
1

LMDG: Advancing Lateral Movement Detection
Through High-Fidelity Dataset Generation

Anas Mabrouk, Mohamed Hatem, Mohammad Mamun, Senior Member, IEEE, Sherif Saad, Senior Member, IEEE

Abstract—Lateral Movement (LM) attacks continue to pose a
significant threat to enterprise security, enabling adversaries to
stealthily compromise critical assets. However, the development
and evaluation of LM detection systems are impeded by the
absence of realistic, well-labeled datasets. To address this gap,
we propose LMDG, a reproducible and extensible framework for
generating high-fidelity LM datasets. LMDG automates benign
activity generation, multi-stage attack execution, and comprehen-
sive labeling of system and network logs, dramatically reducing
manual effort and enabling scalable dataset creation. A central
contribution of LMDG is Process Tree Labeling, a novel agent-
based technique that traces all malicious activity back to its
origin with high precision. Unlike prior methods such as Injection
Timing or Behavioral Profiling, Process Tree Labeling enables
accurate, step-wise labeling of malicious log entries, correlating
each with specific attack step and MITRE ATT&CK TTPs.
To our knowledge, this is the first approach to support fine-
grained labeling of multi-step attacks, providing critical context
for detection models such as attack path reconstruction. We used
LMDG to generate a 25-day dataset within a 25-VM enterprise
environment containing 22 user accounts. The dataset includes
944 GB of host and network logs and embeds 35 multi-stage
LM attacks, with malicious events comprising less than 1% of
total activity—reflecting realistic benign-to-malicious ratio for
evaluating detection systems. LMDG generated datasets improves
upon existing ones by offering diverse LM attacks, up-to-
date attack patterns, longer attacks timeframes, comprehensive
data sources, realistic network architectures, and more accurate
labeling.

Index Terms—Advanced Persistent Threats (APTs), Lateral
Movement (LM), cybersecurity benchmarks, multi-stage attacks,
MITRE Att&ck.

I. INTRODUCTION

ADVANCED Persistent Threats (APTs) represent a sophis-
ticated category of cyberattacks characterized by their

prolonged and stealthy presence within a targeted computer
system or network, aimed at ultimately exfiltrating sensitive
data or causing significant harm [2], [18], [48]. APTs employ a
diverse array of techniques and tactics meticulously crafted to
circumvent the defensive mechanisms of the victim’s security
infrastructure [1]. Among the array of sophisticated techniques
employed by advanced threat actors, the concept of LM
has emerged as a critical strategy for adversaries seeking
to maneuver within compromised network environments. As
elucidated by the exposition in [1], LM embodies an array
of methodologies engaged by malevolent entities to infiltrate
and orchestrate control over remote network systems. The

This paper is based on the author’s MSc thesis; for more details, see [35].

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

attainment of their intended goals is frequently characterized
by the imperative act of pivoting across an assortment of in-
terconnected systems and accounts. Corresponding definitions
mirroring this conception of LM are also extant within the
literature, as expounded upon in [24], [4], [33], and [42],
delineating the concept as the orchestrated movement of an
attacker from a primary host to successive nodes within a
compromised network, culminating in the pursuit of a valuable
target.

LM-based attacks are becoming a growing threat to large
private and government networks, frequently causing infor-
mation exfiltration and service disruptions [10]. Analyzing
various APT campaigns reveals that nearly all employ LM
to navigate networks. The purpose of LM is to transition from
one system to another, infiltrating additional resources and
gaining higher privileges. This process enables attackers to
discover and collect valuable data, expand their control over
the targeted organization, and maintain long-term access to the
compromised IT infrastructure [2], [18], [45], [51]. Since LM
is a crucial phase in an APT attack, early detection is vital
to minimize losses and prevent attackers from gaining further
access to the network [9].

Detecting LM attacks poses a significant challenge, primar-
ily due to several factors; firstly, the prolonged duration of
these attacks, which can extend over months, significantly
complicates their detection. Additionally, the sheer volume
of enterprise traffic provides adversaries ample opportunities
to blend in and seamlessly remain undetected amidst regular
network activity. Various tactics and techniques exist for
executing LM attacks, often leaving traces within network
and system logs [1]. Attackers can effectively evade detection
mechanisms by leveraging legitimate authentication creden-
tials, system tools, and other evasion techniques. Furthermore,
the prevalence of false security alerts further adds to the diffi-
culty of distinguishing genuine threats from benign anomalies.
Moreover, the incorporation of zero-day exploits or novel
malware variants as part of these attacks further amplifies the
complexity of detection [5], [7], [9], [11], [23].

Current research endeavors for LM detection rely mainly
on machine learning [10], [32], [34], [47], [49]. The machine
learning paradigm depends heavily on datasets to train and
evaluate detection models, and the quality of these datasets
directly impacts model performance and evaluation accuracy.
Without high-quality training data, models can exhibit perfor-
mance discrepancies, reducing accuracy and increasing false
positives [16], [26]. A growing body of literature explores the
evidence supporting that neglecting the fundamental impor-
tance of data has led to inaccuracies and bias in ML mod-
els [37]. For instance, researchers in [13] demonstrated that

ar
X

iv
:2

50
8.

