with the task feature space,
the planted watermark can partially generalize to the task
feature distribution. This makes the trigger-label association
less tied to specific OOD semantics, thereby enhancing its
robustness to OOD prediction bias and reducing the likelihood
of being forgotten during training of benign clients.
Following prior works [57]], [18]], we save and restore the
running mean and variance of BatchNorm layers before and
after watermark planting. This preserves the distinct feature
distributions of the task and OOD spaces during training. In
addition, to prevent the planted watermark from distorting
the task-space sample-label mapping, we also apply a global
model regularization term. Together, we get the overall loss:

Eserver = £base + Ewm + A H’U) - wt”Q' (8)
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C. Watermark Interaction and Detection

Watermark Interaction. After the watermark is injected into
the global model w?, it is delivered to all participated clients
for local training. Benign clients perform standard training
on their local datasets, optimizing only for task accuracy. In
contrast, malicious clients additionally inject backdoor triggers
into part of their local data to achieve the attack. Their training
objectives are formulated as:

ACbenign = Z CE(f(wlv wZJrl)ayl)v (9)
LEDy,
Eattack’ = Ebenign + Z CE(f(tI'i($l, t)7 wz;-i_l)v ya)7
leDirt
(10)

where Dy, denotes the k-th client’s clean data and D™ is
the triggered subset with label y, as the attacker-specified
target label. During training, benign clients would only forget
the OOD watermark slightly while malicious clients tend to
suppress the watermark more aggressively, as their injected
backdoor interfere with the watermark. This divergence in
watermark retention behavior serves as the basis for our
subsequent malicious client detection. We provide a detailed
analysis of these effects in Appendix [Al

Watermark Detection. After receiving trained local models
from clients, the server evaluates each model’s response to the
watermark task by measuring the proportion of watermarked
samples predicted as the designated label y,,. The BatchNorm
statistics are also switched from those used for the FL main
task to those corresponding to the watermark planting phase
during inspection. After collecting the watermark accuracy of
all clients, a threshold g is applied to distinguish between
benign and malicious clients. Thus, clients whose watermark
accuracy falls below (3 are excluded from the aggregation
process. Thus we get the model aggregation operation as:

> NA

keStH1

wi - IACC(f (Duws wi™), ym) > B, (11)

where 1 denotes the indicator function, and ACC represents
the corresponding watermark accuracy.

V. EXPERIMENTS
A. Main Settings

Datasets and Models. We conduct experiments on 3 classi-
cal image classification benchmark datasets, including EM-
NIST [38], CIFAR-10 and CIFAR-100 [59] . We employ
ResNet-18 [[60] as the default architecture.

Federated Training Configurations. All experiments adopt
the standard FedAvg setting [[1]], where we simulate 100 clients
in total, with 10 randomly selected to participate in each
training round. To simulate the inherent data heterogeneity
across clients, we follow [61] to use Dirichlet sampling to
partition the dataset. The Dirichlet concentration parameter «
controls the label distribution skewness, where smaller values
indicate more unbalanced distributions. Specifically, we use
a = 0.9 by default to simulate mild skewness, and decrease it

to 0.3 to model more severe distribution shifts. During local
training, each benign client performs 2 epochs with a learning
rate of 0.03, while the global training proceeds for 1200
rounds. For conciseness, we omit the less critical parameter
details and follow [18] for all settings not explicitly specified.

Attack Configurations. To ensure a comprehensive eval-
uation, we consider both single-attacker and multi-attacker
scenarios, each covering various attack strategies and backdoor
types. (1) In the single-attacker scenario, we adopt a range
of attack baselines, including the naive Vanilla training [23]],
the stealthy PGD attack [33], and the latest state-of-the-art
methods Neurotoxin [34] and Chameleon [11]. Regarding
the backdoor type, we adopt three diverse types of triggers,
ranging from the traditional visible trigger (BadNet [23]), to
the invisible trigger (Blend [62])), and the natural feature-based
trigger (Semantic [63]]), with increasing levels of impercep-
tibility. (2) In the multi-attacker scenario, we increase the
ratio of attackers from 30% to 70%. To ensure comprehensive
coverage, we include both aligned and divergent attack goals:
Uniform [48]] with homogeneous attackers, DBA [36] with
a shared target but distributed triggers, and NBA [38] with
non-cooperative attackers using distinct backdoors. Across all
settings, poisoning uses a consistent learning rate of 0.03 by
default, aligned with benign training, and reduces it to half for
more challenging stealthy evaluation purposes. The backdoor
target is class O by default. Similar to BackdoorIndicator, the
malicious client launches the attack at the 1000th global round,
with poisoning action lasting for 200 global rounds.

Defense Baselines. We evaluate six representative defense
methods that span a range of detection strategies, from clas-
sical model-space analysis to more advanced and proactive
techniques: We begin with traditional methods that rely on
the statistical properties of model updates: (1) MultiKrum
[47] detects attackers based on the Euclidean distance among
client updates. (2) Foolsgold [48] identifies malicious clients
by analyzing pairwise cosine similarity to detect overly aligned
update directions. (3) Rflbat [51] projects model updates into
a PCA space and flags outliers as potential attackers. Then we
further include more advanced approaches that incorporaFte
prediction behavior or mitigation mechanisms: (4) Deepsight
[16] evaluates similarity in model predictions and output neu-
ron activations to reveal abnormal client behavior. (5) Flame
[17] combines detection based on model similarity together
with mitigation techniques such as gradient clipping and noise
injection. Finally, we include the pioneering proactive method
that shifts the detection paradigm: (6) BackdoorIndicator 18]
injects OOD patterns into the global model and identifies
attackers based on their reactions to these patterns.

