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Abstract— Cyber attacks continue to be a cause of concern
despite advances in cyber defense techniques. Although cyber
attacks cannot be fully prevented, standard decision-making
frameworks typically focus on how to prevent them from
succeeding, without considering the cost of cleaning up the
damages incurred by successful attacks. This motivates us to
investigate a new resource allocation problem formulated in this
paper: The defender must decide how to split its investment
between preventive defenses, which aim to harden nodes from
attacks, and reactive defenses, which aim to quickly clean up the
compromised nodes. This encounters a challenge imposed by the
uncertainty associated with the observation, or sensor signal,
whether a node is truly compromised or not; this uncertainty is
real because attack detectors are not perfect. We investigate how
the quality of sensor signals impacts the defender’s strategic
investment in the two types of defense, and ultimately the
level of security that can be achieved. In particular, we show
that the optimal investment in preventive resources increases,
and thus reactive resource investment decreases, with higher
sensor quality. We also show that the defender’s performance
improvement, relative to a baseline of no sensors employed, is
maximal when the attacker can only achieve low attack success
probabilities.

I. INTRODUCTION

It has proven impossible to prevent cyber attacks from
succeeding [1] even without considering human factors,
which usher in another dimension of vulnerabilities [2] for
which there are no adequate defenses [3]. This highlights
the importance of collectively employing multiple kinds of
defenses [4]–[8]. Recently, there has been much attention
on differentiating between a system’s robustness (ability to
withstand attacks) and resilience (ability to recover from
successful attacks). In this paper, we investigate their inter-
play via two kinds of cyber defenses: preventive defenses,
such as access control mechanisms that contributes to system
robustness; and reactive defenses, such as clean-up processes.

One important research question is: How should a de-
fender optimally invest limited resources towards both pre-
ventive and reactive defenses? At one extreme, total invest-
ment in preventive defenses minimizes chances for potential
attacks to succeed, but leaves no resources to recover from
compromises in the event that they occur. On the other
extreme, total investment in reactive defense maximizes its
capability to recover from compromises, but leaves systems
completely vulnerable to compromise. These tradeoffs sig-
nify an emerging paradigm in cyber defense decision-making
for security that warrants systematic investigation, given
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that previous decision-making frameworks have primarily
focused on preventive defenses [5], [9]–[12].

The collective use of preventive and reactive defenses has
been investigated in recent works [5], [9]–[12]. For exam-
ple, [11] considers strategic attacker-defender interactions
in dynamic multi-stage settings, where preventive design,
adversarial attacks, and post-attack recovery are modeled
and analyzed via subgame perfect equilibria. Closest to the
present paper are studies on the allocation of the two types
of resources over multiple nodes [9], which derives the Nash
equilibrium under the assumption that the defender does not
receive any signals regarding which nodes are compromised.
Another thread of research considers preventive and reac-
tive defenses in the context of dynamic computer malware
spreading in complex networks [13]–[17].

The present paper is specifically interested in studying
how the balance between investing in these two types of
defenses may depend on the quality of the defender’s sens-
ing (i.e., attack-detection) capabilities. Here, we consider
a scenario where the defender, with a limited budget, first
allocates resources on preventive defenses to harden nodes
(e.g., computers) from cyber attacks. More investment in
preventive defenses decreases the probability that attacks
will be successful, but leaves fewer resources to reactive
defenses. After the attacks are waged, the defender receives
noisy signals regarding the nodes’ security states (i.e., com-
promised or not), and then decides how to allocate the
remaining resources on reactive defenses. In our model, more
investment in reactive defenses decreases a node’s expected
time to recover from the compromised state. The defender’s
overall objective is to minimize the costs incurred by nodes
in the compromised state for long periods of time.

