
The Dark Side of Upgrades: Uncovering Security Risks in Smart Contract Upgrades

Dingding Wang, Jianting He, Siwei Wu, Yajin Zhou, Lei Wu, Cong Wang

Abstract—Smart contract upgrades are increasingly common
due to their flexibility in modifying deployed contracts, such as
fixing bugs or adding new functionalities. Meanwhile, upgrades
compromise the immutability of contracts, introducing signif-
icant security concerns. While existing research has explored
the security impacts of contract upgrades, these studies are
limited in collection of upgrade behaviors and identification of
insecurities.

To address these limitations, we conduct a comprehensive
study on the insecurities of upgrade behaviors. First, we build
a dataset containing 83,085 upgraded contracts and 20,902
upgrade chains. To our knowledge, this is the first large-scale
dataset about upgrade behaviors, revealing their diversity and
exposing gaps in public disclosure. Next, we develop a taxon-
omy of insecurities based on 37 real-world security incidents,
categorizing eight types of upgrade risks and providing the
first complete view of upgrade-related insecurities. Finally, we
survey public awareness of these risks and existing mitigations.
Our findings show that four types of security risks are over-
looked by the public and lack mitigation measures. We detect
these upgrade risks through a preliminary study, identifying
31,407 related issues—a finding that raises significant concerns.

1. Introduction

Smart contracts are self-executing programs deployed
on blockchains. On EVM-based blockchains, smart contract
code is immutable, meaning it cannot be modified once
deployed. While this ensures trustworthiness, it also poses
a critical challenge: vulnerabilities cannot be patched, often
leading to substantial financial losses. Additionally, devel-
opers may need to introduce new features without disrupting
existing user interactions. To overcome these limitations,
upgradeable contracts were introduced, enabling developers
to update contract logic after deployment while preserving
data integrity and minimizing user disruption.

Generally, upgradeable contracts can be categorized into
three primary types [1, 2, 3, 4, 5]: (i) CALL-based up-
grades, which operate by redirecting CALL instruction targets,
typically adopted when decentralized applications (DApps)
require module switching rather than direct code modifica-
tions within individual smart contracts; (ii) Metamorphic up-
grades, which employ opcodes SELFDESTRUCT and CREATE2

to achieve complete contract replacement, though remain-
ing uncommon in practice [4, 3]; and (iii) DELEGATECALL-
based upgrades, the most prevalent form and de-facto in-
dustry standard [6, 5], which separate persistent storage
from upgradeable logic via DELEGATECALL to preserve state

continuity across contract versions. DELEGATECALL-based up-
grades can be further classified into two implementation
approaches. The first one is proxy-based, which is the typical
and well-known form of upgrades, achieving upgradeabil-
ity through a clean separation between immutable storage
(proxy) and modifiable logic (implementation), connected
via DELEGATECALL operations. The second one, which we re-
fer to as non-proxy-based, does not rely on the conventional
proxy for upgrades. Instead, these approaches employ more
customized and diverse mechanisms, while still leveraging
DELEGATECALL for state preservation.

DELEGATECALL facilitates flexible upgrades of individ-
ual smart contracts by permitting code modifications while
maintaining persistent storage. However, this flexibility in-
troduces significant security considerations. On one hand,
contract logic can be modified stealthily, which enables
malicious actors exploit the upgrade mechanism to inject
harmful code through seemingly legitimate modifications.
On the other hand, upgrade-related vulnerabilities typically
emerge in mature contracts with established user bases and
substantial asset pools, unlike vulnerabilities in immutable
contracts that tend to be discovered and exploited shortly
after deployment. This fact significantly amplifies potential
damages when attacks occur. Our analysis of 37 upgrade-
related attacks demonstrates the magnitude of these risks,
with seven incidents involving more than $10 million and
two catastrophic cases surpassing $100 million.

Security considerations about contract upgrades have
attracted research efforts [7, 4, 5]. However, current research
suffers from two major limitations. First, existing work pri-
marily focuses on proxy-based upgradeable contracts rather
than upgrade behaviors themselves. This narrow focus leads
to datasets that include many contracts never actually up-
graded and, more critically, omits non-proxy-based upgrades
entirely. For instance, in our dataset of 83,085 upgraded
contracts, only 24,955 (30.0%) comply with proxy standards
(i.e., EIP-1967 and EIP-1822). Furthermore, among 1,660
proxy contracts from Ethereum Mainnet and BSC Mainnet
in existing large-scale datasets [8], 1,523 (91.7%) have
never performed an upgrade. Second, existing studies lack a
systematic taxonomy of security impacts rooted in empirical
evidence. They predominantly study well-known issues like
storage collisions, which account for only 16.2% (6/37)
of real-world incidents in our dataset. Meanwhile, high-
impact risks such as malicious code injection (14 incidents,
$115M losses) and interface collisions ($110M at risk)
remain understudied. These overlooked threats underscore
the urgent need for a comprehensive framework to assess
upgrade-related vulnerabilities.

ar
X

iv
:2

50
8.

02
14

5v
1

 [
cs

.C
R

]
 4

 A
ug

 2
02

5

https://arxiv.org/abs/2508.02145v1

To address these limitations and gain a comprehensive
understanding of the impact of upgrades, we conduct an in-
depth study on the insecurities of upgrade behaviors. Specif-
ically, we aim to answer the following research questions:

RQ1 Characterization of upgrade behaviors. What are
the characteristics of upgrade behaviors? Are existing
tools sufficient for users to accurately identify and
understand these upgrades?

RQ2 Taxonomy of upgrade security. How significant is
the impact of insecurities caused by upgrades? What
improper aspects of upgrades are responsible for these
incidents?

RQ3 Evaluation of upgrade risks in the wild. Are the secu-
rity risks summarized in RQ2 publicly acknowledged?
If not, how severe are their impacts in practice?

To answer these research questions, we conduct a se-
ries of progressive studies. First, we construct a dataset of
upgrade behaviors through the following steps. We begin
by identifying contracts with potential upgrade behaviors,
locating those that have invoked multiple DELEGATECALL tar-
gets in historical transactions. Next, we analyze the bytecode
of these contracts to identify upgradeable contracts based
on the sources of their DELEGATECALL targets. Finally, we
detect actual upgrade behaviors by monitoring changes of
their DELEGATECALL targets. Using this approach, we build
a dataset containing 83,085 upgraded contracts and 20,902
upgrade chains. To our knowledge, this is the first large-
scale dataset specifically focused on upgrade behaviors.
During the collection process, we observe diverse patterns of
upgrade behaviors. However, existing tools, which primarily
consider proxy-based upgrades, fail to capture many of these
upgrades, leaving users unaware of a significant portion of
upgrade behaviors.

Next, we develop a comprehensive taxonomy of insecu-
rities in upgrade behaviors based on 37 real-world security
incidents involving over $400 million in losses. The tax-
onomy categorizes eight types of upgrade risks into four
groups: improper initialization, collisions, flawed business
logic, and malicious code injection. This taxonomy provides
the first complete overview of upgrade risks and establishes
a foundation for further evaluation of upgrade risks.

Finally, using this taxonomy, we conduct a comprehen-
sive survey to assess public awareness of these risks and
the availability of mitigation measures. Our survey reveals
that the security impact of five out of the eight risk types
remains unknown to the community, and four of these are
entirely overlooked by the public, lacking any mitigation
measures. We further perform a preliminary study to de-
tect three types of risks—improper initialization, collisions,
and suspicious code injection—in our dataset. In total, we
identify 31,407 related issues, highlighting a significant and
alarming concern.

In summary, our work makes the following contribu-
tions.
• We build the first large-scale dataset1 on upgrade behav-

1. All study data/artifacts will be open-sourced to facilitate future re-
search

non-proxy-based DELEGATECALL

Fun1(){...
 DELEGATECALL(impl1, ...)
...}
Fun2(){...
 DELEGATECALL(impl2, ...)
...}

impl1

impl2
Users

Users

impl
fallback(){...
 DELEGATECALL(impl, ...)
...}

proxy-based DELEGATECALL

Figure 1. Different types of DELEGATECALL-based upgradeable contracts.

iors, shedding light on the diversity of upgrade behaviors
and exposing the limitations of existing tools.

• We develop a comprehensive taxonomy of the security
risks associated with upgrade behaviors based on 37
real-world security incidents involving more than $400
million. The taxonomy includes eight different types of
insecurities, with half of them being publicly overlooked.