Our Configurations. We detail the key factors involved in
our watermark injection and detection process. To construct
the OOD planting set, we use EMNIST (expanded to three
channels) when the main task is CIFAR-10 or CIFAR-100,
and grayscale CIFAR-10 when the main task is EMNIST. The
same planting set is used for BackdoorIndicator to ensure a
fair comparison. By default, the planting set contains 1,000
samples. At each global round, the server injects the water-
mark by applying a trigger to 20% of the planting set, using a
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TABLE II: Detection performance against vanilla single-client attacks under different non-i.i.d. settings. Boldface indicates
the best result value (excluding the collapsed case with TPR/FPR=0/0), while red highlights metric-specific failures based on
a 50% threshold (7.e., values above 50% for FPR and ASR, and below 50% for TPR and BA).

Dataset  Non-iid. MultiKrum FoolsGold Rfibat DeepSight Flame Indicator Coward (Ours)

TPR FPR ASR BA TPR FPR ASR BA TPR FPR ASR BA TPR FPR ASR BA TPR FPR ASR BA TPR FPR ASR BA TPR FPR ASR BA

0.9 93.5 34.1 34.1 92.1 44.0 443 91.3 921 25 9.6 91.3 91.8 74.0 60.3 58.2 91.9 99.0 334 9.9 92.1 97.523.0 94 91.2 99.0 3.9 10.3 90.5

CIFAR-10 0.6 62.0 37.6 889 919 475503 89.5 914 1.5 104 91.3 92.0 66.0 53.2 66.4 92.0 69.0 36.8 87.2 91.8 94.0 26.1 353 91.5 99.0 9.2 9.9 90.8
0.3 57.5 38.1 90.2 91.7 60.5 57.2 84.5 90.8 1.0 9.2 91.2 91.9 57.0 44.8 72.7 91.8 62.0 37.5 88.5 91.8 93.0 31.0 242 91.5 99.0 9.6 10.0 90.4

0.9 98.0 224 1.1 69.7 0.0 0.0 829 69.9 12.0 22.6 83.2 69.7 39.0 32.6 46.8 69.8 97.0 22.6 1.1 69.7 950 47.0 1.3 69.0 98.0 29 1.0 69.1

CIFAR-100 0.6 96.0 227 1.0 699 0.0 0.0 82.7 69.5 11.0 224 834 69.6 550 47.8 41.5 69.5 950 22.8 1.0 69.8 81.0 47.8 56.1 69.0 100.0 4.3 1.0 69.2
0.3 2.0 33.1 820 69.5 0.0 0.0 81.5693 6.0 23.3 824 69.2 75.0 653 252 69.7 5.0 32.8 81.6 69.3 76.0 43.6 46.8 67.8 98.0 8.6 1.0 689

0.9 100.0 22.2 10.0 99.8 52.0 39.1 99.9 99.7 16.0 22.7 100.0 99.7 57.0 45.9 27.4 99.7 100.0 22.0 10.0 99.7 99.0 57.8 10.0 99.6 98.0 1.6 10.0 99.7

EMNIST 0.6 98.0 22.4 10.0 99.8 35.0 41.7 99.7 99.7 11.0 23.1 99.8 99.7 56.0 49.4 47.8 99.7 97.0 22.3 10.0 99.7 96.0 52.7 10.8 99.6 98.0 1.6 10.0 99.7
0.3 9.0 32.3 100.0 99.7 40.0 48.2 99.5 99.8 1.0 25.1 99.9 99.7 49.0 47.0 47.3 99.8 9.0 32.1 100.0 99.7 96.0 45.6 10.2 99.6 98.0 8.3 10.0 99.7

TABLE III: Detection performance against stealthy single-client attacks with advanced training strategies. Result highlighting
(in boldface and in red) follows the same rules as those described in Table

Dataset Attack MultiKrum FoolsGold Rfibat DeepSight Flame Indicator Coward (Ours)
TPR FPR ASR BA TPR FPR ASR BA TPR FPR ASR BA TPR FPR ASR BA TPR FPR ASR BA TPR FPR ASR BA TPR FPR ASR BA
Vanilla 5.5 32.7 97.0 91.7 535 444 928 91.9 3.0 242 96.6 91.9 779 64.0 30.2 91.8 30.529.9 96.3 91.7 93.0 347 49 91.9 100.0 3.3 4.8 915
CIFAR-10 PGD 5.5 327 973 91.7 535 44.6 92.7 91.9 2.0 245 964 91.8 755 61.0 32.3 91.9 12.0 31.8 97.8 91.7 92.0 34.1 55 91.6 975 42 59 914
Neurotoxin 6.0 32.7 96.4 91.7 15.543.1 96.0 91.8 2.5 243 955 91.8 69.2 58.5 41.1 91.9 30.0 29.9 95.5 91.4 525 31.7 79.1 91.4 995 7.8 4.1 91.6
Chameleon 8.0 324 94.1 91.8 46.5 44.1 884 91.7 3.5 23.6 934 91.8 39.0 36.5 624 91.3 10.0 322 949 91.6 87.0 33.8 84 913 945 9.1 26.1 914
Vanilla 6.5 32.6 929 695 0.0 0.0 889 69.6 3.5 23.7 92.8 69.6 48.7 444 53.1 694 7.5 325 93.0 69.4 910453 9.3 689 1000 1.9 0.8 688
CIFAR-100 PGD 6.5 32,6 929 69.6 0.0 0.0 92.0 69.7 2.5 234 92.7 69.7 46.7 43.0 49.3 69.6 2.0 33.1 934 69.4 88.0 45.7 16.1 689 100.0 58 0.8 69.0
Neurotoxin 7.0 32.6 91.4 694 0.0 0.0 91.7 69.4 4.5 232 92.7 69.7 51.3 42.7 474 69.6 2.5 33.1 929 69.3 96.0 46.9 2.3 69.2 100.0 94 0.8 69.0
Chameleon 0.0 33.3 85.6 69.3 0.0 0.0 90.7 69.5 5.0 243 863 69.6 41.0 34.7 60.7 69.4 0.0 33.3 87.1 69.4 98.5 475 16.0 66.7 982 7.3 0.9 69.1
Vanilla 8.5 32.4 100.0 99.7 12.0 35.7 100.0 99.7 1.0 24.6 100.0 99.7 24.0 37.3 100.0 99.7 44.5 28.3 100.0 99.7 88.3 45.7 21.4 99.7 100.0 3.6 0.0 99.7
EMNIST PGD 10.0 32.2 99.9 99.7 11.0 35.2 100.0 99.7 2.0 11.7 100.0 99.7 44.0 46.9 99.8 99.7 37.0 31.4 33.0 99.7 88.5 46.0 25.3 99.6 100.0 4.3 0.0 99.7
Neurotoxin 10.5 31.9 99.9 99.7 2.5 36.3 100.0 99.7 1.5 12.0 100.0 99.7 38.5 43.1 100.0 99.7 44.5 17.2 96.8 99.7 88.6 45.3 16.0 989 99.0 3.6 0.1 99.7
Chameleon 12.5 31.9 100.0 99.7 21.5 37.2 100.0 99.7 3.0 24.8 100.0 99.6 37.5 42.7 100.0 99.7 98.0 22.3 29.3 99.7 91.5 51.7 39.2 99.6 99.5 2.4 154 99.7