The informational elements in our model reflect real-world
reactive defense mechanisms such as intrusion or attack de-
tectors, which can suffer from inaccuracies and uncertainties.
These features have been considered in some cybersecurity
models, such as belief-based and stochastic models for inves-
tigating security investments under uncertainty [7], [18]. By
contrast, we seek to understand the impact that the defender’s
informational capabilities on promoting overall security, and
in doing so, characterize optimal information-aware resource
allocation policies.

The present study makes the following contributions.
First, we propose a novel defender-centric model for the
preventive and reactive defenses trade-off under uncertainty.
We show that the optimal preventive defense investment
increases, and thus reactive defense investment decreases,
with the quality of the sensors as described by true-positive
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and false-positive rates (Theorem 3.1). We then quantify
the percentage improvement in the expected cost, and how
this depends on the sensors’ true-positive and false-positive
rates (Theorem 3.2). Lastly, we characterize how the attack
strength impacts the defender’s percent improvement, relative
to the baseline scenario where it has uninformative sensors
(Theorem 3.3). We conduct numerical simulations to confirm
our theoretical results and illustrate the practical impact of
sensor quality on optimal budget allocation.

The rest of the paper is organized as follows. Section
II introduces our model. Section III presents our main
theoretical and empirical results. Section IV concludes the
paper with a discussion on implications and future directions.

II. MODEL

We study the following two-stage cyber defense resource
allocation problem. There are n nodes, representing comput-
ers or devices, which may be compromised by attackers. At
each node, the defender can employ: (i) preventive defense,
such as access control, to make it harder for attackers to
compromise the node; and/or (ii) reactive defense, such as
intrusion detector or sensor for succinctness, to detect that
a node has been compromised and then take appropriate
actions (e.g., cleaning up a compromised node). In practice,
sensors are not perfect, with a known true-positive rate and
a known false-positive rate. Suppose the defender has a
total budget X > 0 to be spent on preventive defenses
and reactive defenses. The attack-defense interaction has two
stages. Figure 1 illustrates the model, with model parameters
summarized in Table I.

A. Stage 1: Preventive defense

The defender selects an allocation of preventive resources,
XP,i ≥ 0 to harden node i, where 1 ≤ i ≤ n, to
reduce its probability of getting compromised, and such
that

∑n
i=1 XP,i ≤ X . We assume that an array of attack

resources Yi are allocated to the nodes. These allocations
determine the probability that each node becomes compro-
mised: in this work, we define the compromise probability
as

γi =
Yi

Yi +XP,i
. (1)

which is decreasing in the investment of preventive resources
XP,i. The form of (1) is known as the Tullock contest success
function [9], [10], [19], [20], which is often adopted to reflect
breach probabilities.

B. Stage 2: Reactive defense

This stage consists of four components.
1) Sensor Signaling: Each node i is monitored by a binary

sensor emitting a signal Si ∈ {0, 1}. A signal Si = 1 sug-
gests possible node compromise, whereas Si = 0 indicates
the node is likely secure. Due to sensor imperfections, noise
affects observations. Let pi = P(Si = 1 | compromised)
be the true-positive rate, denoting the probability the sensor
accurately identifies a compromised node. In contrast, qi =
P(Si = 1 | safe) represents the false-positive rate, which

describes the chance the sensor wrongly reports a safe node
as compromised.

Given the prior probability γi that node i is actually
compromised, the signal distribution can be expressed as a
mixture:

P(Si = 1) = γipi + (1− γi)qi, (2)
P(Si = 0) = γi(1− pi) + (1− γi)(1− qi). (3)

As shown in Figure 2, we restrict our analysis to the
region:

pi ∈ [
1

2
, 1], qi ∈ [0,

1

2
]

This region, denoted as Region A, is justified as follows:

• Symmetry and equivalence: The model exhibits an
equivalence under the transformation (p, q) 7→ (1 −
p, 1 − q), meaning that inverting the signal will flip
its interpretation but preserves the information. Thus,
studying the lower triangle p > q is sufficient to cover
all cases without loss of generality.

