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Abstract—As a versatile AI application, voice assistants (VAs)
have become increasingly popular, but are vulnerable to security
threats. Attackers have proposed various inaudible attacks, but
are limited by cost, distance, or LoS. Therefore, we propose
SUAD Attack, a long-range, cross-barrier, and interference-free
inaudible voice attack via solid channels. We begin by thoroughly
analyzing the dispersion effect in solid channels, revealing its
unique impact on signal propagation. To avoid distortions in voice
commands, we design a modular command generation model
that parameterizes attack distance, victim audio, and medium
dispersion features to adapt to variations in the solid-channel
state. Additionally, we propose SUAD Defense, a universal defense
that uses ultrasonic perturbation signals to block inaudible voice
attacks (IVAs) without impacting normal speech. Since the attack
can occur at arbitrary frequencies and times, we propose a
training method that randomizes both time and frequency to
generate perturbation signals that break ultrasonic commands.
Notably, the perturbation signal is modulated to an inaudible
frequency without affecting the functionality of voice commands
for VAs. Experiments on six smartphones have shown that SUAD
Attack achieves activation success rates above 89.8% and SUAD
Defense blocks IVAs with success rates exceeding 98%.

Index Terms—Microphone Nonlinearity, Acoustic Dispersion,
Inaudible Voice Attack, Universal Adversarial Perturbation

I. INTRODUCTION

Rapid advances in Artificial Intelligence (AI) have con-
tributed to the widespread application of Voice Assistants
(VAs) [1], [2]. With system privileges granted by users, VAs,
such as Siri and Bixby, boast an extensive array of functional-
ities, including making calls, controlling device settings, and
retrieving information [3]. However, the gradual expansion
of functions brings not only convenience but also security
risks. They are vulnerable to attacks involving forged voice
commands, which can trigger high-risk operations such as
unauthorized retrieval and viewing of private information or
unverified payments and transfers [4], posing significant risks
to users’ information and property security. Therefore, con-
ducting a comprehensive security analysis of voice command
attacks on VAs is critically important.

In recent years, attackers have proposed various methods
[5]–[17] to enable inaudible voice command injection. For
example, Dai et al. [8] generate magnetic-inductive voice sig-
nals by exploiting vulnerabilities in wireless charger systems
or hardware, but the magnetic field restricts the range in 5 cm.

Additionally, Light Commands [12] leverage laser beams pre-
encoded with voice commands, which shine on microphones
to produce spoofed electrical signals (i.e., audio). Despite its
long attack range (110 m), high-cost devices and light-of-sight
(LoS) greatly limit its application.

Acknowledging these limitations, attackers have explored
the feasibility of inaudible voice attacks (IVAs) [13]–[17].
DolphinAttack [13] and BackDoor [14] exploit microphone
nonlinearity to convert voice commands modulated at in-
audible frequencies (> 20 kHz) into audible signals, enabling
attacks at ranges of 1.75 m and 3.5 m, respectively. For longer
range attacks (7.62 m), LipRead [15] utilizes different speakers
in the array to play segments of the voice command spectrum,
but sonic focusing requires LoS. Moreover, they share a
common limitation: barriers can obstruct air-channel signal
transmission. In fact, sound waves can propagate through
any medium (e.g., solid) that supports vibrations. Recently,
SurfingAttack [16], generates ultrasound on a solid surface,
which propagates through the solid medium, to induce a
nonlinear response in the microphone, injecting inaudible com-
mands. Despite offering a clear analysis of solid-channel signal
propagation, it neglects voice command distortion resulting
from frequency-dependent dispersion.

In this work, we aim to break this old notion by proposing a
novel inaudible voice attack against solid-channel interference.
As illustrated in Fig. 1, a piezoelectric transmitter covertly af-
fixed by the attacker under the table induces vibrations to emit
ultrasonic attack signals encoded with malicious commands
(e.g., ’upload album to Facebook’). Then, these signals are
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Fig. 1. SUAD: (1) Attack: A piezo-transmitter covertly placed beneath a table
emits inaudible signals to attack VAs. (2) Defense: Inaudible perturbation
signals block such attacks without interfering with normal voice commands.
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transmitted to the victim’s device through the table, effectively
bypassing LoS barriers. However, to effectively inject voice
commands, the attack must overcome challenges inherent in
solid-channel transmission. Specifically, due to the dispersion
effect [18], signals of different frequencies propagate at vary-
ing speeds in solid media, causing the original waveform
features to change. On one hand, propagation over a distance
introduces time delays that vary across different frequency
components. On the other hand, signal waveforms gradually
deform or broaden during propagation, resulting in significant
distortion of the attack command.

To this end, we propose a novel SUAD Attack, which over-
comes the aforementioned technical bottleneck and enables
long-distance, cross-barrier, and interference-free inaudible
attacks on VAs. We first employ a localization method to locate
the victim device position by analyzing the time difference
of arrival (TDoA) of solid-channel sound captured by a
microphone array. Next, the estimated attack distance is used
to compensate for propagation delays. Specifically, we use a
speech cloning model with a fused multi-head architecture
to generate attack commands capable of bypassing voiceprint
authentication on VAs. These commands embed the victim’s
voiceprint features and inverse solid-channel interference, de-
rived from the captured victim speech and the solid medium’s
physical characteristics, including propagation distance and
material density. Ultimately, attack commands are modulated
into the ultrasonic frequency band, generating inaudible sig-
nals that threaten VAs via solid-channel propagation.