• Following the insecurity taxonomy, we performed a pre-
liminary study to detect upgrade risks in the wild and
identified a total of 31,407 issues.

2. Background

2.1. Smart Contracts

Ethereum [9] and Binance Smart Chain (BSC) [10] are
two leading programmable blockchains supporting smart
contracts. These contracts often handle financial function-
alities involving native tokens (e.g., ETH) and standardized
tokens like ERC-20 [11] and ERC-721 [12], which define
interfaces such as transfer and transferFrom for token
transactions.

Smart contracts operate using two account types: Ex-
ternally Owned Accounts (EOAs) and contract accounts.
EOAs, controlled by private keys, initiate transactions. Con-
tract accounts store publicly accessible bytecode. When an
EOA initiates an external transaction invoking a contract
account, internal transactions may occur if the contract
invokes another via instructions like DELEGATECALL. The
external transaction initiator (the EOA) is tx.origin, while
the internal initiator (the caller contract) is msg.sender.

Contract accounts use storage for persistent variables.
Storage is a 32-byte slot array indexed from 0 to 2256 − 1,
employing a packed layout to combine smaller items into
single slots. The SLOAD instruction reads full 32-byte slots,
with bit-masking used to access packed variables.

2.2. DELEGATECALL-based Upgradeable Smart
Contracts

The DELEGATECALL operation enables a contract to exe-
cute code from other contracts while maintaining its own
execution context such as storage. This characteristic fa-
cilitates flexible code composition by embedding logic
from other contracts, and enables upgradeability by simply

modifying the DELEGATECALL target in storage to point to
new implementations. Based on implementation approaches,
DELEGATECALL-based upgradeable contracts can be classified
into two categories: proxy-based and non-proxy-based ar-
chitectures. As illustrated in Figure 1.

Proxy-based contracts consist of a state-holding proxy
and a code-holding implementation contract. The proxy does
not contain business logic, but serving as a persistent entry
point that maintains all storage variables while delegating
code execution to the implementation. The upgrades of
proxy-based contracts are executed by replacing the impl

contract that contains all business logic. Standards like
EIP-1967 and EIP-1822 formalize this design. EIP-1967
specifies slots such as 0x36..bc2 for the implementation
address and 0xb5..033 for the admin. EIP-1822 introduces
the Universal Upgradeable Proxy Standard (UUPS), embed-
ding upgrade logic into the implementation and using slot
0xc5..f74 for the implementation address.

While proxy-based upgradeable contracts have received
considerable attention from both researchers and developers,
non-proxy-based ones remain largely overlooked. Unlike
standardized patterns in proxies, non-proxy ones exhibit
greater diversity without unified conventions, as developers
can freely customize the way they incorporate external
contract logic through DELEGATECALL. Figure 1 illustrates one
type of them.5 In this case, functions Fun1 and Fun2 extend
functionality with custom additions based on the logic from
impl1 and impl2, respectively. This approach enables more
granular upgrades, allowing developers to update specific
functionalities by replacing individual implementation con-
tracts, for example, modifying Fun1 by replacing impl1.

To generalize our study, we use “caller contract” for the
DELEGATECALL initiator and “callee contract” for the recipi-
ent, replacing the proxy/implementation terminology. This
ensures broader applicability and accuracy in describing
DELEGATECALL-based upgrades, encompassing both proxy-
based and non-proxy designs.

3. Overview

The purpose of this study is to provide a comprehensive
understanding of smart contract upgrades. Before delving
into the details of this work, we define the key terms used
throughout the paper.
• Upgrade Mechanism This paper focuses on the upgrade

of deployed code based on changing the target of the
instruction DELEGATECALL. The smart contract that uses
the DELEGATECALL is called the caller contract, while the
target of the DELEGATECALL is referred to as the callee
contract.

2. (bytes32(uint256(keccak256(’eip1967.proxy.implementation’)) - 1),
0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc

3. (bytes32(uint256(keccak256(’eip1967.proxy.admin’)) - 1),
0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103

4. (keccak256(”PROXIABLE”)),
0xc5f16f0fcc639fa48a6947836d9850f504798523bf8c9a3a87d5876cf622bcf7

5. For exmaple, 0x6e16394cbf840fc599fa3d9e5d1e90949c32a4f5 on
Ethereum.

Characterizing Upgrades (RQ1) Categorizing Insecurity about Upgrades (RQ2)

Discovering Insecurity in the Wild (RQ3)

Upgrade Collection
DELEGATECALL

Aggregation

Upgradeable
Contracts

Identification

Upgraded
Contracts

Identification

Insecurity
Report

Insecurity
FeaturesDataset

On-Chain
Data

Transaction Analysis

Code Static Analysis

Security Incidents Collection

Insecurity
Taxonomy

Figure 2. Overview of Our Study.

• Upgradeable Smart Contracts Smart contracts that con-
tain DELEGATECALL, with the target stored in the storage.

• Upgrade Behavior The fact that a upgradeable contract
changes the target of the DELEGATECALL.

• Upgraded Smart Contracts Upgradeable contracts that
have performed the upgrade behavior.

• Upgrade Chain A sequence of callee contracts used by
a caller contract across multiple upgrades. For example,
if caller contract A upgrades by switching from callee B
to C to D, its upgrade chain is B→C→D.

Fig. 2 shows the overall process of our study. First, we
combine transaction analysis and code analysis to collect
upgrade behaviors based on DELEGATECALL in Ethereum and
BSC, and collect 83,085 upgraded contracts with 20,902
upgrade chains (§4). To our knowledge, it is the first large-
scale dataset about upgrade behaviors, revealing the di-
versity of upgrade methods. Second, we collect reported
security incidents about upgrades from four authority in-
stitutions in the community, and analyze their root causes.
We collect 37 incidents involving more than $400 million,
and classify their root causes into four categories (§5). To
our knowledge, we are the first to conduct a comprehensive
study on security incidents about upgrades and develop an
insecurity taxonomy. Third, we extract transaction-related
and code-related symptoms about insecurities found in RQ2,
and discover a total of 31,407 real-world security issues
in three publicly unknown categories based on the dataset
constructed in RQ1 (§6).

4. Characterization of Upgrades (RQ1)

To answer RQ1, we construct the first large-scale dataset
about upgrade behaviors. We combine transaction analysis
and bytecode analysis to detect upgrades in two popular pro-
grammable blockchains, Ethereum and BSC. After collect-
ing upgrades, we characterize them from upgrade methods
and their upgrade activity. Finally, we reveal issues we find
during collection, including erroneous upgrade targets and
opacity upgrade process.

4.1. Dataset Construction

We construct a dataset of upgrade behaviors by ana-
lyzing DELEGATECALL usage in Ethereum and BSC trans-
actions. Our methodology involves three steps: (1) identi-
fying DELEGATECALL invocations through transaction traces,
(2) filtering upgradeable contracts by analyzing their
DELEGATECALL targets, and (3) detecting upgraded contracts
by monitoring changes of DELEGATECALL targets of upgrade-
able contracts. This approach ensures we capture genuine
upgrade behavior.
DELEGATECALL Aggregation This step analyzes his-
torical transaction traces to identify contracts that have
invoked DELEGATECALL to call multiple different targets. By
focusing on actual invocations, we exclude contracts that
contain DELEGATECALL in their bytecode but never invoke
it or only call a single contract, as these do not exhibit
upgrade behavior. This significantly reduces the analysis
scope. Specifically, for each transaction, we extract execu-
tion traces, record the caller and callee contract addresses
of DELEGATECALL, and retain only those caller contracts
that interact with multiple callee contracts as potentially
upgradeable.
Upgradeable Contracts Identification We refine the
dataset by identifying truly upgradeable contracts, as not
all contracts invoking DELEGATECALL are upgradeable. For
instance, if the DELEGATECALL target is hardcoded in the
bytecode, it cannot be modified, rendering the contract
non-upgradeable. Similarly, if the target is passed through
calldata, the contract typically acts as a forwarder without
consistent functionality, as the target depends on external
input and is not controlled by the caller. Therefore, a contract
is considered upgradeable only if its DELEGATECALL target is
both mutable and controllable.