learning rate of 0.001 for 5 iterations. In our main experiments,
we adopt WaNet [24] as the default watermark trigger. For
detection, a fixed 5% threshold is used across all settings:
clients with watermark accuracy below this are identified as
attackers. The watermark target is set to 8 by default.

Evaluation Metrics. We evaluate the detection performance
using true positive rate (TPR) and false positive rate (FPR).
TPR reflects the proportion of correctly identified malicious
clients, while FPR represents the proportion of benign clients
incorrectly classified as malicious. Higher TPR and lower
FPR indicate more effective detection. In addition, we also
assess attack success rate (ASR) and benign accuracy (BA)
after detection, where lower ASR and higher BA indicate that
the model’s primary functionality is preserved, and backdoor
effects are effectively excluded from the model.

B. Main Results

For a comprehensive evaluation, We evaluate all baseline
defenses from following three perspectives:

Resistance to FL Non-i.i.d. We evaluate all baseline methods
under varying degrees of non-i.i.d. data across three datasets,
using a vanilla backdoor setting with a fixed spot-pattern
trigger and a learning rate matching that of benign clients.
As shown in Table [lIl Coward consistently achieves the best
overall performance across all levels of heterogeneity, with
TPRs above 95% and FPRs below 10.5% in all cases. Besides
the overall conclusion, we draw several key observations:
(1) Coward significantly reduces FPR across all settings
compared to BackdoorIndicator, highlighting its advantage in

mitigating OOD bias. A more detailed analysis is provided in
Section (2) Proactive methods significantly outperform
passive ones under severe data heterogeneity. Taking the
most challenging non-i.i.d. setting (o« = 0.3) as an example,
aside from our method, BackdoorIndicator also outperforms
all passive baselines, achieving TPRs of 93% on CIFAR-10
and 96% on EMNIST. This result supports the robustness of
proactive defenses in heterogeneous environments. In contrast,
passive methods exhibit significant performance degradation.
For instance, the state-of-the-art passive method Flame sees
its TPR drop from above 95% to below 10% on both CIFAR-
100 and EMNIST, which aligns with our earlier analysis. (3)
Some passive methods fail due to their unrealistic assumptions.
For example, Rflbat performs poorly across all heterogeneity
levels, likely because it relies only on the top two principal
components of model parameters, losing critical information,
especially under our challenging FL setup. Similarly, Fools-
Gold collapses on CIFAR-100, always judging all clients as
benign (resulting in 0% TPR and 0% FPR). This failure stems
from two factors: the high-dimensional 100-class prediction
vector and its reliance on multi-attacker scenarios. These
conditions lead to extremely low cosine similarity values,
causing an all-as-benign judgment.

Resistance to Advanced Attacks. We evaluate all defense
methods under more challenging client-side attacks. Specifi-
cally, across all attack methods, the malicious client adopts
a more imperceptible noise-blended trigger and reduced local
learning rate. These advanced configurations significantly in-
crease the stealthiness of the attack. As shown in Table|lII} our
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TABLE IV: Detection performance under multiple client attack on CIFAR-10 dataset. Result highlighting (in boldface and in