With increasing awareness of IVA threats, various defenses
[13], [15], [19]–[28] have been developed against such attacks.
For instance, DolphinAttack [13] employs support vector
machines (SVM) to classify and detect malicious audio, while
MicGuard [19] identifies anomalies in the spectral domain.
Although these approaches can alert users, attacks may have
been executed successfully before detection. Furthermore,
systems like DualGuard [20] and Cacher [21] may disable the
microphone upon detecting an attack, potentially disrupting
the normal operation of VAs. This poses a critical problem:
How can we ensure the normal functionality of VAs while
simultaneously enabling real-time defense against IVAs?

As such, we propose SUAD Defense, which continu-
ously emits ultrasonic perturbation signals via the smart-
phone’s speaker to actively defend against randomly launched,
arbitrary-frequency IVAs. The short mic–speaker distance also
allows its low-power operation. The perturbation is generated
through a Universal Adversarial Perturbation (UAP) training
method that randomizes both the temporal shift and frequency
of attack signals during model training. As a result, the gen-
erated signal can effectively suppress attacks while allowing
legitimate user voice commands to function correctly.

Finally, we conducted extensive experiments to evaluate the
effectiveness of SUAD Attack and Defense. SUAD Attack
achieved median activation success rates of over 89.8% across
six smartphones. SUAD Defense has defense success rates
exceeding 98% against three types of attacks. In summary,
the main contributions of this paper are as follows:

• We propose a novel SUAD Attack, the first inaudible
attack capable of adapting to solid-channel states. It
overturns the old notion that solid-channel propagation
is distortion-free, extending the attack range.

• A speech generation model with a fused multi-head
architecture is proposed to embed the victim’s voiceprint
features and inverse solid-channel interference into voice
commands, enabling successful activation on VAs.

• We propose SUAD Defense by designing a novel UAP
training framework to generate universal perturbation
signals. It defends against attacks launched randomly at
any frequency, without affecting VAs.

• Finally, extensive evaluations of SUAD Attack and De-
fense demonstrate attack and defense success rates ex-
ceeding 89.8% and 98%, respectively.

II. BACKGROUND AND MOTIVATION

In this section, we first present the threat model of VAs
attacks. Next, we discuss the advantages and challenges of
solid-channel attacks. Finally, we elaborate on the technical
challenges of implementing defenses under nonlinear effects.

A. Threat Model

We consider a common scenario where a victim, Bob, has
an intelligent voice assistant installed on his smart devices.
Due to frequent use, Bob often leaves the device active on
the table, freeing his hands. This provides an opportunity
for the attacker, Eve, to compromise the system and threaten
information security. However, vigilant Bob may avoid sus-
picious objects within the LoS. In other words, Bob prefers
familiar and private environments, such as a covered table,
which obstructs voice attacks via air channels. It compels Eve
to exploit other channels for launching attacks.

In the aforementioned scenario, it is assumed that Eve can
covertly place a small, autonomously operating attack device
within a hidden physical space (e.g., under-table space), as
illustrated in Fig. 1, without alerting Bob. Thus, Eve can’t
remain on-site or nearby, avoiding any suspicious interaction.
Moreover, Eve can generate arbitrary voice commands with
voiceprint features by leveraging known voice samples of the
victim. Fake commands in VAs attacks may include sensitive
operations, such as ’turn on camera,’ exploiting legitimate
privileges to bypass protections and heighten security risks.

B. Why Solid Instead of Air Channels?

Traditional attacks typically rely on ultrasonic propagation
through the air. However, as illustrated in Fig. 2, real-world
scenarios may involve barriers obstructing the LoS path, mak-
ing the solid channel (e.g., table) a viable alternative. There-
fore, SUAD Attack utilizes a piezoelectric element tightly

Fig. 2. Comparison of air-channel and solid-channel voice injection.



(a) Experimental setup for capturing audio from different
channels
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(d) Solid-channel

Fig. 3. Comparison of audio through different-channel propagation.

coupled to the table underside as the attack transmitter, with
its compact design enabling covert deployment. Due to the
piezoelectric effect, applying an alternating voltage across the
piezoelectric material makes slight deformations in its internal
lattice structure, generating vibrations (i.e., sound). As such,
the piezoelectric element can emit ultrasound carrying the
attack command, which propagates through solid channels and
then into the air, reaching the target device’s microphone to
enable voice command injection, as shown in Fig. 2.

Compared to air channels, solid channels exhibit a distinct
physical phenomenon known as the dispersion effect. This
effect causes sound waves of different frequencies to propagate
at varying speeds within solids, leading to gradual waveform
deformation or broadening during transmission. To investigate
the impact of dispersion on signal propagation, we use the
piezoelectric material in the transmitter shown in Fig. 3(a) as
the sound source to vibrate the table and emit the audio com-
mand ’Hi Siri’. The signal propagates through the table and is
recorded by a MEMS microphone and a PVDF microphone,
capturing the signals transmitted via the air and solid channels,
respectively. As shown in Fig. 3(d), audio transmitted through
the solid channel undergoes significant dispersion in both time
and frequency domains. Even after re-transmission from the
solid channel to air, the waveform remains notably altered, and
the spectral components exhibit varying degrees of distortion,
as shown in Fig. 3(c). The effect on wave speed can be
approximated by the Lamb wave dispersion equation, i.e.,

v(f) = 4

√
Ehf2

12ρ
(
1− v2p

) , (1)

where E, ρ, h, and f denote the Young’s modulus, material
density, plate thickness, and frequency, respectively, and vp
represents the Poisson’s ratio. However, complex and various
parameters make modeling v(f) across all realistic scenarios
impractical [16].