• Informativeness: A sensor is informative only if pi >
qi, meaning that alarm is triggered when the node is
compromised than when the node is secure; note that
sensors whose parameters are near the diagonal line p =
q behave like random coin flipping and offer no value.

Thus, our investigation will focus on RegionA.
2) Bayesian Update: Upon observing signal Si, the de-

fender updates their belief on whether node i is compromised
by using Bayes’ rule [21]:

γi(Si) =
pSi
i (1− pi)

1−Si · γi
pSi
i (1− pi)1−Si · γi + qSi

i (1− qi)1−Si · (1− γi)
.

(4)

3) Reactive Defense Budget and Recovery Time: With
probability γ̂i(Si), The defender will allocate reactive de-
fense resources XR,i to accelerate the recovery of node i in
the event of compromise. We assume that the time required
to recover a compromised node follows an exponential distri-
bution, which is widely used in epidemic models and game-
theoretic models (e.g. [22]). Specifically, for node i, given
that it is truly compromised, we model the recovery time
Ti as an exponential random variable with rate parameter
ri(XR,i) given by:

Ti ∼ Exp (ri(XR,i)) ,

where ri(XR,i) =
XR,i + δi

XR,i + δi + ϵi
, (5)

where δi ≥ 0 is pre-exsisting defenses resources and ϵi >
0 is a half-saturation constant that governs how fast the
recovery time decreases with the additional allocation of
reactive resources. Thus, the expected recovery time is:

Ti(XR,i) = 1 +
ϵi

δi +XR,i
. (6)

Otherwise, if node i is not compromised, the recovery time
is zero:

Ti = 0.



Fig. 1: Illustration of the two-stage model. Stage 1: The defender allocates preventive resources XP,i across nodes before the attack, aiming
to reduce compromise probabilities. The compromise status (i.e. compromised or not) of each node is determined by the probabilities γi.
Stage 2: After receiving noisy sensor signals Si regarding the nodes’ status, the defender updates its beliefs on the nodes’ compromise
status via Bayesian inference and then allocates reactive resources XR,i in order to minimize the expected recovery cost, which is given
by the total expected time each node spends in a compromised state.

Fig. 2: Sensor parameter space: we only need to analyze the region
induced by true-positive rate p ∈ [0.5, 1] and false-positive rate
q ∈ [0, 0.5], because the diagonal p = q represents uninformative
sensors and the region above this line is symmetric to the region
below it via signal inversion.

This function is strictly decreasing and convex in XR,i, while
reflecting diminishing returns on reactive defense budget.

4) Defense Budget Allocation and the Optimization
Problem: Let XP = (XP,1, . . . , XP,n) and XR =
(XR,1, . . . , XR,n) denote the defender’s preventive and reac-
tive defense budget allocation across the n nodes. For a given
signal realization S = (S1, . . . , Sn), the defender updates
the posterior beliefs γ̂i(Si) as described above, incurring the
following cost:

J(S,XP , XR, p, q) :=

n∑
i=1

vi γ̂i(Si)Ti(XR,i). (7)

The total cost, averaged over all signal realizations, is:

J(XP , XR, p, q) :=
∑

S∈{0,1}n

P(S) J(S,XP , XR, p, q), (8)

where P(S) is the signal distribution:

P(S) :=
n∏

i=1

[γipi + (1− γi)qi]
Si

× [γi(1− pi) + (1− γi)(1− qi)]
1−Si (9)

The optimization problem is for the defender to minimize
this total cost subject to the resource constraint:

min
XP,i≥0, XR,i≥0∑n

i=1 XP,i+
∑n

i=1 XR,i=X

J(XP , XR, p, q). (10)

We observe that it is difficult to solve the optimization prob-
lem because the optimal solution depends on the uncertainty
imposed by the signals. We propose tackling the problem by
leveraging the following backward induction strategy, in two
steps.
Step 1: Reactive Defense Budget Allocation Optimization.
Given preventive defense budget allocation XP and a signal
realization S, the defender selects the reactive defense budget
allocation XR to minimize the recovery cost:

X∗
R := arg min

XR,i≥0∑
XR,i=X−

∑
XP,i

J(S,XP , XR, p, q) (11)

This is a convex optimization problem that admits a closed-
form solution via the Karush–Kuhn–Tucker (KKT) condi-
tions, as given by Proposition II.1.