02
94

2v
1 

 [
cs

.C
R

] 
 4

 A
ug

 2
02

5

https://arxiv.org/abs/2508.02942v1


2

even minor modifications to a benchmark dataset significantly
impact model performance more than the specific machine
learning technique. Therefore, better data quality is essential
to improve generalization and avoid bias in machine learning
models [6], [44].

Most cybersecurity datasets suffer from quality issues, par-
ticularly those containing LM attacks. Common data quality
problems include noisy labels, insufficient labeling, class im-
balance, limited diversity of attack patterns, outdated attack
types, simplistic synthetic generation environments, and short
generation periods (see section V). Additionally, many existing
datasets either lack instances of LM attacks altogether or
contain only a limited number of such instances [15], [21],
[26], [50]. Consequently, developing a comprehensive dataset,
or ideally a framework, that addresses these challenges and
others is essential for advancing research in LM detection.

To this end, our paper introduces a framework called LMDG
(LM Datasets Generator), which addresses most of the issues
discussed in section V. Our contributions can be summarized
as follows:

• We analyzed existing cybersecurity datasets for LM
attack properties, including techniques, time frames,
movement hops, data sources, labeling methods, and
testbed designs. We also reviewed frameworks for
creating LM datasets V, making this the first study
focused on LM dataset evaluation.

• Creating a benchmark dataset focused on LM attacks
that address many of the existing issues in current LM
datasets and conducting a qualitative analysis of it III IV.
This dataset will be valuable for the research community
in training and evaluating LM detection models.

• We developed the LMDG framework to generate repro-
ducible LM/APT datasets (see Section II). It automates
benign data generation II-C, attack execution II-D, and la-
beling. Automatic labeling is challenging in LM datasets
due to malicious activities by benign hosts. Existing
techniques include Injection Timing, Behavior Profiles,
and Network Security Tools [21], [28]. We introduce a
new method, process tree labeling, which we argue is
the most accurate II-E.

II. LMDG FRAMEWORK

A. Overview

The LMDG framework uses VirtualBox to simulate organi-
zational networks for LM detection research. While synthetic
datasets offer controlled conditions and flexible attack simula-
tions, they may lack realism. To address this, LMDG employs
advanced virtualization techniques to enhance dataset fidelity.
VirtualBox’s networking options—NAT, Bridged, Internal, and
Host-Only networks—allow for flexible and realistic network
simulations. These configurations help emulate diverse organi-
zational topologies, improving the practicality of the generated
datasets for cybersecurity research.

Active Directory (AD) is a widely used directory service for
managing IT profiles, enabling authentication, authorization,

and resource management [38], [40]. The recent CrowdStrike
incident highlighted the critical reliance on Windows systems,
causing major disruptions and financial losses [27], [41].
The LMDG framework integrates Windows Domains and
AD to create realistic network environments for cybersecurity
research, improving the accuracy of simulated datasets for
studying advanced threats like APTs.

The LMDG framework uses Wireshark for capturing de-
tailed network traffic traces and employs a persistent logging
service on all hosts and gateways to ensure data continuity.
It also leverages Windows Event Logs for comprehensive
system and security event records. This combination ensures
high-fidelity data collection, crucial for developing effective
cybersecurity detection models.

B. Testbed Infrastructure

The network, shown in Figure 1, simulates a small company
with five departments, each in its own subnet with a dedicated
Windows domain. For example, the Sales department resides
in sales.lmt.com on subnet 192.168.59.0/24 with domain con-
troller DC 3. Additional subnets include the root domain
lmt.com, company servers, and a DMZ (192.168.0.0/24) within
the IT domain. Routers connect these segments, and the
structure can be adjusted as needed.

The setup uses VirtualBox with internal networks for sub-
nets (isolated from external traffic) and a NAT network for the
DMZ to enable controlled external communication. Hosts run
Windows 10/11, while servers use Windows Server 2022 to
reflect modern enterprise environments.

This topology improves realism by mirroring real-world
enterprise networks with multiple subnets, dedicated domains,
and a DMZ for public-facing services. These features enhance
dataset fidelity, making it valuable for cybersecurity research.

C. Benign Data Engine (BDE)

In the context of the LMDG framework, the Benign Data
Engine (BDE) is tasked with generating normal network
behavior, effectively simulating employee activities. Figure 2
provides an overview of the BDE engine, which comprises
two primary components: the Sessions Scheduler II-C1 and
the Sessions Executor II-C2. The engine operates based on
four key inputs:

• User Credentials and Hosts: This includes the creden-
tials of employees and the specific hosts (workstations or
devices) they use within the network.

• Sessions Scheduler Configuration File: This file defines
the parameters for the Sessions Scheduler, dictating how
it should generate and manage sessions timing for each
user or employee.

• Behavioral Scripts: These scripts detail the activities of
employees, it can operate on both individual level and
a departmental level, such as those specific to the IT
department. They encapsulate routine tasks and behaviors
expected in a typical workday.

The Sessions Scheduler orchestrates generating session be-
haviors (i.e., login and logout times), ensuring the simulated



3

Fig. 1: The Testbed architecture used to generate LMDG dataset.

activities align with realistic standard user behavior patterns.
Concurrently, the Sessions Executor enables the efficient sim-
ulation of multiple user sessions, reflecting the concurrent
activities of various employees within the network. This
design enhances the generated data’s realism and ensures
scalability and performance in simulating complex network
environments.