To identify such contracts, we perform static analysis
on the bytecode to trace the provenance of DELEGATECALL

targets. Our methodology specifically examines the second
operand of each DELEGATECALL instruction (representing the
target address) and recursively traces its data dependencies
through def-use chain analysis. We only classify a con-
tract as upgradeable when our analysis confirms that the
DELEGATECALL target ultimately derives from storage, which
indicates a mutable and controllable execution target.
Upgraded Contracts Identification After identifying up-
gradeable contracts, we detect upgrade behaviors by mon-
itoring changes in the DELEGATECALL targets. Specifically,
upgrade behaviors occur when DELEGATECALL targets change.
To locate the target in storage, we use a (slot index,

offset) pair. The slot index, retrieved from the operand of
the SLOAD instruction, identifies a 32-byte storage slot, while
the offset represents the position of the 20-byte address
within the slot, as addresses can be packed with other vari-
ables. By tracking historical transactions, we record changes
in these storage slots and extract the sequence of target
addresses. These addresses are then used to construct the
upgrade chain for each upgraded contract, representing all
their historical callee contracts.

TABLE 1. SLOT USAGE DISTRIBUTION, DIFFERING BETWEEN
ETHEREUM AND BSC.

Simple
Slot Key

Complex Slot Key Multiple
Slots

Slots with
Offset

EIP-1967 EIP-1822 others

upgradeable 772,106 16,808 55 1,245 76 12,614
upgraded 55,579 9,108 51 438 30 10,744
upgrade chains 750 5,798 40 312 30 3Ethereum

upgrade rate 7.20% 54.62% 92.73% 35.18% 39.47% 85.18%

upgradeable 13,748 25,249 63 1,124 678 16
upgraded 1,867 15,737 59 221 27 15
upgrade chains 829 12,481 57 199 21 15BSC

upgrade rate 13.58% 62.33% 93.65% 19.66% 3.98% 93.75%

TABLE 2. ISSUES IN UPGRADE

Redundant Upgrade Invalid Upgrade Upgrade to Zero Addr.

Ethereum 497 59 29
BSC 1,370 38 18

Total 1,867 97 47

4.2. Upgrade Behavior Analysis

We collect upgrades in two representative EVM-
compatible blockchains, Ethereum (first 18,000,000 blocks)
and BSC (first 32,000,000 blocks), constructing a dataset of
830, 387 upgradeable contracts, 83, 085 upgraded contracts,
and 20, 902 upgrade chains. Only about 10% of upgrade-
able contracts undergo upgrades, indicating a relatively low
upgrade rate. Notably, the significant difference between the
number of upgraded contracts and upgrade chains arises be-
cause multiple caller contracts often share the same upgrade
chain, e.g., 65, 196 upgraded contracts on Ethereum share
only 7, 123 upgrade chains. This is common in projects
like wallets, where many caller contracts share the same
callee contracts, amplifying risks as a single vulnerability
in a callee contract could impact thousands of associated
caller contracts.

Contrary to the common belief that upgrades are pre-
dominantly proxy-based, we observed significant diversity in
upgrade methods, reflected in 196 distinct storage locations
for DELEGATECALL targets, classified into four types:
• Simple slot key, e.g., 0x0, prone to collisions.
• Complex slot key, e.g., 0x69ed75 or slots specified by

EIP-1967/EIP-1822, often computed using hash functions
or specified by developers.

• Multiple slots, used when caller contracts employ multi-
ple callee contracts simultaneously.

• Slots with offset, where callee addresses are packed in
storage with other variables.

Table 1 shows the slot usage distribution. Contracts
adhering to EIP-1967 and EIP-1822 demonstrate higher
levels of upgrade activity, particularly EIP-1822 contracts.
Some contracts adhering to these standards undergo nearly
a hundred upgrades, while the majority are upgraded fewer
than ten times.

4.3. Observed Security Issues

In the following, we elaborate on the observed security
issues in contract upgrades, including erroneous upgrade tar-
gets and opacity in the upgrade process. Erroneous upgrade

TABLE 3. ISSUES ABOUT EXISTING BLOCKCHAIN EXPLORERS. USC
IS SHORT FOR UPGRADED SMART CONTRACT, AND UC IS SHORT FOR

UPGRADE CHAINS.
Blockchain Explorers
(Etherscan/Bscscan)

Upgrade Explorer
(Upgradehub)

Unrecognized
USC

Incomplete
Logic

Fake
Logic No UC Incomplete

UC

Ethereum 53,091 61 319 63,307 813
BSC 11,182 663 0 15,337 867

Total 64,273 724 319 78,644 1,680

1 contract SolidlyProxy{
2 bytes32 constant IMPLEMENTATION_SLOT = 0x36..bc;
3 // keccak256(’eip1967.proxy.implementation’),

actually used for interface so etherscan picks
up the interface

4 bytes32 constant LOGIC_SLOT = 0x59..ab;
5 // keccak256(’LOGIC’)-1, actual logic

implementation
6 ...}

Figure 3. The code snippet that causes Etherscan to fail to recognize the
correct implementation address.

targets refer to inappropriate new callee addresses during
upgrades, a phenomenon reported by existing works [7, 4].
Table 2 outlines the issues we identified: redundant upgrades
(reusing previous callee addresses), invalid upgrades (non-
executable addresses like EOAs), and upgrades to a zero
address. Redundant upgrades waste resources and may rein-
troduce vulnerabilities, while invalid upgrades and upgrades
to a zero address render contracts non-functional, highlight-
ing chaotic upgrade management.

More importantly, we discovered significant challenges
in observing upgrade behaviors, making the upgrade process
opaque. Although blockchain explorers like Etherscan [13]
and BscScan [10] label upgradeable contracts and their
DELEGATECALL callees, and tools like Upgradehub [14] exist
to track upgrades, their information is often incomplete.
These tools primarily recognize one-to-one proxy-to-logic
upgrade patterns, failing to detect unconventional methods
or multiple-slot upgrades. As a result, many upgraded con-
tracts remain unrecognized, and complete logic information
is often unavailable. The issues with these explorers regard-
ing upgrade behavior disclosure are detailed in Table 3.

Worse, these explorers can be intentionally deceived to
display incorrect logic, misleading users. For instance, Fig. 3
shows a contract6 using two slots to store callees: 0x36..bc
(EIP-1967) and 0x59..ab (real implementation). Since ex-
plorers prioritize EIP-specified slots, only the fake callee
stored in 0x36..bc is displayed, concealing the actual callee
address and preventing users from knowing the true code
executed. This deception undermines transparency and poses
severe security risks, as users interact with contracts under
false assumptions about their functionality. Such opacity can
lead to exploitation, as malicious actors can hide vulnerabil-
ities or malicious logic behind misleading explorer displays,

6. e.g., 0x77779759974f2353835F1A8c17B88f6F1f3e4362 on Ethereum

DELEGATECALL

DELEGATECALL

InitializeV2()

Initialize() Initialize()

callee
contract
V2

caller
contract

callee
contract

1 Deployment2 Deployment

3 Upgrade

Figure 4. Lifecycle of upgradeable smart contracts. ⇒ represents transac-
tions about upgradeable contracts and → represents invocations between
contracts.

leaving users—and even security analysts—unaware of the
true risks.

Answer to RQ1 Upgrade behaviors are diverse, hin-
dering existing tools from providing accurate and trans-
parent information about upgrades.

5. Taxonomy of Upgrade Risks (RQ2)

To answer RQ2, we develop a taxonomy of insecurity
in upgrade behaviors based on real-world security inci-
dents. These incidents are collected from four well-known
security incident databases in the community: Blocksec
Security Incidents [15], DefiLlama Hacks [16], De.Fi Rekt
Database [17], and SlowMist Hacked [18]. Overall, we
document 37 incidents involving over $400 million, and
classified them based on their root causes, as shown in
Table 4.

Specifically, there are two main fundamental classes:
transaction-related and code-related. Transaction-related
causes refer to misbehavior within transactions (①②③ in
Fig. 4) that support the upgrade mechanism. Code-related
causes point to inappropriate or anomalous occurrences
within the code of contracts associated with upgrades
(caller/callee/callee V2 in Fig. 4).

On this basis, transaction-related incidents are primar-
ily attributed to improper initialization (§5.1), while code-
related incidents can be divided into vulnerable incidents
and malicious incidents (§5.4). Vulnerable incidents can be
further categorized into collisions (§5.2) and business logic
flaws (§5.3). The insecurity in each subclass is detailed in
the following sections.