Proposition II.1 (Closed-Form Optimal Reactive Defense
Budget Allocation). Let XP ∈ Rn

+ be fixed and S =
(S1, . . . , Sn) ∈ {0, 1}n be the observed signal vector.
The optimal reactive defense budget allocation that solves
Eq. (11) is given by:

X∗
R,i := max

{ √
viγ̂i(Si)ϵi∑

k∈A

√
vkγ̂k(Sk)ϵk

(
XR +

∑
k∈A

δk

)
− δi, 0

}
,

(12)

where XR = X−
∑n

i=1 XP,i is the reactive defense budget



and A = {i : X∗
R,i

> 0} is the set of actively recovered
nodes.

Step 2: Preventive Defense Budget Allocation Optimiza-
tion. The expected cost under optimal reactive defense
budget allocation is:

J∗(XP ; p, q) :=
∑

S∈{0,1}n

P(S) J(S,XP , X
∗
R, p, q). (13)

The defender selects the preventive defense budget allocation
XP to minimize the total expected cost via:

X∗
P = arg min

XP,i≥0∑
XP,i≤X

J∗(XP ; p, q). (14)

The resulting minimum total cost is denoted by:

J∗(p, q) := J∗(X∗
P ; p, q) (15)

This two-stage optimization structure defines the core logic
and analysis of our model. Note that Step 1 is analytically
tractable via Proposition II.1, while Step 2 is nonconvex in
general and thus can only be solved numerically.

TABLE I: Model parameters

n number of nodes, indexed by i = 1, . . . , n
Yi > 0 attacker effort on attacking node i
XP,i ≥ 0 defender’s preventive defense budget spent

on hardening node i
XR,i ≥ 0 defender’s reactive defense budget spent on

cleaning up node i
pi, qi ∈ [0, 1] true-positive rate and false-positive rate of

the sensor employed at node i, with pi > qi
γi prior probability that node i is compromised

despite the employment of preventive de-
fense budget XP,i

Si ∈ {0, 1} binary signal by the sensor employed at node
i, where Si = 1 suggests the node may be
compromised, Si = 0 suggests it may be
safe.

γ̂i(Si) posterior probability that node i is compro-
mised given signal Si

ϵi > 0 half-saturation constant governing the
marginal benefit of reactive defense

δi ≥ 0 pre-existing defense resources
Ti(XR,i) expected recovery time at node i
vi > 0 valuation of node i measured as cost per time
P (S) joint probability of signal vector S =

(S1, . . . , Sn)
J(S) recovery cost under signal realization S
J expected recovery cost, averaged over all

signal vectors

III. MAIN RESULT

A. Tradeoff Between Preventive and Reactive Allocation

First, we consider the problem of determining the op-
timal division of the defense budget between preventive

and reactive strategy XP,i and XR,i given a signal with
parameters p (the true-positive rate) and q (the false-positive
rate).Intuitively, better quality sensors produce signals that
are more informative, allowing the defender to estimate the
compromise state more accurately. The following theorem
formalizes this monotonic relationship between sensor qual-
ity and preventive allocation.

Theorem 3.1 (Monotonicity of Preventive Effort in p and q).
Consider the attacker–defender game with n nodes, where
each node i has: Yi > 0 XP,i ≥ 0 γi > 0

Let X∗
P,i = (X∗

P,1, . . . , X
∗
P,n) denote the optimal preven-

tive allocation that solves Eq. (14). Then, for each node i,
the optimal preventive allocation satisfies:

d

dp
X∗

P,i ≥ 0,
d

dq
X∗

P,i ≤ 0. (16)

Proof. We do not assume a closed-form solution for X∗
P,i.