1) Sessions Scheduler: The role of the Sessions
Scheduler is to generate a list of tuples Si =
[(t1, t2), (t3, t4), . . . , (t2ki−1, t2ki)] for each employee i,
representing their session behavior. Each tuple (t2j−1, t2j)
denotes the login and logout times of a session, where t2j−1

is the login time and t2j is the logout time. The duration of a
session is given by t2j−t2j−1. The final output of the Sessions
Scheduler is a list of lists T = [S1,S2, . . . ,Sn], where T
encapsulates the session behaviors for all n employees in
the network. Each Si in T provides a detailed account of an
individual employee’s login and logout activities throughout
the day.

The process by which the Sessions Scheduler generates the
lists Si for an employee i is outlined as follows. Initially, the
Sessions Scheduler determines whether employee i is absent
based on probability values specified in the configuration file
(third input, Figure 2) defined by the dataset creators. For

instance, the dataset creators can define a probability interval
[p1, p2], where 0 ≤ p1, p2 ≤ 1. The Sessions Scheduler
then selects a random value from this interval to represent
the probability of employee i being absent on a given day.
This approach ensures that each employee i has a distinct
probability of being absent. If employee i is absent, then
the list Si = ∅. Additionally, there is a separate probability
interval [p′1, p

′
2] for determining absences during weekends,

which typically corresponds to a higher probability.

If employee i is not absent, the Sessions Scheduler will
proceed to generate the list Si. Initially, it determines the
starting time (first login) for employee i. To facilitate this, the
dataset creators define four time intervals representing various
starting times: abnormally early, abnormally late, late, and
on time. These intervals are denoted as [te1, te2], [ta1, ta2],
[tl1, tl2], and [to1, to2] respectively. To determine the four
possible starting times for the current employee i, the Sessions
Scheduler randomly selects a value from each of the four
corresponding intervals. Thus, for employee i, there exist four
distinct candidate starting times denoted as tstart abnormal early,
tstart abnormal late, tstart late, and tstart on time. In the configuration
file, operators can define different probability intervals for each
possible starting time, namely [pe1, pe2], [pa1, pa2], [pl1, pl2],



4

Fig. 2: Benign Data Engine (BDE) overview.

and [po1, po2]. It is noteworthy that drawing a probability value
from intervals [pe1, pe2] and [pa1, pa2] will be typically very
small, reflecting the rarity of abnormally early and abnormally
late starting times. Conversely, the interval [po1, po2] will
produce the highest probabilities, indicating the likelihood
of employees starting on time. Consequently, the Sessions
Scheduler assigns a random probability value to each candidate
starting time, drawn from their respective probability intervals.
The next step can be linked to tossing an unfair tetrahedron (a
die with four faces), where each face represents a starting time
option. The resulting face corresponds to the actual starting
time of employee i, denoted as tstart, which constitutes the
first value of the first tuple in the list Si, i.e., t1. Thus, the
Sessions Scheduler effectively determines the starting time for
employee i using this probabilistic method, ensuring that each
potential starting time is considered.

Selecting the end time tend for each employee i, denoted
as the second time in the last tuple of the list Si (i.e., last
logout time t2ki ), undergoes a process akin to determining
the start time tstart. Similarly, the Sessions Scheduler employs
a probabilistic approach, mirroring the methodology used for
selecting tstart. Dataset creators define intervals representing
various end times, such as abnormally early, abnormally
late, late, and on time, each associated with corresponding
probability intervals.

The Sessions Scheduler is not limited to drawing values
from the defined time and probability intervals using a uni-
form distribution; it can also utilize exponential and normal
distributions. For instance, consider Figure 3, which illustrates
the Sessions Scheduler’s process of selecting the value for
tstart abnormal early over 20,000 iterations. In this example, the
Sessions Scheduler is configured to draw a time value t within

the interval [3:30 AM - 7:29 AM] according to an exponential
distribution with a lambda λ = 0.00037, where λ is the
distribution parameter.

After defining tstart and tend, the Sessions Scheduler will
determine whether employee i will have a lunch break using
a similar probabilistic approach. If a lunch break is scheduled,
the controller will then specify tlunch start and tlunch end,
which denote the start and end times of the lunch break,
respectively.

The Sessions Scheduler manages random logouts and logins
between tstart and tlunch start, and between tlunch end and
tend. This process occurs in two stages: first, the number and
duration of logouts are randomly selected based on predefined
intervals set in the configuration file (see Figure 2). Next,
an algorithm recursively places these logouts on the timeline
while adhering to minimum and maximum gap constraints
between consecutive logouts also defined in the configuration
file.

2) Sessions Executor: The Sessions Executor, a component
of the Benign Data Engine (Figure 2), manages session
execution by creating a thread for each employee i in the
list T . Using employee credentials, it runs the corresponding
behavioral script BSj on the designated host Hr at the
scheduled session times in Si.

For each tuple (t2j−1, t2j) ∈ Si, the Sessions Executor
starts a remote session on host Hr at time t2j−1, runs BSj

until t2j , and then terminates the session. This process repeats
for all tuples in Si until the final session (t2ki−1, t2ki).