Notably, successful voice injection attacks via solid chan-
nels must overcome two key challenges: (1) variations in
medium materials and (2) time delays caused by propaga-
tion distances. Therefore, SUAD Attack employs a two-stage
synergetic scheme to embed inverse solid-channel propagation

features into generated voice injection commands, mitigating
signal distortion of voice commands. The specific design and
implementation details will be developed in Section III-B.

C. Why Only for Attack, Not for Defense?

Current IVAs primarily exploit the nonlinear effects of
microphones, which arise from imperfections in microphone
circuitry design. Specifically, when an input signal Sin(t) =
s1(t) + s2(t), where s1(t) is an amplitude-modulated voice
carrier v(t) cos(2πfct) and s2(t) is a pure carrier cos(2πfct),
is received by the microphone, the front-end circuitry performs
nonlinear mixing on it, i.e.,

Sout(t) = ASin(t) +BS2
in(t) + · · · , (2)

where v(t) denotes the forged voice command signal, fc is the
carrier frequency for ultrasonic modulation, and A and B are
the gains of the linear and quadratic components, respectively.

Additionally, due to the microphone’s built-in low-pass
filter, only the low-frequency components (i.e., v(t)) are
retained, resulting in the following output signal:

Sout(t) =
B

2
(v2(t) + 2v(t) + 1) ≈ v(t). (3)

However, traditional defenses detect such attacks passively
by identifying spectral features [19], i.e., frequency traces
(e.g., straight lines) that persist across the entire temporal
axis at a specific frequency. Although these methods can issue
warnings, their countermeasures, such as disabling the voice
assistant or emitting audible interfering signals, inevitably
compromise VAs’ normal functionality.

Fortunately, methods such as the Fast Gradient Sign Method
(FGSM) [29] and Projected Gradient Descent (PGD) [30] have
introduced Universal Adversarial Perturbation (UAP), which
can generate universal perturbation signals to mislead recogni-
tion when added to normal voice, as shown in Fig. 4. However,
perturbations generated by these methods not only interfere
with normal speech but are also perceptible to humans. To
address this, we aim to employ a universal perturbation signal
δ(t), modulated onto a high-frequency carrier, to selectively
block ultrasonic attack commands for active defense.

Remarkably, successful active defense must address two key
challenges: (1) universal perturbation signals are unsynchro-
nized with randomly transmitted attack signals, and (2) attack
signals may be modulated at arbitrary carrier frequencies. The
universal perturbation generation is detailed in Section III-C.
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(a) Raw audio
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(b) Perturbation audio
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(c) Perturbed audio
Fig. 4. Recognition results with/without perturbations.
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Fig. 5. System architecture of SUAD Attack and Defense.

III. SYSTEM DESIGN

In this section, we first provide a brief overview of the
SUAD. Then, we describe in detail the implementation of
SUAD Attack and SUAD Defense.

A. System Overview of SUAD

Considering real-world scenarios described in Section II-A,
we propose SUAD, as illustrated in Fig. 5, which explores
IVAs on VAs via solid channels, along with a universal defense
against such attacks.

For SUAD Attack, it allows Eve to attack VAs on Bob’s
smartphone by transmitting inaudible malicious commands
through a solid medium. Specifically, to counteract the dis-
persion effect in solid-channel transmission, Eve first uses
the MIC array to locate Bob’s smartphone and estimate the
attack distance, i.e., a key contributor to signal dispersion.
Subsequently, parameters such as the attack distance, Bob’s
voice, and the recording transmitted through the table are si-
multaneously fed into a perceptual zero-sample speech cloning
model with fused multi-head architecture, generating speech
commands embedded with Bob’s voiceprint features and
inverse solid-channel interference. Ultimately, the generated
commands are modulated onto a high-frequency carrier and
transmitted through a solid medium to the victim’s device via
a piezoelectric transmitter.

For SUAD Defense, an inaudible perturbation signal is
continuously emitted through the speaker of Bob’s smart-
phone, defending against IVAs without affecting the normal
operation of VAs. We first generate a spectral- and delay-
adaptive universal perturbation signal against attacks using
a gradient descent algorithm. This signal is then modulated
to a fixed ultrasonic frequency supported by the smartphone,
producing an ultrasonic perturbation signal. As a result, it
obstructs attack signals while preserving the effectiveness of
Bob’s voice captured by the microphone.

B. Long-range SUAD Attack Adapted to Solid-Channel States

To successfully implement IVAs over solid channels, the
primary challenge lies in addressing the dispersion effect
on ultrasonic attack signals. Specifically, the dispersion phe-
nomenon is manifested as different frequencies of acoustic
waves propagating at different speeds in the solid medium,
resulting in different frequency components having relative
time delays, thus causing the signal waveform broadening and
distortion. Therefore, the impact of attack distance and solid
material, especially in long-range scenarios, cannot be ignored.