Instead, the structural relationships in the model are ana-
lyzed.

Step 1: Posterior monotonicity. For fixed γi ∈ (0, 1), the
posterior given Si = 1 is:

γ̂i(1) =
p · γi

p · γi + q · (1− γi)
. (17)

Taking the derivative:

d

dp
γ̂i(1) > 0,

d

dq
γ̂i(1) < 0. (18)

Thus, γ̂i(1) becomes more reliable with higher p and less
reliable with higher q.

Step 2: Defender incentive to reduce compromise
probability. The cost term for each node is:

vi · γ̂i(Si) · Ti(XR,i), (19)

where Ti exhibits convex properties and diminishes as a
function of XR,i, with XR,i being adaptively determined
based on the observed signals. This cost increases relative to
γ̂i(Si), thereby incentivizing the defender to minimize the
initial γi and its responsiveness through strategic measures.

Step 3: Inverse relation between XP and γi. From:

γi =
Yi

Yi +XP,i
⇔ XP,i =

Yi(1− γi)

γi
, (20)

we conclude that XP,i is strictly decreasing in γi.
Step 4: Final monotonicity result. As p ↑⇒ γ̂i(1) ↑⇒

defender lowers γi ⇒ XP,i ↑. As q ↑⇒ γ̂i(1) ↓⇒ defender
tolerates higher γi ⇒ XPi ↓.

Therefore, X∗
P,i increases in p, decreasing in q, which

completes the proof. ■

Corollary 1 (Perfect Sensors Maximize Preventive Alloca-
tion). Under the same model, the total preventive allocation
is maximized when p = 1, q = 0:

n∑
i=1

X∗
P,i(p = 1, q = 0) = max

p,q∈(0,1)

n∑
i=1

X∗
P,i(p, q). (21)



Fig. 3: Total preventive allocation
∑

XP,i vs. true-positive rate p,
for fixed false-positive rates q ∈ {0.0, 0.25, 0.5}.

Proof. This follows directly from the monotonicity of XP

in p and q. ■

Theorem 3.1 shows that as the sensor becomes more
accurate—through a higher true-positive rate p or a lower
false-positive rate q—the defender allocates more resources
to prevention. This confirms our central hypothesis. This
increases the effectiveness of reactive allocation and incen-
tivizes the defender to allocate more budget toward pre-
vention, knowing that sensor feedback will support precise
post-attack response. In contrast, poor sensor quality leads
to weaker reliability of reactive decisions, provoking the
defender to allocate less resources to prevention and reserve
more resources for generic reactive responses.

Significantly, this rise in preventive measures is evident
both overall and at the individual node level. Enhanced
sensor accuracy leads to an increased optimal allocation for
all nodes, indicating a strategic realignment.

In order to empirically validate this result, we numerically
solve the optimal preventive allocation X∗

P for a grid of
values p, q and a fixed total budget X = 10, using a
numerical optimization method. The total preventive effort
can be seen in Figures 3 and 4 to increase with p and decrease
with q, confirming the monotonicity of the optimal allocation
predicted by the theorem.

B. Improvement from Sensor Information

We now analyze how the presence of imperfect sensor
signals affects the expected recovery cost of defense.

To evaluate the value of sensor information, we compare
the expected cost of the defender in two different settings:

• No-Sensor Baseline: When the sensor does not provide
information on node compromise, that is, p = q = 1

2 .
In this case, the posterior equals the prior, and the
reactive allocation is based solely on prior compromise
probabilities γi. We denote the corresponding cost by
J( 12 ,

1
2 ).