Each department in the system can have a general behavioral
script representing typical employee actions, or individual
scripts can be assigned to users, configurable in the config-
uration file. During each execution block (Figure 2), a subset
of behaviors from the script is randomly executed using a



5

Fig. 3: Frequency distribution of tstart abnormal early from 03:30
AM to 07:29 AM over 20,000 trials. The distribution follows
an exponential distribution with a rate parameter λ = 0.00037,
indicating higher frequencies of abnormal early start times
occurring at earlier minutes and tapering off towards later
minutes.

probabilistic approach. These behaviors include actions like
browsing, downloading, running local programs, and accessing
internal servers. The framework’s scripts can be customized
for specific enterprise use cases, enabling the simulation of
various operational environments and realistic user behaviors.

This approach provides a flexible, scalable, and adaptable
method for simulating user behavior in network environments,
suitable for both small and large organizations. The source
code for BDE is available on our GitHub [36], offering
researchers access for dataset generation and other academic
purposes.

D. Attack Engine (AE)

In this context, an Attack Engine refers to a method
or framework that enables the automated execution of
cyberattacks. For example, automating DDoS attacks can
often be achieved by deploying specific scripts on the
attacking hosts to initiate the attack. However, as we will
discuss in this section, automating LM attacks presents unique
challenges that are more complex and less straightforward
than those associated with simpler scripted attacks.

1) LM Attacks: According to the MITRE ATT&CK frame-
work [1], nine tactics qualify as LM techniques. These include
Exploitation of Remote Services, Internal Spearphishing, Lat-
eral Tool Transfer, Remote Service Session Hijacking, Remote
Services, Replication through Removable Media, Software De-
ployment Tools, Taint Shared Content, and the Use of Alternate
Authentication Material. In the LMDG dataset, multiple LM
tactics from this list—such as Exploitation of Remote Ser-
vices and the Use of Alternate Authentication Material—are
employed, as discussed further below II-D5.

Each of these LM tactics encompasses various techniques.
For instance, the ”Use of Alternate Authentication Material”
tactic can be executed through techniques like ”Pass-the-Hash”
or ”Pass-the-Ticket” attacks. To clarify the complexity and
unique nature of LM attacks compared to more straightforward
attack types, we provide a detailed example of one of these
attacks. This analysis highlights the operational challenges
and automation complexities inherent in implementing these
advanced tactics.

One of the attack scenarios demonstrated in the LMDG
dataset involves a pass-the-hash (PtH) attack. An outline of the
attack sequence is depicted in Figure 4. The scenario begins
by assuming an attacker has obtained the local administrator
credentials for domain controller DC2 in subnet 1, potentially
through techniques like phishing. Using these credentials, the
attacker initiates an SSH connection to an SSH server in
subnet 7 (attack step 1) and subsequently connects to DC2
(attack step 2) via SSH using the same credentials. Once on
DC2, the attacker downloads and executes Mimikatz to extract
credential hashes from the LSASS process, including those
from recent sessions. In this case, an enterprise administrator
recently accessed DC2 (shown by the green arrow in Figure 4),
allowing the attacker to retrieve the administrator’s credentials.
The attacker gains an elevated shell with the enterprise admin
hash (attack step 3), enabling access to restricted directories on
a file server in subnet 6 (attack step 4). This elevated access
allows sensitive information to be exfiltrated from a folder
accessible only to the enterprise administrator.

2) Challenges in Automating LM Attacks: As shown in the
earlier attack example II-D1, elevated and reverse shells are
common in LM attacks. Automating such steps introduces
key challenges. For instance, automating the Pass-the-Hash
(PtH) attack from subsection II-D1 and Figure 4 involves
feasible steps like SSH-ing with stolen credentials and ex-
ecuting commands on the domain controller (e.g., running
Mimikatz). However, automating PtH to obtain an elevated
shell is difficult, as the resulting cmd.exe process runs under
elevated credentials and is hard to access without knowing its
properties (e.g., PID). Reverse shells add further complexity,
especially when spawned on different hosts. If the NTLM
hash must also be dynamically extracted mid-attack, automa-
tion becomes even harder. These issues highlight two main
automation challenges: managing elevated/reverse shells and
dynamically retrieving and reusing data from earlier attack
steps.

3) A Candidate Solution: A solution to automating elevated
and reverse shells in LM attacks, as discussed in section
II-D2, is a client-server architecture,i.e., an orchestrator issuing
commands to agents deployed on hosts.

In the attack scenario from section II-D1, an orchestrator
in subnet 7 controls agent A1 on the SSH server. Instead of
SSH-ing from A1 to DC2, a new agent A2 is spawned on
DC2, executing commands like running Mimikatz. For the PtH
operation, the PtH command’s /run parameter is modified to
spawn an elevated agent A3, completing the final attack step
to exfiltrate data.

Figure 5 shows the process tree during a Pass-the-Hash
(PtH) attack using a client-server architecture. Agent A2,



6

Fig. 4: First Attack Scenario in LMDG dataset which is
Passing the Hash attack (PtH), providing a step-by-step vi-
sualization of the movement through network nodes.

represented by splunkd_A2.exe, is deployed on Domain
Controller DC2 and performs the PtH attack. It then spawns
Agent A3 (splunkd_A3.exe) with elevated privileges.
Agent A3 communicates with the controller to continue
the attack, accessing a restricted directory to retrieve data.
This hierarchical structure visualizes how the client-server
model manages privilege escalation, with attack steps chaining
through communication between spawned agents. Tools like
CALDERA support this feature [20].