5.1. Improper Initialization

To support the upgrade mechanism, upgradeable con-
tracts involve three types of initialization, as shown in
Fig. 4 (transactions ①, ②, and ③): (1) initialization of
callee contracts, (2) initialization of the caller contract, and
(3) initialization of variables introduced by upgrades. The
first two typically occur during deployment, while the third
occurs during upgrades. These initializations are unique
to upgradeable contracts because their setup cannot rely
on traditional Constructor; instead, they require special
initialize functions to ensure proper initialization across
upgrades. Generally, the initialize() function is public,

TABLE 4. INCIDENTS ABOUT UPGRADE. ● REPRESENTS REPLACING ORIGIN CONTRACT TO A MALICIOUS CONTRACT. ❍ REPRESENTS CHANGING
EXISTING FUNCTION AND MAKE IT MALICIOUS OR VULNERABLE. H#REPRESENTS ADDING MALICIOUS OR VULNERABLE FUNCTIONS INTO THE

ORIGIN CONTRACT. ¤REPRESENTS PRIVATE KEY COMPROMISED OF THE OWNER OF THE CONTRACT AND ¤ REPRESENTS PRIVATE KEY
COMPROMISED OF OWNER OF PRIVILEGED CONTRACT. IN CODE FEATURES, C REPRESENTS CONSTRAINTS, WHICH CAN ON EXECUTOR (E) OR

BENEFICIARY (B). P REPRESENTS PROFIT, WHICH CAN BE DIRECT (D) OR INDIRECT (I).

Tr
an

sa
ct

io
n

Im
pr

op
er

In
iti

al
iz

at
io

n Incident Date Chain Loss Root Cause
Parity 2017-07-19 Ethereum ˜$34M public initialization
Parity 2017-11-08 Ethereum ˜$155M uninitialized
L2DAO 2022-10-22 Optimism 49.95M L2DAO tokens failed initialization
Ronin Bridge 2024-08-06 Ethereum ˜$12M incomplete initialization

C
od

e

V
ul

ne
ra

bl
e

C
ol

lis
io

n

Incident Date Chain Loss Root Cause
EFVault 2023-02-24 Ethereum ˜$5.1M callee/callee storage collision
AAVE 2023-05-20 Polygon freezing ˜$110M interface collision
TelCoin 2023-12-26 Polygon ˜$1.24M caller/callee storage collision
Ember Sword 2024-04-27 Polygon ˜$196k caller/callee storage collision
PikeFinance 2024-04-30 Ethereum, Arbitrum, Optimism ˜$1.7M callee/callee storage collision
OKX NFT Aggregator 2024-06-20 BSC ˜$14k callee/callee storage collision
DeltaPrime 2024-07-22 Arbitrum ˜$1M caller/callee storage collision

Fl
aw

ed
B

us
in

es
s

L
og

ic

Incident Date Chain Loss Vulnerability Type Fix Introduce
Ankr 2022-12-02 BSC ˜$5M public mint ✓ ❍
Thoreum Finance 2023-01-19 BSC ˜$580k self transfer ✓ ❍
BSCANT3 2023-01-19 BSC 1466 BNB public burn ✓ H#
Indexed Finance 2023-03-20 Ethereum ˜$12k self transfer ✓ ❍
SafeMoon 2023-03-28 BSC ˜$8M public mint, public burn ✓ H#❍
MetaPoint 2023-04-11 BSC ˜$920k public approve ✓ ❍
Level Finance 2023-05-01 BSC ˜$1M inconsistent accounting ✓ H#
DEI 2023-05-05 Ethereum, BSC, Arbitrum ˜$6M accounting error ✗ H#
Floor Protocol 2023-12-17 Ethereum ˜$1.6M arbitrary call ✓ H#
Socket 2024-01-16 Ethereum ˜$3.2M unverified user input ✓ H#
XBridge 2024-04-24 Ethereum, BSC ˜$1.8M unverified user input ✗ ❍
Bedrock uniBTC 2024-09-26 Ethereum ˜$2M state validation issue ✓ ❍

M
al

ic
io

us
C

od
e

In
je

ct
io

n

Incident Date Chain Loss Root Cause Introduce Victim Type Code Features
Meerkat Finance 2021-03-04 BSC ˜$32M Rug Pull ● vault C(EB) + P(D)
Bent Finance 2021-12-21 Ethereum ˜$1.75M¤ H# pool C(EB) + P(D)
OCASH 2022-11-29 BSC ˜$30k Rug pull H# sale C(EB) + P(D)
ARV Token 2022-12-02 BSC ˜$506k ¤ H# token C(EB) + P(D)
Atlantis Loans 2023-06-10 BSC ˜$1M vote ● token C(EB) + P(D)
OKX DEX 2023-12-13 Ethereum ˜$2.7M¤ ● privilege C(E) + P(I)
Concentric Finance 2024-01-22 Arbitrum ˜$1.7M¤ H# vault C(E) + P(D)
Shido 2024-02-29 Ethereum ˜$3.3M¤ H# staking C(E) + P(D)
Polyhedra 2024-03-12 BSC ˜$760k ¤ ● bridge C(B) + P(D)
Wilder World 2024-03-16 Ethereum ˜$1.8M¤ H# vesting C(B) + P(D)
Curio Ecosystem 2024-03-23 Ethereum ˜$16M vote ● privilege P(I)
Perpy Finance 2024-05-06 Arbitrum ˜$132k public upgrade ● staking C(E) + P(D)
OpSec 2024-07-11 Ethereum ˜$182k ¤¤ ❍ staking C(E) + P(D)
Radiant 2024-10-16 BSC, Arbitrum ˜$58M ¤¤ ● lending pool C(E) + P(D)

and the caller of this function becomes the owner of the
contract, making proper initialization critical to prevent
unauthorized access.
Type I. Initialization of callee contracts (①). Although
callee contracts typically do not hold storage, the Parity
incident, which resulted in a $155 million loss, highlights
the critical importance of properly initializing them. This
incident occurred because attackers exploited uninitialized
callee contracts, gaining ownership and using privileged
functions to destroy their code via the SELFDESTRUCT in-
struction, rendering the funds locked and unusable forever.
In the EVM, SELFDESTRUCT can permanently destroy a con-
tract’s code. Even if the callee contract does not contain a
SELFDESTRUCT instruction, once it features DELEGATECALL, the
code is still threatened by the SELFDESTRUCT instruction in
the executed code via DELEGATECALL. This issue is especially
severe in EIP-1822 contracts, where callee contracts have
upgrade capabilities instead of caller contracts. If the callee

contract’s code is destroyed, the caller contract can no
longer upgrade, rendering the entire upgradeable contract
permanently unusable and leading to significant financial
losses.
Type II. Initialization of the caller contract (②). Proper
initialization of the caller contract is crucial for ensuring
ownership security, which directly impacts fund security.
Unlike traditional Constructor, which are automatically
executed once during deployment, initialize functions are
typically part of the callee contract and require explicit
invocation from caller contracts. Developers must ensure
these functions are executed correctly and only once, as
failures can lead to ownership being compromised. For
example, L2DAO lost 49.95M L2DAO tokens due to a failed
initialization of the caller contract, allowing attackers to
take over ownership. Similarly, Parity lost $34M because
its initialize() function was public and could be called
multiple times, resetting ownership and enabling attackers

to seize control.
Type III. Initialization of variables (③). The Ronin
Bridge incident, which resulted in a loss of $12 million,
was caused by insufficient initialization of variables intro-
duced in an upgrade, resulting in a variable retaining an
uninitialized value of 0 and being exploited by attackers
to bypass security checks. For each new version, if new
variables are introduced, there should be a function, such as
initializeV2(), to initialize the new variables and ensure
that they function correctly within the business logic.

5.2. Collision

Collisions can be categorized into three types: storage
collision, interface collision, and function selector collision.
The first two types have resulted in actual security incidents,
whereas the last type is discussed in relevant literature [7]
and community sources [19], but no related incidents have
been reported. For the sake of completeness in the insecurity
taxonomy, we also introduce this type.
Type I. Storage collision. Storage collisions occur when
the same storage slot is used inconsistently across contracts,
which are in two scenarios: (1) between caller and callee
contracts, and (2) among different versions of callee con-
tracts.

In the first scenario, collisions between caller and callee
contracts can overwrite critical variables. For example, Tel-
con, EmberSword, and DeltaPrime lost a total of approxi-
mately $2.44M due to such collisions. In EmberSword, the
caller contract used slot 0 to store the owner, while the callee
contract used the same slot to store initialization flags. When
the callee contract set the flags to prevent reinitialization, the
caller contract overwrote slot 0, allowing attackers to bypass
reinitialization checks and take over ownership.

