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Abstract—Millimeter-wave (mmWave) communication sys-
tems face increasing susceptibility to advanced beam-stealing
attacks, posing a significant physical layer security threat. This
paper introduces a novel framework employing an advanced
Deep Reinforcement Learning (DRL) agent for proactive and
adaptive defense against these sophisticated attacks. A key
innovation is leveraging Integrated Sensing and Communications
(ISAC) capabilities for active, intelligent threat assessment. The
DRL agent, built on a Proximal Policy Optimization (PPO)
algorithm, dynamically controls ISAC probing actions to in-
vestigate suspicious activities. We introduce an intensive cur-
riculum learning strategy that guarantees the agent experiences
successful detection during training to overcome the complex
exploration challenges inherent to such a security-critical task.
Consequently, the agent learns a robust and adaptive policy that
intelligently balances security and communication performance.
Numerical results demonstrate that our framework achieves a
mean attacker detection rate of 92.8% while maintaining an
average user SINR of over 13 dB.

Index Terms—6G, MIMO, Beamforming, Beam-Stealing,
ISAC.

I. INTRODUCTION

mmWave communications provide high data rates for applica-
tions like AR/VR and connected vehicles [1]. This is achieved
via highly directional beamforming, which mitigates severe
path loss but introduces physical layer vulnerabilities [2].
Beam-stealing attacks, where adversaries hijack or eavesdrop
beams, threaten link integrity and confidentiality [3]. Concur-
rently, ISAC is emerging as a key 6G feature, efficiently using
shared resources for dual functionality [4]. ISAC’s integration
however also introduces new security threats.

Securing mmWave links against sophisticated beam-
stealing attackers that may employ intelligent, adaptive strate-
gies and exploit protocol knowledge to evade conventional
defenses is a significant challenge. For instance, simple Power
Delay Profile (PDP) analysis, although useful, can be cir-
cumvented by attackers capable of subtle manipulations [3].
This underscores the urgent need for robust, proactive, and
adaptive defense mechanisms capable of countering dynamic
and intelligent threats to ensure a reliable and trustworthy user
experience.

Fig. 1 illustrates the threat and defense model considered
in this work. A malicious attacker attempts to hijack the
communication beam from a legitimate user. To counter this,
we propose a novel framework where a DRL agent empowers

Fig. 1. System and defense overview. The base station maintains a secure
communication link with the legitimate user while facing a beam-stealing
attempt from a malicious attacker. The integrated ISAC module actively
probes the environment, detects potential threats, and informs the DRL agent,
which dynamically adjusts the beam direction and sensing effort accordingly.

the base station with proactive and adaptive beam control
strategies. A key innovation is the use of ISAC not merely
as a communication aid, but as an active sensing tool: the
DRL agent leverages ISAC outputs to dynamically probe,
detect, and respond to potential attacks. However, due to the
complexity of the environment, standard agents often fail
to discover secure policies. To address this, we introduce
an intensive curriculum learning approach that ensures early
successful detection experiences, guiding the agent toward
robust convergence.

The primary contributions are:
• A security framework built on an advanced PPO agent

for stable learning in a complex state-action space.
• A novel, intensive curriculum learning strategy that guar-

antees the agent experiences successful threat detection,
a critical step to overcome the deep exploration chal-
lenges inherent in security-critical applications.

• A comprehensive analysis showing that the agent ac-
quires a sophisticated, adaptive strategy that balances the
detection rate with user communication quality.

This holistic approach significantly improves the resilience
and security of mmWave links, ultimately enhancing the
dependability of consumer oriented mmWave applications.

The remainder of this paper is organized as follows. Sec-
tion II reviews the related work. Section III introduces the
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system model, problem formulation, and overall framework.
Section IV presents the proposed DRL agent and its integra-
tion with ISAC. Section V provides the simulation setup and
performance evaluation. Finally, Section VII concludes the
paper.