4) CALDERA as an Attack Engine: Following the approach
outlined in [20], we utilized Caldera to implement the client-
server architecture discussed in subsection II-D3 to automate
attack execution steps. As previously noted, Caldera, along
with other tools referenced in [20], can be employed to
facilitate this level of attack automation. We refer to such tools
collectively as ”attack engines.”

Caldera™ [39] is an adversary emulation platform developed
by MITRE for autonomous breach-and-attack simulations,
manual red-team operations, and automated incident response.
Based on the MITRE ATT&CK™ [1] framework, Caldera
includes a core system consisting of the main framework
code, an asynchronous command-and-control (C2) server, a
REST API, and a web interface. It also supports plug-
ins—separate repositories that extend the core functionality by
adding agents, graphical interfaces, and collections of Tactics,
Techniques, and Procedures (TTPs), enabling a flexible and

Fig. 5: Partial process tree illustrating the execution of the
Pass-the-Hash (PtH) attack on DC2, as discussed in subsection
II-D1.

comprehensive approach to adversary emulation.
5) LM Attacks in LMDG Dataset: The LMDG dataset

contains seven attack scenarios that achieve LM using various
tactics and techniques (see table I). Of these, three attacks
were successful, while four were unsuccessful. We discuss
possible reasons for each unsuccessful attack, considering that
our setup includes Windows 10, Windows 11, and Windows
Server 2022—the latest Windows versions with advanced
security mechanisms [36]. This combination of successful and
unsuccessful attacks is valuable for understanding attacker
behavior, as many attacks tend to fail due to robust defenses,
with only some achieving success.

Our dataset includes multiple versions of each attack, tar-
geting different hosts and subnets. In some cases, attacks
were executed repeatedly to enrich the dataset with diverse
instances of attack records; we refer to this repetition of the
same scenario, version pair, as a trial.

The attack steps depicted in the figures [36], e.g., figure 4,
within the attack explanations represent LM hops, as defined
in Section VI. All attack scenarios share the first two steps:
initial access to the SSH server from outside the network using
stolen credentials, followed by access to an additional internal
machine. Beyond these initial steps, each attack scenario
diverges in tactics and execution. More details about attacks
execution are presented in III and our Github [36].

E. LMDG Labelling Engine (LE)

In cybersecurity datasets, labeling involves identifying and
extracting records associated with attack activities from system
logs and network traffic. The Labeling Engine serves as the
component responsible for automating this extraction process.
This subsection will examine the challenges of achieving ac-
curate labeling and introduce our innovative labeling method-
ology.



7

Attack Description
Passing the Hash Use the hashed password of an enterprise admin to authenticate and gain unauthorized access.

Asreproastable Exploit a user’s AS-REP response to steal credentials and impersonate the administrator to steal data.
Pass the TGT Dump LSASS memory to identify a domain admin, steal the TGT, inject it into memory, and steal data.

Attack Delegation Perform AS-REP roasting, steal credentials, abuse group permissions (e.g., AddSelf), execute DC Sync to steal administration
credentials, renew the TGT, and perform actions as the administrator.

Password Spray Use password brute-forcing to open a zip file, perform a password spray attack to log in as an admin, abuse write permissions on
a specific share to add a malicious file executed by a domain admin, and steal data.

Silver Ticket Dump LSASS memory to identify a domain admin, use the stolen data to create a silver ticket, inject it into memory, and perform
actions as the domain admin.

Golden Ticket Dump LSASS memory to identify a domain admin, use the stolen data to create a golden ticket, inject it into memory, and perform
actions as the domain admin.

TABLE I: Summary of Lateral Movement Attacks in LMDG Dataset

1) Challenges in Attack Data Labeling: A review of la-
beling techniques for cybersecurity dataset generation reveals
three primary approaches: Injection Timing, Behavioral Pro-
filing, and Network Security Tools [28].

The Injection Timing approach labels all logs or network
traffic within the attack period as malicious, improving accu-
racy when combined with other methods [8], [14], [19], [22],
[31]. However, it assumes no benign events occur during the
attack, which leads to inaccuracies, particularly in complex
attacks like LM, where benign activity may overlap with
malicious actions.

The Behavioral Profiles method uses predefined profiles of
malicious and benign behaviors for labeling [12], [43], [46].
While effective for identifying attack-specific characteristics,
it fails in LM attacks, where legitimate users and hosts are
exploited, rendering behavioral profiling insufficient.

The Network Security Tools approach uses data from
security tools such as IDS, honeypots, and packet sniffers to
label records [3], [43]. Despite its utility, this method faces
accuracy issues, including false positives and negatives, due
to tool limitations.

Given these challenges, there is a need for a more accurate
labeling technique. We propose a novel methodology that
addresses the shortcomings of existing approaches, improving
accuracy, particularly for LM and advanced persistent threats
(APTs), where traditional methods are less effective.

2) LMDG Labeling Engine: Our labeling methodology
builds upon and extends the labeling approach introduced in
[20], with specific enhancements and improvements outlined
in the related work section V-A. We designate this approach as
process tree labeling, which can be considered an additional
automatic labeling technique and, as we argue, the most accu-
rate among those reviewed. The effectiveness of process tree
labeling relies on the client-server architecture introduced in
II-D3 and II-D4 for automating attack execution, a dependency
explored in greater detail in [20].