• Sensor-Aided Case: When the sensor is informative,
that is, p ̸= q, and the defender updates posterior
beliefs γ̂i(Si) using the Bayes rule based on observed

Fig. 4: Total preventive allocation
∑

XP,i vs. false-positive rate q,
for fixed true-positive rates p ∈ {0.5, 0.75, 1.0}.

signals. This results in adaptive reactive allocations and
a reduced expected cost denoted by J(p, q).

We define the value of sensing as the percentage reduction
in expected cost as compared to the baseline without sensor.

To quantify the benefit of sensing, we define the improve-
ment function as:

I(p, q) = 1− J(p, q)

J( 12 ,
1
2 )

. (22)

This metric I(p, q) measures the relative reduction in ex-
pected cost due to sensor information. Specifically, I(p, q) =
0 indicates no improvement (i.e., the sensor is uninforma-
tive), while I(p, q) = 1 represents complete elimination of
expected cost (i.e., perfect defense enabled by ideal sensor
signals). Note that this is not a multiplicative improvement;
rather, it reflects a fractional decrease in expected cost
relative to the no-sensor baseline.

The following theorem characterizes important structural
properties of the value of sensing and its relationship with
the signal parameters p and q.

Theorem 3.2. The improvement function I(p, q), defined as
Eq. 22 satisfies the following structural properties:

(i) Zero Improvement when p = q:

I(p, p) = 0. (23)

(ii) Improvement Increases with p (for fixed q = 0):
dI

dp
(p, 0) > 0. (24)

(iii) Improvement Decreases with q (for fixed p = 1):
dI

dq
(1, q) < 0. (25)

Proof. The definition of I(p, q) follows directly from the
expected cost with sensor information, J(p, q), and the no-
sensor baseline, J( 12 ,

1
2 ), both computed using the KKT-

optimal reactive allocations.



(i) When p = q, Bayes’ rule yields:

γi(Si) =
p · γi

p · γi + p · (1− γi)
= γi, (26)

so the posterior equals the prior. The defender’s behavior is
thus identical in both cases, and we have J(p, p) = J( 12 ,

1
2 ),

hence I(p, p) = 0.
(ii) Fix q = 0. As p increases, the signal becomes more

informative by reducing false negatives. In particular, when
Si = 0, the posterior γ̂i(0) becomes smaller, allowing the
defender to allocate the reactive defense resources more
accurately. This reduces the expected cost J(p, 0), so the
improvement I(p, 0) increases. Therefore, dI

dp (p, 0) > 0.
(iii) Fix p = 1. As q increases, false-positives become

more frequent, effectively reducing the reliability of sensor
signals. This degrades the accuracy of the posterior part
and causes misallocated reactive defense resources, raising
the expected cost J(1, q). Hence, the improvement I(1, q)
decreases, and dI

dq (1, q) < 0. ■

Theorem 3.2 states that the expected cost of the defender is
decreasing in the provision of sensor information if and only
if the sensor is informative, i.e., if p ̸= q. Furthermore, the
improvement function increases monotonically in the true-
positive rate p and decreases monotonically in the false-
positive rate q. This proves a key implication of our model:
that even noisy sensing can lead to more effective reactive
responses by updating posteriors. The monotonicity prop-
erties also indicate that modest improvements in detection
performance can lead to meaningful cost savings. These in-
tuitions are borne out in Fig. 5, which plots the improvement
function I(p, q) across the sensor parameter space.

Importantly, these performance improvements do not come
from better reactivity alone. As shown in Theorem 3.1,
increasing p also increases the optimal preventive effort X∗

P .
Since reactive allocation in Stage 2 always uses the same
KKT-based optimization, cost reduction J(p, q) must be
mainly due to lower risk of compromise - caused by greater
investment in prevention. Thus, better sensor information im-
proves performance not by enabling a more precise reaction
but by inducing a more confident and targeted prevention.
This is a somewhat counter-intuitive outcome: sensing helps
not because it reacts better, but because it motivates better
preparation before the attack.