1) Attack Distance Estimation: To weaken the effect of
dispersion, SUAD Attack estimates the attack distance us-
ing TDOAs of microphones, which is then used to apply
frequency-domain compensation to signals. We first detect
the time t0 when Bob places the smartphone by applying
a threshold γ to the short-duration energy envelope from
microphone M0. Based on t0, a 0.7 ms segment is extracted
as the solid-channel signal S0, as shown in Fig. 6(a). Next,
TDOA τi is obtained by locating the maximum of the cross-
correlation between S0 and the signal from microphone Mi,
where the distance difference is given by ∆di = τi · cs, with
i = 1, . . . , 5, and cs denoting the speed of sound in solids.
Assuming the impact point is P = (x, y) and the position of
Mi is Mi = (xi, yi), with M0 as the reference, the distance
difference between Mi and M0 is given by:

∥P −Mi∥ − ∥P −M0∥ = ∆di. (4)

Then, as shown in Fig. 6(b) the intersection of five hyperbolic
curves derived from the six microphone positions yields the
point P , from which the attack distance L is calculated.
Finally, we obtain propagation delays of different frequency
components τ(f) = L/v(f), where v(f) is the velocity in
solids for frequency f .

Theoretically, the relative delay in the ultrasonic signal s(t)
propagating through a solid can be compensated, where s(t)
is given by:

s(t) =

∫ ∞

−∞
S(f) ej2πft df, (5)

where S(f) is the frequency domain signal. Subsequently, we
can obtain a compensated signal sc(t):

sc(t) =

∫ ∞

−∞
S(f) ej2πf(t−τ(f)) df. (6)

By eliminating the frequency-dependent time delays caused by
dispersion, the ultrasonic attack signal can release the original
commands accurately at the target location.

2) Ultrasonic Attack Signal Generation: However, even
with an accurate distance, various complex factors (e.g., ma-
terial properties) make it difficult to obtain v(f), preventing
direct compensation for dispersion. Furthermore, VAs typi-
cally require voiceprint authentication, meaning that attack
commands must incorporate the user’s voiceprint features.
Therefore, SUAD Attack designs a multi-parameter modular
attack command generation model, as shown in Fig. 7. It
consists of three modules: i) Speech Encoder, which ex-
tracts voiceprint features from Mel spectrograms of the user’s
recordings, ii) Synthesizer, which converts textual commands
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Fig. 6. Attack distance estimation via 6 microphones’ TDoA.
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into Mel spectrograms embedded with voiceprint features,
and iii) Vocoder, which fuses distance and material features
into the Mel spectrograms to reconstruct the time-domain
waveforms of the attack speech commands.

The first module is implemented on ReDimNet [31], which
begins with a 2D convolutional layer to extract local time-
frequency features from 2–3 s Mel spectrograms of user
recordings. Then, the extracted non-linguistic features, such
as pitch and timbre, are fed into a Transformer to learn
prosodic and articulatory patterns. Finally, the model’s noise
robustness is further enhanced by the self-attention mechanism
[32], which suppresses transient distortions caused by environ-
mental disturbances and reverberation. The module can be pre-
trained on the TIMIT speech dataset [33], and no parameter
updates are required after training. It extracts the target user’s
vocal features as 256-dimensional embedding vectors for input
into the synthesizer in the next stage. The synthesizer is a
Tacotron-enhanced sequence-to-sequence model based on the
Encoder-Attention-Decoder architecture [34], embedding the
voiceprint vectors into the Mel spectrogram generated by the
textual commands. The module is also a zero-shot model that
requires no updates after a single training. Given command
text and voiceprint features, it performs one-shot inference to
generate the corresponding Mel spectrogram, ensuring high
efficiency and real-time attack capability.

Finally, the vocoder serves as the core of SUAD Attack
for eliminating dispersion effects. It adopts a HiFi-GAN [35]
structure that can integrate features such as solid material and
distance. This enables the conversion of the Mel spectrogram
into a time-domain ultrasonic attack waveform embedded with
inverse solid-channel interference to counteract dispersion.
Specifically, we pre-collected an offline dataset of solid-
channel propagation across various materials to train a disper-
sion feature extractor similar to an encoder. Using a multilayer
structure, it captures dispersion features such as frequency
distortion and delay patterns from the frequency domain. Then,
we fuse HiFi-GAN with the dispersion feature vector and
propagation distance (from Section III-B1) by inserting two
convolutional layers before the vocoder’s Softmax layer. This
enables the vocoder to adjust the output waveform based on
material and distance.

During training, the offline solid-channel dataset includes
the same table materials as those used in scenarios. After
training, the pre-trained weights remain fixed. The attack
waveform A(t) can be generated by modifying only the
material features in the fusion layer. An ultrasonic carrier with
frequency fc = 21 kHz is then employed to modulate the
waveform, producing an inaudible attack signal. This signal
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is transmitted through the table using a piezoelectric device to
complete the attack on the VAs.

C. Universal SUAD Defense without Affecting VAs

Successful IVAs ultimately rely on downconversion to inject
attack commands into microphones. Such attacks can be
effectively countered by jamming the injection commands. In
particular, the defender can get various information from the
speech recognition model. Therefore, unlike existing passive
defenses [15], [19], [28], such as detecting anomalies in the
speech spectrum, SUAD Defense introduces a UAP-based ap-
proach leveraging the smartphone’s speaker to emit inaudible
perturbation signals for targeted protection against IVAs.