Upon the completion of attack execution, the LMDG
labeling engine, along with its input—a descriptive file
containing metadata on attack steps—operates from the
controller, depicted in Figure 1. The engine distributively
performs the labeling task across each affected host, using the
defined attack steps from the input file to extract the relevant
subset of system logs and network connections associated
with each attack stage on every affected host. The LMDG
labeling engine completes this process in three primary

phases: Attack Steps Forest Construction, System Logs
Labeling, and Network Traffic Labeling. Before detailing
these stages, we will first discuss the input to this engine,
namely the descriptive file containing attack steps metadata.

a) LMDG Labeling Engine Input: The input to the
labeling engine consists of a set of hosts impacted by various
attack steps, where each host includes a collection of malicious
processes with specific attributes. Let H represent the set of
all such hosts, i.e., H = {h1, h2, ..., hn}, with each host
hi ∈ H uniquely identified by a HostName. For each host
hi, let P (hi) denote the set of processes associated with the
malicious agents deployed on that host during any attack step,
i.e., P (hi) = {p1, p2, ..., pm}. Each process pj ∈ P (hi) is
described by the following tuple

pj = (π, ts, te, σ, ν, τ, κ, ϕ)

In this tuple, π denotes the process identifier associated
with a deployed Caldera agent, i.e., PID. ts and te define the
time window during which a particular attack step occurred
(start time and end time). The specific step within the attack
and the overarching scenario are identified by the κ and
σ fields in the tuple, with ϕ indicating whether the step
was completed successfully. Since an attack scenario can be
executed across various hosts or subnets, multiple versions of
the same scenario may exist. For example, in subsection II-D1,
the pass-the-hash (PtH) attack can be executed on different
subnets (e.g., subnet 4 instead of subnet 1). This versioning
is captured by the ν field in the tuple. Additionally, we may
execute the same scenario version multiple times; thus, the
τ field is included to distinguish between these instances,
offering clear differentiation across repeated executions or
trials.

Each host hi ∈ H can be formally represented as a tuple
containing its HostName and the set of associated processes,
P (hi), for each Caldera agent deployed on that host. Formally,
this is expressed as hi = (HostNamei, P (hi)). The overall
input structure can then be denoted by Input = {h | h ∈
H}. This structured organization facilitates the grouping of
processes by host, enabling efficient distribution of the labeling
process and correlation of process executions with the various
stages of distinct attack scenarios.

b) Attack Steps Forest Construction: The first stage in
our labeling engine is the Attack Steps Forest Construction,



8

where we build a forest F of m process trees Tpj
, one for

each malicious process pj ∈ P (hi) = {p1, . . . , pm} on host
hi. Each tree is rooted at pj’s PID and includes all descendant
processes within its execution window [ts, te]. This temporal
constraint ensures that each Tpj

captures causally relevant
attack activity, providing the foundation for accurate step-level
labeling.

Algorithm 1 Attack Steps Forest Construction

1: procedure ATTACKSTEPSFORESTCONSTRUCTION(H)
2: F ← ∅ ▷ Initialize the forest of attack steps
3: for hi ∈ H do
4: for pj ∈ P (hi) do
5: π ← pj .π, ts ← pj .ts, te ← pj .te
6: σ ← pj .σ, ν ← pj .ν, τ ← pj .τ
7: κ← pj .κ, ϕ← pj .ϕ ▷ Extract pj’s attributes
8: L ← ∅ ▷ Initialize a list for process IDs
9: Tpj ← GETPROCESSTREE(π, ts, te,L) ▷

Build process tree of process pj
10: Tpjmeta

← (Tpj
, ts, te, σ, ν, τ, κ, ϕ)

11: F ← F ∪ {Tpjmeta
}

12: end for
13: end for
14: return F
15: end procedure
16: procedure GETPROCESSTREE(π, ts, te,L)
17: L ← L ∪ {π}
18: E ← {e ∈ E4688hi

| e.π = π ∧ ts ≤ e.t ≤ te}
19: for e ∈ E do
20: if e.π /∈ L then
21: L ← L ∪ {e.π}
22: GETPROCESSTREE(e.π, ts, te,L)
23: end if
24: end for
25: return L
26: end procedure

The specifics of this step are outlined in Algorithm 1, where
the set E4688hi

represents all process creation events recorded
in the Windows Security log for host hi.

An example of the output generated by Algorithm 1 is
shown in Figure 6. This output corresponds to the example
previously detailed in Subsection II-D1, which illustrates a
Pass-the-Hash (PtH) attack scenario, as depicted in Figure 4.

In Figure 6, the example demonstrates two process trees
rooted at the same process ID π of pr. The first tree is
constructed within the constrained time interval [t1, t2], en-
compassing all subprocesses that occurred within this interval
and represents attack step 3 from Figure 4. The second
tree is built under the time constraint [t3, t4], including all
subprocesses within this later interval, and represents attack
step 4 from the same figure 4.