In the second scenario, collisions between different ver-
sions of callee contracts can lead to outdated or incorrect
values being used. EFVault, PikeFinance, and OKX NFT
Aggregator lost a total of approximately $6.9M due to this
issue. For instance, in EFVault, a slot initially stored the
maximum deposit limit (set to a very large value) in the
first version. In the second version, the same slot was re-
purposed to store the asset decimal, a multiplier in valuation
calculations. However, the slot’s content was not updated,
causing the valuation logic to rely on the original large
value, resulting in excessively high profit calculations and
significant financial losses.
Type II. Interface collision. Interface collisions oc-
cur when the ABIs (Application Binary Interface) of
an upgradeable contract are removed during an up-
grade, disrupting interactions with other contracts, partic-
ularly non-upgradeable ones. For example, if the function
withdraw(uint256, uint256) in the previous version of a
callee contract is modified to withdraw(uint256) in the
next version, the ABI for withdraw(uint256, uint256) is
removed. This causes other contracts relying on the original
ABI to fail, breaking compatibility. When an upgradeable
contract serves as a module within a DApp, the removal
of ABIs can disrupt interactions, compromising the DApp’s

1 modifier onlyWhitelistMint() {
2 require(!whitelistMint[msg.sender], "Invalid");_

;}
3 function mint(...) public onlyWhitelistMint {...}

Figure 5. The added public mint vulnerability in SafeMoon.

overall availability. For instance, about $110 million in
AAVE were frozen for a week due to such an interface
collision, underscoring the severe consequences of improper
ABI management. The proper approach is to retain existing
ABIs while adding new interfaces, ensuring compatibility
between versions and preventing disruptions.
Type III. Function selector collision. Function selector
collisions occur when the caller and callee contracts have
functions with identical selectors. In cases where the caller
forwards user input to the callee for execution, if a user
inputs a function selector that also exists in the caller,
the caller executes its own function instead of forwarding
the call. For example, if the caller contract has a function
collate_propagate_storage(bytes16) and the callee con-
tract has a function burn(uint256), both sharing the selector
0x42966c68, a user attempting to invoke burn via the caller
contract would instead trigger collate_propagate_storage.
If the caller’s function contains malicious code, such as
unauthorized transfers, users may suffer financial losses.

5.3. Flawed Business Logic

This subclass includes 12 security incidents resulting
from flawed business logic introduced during upgrades,
either through the addition of new functions or modifications
to existing ones. These incidents encompass a range of
vulnerabilities, such as public minting and accounting errors.
While these vulnerabilities lack common semantics, they
provide critical insights into security considerations during
upgrade process.
Insight I. Simple errors in new functions. Some vul-
nerabilities arise from straightforward errors when intro-
ducing new functions. A notable example is the SafeMoon
incident, where a mint function was added with an access
control error, leading to a public mint vulnerability. As
illustrated in Fig. 57, the access control requirement in Line
2 should be whitelistMint[msg.sender], indicating that
msg.sender must possess minting privileges. However, it
was erroneously written as !whitelistMint[msg.sender],
allowing anyone except the privileged users to mint. Similar
simple errors were observed in Level Finance and DEI.
Insight II. Risks in code modifications. Modifying code,
particularly when involving complex changes to data struc-
tures and multiple upgrades, can be inherently risky and
may gradually introduce vulnerabilities. For instance, in
Xbridge, a vulnerability was introduced over two upgrades,
as depicted in Fig. 6. The vulnerability comprises two parts:

7. The comparison of two versions is available at https://upgradehub.xyz/
diffs/bscscan/0x42981d0bfbaf196529376ee702f2a9eb9092fcb5?selected=
20

1 function listToken(baseToken, correspondingToken,
...) {

2 + if(_baseToken == _correspondingToken) {
3 + _tokenOwner[_baseToken] = msg.sender;} ...}
4 function withdrawTokens(token, ..., amount) {
5 - require(amount <= tokenDeposited[token][user],
6 - "NOTHING_TO_CLAIM");
7 + require(user == _tokenOwner[token],
8 + "ONLY_TOKEN_LISTER_CAN_WITHDRAW");}

Figure 6. The introduced vulnerability in Xbridge.

1 - function mint(...) external onlyMinter {
2 + function mint(...) external {

Figure 7. The introduced public mint vulnerability in Ankr.

Lines 2 and 3 in the listToken function enable attackers
to designate themselves as token owners, and Lines 7 and
8 in the withdrawTokens function permit token owners
to withdraw tokens without making a deposit. The first
upgrade altered the code from Lines 5 to 7, while the
second upgrade added Lines 2 and 3. Notably, both upgrades
involved complex changes, such as introducing new ledgers
and discarding old ones 8.
Insight III. Suspicious cases indicating potential ma-
licious intent. Certain cases appear suspicious and may
indicate deliberate attacks or rug pulls. For example, in
Ankr, the access control in the mint function was removed
during an upgrade, introducing a public mint vulnerability.
Immediately following the upgrade, the mint function was
exploited for financial gain.

5.4. Malicious Code Injection

Malicious code injection accounts for 14 incidents, the
highest among the four categories. Unlike the diversity
observed in the flawed business logic category (§5.3), these
incidents exhibit significant consistency. We analyze the
characteristics of malicious upgrades from three perspec-
tives: root cause, introduction method, and code features.
Feature I. Root cause. Most malicious upgrades result
from the theft of private keys. Two types of accounts are
typically compromised: privileged EOAs of victim contracts
and privileged EOAs of contracts governing multiple victim
contracts. The latter is more severe, as it affects multiple
contracts. For example, in Wilder World, the compromise
of a governance contract enabled malicious upgrades across
eight upgradeable contracts. Additionally, two incidents in-
volved simultaneous compromises of multiple private keys,
revealing poor private key management. In Opsec, both the
privileged contract and the owner were compromised, while
in Radiant, multi-signature measures failed due to multiple
private key compromises. These incidents underscore the
critical importance of private key security, as private keys

8. Here is the complete code, https://upgradehub.xyz/diffs/etherscan/
0x47ddb6a433b76117a98fbeab5320d8b67d468e31

1 function withdraw(address token, address user,
uint256 amount) external onlyOwner {

2 - if (token == address(opsec)) {
3 - require(IERC20(token).balanceOf(address(this)

) - totalStaked >= amount, "Insufficient
$OPSEC balance to withdraw");}

4 IERC20(token).safeTransfer(user, amount);}

Figure 8. The introduced malicious code by changing code in Opsec.

1 // Restrictions on executors
2 require(msg.sender == owner, ’Ownable: caller

isnot the owner’); // Meerkat Finance
3 require(msg.sender == 0x45..ec); // OCASH
4 address(0xcb..25) == tx.origin // Perpy Finance
5 // Restrictions on beneficiaries and profit

mechanisms
6 address(0x36..c9).call().value(this.balance); //

Polyhed
7 msg.sender.call().value(this.balance); // Shido
8 token.transferFrom(users, to, token.allowance(

users,this)); // Atlantis Loans
9 token.transfer(msg.sender, token.balanceOf(address

(this))) // Atlantis Loans

Figure 9. Common malicious code.

grant the ability to modify code and access all assets of
upgradeable contracts.
Feature II. Introduce method. Malicious code is intro-
duced in three ways: (1) replacing all original code with
malicious code, (2) adding malicious code while retaining
the original code, and (3) modifying the original code to
make it malicious. Total replacement is a dangerous signal,
as it disrupts the contract’s functionality. Adding malicious
code while retaining the original code allows attackers
to operate covertly, potentially yielding long-term gains,
though it incurs higher attack costs. Modifying the original
code requires it to resemble exploitative backdoor functions.
For example, Fig. 8 shows malicious code introduced by
removing checks in Lines 2 and 3, enabling the owner to
arbitrarily obtain tokens.
Feature III. Code features. Malicious code is typically
simple and direct, designed to achieve its goals with minimal
complexity. It generally features two main components:
constraints and profit mechanisms. Constraints ensure that
only the attacker benefits from the malicious code, often by
restricting who can execute the code or who receives the
profits. Executors are typically verified using msg.sender

or tx.origin, with hardcoded addresses frequently used
for validation. This approach contrasts with benign access
controls, which often rely on complex data structures like
storage mappings. Beneficiaries, on the other hand, are
restricted to specific profit addresses, which are often hard-
coded or limited to msg.sender. These constraints ensure
that the attacker retains full control over the exploitation
process.