1) Analysis of Ultrasonic Perturbations to IVAs: In prac-
tical scenarios, IVAs can be modulated to any inaudible
frequency and send attack signals at any time, as shown in
Fig. 8. Consequently, the actual signal s′1(t) received by the
microphone can be modeled as a time-shifted version of the
ideal signal s1(t) due to a delay τ , and is expressed as:

s′1(t) = s1(t+ τ) = v(t+ τ)cos(2πfc(t+ τ)), (7)

where the content of the attack command v(t) and the carrier
frequency fc may also change randomly, making IVAs difficult
to defend against. Although the second carrier s2(t) of IVAs
leaves a distinct and fixed feature (i.e., a straight line) in the
spectrum, which can serve as an important basis for detection,
this only helps potential victims to passively recognize such
attacks. In most cases, victims become aware of the attack
only after it has already been executed. Even if the attack is
detected in time and defensive measures (e.g., turning off the
microphone [28]) are taken, these actions can interfere with
the normal use of VAs.

Therefore, we intend to generate a small-amplitude univer-
sal perturbation signal δ(t) in response to activation commands
and modulate it into the inaudible band using a smartphone-
supported frequency fx = 18 kHz. This ultrasonic perturbation
signal is played cyclically. When an ultrasonic attack occurs,
the signal captured by the microphone can be represented as:

x(t+ τ)cos(2πfc(t+ τ)) + δ(t)cos(2πfxt) + cos(2πfc(t+ τ))
Downconversion−−−−−−−−→ x(t+ τ) + δ

′
(t),

(8)

where δ
′
(t) is the universal perturbation to the forged com-

mand x(t + τ). Specifically, the ultrasonic perturbation can
leverage the second carrier of IVAs to down-convert it into a
universal perturbation, thereby corrupting the integrity of the
attack command to prevent it from activating VAs.



If only audible voice commands and ultrasonic perturbations
are present, the received signal can be expressed as follows:

v(t+ τ) + δ(t)cos(2πfxt))⇒ v(t). (9)

The reason is that the ultrasonic perturbation functions merely
as a small-amplitude, high-frequency background noise and
does not interfere with the normal voice interaction of VAs.

2) Universal Perturbation Signal Generation: To generate
subtle, pervasive, and imperceptible universal perturbations
δ(t), SUAD Defense introduces a UAP-based [36] method.

First, we define a speech domain X = {x1(t), x2(t), . . .},
where xi(t) represents speech signals that may be received by
VAs on a user’s smartphone, such as “Hi Siri”. Based on X ,
we propose a defense model as follows:

CER(C(xi(t)), C(xi(t) + δ′(t))) > 0.7, ∀xi ∈ X, (10)

where C(·) denotes a speech recognition model accessed by
defender, and CER(x, y) represents the character error rate
(CER), i.e., the edit distance [37] between two recognition
results. If perturbation signals are added to the speech, more
than 70% of the VA’s results should be incorrect.

Furthermore, since the attack signal may begin at any
arbitrary point in time, the perturbation signal may not always
be temporally aligned with the speech input xi(t). To address
this, we represent the speech input as xi(t+τ) ∈ [0, T ], which
indicates a circularly shifted result of xi(t) by τ , aligned with
the perturbation signal. For example, the original command
“Hi Siri” may be transformed into “Siri Hi” during training to
address uncertainty in the start time.

However, since the lengths of each xi are not the same, we
first normalize all xi to the same length via zero-padding, be-
fore applying circular shifting. Finally, considering the impact
of different carrier frequencies on the down-modulated uni-
versal perturbation, we modulate the above command signals
using multiple carrier frequencies, forming the dataset used
for model training. Thus, the constraints on the perturbation
δ(t) can be summarized as follows:

∥δ∥∞(t) < ϵ

Px∼X(CER(xi(t+ τ), C(xi(t+ τ) + δ′(t))) > 0.7) ≥ L,
(11)

where ϵ denotes the maximum allowable magnitude in each
iteration, which constrains the size of δ(t), and L represents
the defense success rate.

To solve the above constrained optimization problem, we
design an iterative algorithm named Time and Frequency
Randomized UAP Training, as presented in Algorithm 1.
Briefly, the entire iterative process proceeds by sequentially
selecting xi(t + τ) and modulating it with different carrier
frequencies fx. Then, the perturbation vector δ(t) cos(2πfxt)
is constructed step by step, and the down-conversion process
is simulated to generate xi(t+τ)+δ′(t). In each iteration, we
compute the smallest perturbation increment ∆δ(t) and add
it to the current perturbation δ

′
(t), resulting in a transcription

error. Meanwhile, the perturbation amplitude is controlled by

Algorithm 1: Time and Frequency Randomized UAP
Training

Input: X: speech set, T : delay set, F : frequency set, C:
speech recognition model, fx: perturbation signal
frequency, ϵ: maximum magnitude, N : max
iterations, a: regularization weight

Output: Universal perturbation δ(t)
Initialize δ(t) = 0⃗, r = 0, k = 0;
for xi(t) ∈ X do

Zero-pad xi(t) to fixed length;
for each (τ, f) ∈ T × F do

x̃(t)← xi(t+τ)·cos(2πf(t+τ))+cos(2πf(t+τ));
δmod(t)← δ(t) · cos(2πfxt);
xadv(t)← Nonlinear(x̃(t) + δmod(t));
while