red) follows the same rules in Table

Strategy Atk_ratio MultiKrum FoolsGold Rfibat DeepSight Flame Indicator Coward (Ours)
- TPR FPR ASR BA TPR FPR ASR BA TPR FPR ASR BA TPR FPR ASR BA TPR FPR ASR BA TPR FPR ASR BA TPR FPR ASR BA
30% 100.0 71.4 10.0 91.6 100.0 34.2 9.7 91.8 39.4 22.5 88.7 91.6 3.7 14.6 97.8 91.6 100.0 14.3 9.7 91.9 99.2 29.5 11.1 91.5 100.0 6.7 9.9 91.5
Uniform 50% 3.0 97.0 98.4 90.8 100.0 27.1 10.1 91.8 31.3 0.0 91.9 91.4 1.1 240 982 914 21.5 57.3 99.2 91.4 99.1 16.3 12.2 91.2 100.0 82 9.9 91.2
70%  29.0 98.9 98.2 90.8 100.0 12.8 9.7 91.8 14.3 11.8 93.5 90.0 2.4 54.8 98.8 91.5 31.3 57.8 99.0 91.5 99.4 44.6 40.5 88.8 100.0 11.2 10.5 89.6
30% 100.0 57.4 9.8 91.6 100.0 32.9 9.5 91.9 28.0 154 81.9 91.5 5.6 12.4 90.6 91.5 100.0 14.3 9.5 91.9 98.2 18.4 10.1 91.8 100.0 9.7 9.7 91.3
DBA 50%  22.8 77.2 96.7 91.1 100.0 26.7 9.9 91.9 29.2 0.0 90.7 91.3 2.9 20.1 94.7 91.6 60.5 18.9 81.9 91.7 98.6 16.0 10.6 91.5 100.0 9.9 10.0 91.2
70%  31.1 94.1 97.7 90.1 100.0 12.8 9.6 91.8 9.5 2.8 953 88.8 3.4 44.7 96.0 90.9 42.0 34.8 96.5 91.3 98.8 15.8 11.9 89.4 100.0 11.2 10.3 89.6
30% 100.0 57.1 10.1 91.7 37.5 48.4 88.6 91.7 78.5 70.8 65.7 91.7 2.8 31.2 90.1 91.8 55.2 18.9 86.5 92.0 97.8 39.4 11.0 91.2 98.7 7.1 10.1 91.5
NBA 50%  63.7 36.3 91.5 91.6 333 54.6 93.4 91.6 16.5 15.8 852 91.4 1.4 48.1 939 91.7 19.2 40.6 94.8 91.1 93.7 38.2 32.6 91.5 98.5 15.0 10.1 91.5
70% 369 80.7 96.5 90.4 234 62.7 96.1 90.8 0.1 0.0 92.1 89.4 1.3 78.8 97.1 90.6 10.6 74.8 96.4 90.6 81.3 14.0 66.7 90.8 86.2 14.6 24.7 91.6

method achieves the best overall performance, with proactive
defenses showing strong robustness under advanced threats,
while passive defenses suffer substantial degradation. This
highlights the advantage of the proactive paradigm in handling
sophisticated attacks. (1) Among proactive methods, Coward
consistently achieves the best performance, maintaining close
to 100% TPR and sub-10% FPR across all advanced attack
types, including state-of-the-art strategies such as Neurotoxin
and Chameleon. BackdoorIndicator also performs strongly,
with TPRs consistently exceeding 85% in most settings;
however, it suffers from relatively high FPRs, reflecting its
vulnerability to distributional bias. (2) For passive methods,
performance degradation is anticipated under such stealthy
attacks, since the attacker introduces only subtle changes to
the model, which reduces its suspiciousness. As an instance,
MultiKrum, which selects representative updates based on
Euclidean distance, becomes highly ineffective, with TPRs
falling below 12.5% across all stealthy attack settings. Flame,
which filters out updates with large angular deviations, also
suffers notable degradation, with TPRs dropping below 30.5%
on CIFAR-10 dataset. In contrast, DeepSight shows compara-
tively better resilience, which perform consistently with TPRs
over 40% in most advanced attack cases. This improvement
most probably stems from its joint use of both parameter and
prediction discrepancies during its detection process.

Robustness to Multiple Attackers. Table presents detec-
tion performance under multi-attacker scenarios. As shown in
this table, proactive methods exhibit better overall performance
across all three settings. This is expected as the detection
mechanism of proactive approaches is independent of the
number of attackers. Among them, our method achieves the
best overall performance, consistently maintaining TPRs above
99% and FPRs below 15%. BackdoorIndicator also performs
well but becomes less effective when the attacker proportion
reaches 70%. In such cases, a temporary detection failure
allows the increased number of attackers to rapidly reinforce
the backdoor in the global model, resulting in a higher ASR.
Moreover, the retained backdoor could be further maintained
by the indicator’s own planting process due to the maintenance
effect. Among passive baselines, FoolsGold performs best
under Uniform and DBA attacks, achieving a TPR of 100%,
benefiting from its assumption of highly similar, coordinated
malicious updates. However, it fails in uncoordinated scenar-
ios, where attackers pursue different targets. In such cases,
the TPR drops below 40% as the method’s core assumption

TABLE V: Performance on different OOD planting sets.
Result highlighting (in boldface and in red) follows the same
rules as those described in Table

Coward
TPR FPR ASR BA
99.5 7.3 9.7 91.8
99.5 6.7 9.9 912
100.0 12.7 10.1 90.6
100.0 5.3 1.0 689
100.0 6.3 1.2 67.5
100.0 44 1.0 67.8
99.5 2.2 10.0 99.8
99.0 1.5 10.1 99.7
99.0 4.8 10.2 99.6

Indicator
TPR FPR ASR BA
98.0 24.0 10.2 91.6
97.0 14.2 10.0 91.7
100.0 57.4 9.8 90.7
98.0 340 1.3 68.2
99.0 446 1.8 67.2
98.0 60.0 1.5 67.9
95.0 57.8 10.0 99.6
97.0 58.7 10.0 99.6
100.0 73.5 10.0 99.6

Main Task Planting Set

EMNIST
CIFAR-10 CIFAR-100
NOISE
EMNIST
CIFAR-100 CIFAR-10
NOISE
CIFAR-10
EMNIST CIFAR-100
NOISE

of shared attack objectives no longer holds. Outlier-based
defenses such as MultiKrum and Flame become ineffective
when attackers control 70% of clients, with TPRs dropping
under 42% in all cases. These methods assume malicious
updates are outliers, which fails when adversaries form the
majority among all clients.