Profit mechanisms in malicious code can be categorized
into two types: indirect and direct. Indirect profiting occurs
when attackers exploit privileged contracts to invoke func-

TABLE 5. SURVEY RESULT ABOUT PUBLIC AWARENESS, SCOPE OF
IMPACT, AND EXISTING MITIGATION MEASURES RELATED TO THE

INSECURITY IDENTIFIED IN RQ2.
Category Subclass Public Impact Existing Mitigation

Improper
Initialization

Callee ✓ Limited[4] Auxiliary plugin and detectors
Caller ✓ Unknown Auxiliary plugin
Variables ✗ Unknown No

Collision

Storage ✓ Severe[20] EIP-1967[21], EIP-7201[22], and
storage gaps [23]

Interface ✗ Unknown No
Function
Selector ✓ No[7] No

Flawed Business Logic ✗ Unknown No
Malicious Code Injection ✗ Unknown No

tions like mint or claimToken on other contracts. Direct
profiting, on the other hand, targets the victim contract’s
own assets, which can be categorized into three types: native
tokens, valuable tokens (e.g., ERC-20, ERC-721), and ap-
provals. Attackers transfer native tokens using call.value,
valuable tokens via token.transfer, and approved assets
via token.transferFrom. Profit amounts typically target the
entire balance of the victim contract, such as this.balance

for native tokens, token.balanceOf for valuable tokens, or
token.allowance for approved assets. This approach reflects
a tendency to maximize gains by draining all available
resources in a single attack.

Answer to RQ2 There are 37 real-world incidents
involving over $400 million in losses due to upgrades,
with root causes categorized into eight distinct types.

6. Evaluation of Upgrade Risks in the Wild
(RQ3)

Based on the taxonomy proposed in RQ2, we evaluate
the insecurity of upgrades in the wild. For each type of
security risk, we first conduct a survey (§6.1) to assess their
current state of understanding and mitigation efforts. This
survey aims to guide the community in understanding the
current state of the art and identifying unresolved issues. For
risks with unknown impacts, we further utilize the dataset
constructed in RQ1 to conduct large-scale evaluations (§6.2)
to provide preliminary insights into these risks.

6.1. Survey Results

Our survey evaluates the public awareness, scope of
impact, and existing mitigations for the insecurities we iden-
tified. To assess public awareness, we examine whether these
vulnerabilities are documented in authoritative sources such
as developer guides, well-known security blogs, and prior
academic studies. For insecurities that have been studied,
we derive their scope of impact from the findings of these
studies. Additionally, we identify existing mitigations from
community-provided security tools and proposed standards
for upgradeable contracts.

The survey results are shown in Table 5. Among the
eight types of security risks in upgrades, five have unknown

TABLE 6. DISCOVERIED ISSUES

Improper
Initialization

Interface
Collision

Malicious Code
Injection

No
Admin

Delayed
Init

ABI
Removal

Output
Change

Authorized
Transfer

Authorized
Set

Ethereum 10,374 80 1,990 284 1,556 1,884
BSC 9,245 107 1,933 333 1,509 2,112
Total 19,619 187 3,923 617 3,065 3,996

impacts, while four are entirely overlooked and lack any mit-
igation measures. Of the four risks known to the community,
function selector collision is uncommon in practice, with no
reported issues or incidents, and thus no mitigations exist.
Initialization of the caller contract has limited discussion
in the community, and no studies on its impact have been
conducted; we address this in the following section (§6.2).
In contrast, initialization of callee contracts and storage
collisions are widely recognized in studies, with established
mitigation measures.

Issues caused by uninitialized callee contracts have been
extensively discussed in the community. Security vendors
like OpenZeppelin (OZ) provide tools [24] to mitigate this
risk, including detectors that verify the security of callee
contracts before deployment and plugins that enforce initial-
ization during deployment. As a result, previous work [4]
has studied its impact, finding limited occurrences, indicat-
ing effective management in practice.

Storage collision is another well-known issue in both the
community and academic research. Several studies [7, 5]
have discussed this problem, and one study [20] proposed
CRUSH, a detection tool that revealed a significant num-
ber of exploitable contracts due to storage collision flaws.
To mitigate these collisions, the community has proposed
methods such as standard slots (EIP-1967 [21]), storage
gaps [23], and namespaced storage layouts (EIP-7201 [22]).
EIP-1967 uses hashed keys for designated slots (e.g., admin
and callee addresses) to minimize collision risks. Storage
gaps and EIP-7201 partition storage to prevent layout er-
rors between versions: storage gaps reserve intervals using
fixed-size uint256 arrays, while EIP-7201 organizes storage
with structs and complex keys. Both methods require that
variables not be removed and that new variables be added
at the end within a single base contract.

6.2. Discovered Issues

Among the five types of upgrade security risks with
unknown impacts, we evaluate their security implications
using the smart contract upgrade dataset from RQ1. Our
findings reveal significant issues associated with three of
these types. For the remaining two—flawed business logic
and improper initialization of variables—evaluation requires
automated understanding of code and variable semantics,
which remains an open research challenge. Table 6 summa-
rizes the results.
Initialization of caller contracts. Previous studies on
upgradeable contracts have overlooked this issue. To address
this gap, we evaluate the initialization practices of caller
contracts.

We focus on the time intervals between contract de-
ployment and initialization, as a secure initialization process
should ensure immediate ownership control by the project.
Specifically, we record the deployment transaction as the
deployment time and the first transaction setting the owner
as the initialization time, using block intervals between them
as the metric. The initialization transaction is identified by
monitoring storage changes, leveraging EIP-1967, which
specifies the slot key for storing the admin address.

We evaluate 42,057 upgradeable caller contracts follow-
ing EIP-1967 in our dataset. Table 6 presents the results.
Notably, 19,619 contracts do not set the admin slot, and
187 contracts fail to initialize promptly after deployment.
The high proportion of contracts neglecting the admin
slot—nearly half of the total—is concerning. This often
occurs because developers conflate the roles of the admin
(responsible for upgrades) and the owner (responsible for
business operations), directly using the owner for upgrades
instead of the admin slot. This ambiguity in permission
management poses significant risks, as the admin should
only handle upgrades and avoid interacting with the callee
contract.

For contracts that delay initialization, ownership is at
risk during the vulnerable interval before initialization. At-
tackers have ample time to exploit this window, with ob-
served intervals reaching 4,210 blocks on Ethereum and
28,636 blocks on BSC. If an attacker sets the admin slot
first, the deployer loses control, potentially rendering the
contract unusable and leading to asset loss as the L2DAO
incident.
Interface collision. To study the impact of this issue, we
crawl the source code information for upgraded contracts
from RQ1 using blockchain explorers [13, 10]. From this
data, we extract ABIs and their outputs—whose changes
trigger interface collisions—for each version of the callee
contract and compare them. Table 6 presents the results.

We identify 1,990 ABI removals and 284 interface out-
put changes on Ethereum, and 1,933 ABI removals and
333 interface output changes on BSC. These issues can
severely disrupt the availability of contracts that interact
with the upgraded contracts, particularly non-upgradeable
ones, as they become permanently unusable if the ABIs are
removed during upgrades. These findings reveal that this
issue is overlooked by the community and prior studies, and
developers still lack awareness of compatibility, not only for
storage but also for interfaces. As interactions between smart
contracts become increasingly common, the impact of this
issue can be significant, especially for large projects that
rely on numerous interacting contracts and favor upgrade-
able contracts for maintenance. Developers interacting with
upgradeable contracts should address this issue to ensure
seamless interoperability for their own contracts.
Suspicious Code Injection. To study the impact of this
issue, we leverage the code features of malicious code
identified in RQ2 to detect similar code introduced during
upgrades, using the dataset from RQ1. From RQ2, we
extract code features related to constraints on executors and
beneficiaries, as well as profit mechanisms. Using these

1 // Arbitrarily transfer
2 function 0x27941c5b(varg0,varg1,varg2){
3 require(msg.sender == 0x40e...ad0);
4 address(varg0).transfer(address(varg2), varg1);}
5 function Withdraw(token,amount,_wallet) onlyOwner

{
6 if (token == address(0)) {
7 _wallet.transfer(amount);}
8 else {IERC20Upgradeable(token).transfer(_wallet,

amount);}}
9 function releaseAllETH(account) onlyOwner {

10 uint256 amount = address(this).balance;
11 (bool success,)=account.call{value: amount}("")

;}
12 // Authority operation
13 function addBlacklist(account, value) onlyOwner {
14 _isBlacklisted[account] = value;}

Figure 10. Examples for detected suspicious code.

features, we perform bytecode analysis to identify suspi-
cious code introduced in upgrades. Specifically, constraints
on executors are detected by identifying comparisons of
executors with constants or storage variables, as shown in
Expression 1. Constraints on beneficiaries are detected when
profit statement targets are constants or storage variables,
as shown in Expression 2. Profit statements are detected by
matching the three patterns specified in RQ2, corresponding
to the three types of assets, as shown in Expression 3. If
the code introduced during upgrades matches any constraint
pattern and the profit pattern, we classify it as suspicious.