C. Improvement vs. Prior Compromise Probability

Based on the previous result, where we showed that sensor
quality (p, q) influences the value of sensing, we now analyze
how the defender’s initial uncertainty - captured by prior
compromise probabilities γi - affects the marginal benefit
of sensor information. In many real-world networks, these
priors may correspond to previous risk assessment, node
criticality/importance, or vulnerability to malware infections.
The central question then is how to optimally address initial
uncertainty about node compromise, given the signal quality,
to maximize the marginal benefit of sensor investment. In
order to examine this factor in isolation, the uniform setting

Fig. 5: Percentage improvement I(p, q) over the signal parameter
space.

is used as described in previous paper, with fixed parameters
except γi.

Note that in previous sections, the expected cost was
denoted J∗(p, q), where the prior compromise probabilities
γ = (γ1, . . . , γn) were held fixed. Here, we explicitly write
J∗(p, q; γ) to emphasize that the cost depends on the initial
uncertainty of the defender, which we vary to study its effect
on the sensing value.

Baseline Cost without Sensor Information. Under uninfor-
mative signals (p = q = 1

2 ), the defender allocates reactive
resources based on prior probabilities only:

Jn = J∗(
1

2
,
1

2
; γ) = v

n∑
i=1

γi

(
1 +

ϵ

δ +X∗
R,i

)
, (27)

where J∗(p, q; γ) denotes the fully optimized cost (see
Eq. (15)) and X∗

R,i is the reactive allocation based on prior
belief.

Cost under Perfect Sensor Information. Under perfect
sensing (p = 1, q = 0), the reactive effort is allocated exactly
to compromised nodes:

Jp = J(1, 0, γi) =
∑
S⊆[n]

∏
i∈S

γi
∏
j /∈S

(1− γj)


·|S|v

(
1 +

ϵ

δ +XR/|S|

)
. (28)

The expression for Jp accounts for all possible combinations
of which nodes are actually compromised. Each subset S ⊆
[n] represents a possible realization of the compromised
nodes, where node i ∈ S is compromised and j /∈ S is
not. The term ∏

i∈S

γi
∏
j /∈S

(1− γj)

is the joint probability that this particular subset S is the
true compromise pattern, assuming independent priors. Given
perfect sensing, the defender knows S exactly and allocates
all reactive resources XR to the compromised nodes in S,
distributing them equally. The total cost for a realization S



is proportional to the number of compromised nodes, |S|,
each incurring a recovery delay cost

1 +
ϵ

δ +XR/|S|
.

The overall expected cost Jp is then computed by averaging
this cost over all possible subsets S, weighted by their
respective probabilities. The improvement is defined as the
fractional reduction in expected cost:

I(n)(γ1, . . . , γn) := 1− Jp
Jn

.

We now analyze how I(n) varies as a function of a single
prior, γ1, with the other priors fixed.

Theorem 3.3 (Unimodality and Endpoint Behavior of Sensor
Improvement). Let n ≥ 2, with identical node parameters
vi = v, ϵi = ϵ, δi = δ, and fix γ2, . . . , γn ∈ (0, 1). Then the
improvement function I(n)(γ1, γ2, . . . , γn) satisfies:

• I(n)(0, 0, . . . , 0) = 0:
There is no benefit from sensor information when all
nodes are certainly safe (i.e., no uncertainty to resolve).

• lim
γ1→0+

∂I(n)

∂γ1
= +∞:

The marginal value of sensing is extremely high when
the defender is nearly certain that node 1 is safe.

•
∂I(n)

∂γ1

∣∣∣∣
γ1=1

< 0:

When the defender is fully certain that node 1 is com-
promised, additional sensor information reduces value
due to redundancy or misleading noise.

• max
γ1∈[0,1]

I(n)(γ1, . . . ) = lim
γ1→0+

I(n):

The maximum improvement is achieved in the limit as
the defender’s prior belief approaches full certainty that
node 1 is safe.