C. Ablation Study

We investigate key factors that influence watermark planting
and detection: (1) the choice of OOD planting set, (2) the
pairing of watermark and backdoor triggers, and (3) the
selection of detection thresholds. For a more comprehensive
analysis, please refer to Appendices [B]and [C]

Robustness to Choices of OOD Datasets. Table |V| presents
detection performance across diverse OOD planting sets, in-
cluding task-similar data, distinctly different data, and an
extreme case with synthetic Gaussian noise. We observe that
Coward consistently maintains low FPR across all settings,
while BackdoorIndicator’s performance degrades as the OOD
dataset diverges from the main task. Using the most challeng-
ing main task on CIFAR-100 dataset as example, Coward’s
FPR remains below 6.3% across all planting sets. In contrast,
BackdoorIndicator’s FPR increases sharply from 44.6% on
CIFAR-10 to 60% with Gaussian noise. This confirms our
earlier analysis of BackdoorIndicator’s increased vulnerability
to OOD bias. Overall, these results demonstrate that Coward
offers improved robustness to the choice of OOD data, en-
abling more flexible deployment in real-world scenarios.
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TABLE VI: Detection performance with different combina-
tions of server-side watermark trigger (S) and attackers’ client-
side malicious trigger (A) on CIFAR-10.

Pixel (visible)
TPR FPR ASR BA

Blend (invisible)
TPR FPR ASR BA

Semantic (implicit)

ISTA—
TPR FPR ASR BA

Diagonal 100.0 6.1 9.8
Square 100.0 9.4 9.6
Triangle 99.5 4.6 9.8 91.6
99.5 6.1 99 915
96.5 10.6 18.0 91.6
99.5 73 9.8 914

91.6
91.4

995 6.6 52
99.5 9.1 438
985 6.2 7.8
99.0 6.7 79
99.5 12.0 4.6
995 6.8 54

91.7
91.4
91.7
91.5
91.3
91.5

98.5 17.3 0.0
98.5 16.2 0.0
99.0 12.3 0.0
995 7.3 0.0
99.0 142 0.0
98.0 11.9 0.0

91.8
91.4
90.8
91.4
90.7
90.8

Noise
Mosaic
WaNet

TABLE VII: Defense Performance of Coward under different
watermark detection thresholds on CIFAR-10 dataset.

Threshold ‘ TPR FPR ASR BA
1% 98.0 1.3 102 915
5% 100.0 2.6 10.1 915
10% 100.0 8.6 10.1 914
15% 100.0  12.0 9.9 91.5
20% 100.0 139 100 912

Robustness to Choices of Triggers. Table summarizes
detection performance under various combinations of trigger
types. The attacker’s trigger varies in increasing stealthiness:
from a visible pixel pattern, to an invisible blend pattern,
and finally to an implicit semantic pattern naturally selected
from the dataset. The watermark trigger also spans a range
of types, including four visible patterns (diagonal, square,
triangular, and noise), as well as two invisible variants: a
mosaic pattern and the sample-specific WaNet pattern. We see
that Coward performs consistently well across all settings,
achieving a TPR above 96.5% and an FPR below 17.3%. These
results demonstrate our method’s strong robustness to different
triggers and the generalizability of collision effect.

Robustness to Choices of Thresholds. We further evaluate
the impact of the detection threshold on the effectiveness of
Coward. Since both attackers and benign clients may disrupt
the watermark to some extent, the optimal threshold tends to
fall within a relatively low range. Thus, we conduct threshold
analysis within a mild range from 1% to 20%. As shown
in Table varying the detection threshold has minimal
impact on TPR, which consistently remains above 98%. How-
ever, it progressively increases the FPR, rising from 1.0%
to 13.9%. This increase is primarily due to client-side data
heterogeneity. Certain benign clients, particularly those with
severely skewed local distributions, may forget the watermark
and exhibit significantly lower watermark accuracy than the
majority. In contrast, malicious clients consistently show very
low watermark accuracy. Empirically, we find that setting the
threshold at 5% offers a reliable and practical guideline for a
balanced TPR and FPR across diverse scenarios.

D. Resistance to Potential Adaptive Attack

Potential Adaptive Attack Strategy. We hereby consider
adaptive attackers attempt to bypass our collision-based de-
tection by injecting a similar watermark to preserve high
watermark accuracy. Since the watermark target is chosen
from a finite, known set, the attacker has a non-trivial chance

TABLE VIII: Performance of Coward under the adaptive
attack (AA). The subscripts | and g denote the ASR of the
attacker’s backdoor evaluated on the malicious local model
and the aggregated global model, respectively.

Method TPR FPR | ASR; ASR;
w./o. defense / / 91.2 95.6
w./o. AA. 100.0 5.0 10.1 98.9
AA. (T =5) 99.5 44 10.1 90.4
AA. (T =1) 62.5 54 229 73.9

of guessing it. To model this, we design a periodic guessing
attack with switching period 7', where the attacker updates the
guessed label every T rounds. Smaller 7" increases the chance
of early success but may cause unstable feedback, while larger
T offers more stable signals at the cost of later success.

Results. As shown in Table the guessing attack appears
to reduce the TPR but does not truly bypass the defense.
For instance, when 7' = 1, the TPR drops from 100% to
62.5%, indicating some disruption due to a correct guess.
However, the attacker’s main objective is to increase the ASR
on the aggregated global model. Notably, the global ASR
remains low across all adaptive settings, reaching only 22.9%
at most when T" = 1, which falls short to be successful. Upon
further analysis, we find that the guessing attack inherently
suffers from a fundamental contradiction, which we refer to
as the local collision contradiction. Specifically, when the
attacker injects an additional watermark with a different target
label, it tends to induce a multi-backdoor conflict within the
local model. This interference weakens the original backdoor
and reduces the overall effectiveness of the attack. Overall,
Coward remains resilient, as attackers struggle to maintain
high ASR without compromising their own attack objectives.