We next move to the subsequent steps, System Logs La-
beling and Network Traffic Labeling, which depend on the
constructed attack steps forest F .

c) System Logs Labeling: In this step, for each host hi,
we iterate over the set Lhi

, which represents the collection of

Fig. 6: Output of algorithm 1 showing two process trees rooted
at the same malicious process pr. The first tree, representing
attack step 3, and the second tree, representing attack step 4
in Figure 4 explained in subsection II-D1.

all Windows event logs on that host. For each log l ∈ Lhi , we
further iterate over the trees in the constructed forest F at host
hi, where each tree Tpj

∈ F corresponds to a specific attack
step. The primary objective here is to examine whether the
current log l contains any events with process IDs matching
those within the current tree Tpj

that occurred within the
specified time interval [ts, te]. If such events are found, they
are extracted and tagged with metadata of the current tree Tpj ,
including details like the attack scenario, version, step number,
and step success status. This labeling process operates at the
attack step level, incorporating relevant MITRE ATT&CK
tactics and techniques to contextualize each event within the
broader attack framework.

d) Network Traffic Labeling.: In this step, we construct
the set E5156hi

= {e | e.EventID = 5156 ∧ e ∈ Ehi
},

which represents the collection of Windows events with Event
ID 5156, corresponding to the Windows Filtering Platform
(WFP). The WFP monitors and filters network traffic on
Windows systems, and Ehi

denotes the set of all Windows
event logs at host hi. Subsequently, we iterate over the trees
in the constructed forest F and examine whether any process
ID in the current tree Tpj matches a process ID from the
events in E5156hi

. If a match is found, we filter the relevant
events and label them with the metadata of the corresponding
tree Tpj

, including attack scenario, version, attack step, step
success, and so on. Similar to the System Logs Labeling step,
we also consider MITRE ATT&CK tactics and techniques for
contextualizing the events within the attack framework.

The process of network flow labeling can be effectively
performed using the packet capture (PCAP) files collected
from each host, as mentioned in subsection II-B and the output
of this labeling step.

Our ”Process Tree Labeling” methodology provides supe-
rior accuracy in automated labeling by associating process
activities with specific attack steps. By utilizing temporal and
contextual information from system logs and network traffic,



9

it ensures precise event attribution within the attack lifecycle,
enhancing labeling fidelity and reliability.

III. DATASET

The experimental environment consists of 25 VMs, includ-
ing a Controller, Caldera server, domain controllers, appli-
cation servers, hosts, and routers. While 22 user accounts
were set up, only 11 credentials were used by the Benign
Data Engine to generate benign data. Windows Event logs
and PCAP files were collected from all Windows machines
except the Controller and Caldera server. PCAP files were
also captured from routers 1 and 2 for supplementary network
data.

The dataset was generated over 25 days (October
10–November 3, 2024), with continuous benign data gener-
ation by the Benign Data Engine. Attacks occurred between
October 23 and November 1, 2024, resulting in both benign
and malicious data during this period. The dataset contains
only benign data before October 23, 2024.

We present statistics on attacks within the LMDG dataset.
Figure 7 shows the Daily Distribution of Attack Steps, illus-
trating the frequency of attack steps over time, with the total
attack size in the dataset under 1%.

Figure 8 displays the Timeline of Attack Step Occurrences
by Scenario, showing attack step timings via a scatter plot
with distinct color coding for different scenarios.

Figure 9 presents the Frequency Distribution of Scenario
and Version Pairs, comparing attack frequencies across sce-
nario versions. The full execution timeline is available on our
GitHub repository [36].

The compressed dataset size is 253 GB (excluding router
data) and 527 GB (including router data), with router 1’s
PCAP at 201 GB and router 2’s at 72 GB. The total uncom-
pressed dataset is 944 GB, comprising 900.93 GB of PCAP
files and 43.38 GB of system logs (Table II).

Like the LANL 2015 dataset, this dataset enables detailed
extraction of authentication features and patterns, supporting
research in intrusion detection, behavioral analysis, and user
activity monitoring. Its rich event data and metadata provide
a solid foundation for diverse cybersecurity research tasks.

Fig. 7: Daily Distribution of Attack Steps: This histogram
visualizes the frequency of attack steps executed over time,
with each bar representing the count of attack steps occurring
on a specific day. The x-axis denotes individual days, while
the y-axis represents the number of occurrences.

Fig. 8: Timeline of Attack Step Occurrences by Scenario:
Thacross various days, with each point representing the oc-
currence of an attack step on a specific day and time. The x-
axis indicates the occurrence dates, while the y-axis represents
the time of day to highlight daily distribution patterns. Each
scenario is color-coded with a distinct hue, allowing for quick
differentiation of scenarios.

Fig. 9: Frequency Distribution of Scenario and Version
pairs: This bar plot displays the count of occurrences for
each distinct (Scenario, Version) pair. The x-axis represents
individual combinations of scenarios and their respective ver-
sions. The y-axis shows the count of occurrences.

is scatter plot illustrates the timing of attack steps

TABLE II: Dataset Statistics

Statistic PCAP Size (GB) Log Size (GB)

Total Size 900.93 43.38
Average Size 37.54 2.17
Minimum Size 0.51 0.41
Maximum Size 451.00 4.97

IV. QUALITATIVE ANALYSIS

Dataset quality depends on several phases: testbed design,
benign data generation, log collection, attack execution, and
labeling. Enhancing these phases improves dataset robustness.