•
∂I(n)

∂γ1
< 0 ∀γ1 ∈ (0, 1]:

The improvement function is strictly decreasing in γ1,
confirming that sensing is most useful under high un-
certainty and becomes less valuable as confidence in
compromise grows.

Proof. We differentiate I(n) = 1− Jp/Jn, giving:

∂I(n)

∂γ1
= −

∂Jp

∂γ1
· Jn − Jp · ∂Jn

∂γ1

(Jn)2
. (29)

At γ1 = 0, only the subsets S ∋ 1 contribute to
∂Jperf/∂γ1, and their weight derivatives are strictly positive.
Meanwhile, the no-sensor term satisfies:

γ1

(
1 +

ϵ

δ +X∗
R,1

)
≈ γ1 +A

√
γ1 +Bγ1, (30)

yielding:

d

dγ1
[·] = 1 +B +

A

2
√
γ1

→ +∞. (31)

Fig. 6: Relative improvement I(2)(γ1, γ2) versus γ1, for several
values of γ2. Sensor quality is fixed at (p = 1, q = 0).

Thus:

lim
γ1→0+

∂I(n)

∂γ1
= +∞. (32)

At γ1 = 1, perfect-sensor cost decreases due to reduced
uncertainty, while no-sensor cost increases smoothly:

∂I(n)

∂γ1

∣∣∣∣
γ1=1

< 0. (33)

Since I(n)(0) = 0 and the derivative is strictly negative
for all γ1 ∈ (0, 1], the function reaches its maximum in the
limit γ1 → 0+, completing the proof. ■

Theorem 3.3 reveals a somewhat counterintuitive in-
sight: the value of sensor information is not maximized
against highly likely threats, but rather against weak or
low-probability threats that the defender could otherwise
overlook. As in γ1 → 1, the defender is already prepared
to respond, so sensor feedback is no longer needed. As in
γ1 → 0 As in the γ1 → 0 limit, the defender assumes that the
node is safe and may be undersupplied, but in the process,
the marginal value of the detection is small due to the low
probability of compromise.

Empirically, Figure 6 shows that I(2)(γ1, γ2) is maximized
at γ1 ≈ 0.1 and drops on either side. In other words, sensing
is most valuable when the threat is weak but plausible,
rather than when the defender is totally uncertain or totally
confident. This contrasts previous work that shows that
information is most valuable against a stronger or more
targeted opponent in adversarial settings, such as Colonel
Blotto or General Lotto [23]–[25]. In our setting, information
helps the defender in adjusting the defense posture toward
otherwise neglected nodes, highlighting the strategic value
of detection in early-stage or covert threats.

IV. CONCLUSION

We developed a theoretical framework to model the trade-
off between prevention and response under sensor signal
uncertainties. The defender performs Bayesian inference,



based on sensor signals or observations, for informed defense
resource allocation. We show that the optimal defense invest-
ment increases with the true-positive detection rate and de-
creases with the false-positive rate. We introduce an improve-
ment function I(p, q) to quantify how sensor signal quality
affects the defender’s performance; I(p, q) increases with
the true-positive rate p and decreases with the false-positive
rate q, highlighting the vital role of informative sensors
in reducing the recovery costs. We derive an improvement
function I(n)(γ1, . . . , γn) for closed homogeneous systems,
where I(n) exhibits a unimodality in each γi while peaking at
moderate prior uncertainty. Numerical experiments confirm
that informative sensors lower the expected recovery cost.

There are many exciting future research problems, such
as the following: How should we deal with networked
dependencies, where the security states of the nodes depend
on each other? How should we deal with strategic attackers
that adapt to the defender’s strategies? How should the
defender make real-time decisions using real-time sensor
signals and online allocation of resources? How should we
optimize the placement of sensors? How can we deal with
the uncertainty associated with the prior probabilities and
the uncertainties associated with sensor noise (i.e., their true-
positive and false-positive rates)?
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