EQ(msg.sender|tx.orogin, Constant|SLOAD)

ExecutorConstraint
(1)

ProfitTarget(Constant|SLOAD)

BeneficiaryConstraint
(2)

call.value|token.transfer|token.transferFrom

Profit
(3)

The results are shown in Table 6. Fig. 10 presents exam-
ples of detected code9. In total, we detect suspicious code
enabling arbitrary transfers in 1,556 upgrades on Ethereum
and 1,509 upgrades on BSC. The examples in Fig. 10
Lines 2-11 all allow the owner or a specific account to
arbitrarily transfer assets from the upgraded contracts. While
such code may serve legitimate purposes, users and security
researchers should remain vigilant, as it grants privileged
authority that could threaten users’ financial security.

Additionally, we detect authority operations introduced
in 1,884 upgrades on Ethereum and 2,112 upgrades on BSC.
These operations, while lacking explicit profit statements,
can still impact users’ assets. For example, as shown in the
last example in Fig. 10 Lines 13-14, the upgrade introduces
code allowing the owner to blacklist any user, preventing

9. Addresses for examples: 0x97841dc43ed42346bdb31c88027f23c989c98797
on Ethereum, 0xc3e9932ed58ed4131b7bd8155ace71659e8b12c5 on BSC,
0x247bc8cbb1a10bfb3dd159100c312e7add7ad7a9 on Ethereum, and
0xe1e2e1a3a8a1520392be499fbc4726ab4f6317c6 on Ethereum.

them from receiving token transfers. Such code is classi-
fied as a backdoor function by prior work [25], as it can
compromise the security of users’ assets.

In summary, we identify a significant amount of suspi-
cious code introduced during upgrades, posing a real-world
threat to user assets. This finding highlights the broad impli-
cations of this insecurity in upgradeable contracts. However,
awareness and mitigation measures for this issue remain
lacking in both the community and academic research.

Answer to RQ3 Among the eight types of upgrade
risks, five are overlooked with unknown impacts, and a
total of 31,407 related issues are detected.

7. Discussion

Limitations. Our study has limitations in identifying up-
gradeable contracts and collecting security incidents. For
upgradeable contract identification, challenges arise when
callers use storage mappings to store callee addresses, with
function selectors from calldata as keys to calculate the
slot index for the DELEGATECALL target. In such cases, a
caller may have multiple callees, but we cannot retrieve
all slots in the storage mapping without knowing all keys.
We can only access slots with definite indices. For security
incident collection, limitations stem from the potential omis-
sion of incidents, particularly those involving small amounts
of funds. Although we rely on four well-known security
databases, we cannot guarantee the capture of all incidents
on blockchains. Additionally, we identify incidents related
to upgradeable contracts by locating DELEGATECALL in attack
transactions and manually analyzing victim contracts, which
may result in some incidents being overlooked. Neverthe-
less, we have collected as many incidents as possible to
avoid missing widespread events, ensuring our taxonomy is
as comprehensive as possible. This taxonomy will continue
to evolve as more security incidents are gathered in the
future.

8. Related Work

The security of upgradeable contracts has attracted sig-
nificant research efforts. Meisami et al. [7] propose a tax-
onomy for proxy-based upgradeable contracts and develop
USCHUNT, a tool for detecting such contracts and their
security issues. Unlike their focus on proxy patterns, our
study examines upgrade behaviors—the evolution of exe-
cutable code within a contract account. Li et al. [4] define
six upgrade patterns and analyze their security issues using
USCHUNT, treating all functional changes as upgrades.
In contrast, we focus on code evolution and provide a
broader perspective on upgrade risks. Salehi et al. [5] clas-
sify upgradeable contracts by call types and study access
control in DELEGATECALL-based contracts, while we develop
a comprehensive taxonomy of insecurities based on real-
world incidents. Huang et al. [3] examine proxy-based
and metamorphic contracts, focusing on upgrade motiva-
tions, whereas our work emphasizes upgrade risks. Two

studies [1, 2] detect metamorphic contracts using CREATE2,
while our study focuses on DELEGATECALL-based upgrades.
To mitigate insecurities, Antonino et al. [26] propose a
formal framework for secure upgrades, and Ruaro et al. [20]
introduce CRUSH, a tool for detecting storage collisions.
Our work complements these efforts by uncovering new
insecurities and providing a dataset for further research.

Beyond the scope of upgradeable contracts, numer-
ous studies have focused on the security of smart con-
tracts. Several works analyze bytecode for program anal-
ysis [27, 28, 29, 30, 31, 32, 33, 34, 35] and vulnerability
detection [36, 37, 38, 39, 40, 41, 40]. Our identification of
upgradeable contracts and detection of malicious code build
on these existing technologies. In response to these studies,
large-scale experiments [42, 6, 43, 44] have revealed the
limitations of current program analysis techniques in prac-
tical semantic understanding, preventing us from evaluating
two types of insecurities. Additionally, several surveys and
studies have explored attacks across various types of smart
contracts [45, 46, 47, 48], while our work specifically fo-
cuses on security incidents related to upgradeable contracts.

9. Conclusion

In this work, we conduct the first large-scale study on
the security about upgrade behaviors in smart contracts. To
do so, we build the first large-scale dataset about upgrade
behaviors by analyzing both transactions and bytecode. In
addition, we develop a thorough taxonomy of insecurities in
upgrade behaviors from 37 real-world security incidents that
involve over $400 million. Based on the dataset, we evaluate
the security of upgrade behaviors following the taxonomy.
In summary, we report 8 different types of security risks in
upgrade behaviors and find a total of 31,407 issues.

References

[1] M. Fröwis and R. Böhme, “Not all code are create2
equal,” in International Conference on Financial Cryp-
tography and Data Security. Springer, 2022, pp. 516–
538.

[2] J. Chen, “Finding ethereum smart contracts security
issues by comparing history versions,” in Proceed-
ings of the 35th IEEE/ACM International Conference
on Automated Software Engineering, 2020, pp. 1382–
1384.

[3] Y. Huang, X. Wu, Q. Wang, Z. Qian, X. Chen,
M. Tang, and Z. Zheng, “The sword of damocles: Up-
gradeable smart contract in ethereum,” in Proceedings
of the 32nd IEEE/ACM International Conference on
Program Comprehension, 2024, pp. 333–345.

[4] X. Li, J. Yang, J. Chen, Y. Tang, and X. Gao, “Charac-
terizing ethereum upgradable smart contracts and their
security implications,” in Proceedings of the ACM on
Web Conference 2024, 2024, pp. 1847–1858.

[5] M. Salehi, J. Clark, and M. Mannan, “Not so
immutable: Upgradeability of smart contracts on

ethereum,” in International Conference on Financial
Cryptography and Data Security. Springer, 2022, pp.
539–554.

[6] S. Chaliasos, M. A. Charalambous, L. Zhou,
R. Galanopoulou, A. Gervais, D. Mitropoulos, and
B. Livshits, “Smart contract and defi security tools: Do
they meet the needs of practitioners?” in Proceedings
of the 46th IEEE/ACM International Conference on
Software Engineering, 2024, pp. 1–13.

[7] W. E. Bodell III, S. Meisami, and Y. Duan, “Proxy
hunting: understanding and characterizing proxy-based
upgradeable smart contracts in blockchains,” in 32nd
USENIX Security Symposium (USENIX Security 23),
2023, pp. 1829–1846.

[8] “Proxy dataset,” 2025, https://github.com/USCHunt-
Anon/USCHunt/tree/master/study/data.

[9] G. Wood et al., “Ethereum: A secure decentralised gen-
eralised transaction ledger,” Ethereum project yellow
paper, vol. 151, no. 2014, pp. 1–32, 2014.