CER(C(xi(t+τ)), C(xadv(t)+r)) ≤ 0.7 ∥ k < N
do

Compute ∆δ(t) minimizing:
a∥r∥2−CTCLoss(C(xadv(t)+r), C(xi(t+τ)))
subject to ∥δ(t) + r∥∞ < ϵ;
Update: δ(t)← δ(t) + ∆δ(t), project to
∥ · ∥∞ < ϵ;

k ← k + 1;

return δ(t);

enforcing ∥δ∥∞ < ϵ to ensure it remains within an acceptable
range. This process can be expressed as:

∆δji ← argmin
r
∥r∥2

s.t. CER(C(xi(t+ τ)), C(xi(t+ τ) + δ′(t) + r)) > 0.7.
(12)

This is equivalent to maximizing the loss between the pre-
dicted probability distribution of the perturbed result C(xi(t+
τ) + δ′(t) + r) and the original result C(xi(t+ τ)), i.e.,

min
r

a∥r∥2 − CTCLoss(xi(t+ τ) + δ′(t) + r, C(xi(t+ τ)))

s.t. ∥δ′(t) + r∥∞ < ϵ,
(13)

where CTCLoss() denotes the Connectionist Temporal Clas-
sification (CTC) loss function, a commonly used objective
in modern end-to-end speech recognition models to quantify
the difference between the model output and the original
transcription after perturbations are applied. Since the problem
is a non-convex optimization task, we approximate its solution
using the Iterative Gradient Sign Method (IGSM), i.e.,

r0 = 0⃗,

rN+1 = cut(xi(t+τ),ϵ){rN + a · sign(∇(xi(t+τ)+δ′(t)+r)

CTCLoss(xi(t+ τ) + δ′(t) + r, C(xi(t+ τ))))},
(14)

where cut() denotes a clipping function, analogous to clip()
in image-based attacks. It segments the perturbation according
to the audio’s sampling points to ensure that the updated
perturbation amplitude does not exceed ϵ. The regularization
parameter a denotes the update step size for each iteration,
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Fig. 9. Experimental Setup.

and its value is determined via hyperparameter search on the
validation set to maximize the attack success rate under the
constraint of the maximum allowable perturbation magnitude.
The operator sign() indicates the sign of the gradient, spec-
ifying the direction (positive or negative) of the perturbation
update. The term ∇(xi(t+τ)+δ′(t)+r) denotes the gradient
computed with respect to the current perturbed input signal,
identifying the direction in which the input is most sensitive
to the CTCLoss().

Finally, we utilize the public dataset and the TTS model
introduced in the previous section to generate the training and
test sets. During training, the universal adversarial perturbation
is updated using the gradient descent method until it success-
fully defends against any sample in the test set.

IV. EVALUATION

In this section, we present the experimental setup and eval-
uate the overall performance of SUAD Attack and Defense,
followed by an analysis of the impact of various factors.

A. Experimental Setup

1) Implementation: As shown in Fig. 9(a), we utilize a six-
microphone array as the receiver and a piezoelectric transducer
as the transmitter, both equipped with communication and
power modules. The receiver sends audio recordings (i.e., the
smartphone hitting) to a Linux server with an NVIDIA RTX
4090 GPU and an Intel Xeon Gold CPU for generating forged
commands, which are sent to the transmitter for attacking
VAs. For SUAD Defense, generated perturbation signals are
modulated to 18 kHz for defending against IVAs.

2) Data Collection: We recruited 5 subjects (3 males and
2 females), aged from 22 to 33 years old. Each subject was
instructed to record activation and execution commands com-
patible with various VAs to construct a comprehensive voice
command set, as well as an attack command set comprising 50
commonly used words. Each subject recorded approximately
5 minutes of voice commands. 3-7 word commands were
designed to simulate realistic attack scenarios (e.g., sending
SMS). Furthermore, we construct an audio dataset containing
dispersion features by collecting audio propagating through
solid media, such as materials shown in Fig. 9(b).

B. SUAD Attack Performance

1) Overall Attack Performance: We evaluated the success
rate (SR) of SUAD Attack in activating VAs using forged
commands, comparing with SurfingAttack across multiple
devices, including iPhone 12/13 (IP 12/13), Samsung S6/S24
(SM S6/S24), HUAWEI Mate X6 (HM x6), and Pixel 3 (PX3).
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Fig. 10. Overall performance of SUAD Attack.

As shown in Fig. 10(a), SUAD Attack achieves a median
activation success rate exceeding 89.8% across different smart-
phones, demonstrating that its forged voice commands effec-
tively simulate real user input. In comparison, SurfingAttack’s
median activation success rate does not exceed 74%. It may be
attributed to dispersion effects in solid media that distort the
transmitted signals, causing VAs to misidentify activation com-
mands as other content. In addition, we evaluated commands
such as ’turn on camera’ and ’play music’ to further evaluate
the effectiveness of SUAD Attack. As shown in Fig. 10(b),
the median success rate of command execution for SUAD
Attack is significantly lower than that for VAs activation
in Fig. 10(a), but remains above 82.8%. Similarly, due to
increased command length, which raises the misrecognition
by VAs, SurfingAttack exhibits decreasing results. Notably,
due to architectural, acoustic sensor, and VA consistency, both
attacks exhibit similar performance on devices from the same
manufacturer, such as iPhone and Samsung. Despite hardware
variability, SUAD Attack consistently achieves high success
rates, demonstrating its strong adaptability.