E. Why is Our Method Effective?

To understand why our method works, we provide both
overall and case-specific analyses on the CIFAR-10 dataset
under the highly non-i.i.d. setting with a = 0.3.

Overall OOD Bias Analysis. We evaluate the overall bias
level under vanilla FL, BackdoorIndicator, and our method,
and further investigate its correlation with detection false
positive rate. Specifically, the prediction bias is quantified by
the standard deviation of class-wise prediction probabilities,
since uniform predictions are ideal for OOD samples, and any
bias toward a specific class results in non-uniformity, thereby
increasing the variance. By aggregating the bias across all
participating clients over all training epochs, we obtain the
overall bias level throughout the training process. As results
shown in Figure [/} it is evident that: (1) Our method yields
the lowest bias distribution, validating the effectiveness of
regulating the OOD mapping and highlighting the adverse
effect of BackdoorIndicator’s random mapping strategy. (2)
Even at high bias levels, our method achieves a lower FPR,
demonstrating its robustness against OOD bias.

Case Study. To intuitively explain how our method mitigates
OOD bias, we present a set of representative detection cases
of our method in Figure 8] ranging from an ideal non-bias sce-
nario to increasingly biased conditions. Each case visualizes
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Fig. 7. A Holistic Quantification of OOD Bias and Its
Impact on FPR. The left panel illustrates the OOD bias dis-
tribution, while the right panel shows the relationship between
bias severity and the number of misjudged benign clients. Our
method significantly reduces the OOD bias level, leading to
a lower false positive rate, whereas the BackdoorIndicator
increases the bias level and exhibits a high false positive
frequency in highly biased regions.
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the prediction confusion matrices of both raw and watermarked
OOD samples, revealing how local training and OOD bias
impact the two injected mappings. Specifically, the top two
rows show the prediction results of raw OOD samples, while
the bottom two rows show those of watermarked samples.
Each case includes a small subfigure illustrating the cumulative
distribution across target classes. To aid understanding, we
highlight that the attack target is class 0, and the watermark
target is class 8. We elaborate details as follows:

(1) Ideal Cases: Case 1 illustrates a malicious client (CO0),
where both the OOD and watermark mappings collapse into
the attack target class 0, indicating severe OOD mapping
distortion and a strong collision effect caused by the backdoor.
This results in low watermark accuracy, enabling effective
detection. In contrast, Case 2 represents an ideal benign client
unaffected by OOD bias, where both the OOD (diagonal) and
watermark mappings are fully preserved. Empirically, OOD
bias seldom overrides backdoors but often impacts benign
clients; Thus we examine biased cases for benign clients
below. (2) Biased Cases: Case 3 presents a mild OOD bias
where the OOD mapping is largely retained but partially
biased toward class 9, yet the watermark prediction remains
dominated by class 8. This highlights the strength of the
watermark, which consistently guides triggered OOD samples
to the target class, even when raw samples are misclassified.
In Case 4, under a stronger bias where OOD predictions
collapse into two dominant classes, the watermark still holds
the highest confidence for class 8, indicating resilience even
under severe distributional shifts. Intuitively, after watermark
planting, the model forms a direct association between the
trigger pattern and the target label, making it less influenced
by the background image and thus more robust to OOD
bias. Case 5 presents an extreme scenario where the OOD
mapping collapses to a single class that coincidentally aligns
with the watermark target. These cases collectively indicate
our robustness against different degrees of OOD bias.

VI. CONCLUSION

In this paper, we revisited backdoor defenses in feder-
ated learning, revealing the non-i.i.d. blurring and out-of-
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Fig. 8: Case study of client detection with our method.
The first two columns illustrate ideal detection outcomes
for malicious and benign clients, respectively. The remaining
columns show successful identification of benign clients under
different levels of OOD bias.

distribution (OOD) prediction bias that had constrained prior
passive and proactive approaches. To tackle these challenges,
we designed a new method, Coward, which leverages a
collision-based OOD watermark that the server injects and
later inspects to expose malicious clients, inspired by the
phenomenon of multi-backdoor collision effects. By treating
high, rather than low, watermark accuracy as the sign of benign
behavior, Coward mitigated the side effects of OOD bias. Ex-
tensive experiments verified the effectiveness of Coward and
its resilience against potential adaptive attacks. Our method
provides a new perspective for understanding and defending
backdoor attacks in federated learning, facilitating more secure
and trustworthy data sharing and decentralized training.
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Fig. 1: OOD watermark collision under dynamic FL scenario. The collision effect remains highly effective in distinguishing
malicious behavior under dynamic federated participation. The attacker exhibits a strong collision effect, while benign clients
show diverse but generally higher levels of watermark retention.
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Fig. 2: OOD watermark collision under centralized sce-
nario. Our OOD watermark is planted as the second back-
door. The resulting collision effect is significant, regardless
of whether the BN layer is switched. However, switching the
BN layer creates a more pronounced performance discrepancy
between benign finetuning and backdoor injection behaviors.