II. RELATED WORK

Beam-stealing attacks pose critical security threats in
mmWave systems. Steinmetzer et al. [3] practically demon-
strate such attacks on IEEE 802.11ad networks: By inject-
ing forged feedback into the sector sweep protocol, they
enabled Man-in-the-Middle (MITM) relays for eavesdrop-
ping. Addressing beam-stealing attacks without reliance on
training data, Yang et al. [5] propose an image process-
ing methodology. Their approach uses a Received Signal
Strength Indicator (RSSI) map for joint detection and local-
ization of multiple attackers, achieving 91% detection rates
and sub-meter accuracy. Li et al. [2] propose SecBeam to
counter sophisticated beam-stealing, specifically amplify-and-
relay (AnR) attacks that can circumvent beacon authentica-
tion. This protocol analyzes the PDP to detect manipulated
signal paths by verifying that legitimate, shorter paths exhibit
stronger and earlier-arriving signals compared to potentially
amplified, longer relay paths. Recent active attacks such as
BeamCraft [6], which successfully manipulate Wi-Fi traffic by
injecting forged Beamforming Feedback Information (BFI),
demonstrate the critical need for proactive defenses against
such clear-text feedback vulnerabilities.

Further exploring physical layer security, Qiu et al. [7] ad-
dress hybrid threats in mmWave environments by introducing
an artificial noise (AN)-aided robust multi-beam secure com-
munication scheme. Their work centers on the joint design
of information and AN beamforming to counteract coexisting
active jammers and passive eavesdroppers, considering im-
perfect adversary Channel State Information (CSI), where the
legitimate receivers employ Minimum Variance Distortionless
Response (MVDR) for jamming suppression. In the context
of ISAC, Xu et al. [8] combine physical layer covert transmis-
sion with ISAC functionalities. Their work designs transmit
beamforming for both fully digital and hybrid architectures,
enabling confidential, undetected communication to a covert
user while concurrently supporting regular communication
and sensing tasks, even under imperfect warden CSI. Fur-
thermore, the security of Artificial Intelligence (AI) models
for mmWave beamforming prediction is of critical concern.
Kuzlu et al. [9] highlight the susceptibility of deep learning
based beam predictors to adversarial attacks that corrupt input
data and explore adversarial training and defensive distillation
as mitigation techniques. While prior works focus on securing
mmWave systems against attacks, optimizing performance
in dynamic 6G environments is equally critical. Our recent
work [10] uses DRL for adaptive beam switching to improve
throughput and SNR in dynamic 6G environments. Similarly,
Mohammadi et al. [11] employ multipath communications
to counter 5G jamming attacks, enhancing physical layer
security against physical layer threats.

Our DRL framework uniquely employs ISAC for proactive
defense against mmWave beam-stealing. It distinctively opti-
mizes secure beamforming and ISAC probing for enhanced
situational awareness and robust and adaptive countermea-
sures.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a downlink mmWave ISAC scenario where
a base station (BS) communicates with a legitimate user
equipment (UE) while attempting to detect a potential beam-
stealing attacker. The BS employs narrow directional beam-
forming to maximize link quality and simultaneously per-
forms active sensing to identify suspicious targets in its
environment.

Let h ∈ CN denote the channel vector between the BS
and the UE, and let w ∈ CN represent the BS beamforming
vector. The received signal is modeled as:

y = hHwx+ n,

where x is the transmitted symbol and n is complex Gaussian
noise with variance σ2.

The SINR observed by the UE is:

SINR =
|hHw|2

σ2
.

The BS dynamically adjusts its beam direction and ISAC
sensing effort. The sensing module models the detection
probability of the attacker as a function of sensing effort et
and distance dt:

Pd = 1− e−αete−βdt ,

where α, β > 0 model sensing efficiency and distance
attenuation.

Sensor measurements are subject to Gaussian errors in
range and azimuth, and the agent observes a state vector st
that includes communication and sensing features.

B. Problem Formulation

The primary objective is to devise a control policy, π(at|st),
that prioritizes security by maximizing attacker detection
while maintaining adequate communication services. This is
formulated as a DRL problem where the agent learns to
maximize the expected cumulative discounted reward:

Gt =

∞∑
k=0

γkRt+k.

The specific structure of Rt is designed in the next section
to align with the trade-off between detection, communication
quality, and sensing effort.

IV. PROPOSED METHOD

Our proposed solution to optimize beamforming and sensing
is an advanced DRL agent built upon the PPO algorithm. PPO
is a state-of-the-art, policy-based method known for its sta-
bility and robust performance in complex, high-dimensional



environments. The agent is trained to dynamically adjust the
base station’s beam azimuth and ISAC effort to maximize
security while maintaining communication quality. To over-
come the significant exploration challenges inherent in this
task, we introduce an intensive curriculum learning phase.