[10] “Bscscan: Bnb smart chain explorer,” 2024, https:
//bscscan.com/.

[11] “Erc-20: Token standard,” 2015, https:
//eips.ethereum.org/EIPS/eip-20.

[12] “Erc-721: Non-fungible token standard,” 2018, https:
//eips.ethereum.org/EIPS/eip-721.

[13] “Etherscan: The ethereum blockchain explorer,” 2024,
https://etherscan.io/.

[14] “Upgradehub,” 2024, https://upgradehub.xyz/.
[15] “Blocksec security incidents,” 2024, https:

//app.blocksec.com/explorer/security-incidents.
[16] “Defillama hacks,” 2024, https://defillama.com/hacks.
[17] “De.fi rekt-database,” 2024, https://de.fi/rekt-database.
[18] “Slowmist hacked,” 2024, https://hacked.slowmist.io/.
[19] “Beware of the proxy: learn how to exploit function

clashing,” 2019, https://forum.openzeppelin.com/t/
beware-of-the-proxy-learn-how-to-exploit-function-
clashing/1070.

[20] N. Ruaro, F. Gritti, R. McLaughlin, I. Grishchenko,
C. Kruegel, and G. Vigna, “Not your Type!
Detecting Storage Collision Vulnerabilities in
Ethereum Smart Contracts,” in Proceedings 2024
Network and Distributed System Security Symposium.
San Diego, CA, USA: Internet Society, 2024.
[Online]. Available: https://www.ndss-symposium.org/
wp-content/uploads/2024-713-paper.pdf

[21] “Erc-1967: Proxy storage slots,” 2019, https://
eips.ethereum.org/EIPS/eip-1967.

[22] “Erc-7201: Namespaced storage layout,” 2023, https:
//eips.ethereum.org/EIPS/eip-7201.

[23] “Storage gaps,” 2025, https://docs.openzeppelin.com/
upgrades-plugins/writing-upgradeable#storage-gaps.

[24] “Openzeppelin upgradesn,” 2025, https:
//docs.openzeppelin.com/upgrades.

[25] F. Ma, M. Ren, L. Ouyang, Y. Chen, J. Zhu, T. Chen,
Y. Zheng, X. Dai, Y. Jiang, and J. Sun, “Pied-piper:
Revealing the backdoor threats in ethereum erc token
contracts,” ACM Transactions on Software Engineering
and Methodology, vol. 32, no. 3, pp. 1–24, 2023.

[26] P. Antonino, J. Ferreira, A. Sampaio, and A. Roscoe,
“Specification is law: Safe creation and upgrade of
ethereum smart contracts,” in International Confer-
ence on Software Engineering and Formal Methods.
Springer, 2022, pp. 227–243.

[27] “Mythril,” 2022, https://github.com/ConsenSys/
mythril.

[28] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Ho-
bor, “Making smart contracts smarter,” in Proceedings
of the 2016 ACM SIGSAC conference on computer and
communications security, 2016, pp. 254–269.

[29] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce,
G. Grieco, J. Feist, T. Brunson, and A. Dinaburg,
“Manticore: A user-friendly symbolic execution frame-
work for binaries and smart contracts,” in 2019 34th
IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2019, pp. 1186–
1189.

[30] “Rattle,” 2022, https://github.com/crytic/rattle.
[31] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier,

V. Gramoli, R. Holz, and B. Scholz, “Vandal: A scal-
able security analysis framework for smart contracts,”
arXiv preprint arXiv:1809.03981, 2018.

[32] F. Contro, M. Crosara, M. Ceccato, and
M. Dalla Preda, “Ethersolve: Computing an accurate
control-flow graph from ethereum bytecode,” in 2021
IEEE/ACM 29th International Conference on Program
Comprehension (ICPC). IEEE, 2021, pp. 127–137.

[33] N. Grech, L. Brent, B. Scholz, and Y. Smaragdakis,
“Gigahorse: thorough, declarative decompilation of
smart contracts,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE,
2019, pp. 1176–1186.

[34] N. Grech, S. Lagouvardos, I. Tsatiris, and Y. Smarag-
dakis, “Elipmoc: Advanced decompilation of ethereum
smart contracts,” Proceedings of the ACM on Pro-
gramming Languages, vol. 6, no. OOPSLA1, pp. 1–27,
2022.

[35] Y. Zhou, D. Kumar, S. Bakshi, J. Mason, A. Miller,
and M. Bailey, “Erays: reverse engineering ethereum’s
opaque smart contracts,” in 27th USENIX security sym-
posium (USENIX Security 18), 2018, pp. 1371–1385.

[36] P. Bose, D. Das, Y. Chen, Y. Feng, C. Kruegel,
and G. Vigna, “Sailfish: Vetting smart contract state-
inconsistency bugs in seconds,” in 2022 IEEE Sympo-
sium on Security and Privacy (SP). IEEE, 2022, pp.
161–178.

[37] C. F. Torres, J. Schütte, and R. State, “Osiris: Hunt-
ing for integer bugs in ethereum smart contracts,”
in Proceedings of the 34th annual computer security
applications conference, 2018, pp. 664–676.

[38] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz,
and Y. Smaragdakis, “Madmax: Surviving out-of-gas
conditions in ethereum smart contracts,” Proceedings
of the ACM on Programming Languages, vol. 2, no.
OOPSLA, pp. 1–27, 2018.

[39] P. Qian, J. He, L. Lu, S. Wu, Z. Lu, L. Wu, Y. Zhou,
and Q. He, “Demystifying random number in ethereum

smart contract: taxonomy, vulnerability identification,
and attack detection,” IEEE Transactions on Software
Engineering, vol. 49, no. 7, pp. 3793–3810, 2023.

[40] Z. Wang, J. Chen, Y. Wang, Y. Zhang, W. Zhang,
and Z. Zheng, “Efficiently detecting reentrancy vul-
nerabilities in complex smart contracts,” arXiv preprint
arXiv:2403.11254, 2024.

[41] Z. Liao, Z. Zheng, X. Chen, and Y. Nan, “Smartdagger:
a bytecode-based static analysis approach for detecting
cross-contract vulnerability,” in Proceedings of the 31st
ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2022, pp. 752–764.

[42] M. Ren, Z. Yin, F. Ma, Z. Xu, Y. Jiang, C. Sun, H. Li,
and Y. Cai, “Empirical evaluation of smart contract
testing: What is the best choice?” in Proceedings of
the 30th ACM SIGSOFT international symposium on
software testing and analysis, 2021, pp. 566–579.

[43] K. Li, Y. Xue, S. Chen, H. Liu, K. Sun, M. Hu,
H. Wang, Y. Liu, and Y. Chen, “Static application
security testing (sast) tools for smart contracts: How
far are we?” Proceedings of the ACM on Software
Engineering, vol. 1, no. FSE, pp. 1447–1470, 2024.

[44] C. Sendner, L. Petzi, J. Stang, and A. Dmitrienko,
“Large-scale study of vulnerability scanners for
ethereum smart contracts,” in 2024 IEEE Symposium
on Security and Privacy (SP). IEEE Computer Soci-
ety, 2024, pp. 220–220.

[45] L. Su, X. Shen, X. Du, X. Liao, X. Wang, L. Xing,
and B. Liu, “Evil under the sun: Understanding and
discovering attacks on ethereum decentralized applica-
tions,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021, pp. 1307–1324.

[46] S. Zhou, M. Möser, Z. Yang, B. Adida, T. Holz,
J. Xiang, S. Goldfeder, Y. Cao, M. Plattner, X. Qin
et al., “An ever-evolving game: Evaluation of real-
world attacks and defenses in ethereum ecosystem,” in
29th USENIX Security Symposium (USENIX Security
20), 2020, pp. 2793–2810.

[47] Z. Zhang, B. Zhang, W. Xu, and Z. Lin, “Demys-
tifying exploitable bugs in smart contracts,” in 2023
IEEE/ACM 45th International Conference on Software
Engineering (ICSE). IEEE, 2023, pp. 615–627.

[48] L. Zhou, X. Xiong, J. Ernstberger, S. Chaliasos,
Z. Wang, Y. Wang, K. Qin, R. Wattenhofer, D. Song,
and A. Gervais, “Sok: Decentralized finance (defi)
attacks,” in 2023 IEEE Symposium on Security and
Privacy (SP). IEEE, 2023, pp. 2444–2461.