2) Performance under Different Attack Distances: Since
victims may place their smartphones arbitrarily on the table,
we further evaluated the impact of varying attack distances on
SUAD Attack performance. Forged commands are transmitted
at distances ranging from 20 to 90 cm, and the execution
success rate is used as the evaluation metric. The results in
Fig. 11(a) show that both SUAD Attack and SurfingAttack
maintain a 100% success rate at distances up to 55 cm.
However, as the distance increases, the performance of Surfin-
gAttack degrades significantly, whereas SUAD Attack demon-
strates greater robustness to distance variations. This can be at-
tributed to SUAD Attack’s integration of inverse solid-channel
interference during command generation, which effectively
mitigates signal distortion caused by distance variations.

3) Performance under Different Materials: Equation (1)
demonstrates that variations in solid materials significantly
affect signal dispersion during propagation. We selected five
materials, including wooden, glass, steel, plastic, and MDF,
as transmission media and transmitted commands to the target
device. The maximum attack distance where the execution
success rate reaches 50% (i.e., effective attack distance) is used
as the performance metric. As shown in Fig. 11(b), SUAD
Attack achieves effective attack distances of 158, 145, 121,
127, and 113 cm across the five materials, all substantially
exceeding those of SurfingAttack, which reach only 110, 95,
49, 55, and 45 cm, respectively. In particular, plastic exhibits
the greatest impact on both systems among the tested materi-
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Fig. 11. SUAD Attack performance under various factors.
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Fig. 13. SUAD Defense performance against different factors.

als, primarily due to its higher signal attenuation. Additionally,
SUAD Attack incorporates an anti-dispersion component in
its command generation, resulting in smaller performance
variations across different media than SurfingAttack.

4) Performance under Different Objects on The Table: In
practical scenarios, the LoS path between the attack device
and the target device may be obstructed by objects on the
table. On the one hand, these objects obstruct LoS prop-
agation through the air channel. On the other hand, their
physical contact with the table may impact the solid-channel
transmission. To evaluate the impact of different barriers,
we evaluated the execution success rates of SUAD Attack,
SurfingAttack, and DolphinAttack at a fixed distance of 50 cm,
respectively. The results, shown in Fig. 11(c), indicate that
DolphinAttack, which relies on air-channel propagation, is
highly sensitive to barriers. Its success rate exhibits a strong
negative correlation with barrier size, i.e., smaller obstacles
result in higher attack effectiveness. In contrast, other attacks
relying on solid-channel propagation are minimally affected
by barriers, demonstrating greater robustness. This suggests
that such attacks can effectively bypass the blocking effects
of objects on the table.

5) Performance under Different Noise Levels: To evaluate
SUAD Attack’s performance under varying noise conditions,
we simulated real-world scenarios by playing background
noise at different intensity levels. We selected the iPhone 13
as the target device, set the attack distance to 50 cm, and
transmitted 100 execution commands under each noise level.
As shown in Fig. 11(d), the execution success rates of both
SUAD Attack and SurfingAttack decline with increasing noise
levels. Specifically, the success rate of SUAD Attack decreases
from 100% to 82%, whereas SurfingAttack experiences a
sharper decline from 100% to 75%. This is because Surfin-
gAttack is influenced by both ambient noise and solid-channel
dispersion, leading to greater distortion in the downconverted
signal received by the microphone. In addition, the success
rates of SUAD Attack in normal noise environments (e.g.,
lower 65 dB), which may be tolerable for victims, remain
above 89%, demonstrating strong robustness.

C. SUAD Defense Performance

1) Overall defense Performance: Our defense technique
aims to disrupt the downconversion of attack commands by
transmitting universal perturbation signals modulated into the
ultrasonic band, thereby preventing the smartphone’s VA from
recognizing forged voice commands. To evaluate the perfor-
mance of SUAD Defense, we continuously emit ultrasonic per-
turbation signals from the target device while executing SUAD
Attack, SurfingAttack, and DolphinAttack, each transmitting
ultrasonic commands intended to activate the voice assistant
on the corresponding device. The defense success rate is cal-
culated as the ratio of successfully blocked attacks to the total
number of attack attempts. The results shown in Fig. 12(a)
demonstrate the performance of SUAD Defense against SUAD
Attack, SurfingAttack, and DolphinAttack under normal noise
conditions at an attack distance of 50 cm. The defense achieves
a success rate of over 98% for each type of inaudible voice
attack, indicating that our system maintains a minimal false
positive rate under operating conditions.

In addition, we have evaluated the impact of SUAD Defense
on normal voice commands when defending against ultrasonic
attacks. In this experiment, SUAD Attack, SurfingAttack, or
DolphinAttack is launched against the target device while
ultrasonic perturbation signals are emitted as a defense mech-
anism. Activation voice commands are played 100 times,
and the voice assistant’s activation success rate is measured
to evaluate the impact of the defense on its functionality.
The results are presented in Fig. 12(b), showing that SUAD
Defense did not interfere with the control of VAs by normal
voice commands, regardless of the attack method employed.
The reason is that the perturbation signal of SUAD Defense is
modulated within the inaudible frequency band, specifically
disrupting the recognition of ultrasonic forged commands.
In contrast, for normal audible speech, it manifests merely
as low-amplitude high-frequency noise, exerting little to no
impact on recognition accuracy. This result underscores a key
advantage of SUAD Defense: it can effectively counter IVAs
while preserving the normal functionality of VAs.