A. PPO Agent Design

The agent employs an Actor-Critic architecture, which con-
sists of two separate neural networks:

• The Actor Network: This network learns the policy
π(at|st) by taking the current state as the input and
outputting a probability distribution over the discrete
action space.

• The Critic Network: This network estimates the value
function V (st), which predicts the expected cumulative
reward from a given state. This value is used to assess
the quality of the Actor’s actions.

Both networks are implemented as fully connected mul-
tilayer perceptrons (MLPs). The input layer corresponds to
the 7-dimensional state vector. This is followed by two
hidden layers with 256 and 128 neurons, respectively, using
ReLU activation functions. The Actor network has a final
output layer with 5 neurons and a softmax activation to
represent the action probabilities, while the Critic network
has a single linear output neurons for the state value. The
models are optimized using the Adam optimizer. PPO is
chosen for its stability and efficiency in continuous and noisy
environments. Unlike DQN, which requires discrete actions,
PPO handles continuous control directly. Compared to A2C,
PPO’s clipping improves training stability, which is crucial in
sparse-reward tasks like ours. Imitation Learning is unsuitable
here due to the lack of expert demonstrations.

B. Reward Design

The reward function, Rt, at each step t, is designed as
a weighted sum of key behavioral indicators to balance
proactive defense and communication quality:

Rt = wdet · I(conft > 0.7)

+ wpro · I(rangetrue
t < 80m ∧ effortt > 0.8)

− wunaware · I(rangetrue
t < 80m ∧ conft < 0.7)

+ wcom · I(SINRt > 5dB),

(1)

where I(·) is an indicator function. The weights prioritize
security: wdet = 150, wpro = 25, wunaware = 5, and wcom =
0.5. This structure encourages confident detections, rewards
proactive sensing, penalizes ignorance of close threats, and
preserves minimum SINR for service quality.

C. Training with Intensive Curriculum Learning

A primary challenge in this problem is the vast and sparse
reward landscape where the agent may not find the high-
reward states corresponding to a successful detection. Initial
experiments without a curriculum confirm this, resulting in a
0% detection rate as the agent settles in a suboptimal policy
of only maximizing the SINR. We design an intensive, two-
phase curriculum learning strategy to solve this issue.

1) Phase 1: Forced Success Curriculum (First 1500
Episodes)

The goal of this initial phase is to guarantee that the agent
experiences successful detection, thereby learning the value
of security-oriented actions. In each of the first 1500 training
episodes, a "forced success" mechanism selects five unique,
random time steps and overrides the agent’s actions to set
the beam azimuth to the attacker’s true direction and ISAC
effort to its maximum value of 1.0, ensuring 100% guaranteed
detection and associating the large reward of 150 with a
specific state-action context. This initial phase, spanning 1500
episodes, exposes the agent to a total of 7,500 guaranteed
successful detection experiences, 5 per episode. This dense
exposure proves to be critical in seeding the agent’s memory
with high-value experiences, enabling it to overcome the
exploration challenge.

2) Phase 2: Autonomous Learning with Guided Explo-
ration (Post-Curriculum)

The curriculum ends after 1500 episodes, and the agent
becomes fully autonomous. Now equipped with the knowl-
edge that a high-reward security strategy exists, it has the
necessary foundation and motivation to explore and refine
this strategy on its own. We employ a guided exploration
mechanism during this phase to prevent catastrophic forget-
ting and reinforce the learned behavior. At each step, there is
a small (10%) probability that the environment will override
the agent’s action and instead execute the "forced success"
action. This intermittent guidance ensures the agent remains
focused on the effective security policy while still allowing it
to learn the complex trade-offs defined by the reward function.

V. RESULTS

A. Simulation and Implementation Setup

The framework is implemented in Python using Tensor-
Flow 2.17, with the mmWave channel simulated via the
Sionna library [12] configured for the 3GPP TR 38.901 Urban
Macrocell (UMa) model. The full implementation is available
online1.