APPENDIX A
COLLISION EFFECTS ON OOD WATERMARK

In Section[[II=C} we introduced the multi-backdoor collision
effect under a centralized setting where two backdoors share
the same dataset, aiming to illustrate its core mechanism. To
further demonstrate how this effect manifests in our OOD-
based watermark under practical FL scenarios, we provide an
extended analysis in this section. Specifically, we examine the
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(a) w./o. BN switch (b) w. BN switch

Fig. 3: OOD watermark collision under static FL scenario.
Once the attacker (in red) begins injecting the backdoor
at round 1021, its watermark accuracy rapidly drops to 0,
indicating a strong collision effect and a clear distinction from
benign clients. Moreover, the BN switch plays a critical role
in accurately reflecting the benign clients’ (in varying shades
of blue) ability to retain the watermark.

collision effect between the attacker’s backdoor and our OOD
watermark across progressively complex scenarios: starting
from a centralized setup, moving to a static FL environment
with fixed client participation, and finally to the dynamic
FL scenario adopted in our main experiments. To align with
main experiments, we conduct all evaluations under the 0.9
non-i.i.d. setting on the CIFAR-10 dataset by default. As
elaborated in the following sections, results across all three
stages consistently reveal a clear collision effect, validating the
capability of our OOD watermark to trigger such interactions
and effectively distinguish malicious clients.

Centralized Scenario. We conduct a similar experiment as
in Section [[II-C| with the key difference that the second
backdoor injection is replaced by our OOD watermark planting
process. Specifically, we use a target label 8 watermark with
MNIST as the planting set. As shown in Fig. 2] in each
subfigure, the left side illustrates the collision effect, while
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Fig. 4: Visualization of trigger configurations.

the right side shows the discrepancy between benign (:.e.,
finetuning) and malicious (i.e., backdoor injection) operation.
Specifically, in subfigure (a), we observe a clear collision
effect on the OOD watermark, characterized by a clear drop in
ASR and a notable distinction between benign and malicious
clients. In subfigure (b), when the BN layer switch is disabled,
the benign-malicious discrepancy becomes indistinguishable,
indicating the necessity of BN isolation for effective detection.

Static FL. Scenario. We consider a slightly more complex
scenario under a static FL setting, involving 10 clients with full
participation in each communication round. Among them, only
one client is malicious. This simplified full-participation setup
facilitates the observation of each client’s temporal behavior
and helps illustrate the collision effect in a federated learning
context. In each global round, the server injects an OOD
watermark, while all benign clients perform standard local
training.To clearly observe the collision effect, the attacker
is configured to behave benignly for the first 20 rounds and
initiates a backdoor attack targeting label O from round 21
onward. After each local update, we inspect the watermark
accuracy of all 10 participated clients. As shown in Fig-
ure Ekb), once the malicious client begins the attack, its
watermark accuracy drops sharply to nearly zero, indicating a
strong collision effect. In contrast, the remaining nine benign
clients consistently maintain high watermark accuracy. This
sharp divergence highlights the benign-malicious discrepancy
induced by the collision effect, which is critical for enabling
effective backdoor detection. Additionally, in subfigure (a),
we observe that benign clients struggle to stably preserve
the watermark without BN layer isolation, underscoring the
importance of BN switching in reducing FPR.

Dynamic FL Scenario. We finally present the collision effect
under the dynamic FL setting used in our main experiments,
where 10 out of 100 clients are randomly selected to partic-
ipate in each global round. This dynamic participation leads
to divergent and inconsistent watermark retention behaviors
among benign clients, making direct comparisons between
them infeasible. Therefore, we focus on observing relative
trends across rounds. Specifically, we plot the temporal vari-
ation of watermark accuracy for all clients based on their
actual participation order. To control page length, we select
clients at intervals of 3 (i.e., client IDs with a gap of
3). As shown in Figure [l we observe the following: (1)
Malicious client O exhibits a pronounced collision effect,
with watermark accuracy dropping to nearly zero. (2) Benign
clients maintain relatively high watermark accuracy (mostly
above 50%), though the magnitude and variation patterns
differ across clients due to heterogeneous participation and

TABLE I: Performance of Coward with different OOD Base
Mapping on the CIFAR-10 dataset.

00D Mapping | TPR FPR ASR BA
Default 1000 24 98 913
Shif+1 995 30 98 915
Shift+3 995 29 98 915
Shift+5 1000 26 97 913

TABLE II: Performance of Coward for all watermark labels.

Label (y») | TPR FPR ASR BA
1 100.0 9.2 9.9 91.4
2 100.0 6.5 9.8 91.5
3 100.0 104 10.0 915
4 100.0 5.1 9.8 91.5
5 100.0  10.1 9.9 91.2
6 100.0 5.6 9.9 91.5
7 100.0 13.6 9.7 91.5
8 98.5 4.0 102 91.6
9 100.0 17.8 9.7 91.4

client distribution. Overall, the results reveal a clear separa-
tion between benign and malicious clients, enabling robust
and tolerant threshold selection. Despite being influenced by
dynamic participation and non-i.i.d.data, the collision effect
remains highly effective in distinguishing malicious behavior.

APPENDIX B
DISCUSSION ON WATERMARK CONFIGURATION

Our detection paradigm is flexible with respect to specific
watermark configurations, allowing practical deployment sce-
narios to select or design their own. To concretely demonstrate
this flexibility, we provide empirical evidence by evaluating
constituent components of our OOD watermark: the OOD base
mapping, the watermark trigger, and the watermark target. To
align with main experiments, we conduct all evaluations under
the 0.9 non-i.i.d. setting on the CIFAR-10 dataset by default.

OOD Base Mapping. The key role of the OOD base mapping
is to provide a fixed foundation for building the watermark
mapping. As long as the mapping remains class-wise and
fixed, the specific choice of mapping is not critical. While we
adopt a diagonal mapping in the main experiments for sim-
plicity, we demonstrate here that our approach is compatible
with other mapping configurations, highlighting its flexibility.
Specifically We replace the default diagonal mapping (i.e.,
1 — 1) with three alternative 1-to-1 shift-based mappings: i —
(14+3) mod 10, i — (i+5) mod 10, and ¢ — (i+7) mod 10.
As shown in Table [IL all variants achieve consistently strong
detection performance, indicating that Coward does not rely
on specific OOD mapping rule. These results confirm that our
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TABLE III: Ablation study of Coward on watermark injection strength.