2) Defense against different-frequency attacks: The funda-
mental principle of IVAs is to modulate attack commands into
the inaudible frequency band, which are then down-converted
into audible commands through the microphone’s nonlinearity.
However, any frequency within the inaudible band can serve
as a carrier frequency. To evaluate the effectiveness of SUAD
Defense against ultrasonic attacks at various frequencies, we
modulate the attack commands from different IVAs using
distinct carrier frequencies and conduct 100 attack attempts
on the same phone for each frequency. The results are shown
in Fig. 13(a), where the defense success rate of SUAD Defense
increases slightly as the carrier frequency increases. This may
be attributed to the fact that lower-frequency attack signals
undergo less dispersion in solid media, resulting in stronger
signal integrity and revealing potential vulnerabilities of the
model to such attacks. Nevertheless, SUAD Defense remains
above 98% for attack commands at different frequencies,
demonstrating its strong robustness against variations in carrier
frequency.

3) Defense against randomly sent attacks: Due to the
random timing of attack signal transmissions, the perturbation
signal may not be temporally synchronized with these signals.
To evaluate the impact of time delay on SUAD Defense
performance, we transmitted attack signals with varying delays
relative to the perturbation signal using the same device. As
shown in Fig. 13(b), while time delay introduces minor fluc-
tuations in defense success rate, overall effectiveness remains
largely unaffected. This robustness is attributed to the pertur-
bation signal design, which accounts for time-delay-induced
dispersion effects, and to adversarial learning employed during
model training.

V. RELATED WORK

In this section, we first review various modalities of voice
command injection attacks and their limitations, followed by
an analysis of the shortcomings in existing defenses.

A. Voice Command Injection Attacks

Although advances in AI have greatly contributed to the
widespread application of VAs, it has also raised concerns
about voice command injection attacks [5]–[17], [38]–[43].
For example, GVSAttack [38] launches attacks on VAs by re-
playing voice commands. In addition, some studies attempt to
conceal voice commands. Hidden Voice Commands [39] and
Adversarial Attacks [40] transform voice commands into white
noise, and CommanderSong [41] embeds them into songs.
However, such audible voice attacks are easily identified and
interrupted by users.

To hide attacks, researchers have explored various tech-
niques for inaudible voice command injection [5]–[17]. For in-
stance, MagBackdoor [7] and GhostTalk [11] leverage external
magnetic fields to induce the target device’s speaker to emit
voice commands, but their effective range is limited to less
than 6 cm. Light Commands [12] encodes speech information
into laser beams, enabling attacks over distances up to 110 m.
However, it requires expensive devices and LoS. Consequently,

ultrasound-based attacks (i.e., IVAs) [13]–[17] have attracted
increasing attention due to their potential in IVAs. Dolphi-
nAttack [13] and Backdoor [14] utilize nonlinear effects to
modulate voice commands into high-frequency carriers for
attacks. However, these approaches typically require an un-
obstructed LoS. Recently, SurfingAttack [16] has investigated
the feasibility of performing ultrasonic injection through solid
media, but ignores the interference of solid channel signals.
Notably, SUAD Attack not only utilizes solid channels to
penetrate physical barriers but also resists the dispersion effect
of both distance and solid materials, thereby enabling long-
range, interference-free attacks.

B. Defense against IVAs

In recent years, various methods [13], [15], [19]–[28] have
been proposed to defend against IVAs. Some methods [20],
[21] detect IVAs based on anomalies in the spectrum or sound
field. For example, Cacher [21] distinguishes forged voice
commands by establishing a biometric basis, Fieldprint, which
represents sound field features. However, their effectiveness
against ultrasonic band attacks remains unsatisfactory. Addi-
tionally, some multimodal methods [22]–[24] attempt to utilize
physiological or behavioral features to determine the authen-
ticity of voice commands. Among them, MFF [24] detects
attack attempts by leveraging synchronized video and audio
data, but it requires high-precision sensors to ensure recog-
nition accuracy. EarArray [25], RobustDetection [26], and
arrayID [27] utilize microphone arrays for delay analysis and
orientation analysis to extract spatial features during speech,
but these techniques require dedicated hardware support. In
contrast, modulation-based detection methods [13], [15], [19],
[28] offer greater flexibility and can be applied to smartphones.
For example, LipRead [15] identifies IVAs by exploiting
differences in frequency patterns between normal speech and
fixed-frequency modulation attacks. However, these defenses
function purely as passive detection mechanisms and do not
actively prevent IVAs. In particular, these methods may inter-
fere with the user’s normal use of VAs, e.g., the system may
disable the microphone after detecting an attack.

VI. CONCLUSION

This paper presented SUAD that explores the feasibility of
solid-channel attacks and universal defenses with inaudible
ultrasonic signals. SUAD Attack presented a novel notion
that solid-channel propagation can introduce significant dis-
tortions to acoustic signals. Thus, SUAD Attack employed
a multi-parameter modular command generation model that
adapts to solid channels by parameterizing attack distance,
victim audio, and dispersion features. Additionally, SUAD
Defense developed a universal defense against IVAs based
on microphone nonlinearity, but without affecting VAs. An
innovative UAP training method was designed to generate
perturbation signals capable of blocking IVAs randomly sent at
arbitrary frequencies. Extensive experiments demonstrate the
effectiveness SUAD Attack and Defense.
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