The base station is equipped with a uniform planar array
(UPA) of 8 × 8 = 64 vertically polarized antenna elements.
It communicates with a legitimate user equipment (UE) and
simultaneously attempts to detect a beam-stealing attacker.
Both UE and attacker are equipped with single-antenna om-
nidirectional receivers. The carrier frequency is set to 28 GHz
and the total available bandwidth is 100 MHz. The total
transmit power is 30 dBm, and the noise power spectral
density is fixed at −174 dBm/Hz.

To simulate realistic dynamics, small positional perturba-
tions are added as Gaussian noise in each episode to simulate
mobility. The sensing subsystem introduces detection errors
modeled as Gaussian noise, with a standard deviation of 3
degrees in azimuth and 1.5 meters in range.

The PPO agent observes a 7-dimensional state vector
consisting of the user’s SINR, the current beam azimuth,

1https://github.com/CLIS-WPI/Secure-Beamforming

https://github.com/CLIS-WPI/Secure-Beamforming


TABLE I
DETAILED STATISTICAL PERFORMANCE COMPARISON OF THE FINAL PPO AGENT AND THE PHYSICS-BASED SECBEAM BASELINE.

Metric Baseline (SecBeam Protocol) Final PPO Agent (Ours)

Communication Performance
Mean SINR (dB) 26.80 13.10
Std. Dev. of SINR (dB) 21.49 11.32
Median SINR (dB) 32.25 16.47
Min / Max SINR (dB) -26.00 / 56.80 -26.00 / 27.49

Security Performance
Mean Detection Rate (%) 68.00% 92.80%
Std. Dev. of Detection Rate (%) 46.65% 13.51%
Median Detection Rate (%) 100.00% 100.00%
Max Detection Rate in an Episode (%) 100.00% 100.00%

Reward Statistics
Mean Cumulative Reward N/A 1976.60
Std. Dev. of Reward (Stability) N/A 1740.42
Median Cumulative Reward N/A 1420.00
Min / Max Reward N/A 20.00 / 8750.00

the estimated azimuth and range of the attacker, detection
confidence, and the ground truth location of the attacker (used
only during training for reward computation).

The key hyperparameters of the PPO agent are summarized
in Table II.

TABLE II
PPO AGENT HYPERPARAMETERS

Hyperparameter Value

Actor Learning Rate 3× 10−4

Critic Learning Rate 1× 10−3

Discount Factor (γ) 0.99
GAE Lambda (λ) 0.95
PPO Clip Epsilon 0.2
Training Epochs (K) 40
Batch Size 4096

B. Overall Performance Evaluation

The primary outcome of our framework is the agent’s ability
to learn a highly effective, security-first policy while main-
taining excellent communication quality. As summarized in
Table I, our PPO agent achieves a mean attacker detection
rate of 92.80%. The median detection rate is 100%, indicating
that in over half of all autonomous episodes, the agent
successfully detects the attacker in every single step. This
high median value underscores the reliability of the learned
policy, demonstrating its consistent success once the security-
oriented strategy is triggered.

We compare its performance against a physics-based de-
fense protocol, SecBeam [2], with full results in Table I. The
SecBeam baseline achieves a higher mean SINR (26.80 dB)
but proves less reliable, with a mean detection rate of only
68.00%. In contrast, our PPO agent achieves a vastly superior
92.80% detection rate by learning a more effective trade-
off, maintaining a robust average SINR of 13.10 dB. This
adaptive balancing of security and communication quality is
a fundamental advantage of our DRL-based approach over
non-adaptive mechanisms.

Figure 2 illustrates the agent’s successful convergence to
an effective policy following the curriculum phase. Fig. 2(a)
shows the positive reward trend. Fig. 2(b) illustrates that
the detection rate nears 100% after the curriculum phase,
indicating the agent’s successful escape from the initial ex-
ploration trap and convergence to a highly rewarding policy.
Fig. 2(c) shows that this security is achieved while con-
sistently maintaining a high-quality SINR above the 5 dB
threshold. Fig. 2(d) illustrates the stability of the learned
policy, where the standard deviation of the reward, although
high because of the agent’s adaptive nature, remains stable
after the initial learning phase.