Size | TPR ASR BA

wm_Ir | TPR
200 100.0  23.7 10.0 91.5 0.0001 100.0
500 98.0 2.2 10.1 91.6 0.0005 990
1000 99.0 4.2 10.1 91.4 0'001 100' 0
1500 100.0 3.1 10.1 91.1 601 986
2000 100.0 33 10.1 914 . .

wm_rds | TPR FPR ASR BA

FPR ASR BA
1 1000 11.6 102 916
71101 915 2 1000 64 99 913
56 100 916 5 1000 33 98 914
3398 914 10 1000 57 100 914
18 99 915 20 1000 42 99 912

(a) Varying size of planting set

TABLE 1IV: Performance of Coward under different levels of \ leads

global model regularization.

A | TPR FPR ASR BA
0 93.5 6.5 103 90.4
0.1 | 96.0 6.8 102 90.1
03 | 99.0 109 10.3 90.4
05 | 97.0 9.6 102 90.4

method is robust to the choice of OOD assignment and can
be seamlessly adapted to different mapping schemes.

Trigger Type. Previously, we have already presented quan-
titative results demonstrating the general effectiveness of the
collision effect and the corresponding detection mechanism
across various trigger pairs in Table To provide a more
intuitive understanding, we further visualize the appearance
of the triggers. As illustrated in Figure ] our server-malicious
trigger pairs include both semantically similar combinations
(e.g., a server-side square pattern and a client-side pixel-style
trigger) and semantically dissimilar ones (e.g., a server-side
WaNet trigger and a client-side semantic trigger). Notably,
both types consistently yield strong detection performance.
These results indicate that the effectiveness of our approach
is largely independent of the visual semantics of the triggers,
offering defenders a broad design space to customize trigger
appearances according to their specific needs.

Watermark Label. In the main experiments, we fixed the
watermark target label to 8 for simplicity. However, we empha-
size that the effectiveness of Coward is generally applicable
to any target label. To validate this flexibility, we present
results in Table where the attack target is fixed to label
0 and the watermark label is varied across all possible values.
The consistently strong detection performance across different
watermark labels confirms the adaptability of our approach in
selecting the watermark target.

APPENDIX C
ABLATION STUDY ON WATERMARK INJECTION

Beyond the design choices of the watermark itself, an
equally important yet distinct problem is how to effectively
implant the watermark into the global model. In this section,
we conduct ablation studies on all factors that influence the
implantation process. To align with our main experiments, we
conduct all evaluations under the 0.9 non-IID setting on the
CIFAR-10 dataset by default.

Impact of Global Model Regularization. Table reports
the effect of varying levels of global model regularization. We
observe a positive impact on TPR, where applying regular-
ization consistently yields higher TPRs compared to the no-
regularization baseline. Increasing the regularization strength

(b) Varying watermark learning rate

(¢) Varying injection rounds

to slight improvements in TPR, with the best per-
formance observed at A = 0.3. These results suggest that
a moderate level of regularization is beneficial for achieving
optimal detection performance.

Learning Efficiency of Watermark Injection. We conduct
ablation studies on three key hyperparameters that control the
strength of watermark injection: the number of OOD water-
mark samples, the watermark learning rate, and the number of
injection iterations per global round. We vary one factor at a
time while keeping the others fixed. By default, the watermark
learning rate is set to 0.001, the number of watermark injection
rounds to 5, and the watermark dataset size to 1000. As
shown in Table Coward consistently achieves strong
performance, with TPR exceeding 98% and FPR remaining
below 10% in most cases. Even under extremely constrained
injection settings (e.g., a watermark dataset size of 200, a
learning rate of 0.0001, or a single injection round), the
method still maintains competitive results, achieving 100%
TPR with FPR below 25%. Overall, effective watermark
injection requires only a low level of effort. Most parameter
variations lead to only marginal performance differences, and
any configuration beyond the most extreme cases yields sat-
isfactory performance. These results indicate that our method
is robust across a wide range of watermark injection strengths
and introduces negligible computational overhead in federated
learning. Notably, effective defense can be achieved with as
few as only 1 round of watermark injection.

APPENDIX D
POTENTIAL LIMITATIONS AND FUTURE DIRECTIONS

While our method provides a simple and effective early
solution for proactive defense, there remain several open
directions that worth further exploration and refinement in
future works on this topic:

« Fine-grained OOD Watermark Design. Our current OOD
watermark adopts a simple yet effective configuration ap-
plied uniformly across the entire planting set, using widely
adopted trigger patterns. Exploring more complex and fine-
grained designs that potentially leverage the diversity of
OOD samples(e.g., sample-specific or class-conditional wa-
termark mappings) would be a valuable future direction.

« Dynamic Watermarking Strategy. In the current version,
a fixed watermark configuration is used throughout training,
enabling effective injection and maintaining a consistent
collision signal. Nevertheless, our framework is also flexible
enough to support dynamic watermark configurations (:.e.,
across training rounds or even client-specific setups). This
adaptability, when paired with carefully designed injection
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methods, would open up a new direction for enhancing the
robustness and flexibility of the defense strategy.

o Multi-Metric and Multi-Mechanism Detection. While our
method have already achieved effective detection using a
single metric (¢.e., watermark accuracy) with clear and
consistent signals, the broader flexibility of the proposed
framework allows for further expansion. Specifically, it can
support joint observation of client responses to multiple
operations, opening up the possibility of incorporating di-
verse detection mechanisms. For example, one may simul-
taneously leverage the maintenance and collision effects
by separately monitoring OOD mappings and watermark
mappings. This enriched perspective could provide comple-
mentary signals and represents a promising future direction.
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