C. Analysis of the Learned Adaptive Policy

A key finding is that the agent learns an adaptive, intelligent
policy rather than a simple, static one. This is evidenced by
the high standard deviation of the final reward (1740.42),
which reflects the agent’s ability to tailor its strategy to the
specific, dynamic conditions of each episode. Fig. 3 visualizes
this trade-off. The plot shows that the agent can achieve high
detection rates across a wide range of SINR values. Episodes
with lower SINR often correspond to scenarios where the
agent must take more aggressive beamforming actions to
secure the link, sacrificing some communication quality for
near-perfect security. Conversely, in scenarios where the threat
is less immediate, it can achieve both high detection rates and
excellent SINR. This dynamic balancing act is the hallmark
of an intelligent defense system. The high variance in rewards
is therefore not a sign of instability, but rather a direct
consequence of this intelligent, state-dependent adaptability.
This adaptive behavior is further confirmed by the agent’s
resource allocation strategy, shown in Fig. 4, where the ISAC
effort is decisively increased only when a threat is perceived
as near.

D. Analysis of the ISAC Effort Strategy

We analyze the ISAC effort decisions based on threat proxim-
ity to validate that the agent learns a resource-efficient policy.



Fig. 2. Training performance over simulation time, showing the agent’s cumulative reward (a), the successful detection rate (b), the user’s average SINR (c),
and the standard deviation of the reward as a measure of policy stability (d). The agent shows strong convergence after the initial 1500-episode curriculum
phase.

Fig. 4 shows that the agent learns a distinct, bimodal strategy.
When the attacker is near (< 75m), the agent overwhelmingly
allocates the maximum ISAC effort (a sharp peak at 1.0) to
ensure detection. However, when the attacker is far away, it
predominantly uses a lower effort, conserving resources. This
targeted intensification of sensing demonstrates that the agent
has learned to manage its ISAC resources efficiently based
on the immediate security context, rather than employing a
naive, always-on sensing strategy.

VI. DISCUSSION

Our DRL agent, trained with intensive curriculum learning,
develops an effective and intelligent policy that balances
threat detection with communication efficiency. It achieves a
92.8% mean attacker detection rate and maintains a 13.1 dB
average SINR, with a 100% median detection rate, indicating
reliable threat identification in over half of the autonomous
episodes.

The learned policy demonstrates a nuanced and resource-

efficient behavior. Its highly adaptive nature is reflected in the
high standard deviation of the reward values. As discussed in
Section V, this variability is not indicative of instability but
rather results from an intelligent decision-making process that
dynamically adapts to the specific conditions of each scenario.
This contrasts sharply with the rigid, rule-based logic of the
SecBeam baseline, whose performance variance arises from
binary outcomes rather than a learned, context-aware strategy.

The analysis of the ISAC effort strategy (Fig. 4) confirms
this intelligent behavior. The agent learns to intensify sensing
efforts primarily when the perceived threat is near and justifies
the resource cost, a sophisticated, security-driven use of ISAC
that distinguishes our work from general purpose sensing
applications [13], [14].

While the framework is highly effective, its limitations
warrant discussion. The current model is limited to a single-
attacker context, and its performance inherently depends on
the fidelity of ISAC sensing data. Although our curricu-
lum learning proves effective, significant sensor inaccuracies



Fig. 3. A scatter plot visualizing the final learned policy. Each point
represents an episode, showing the trade-off between the achieved SINR
and detection rate, with color indicating the total reward.

Fig. 4. The learned ISAC resource allocation strategy. The agent distin-
guishes between near and far threats, allocating maximum effort only when
the attacker is close.

could still mislead the agent’s decisions. Finally, translating
simulated results to hardware presents challenges, as delays
and imperfect CSI could degrade sensing and communica-
tion performance. These challenges mark avenues for future
investigation.

VII. CONCLUSION AND FUTURE WORK

This paper presents a PPO-based DRL framework to secure
mmWave communications against beam-stealing attacks, us-
ing intensive curriculum learning to overcome exploration
challenges and achieve a robust policy. Our agent attains a
mean detection rate of 92.8%, significantly outperforming the
68% of the physics-based SecBeam baseline, by learning to
intelligently balance security and communication efficiency.
The approach assumes a single, non-adaptive attacker and
perfect CSI, with future work focusing on multi-attacker
scenarios, imperfect CSI, and pursuing real-world testbed

validation.
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