Our testbed (Section II-B) simulates a realistic enterprise
network using virtualization for scalable and detailed emula-
tion. The Benign Data Engine (BDE) (Section II-E2, Figure
2) generates realistic benign data based on behavioral scripts.
These scripts, modeled on departmental roles with randomiza-



10

tion, replicate typical employee activities such as logins, web
browsing, service requests, and program execution.

Our dataset includes comprehensive system logs and net-
work traffic data, with labeling applied to both, ensuring
complete activity records for detailed behavior analysis.

Existing LM datasets have limitations such as few LM
instances, outdated patterns, limited techniques, short time-
frames, and minimal hops. In contrast, our LM attacks (Section
II-D5) address these issues with diverse techniques, recent
patterns, a 10-day execution window, and up to 7 hops
across hosts, users, and subnets. Tools like CALDERA further
improve attack design flexibility.

Our automated process tree labeling (Section II-E) achieves
superior accuracy, effectively tracking process hierarchies crit-
ical for LM and APT attacks.

The LMDG framework is designed to support the gener-
ation of high-quality datasets through its various integrated
components. The LMDG dataset serves as an exemplar of
this capability, demonstrating the framework’s effectiveness
in producing datasets that are comprehensive, well-structured,
and suitable for advanced research and analysis.

V. RELATED WORK

A. LADEMU Framework

LADEMU [20] uses virtualization tools (e.g., VirtualBox,
VMware) for testbed infrastructure, similar to LMDG. For
dataset collection, it captures network traffic (pcap) and
Sysmon log, whereas LMDG expands coverage by collecting
all Windows event logs and labeling them comprehensively.
In benign data generation, LADEMU employs GHOST,
while LMDG offers greater flexibility through its Benign
Data Engine (BDE) (II-C), which separates session scheduling
from behavior execution. Both frameworks use Caldera for
attack execution II-D. For labeling, LADEMU builds mali-
cious process trees from Sysmon logs, a method LMDG also
adopts II-E with four key improvements. LADEMU constructs
malicious process trees rooted at the Caldera agent and labels
all benign process events during interaction intervals [t1, t2]
as malicious [31]. This can lead to mislabeling, especially
in cases like code injection, where benign processes may
act maliciously over extended periods. In contrast, LMDG
labels only events linked to malicious trees, avoiding such
inaccuracies. While LADEMU uses Caldera’s start and finish
times to bound trees [31], this can miss delayed malicious
activity. LMDG extends the end time beyond Caldera’s to
ensure full coverage. LADEMU includes C&C signals in
logs [31], reducing realism. LMDG filters these out to better
mimic real-world scenarios. Finally, LMDG links labels to
attack steps and scenarios [20], enabling more context-aware
datasets and improving multi-step attack detection.

B. AIT Framework

The AIT framework by Landauer et al. [29]–[31] offers
a model-driven approach [17] to cybersecurity dataset
generation, emphasizing automated testbed creation [29],
[31] and a labeling methodology [29]. The Kyoush platform,
built with Terraform, Ansible, and OpenStack [31], enables

reusable, automated testbed deployment but requires
significant setup effort. Their labeling combines injection
timing [21], [28] with manual query-based log inspection for
each attack step [29], limiting scalability. While attack scripts
were automated, the framework lacks support for complex
attacks like LM II-D. Data collection targets Linux logs, and
benign behavior is simulated via a User State Machine.

C. CREME Framework

CREME, introduced by Bui et al. [12], generates labeled
intrusion detection datasets and evaluates dataset quality. It
employs virtualization for testbed infrastructure and collects
data via tcpdump, rsyslog, and Atop, but supports only Lin-
ux/Unix systems. For benign data generation, its ”Repro-
duction Module” runs unspecified benign programs; it also
executes five attack types, though support for complex LM
attacks is unclear II-D. Labeling uses Behavioral Profiles [21],
[28], tagging all traffic from attack machines as malicious,
which can not handle LM attacks II-E1.

VI. DISCUSSION

Our review of LM detection reveals a need for a com-
prehensive definition of LM . While MITRE ATT&CK [1]
defines it broadly as techniques for accessing and controlling
remote systems, this vague description limits the effectiveness
of detection models, highlighting the need for a more precise
and actionable definition.

We define two key types of adversary progression: hori-
zontal progression and vertical progression. Horizontal pro-
gression involves gaining independent access to multiple hosts
without interdependence, which does not qualify as LM . In
contrast, vertical progression describes interconnected access,
where controlling one system enables access to others. We
define LM as vertical progression across hosts, accounts, or
privileges, where one access leads to another. This includes
movement between hosts, accounts with elevated privileges,
and privilege escalation. This refined definition is essential for
creating effective detection models.

In the cloud environment, LM follows a similar concept
with modifications. Identities (user, application, and service
accounts) correspond to accounts, requiring authentication
to access resources, while permissions or policies align with
privileges, defining access levels. A key distinction in the
cloud is the services layer, which includes resources like
AWS EC2 and S3, providing computing and storage. Thus,
cloud LM involves vertical progression across identities,
permissions/policies, services, and resources. For example, an
attack detailed by Microsoft Threat Intelligence [25] involved
exploiting SQL injection to access an Azure database server
and using the Instance Metadata Service (IMDS) to obtain
further access to cloud resources.

Regarding the threat model in the LMDG dataset, it emu-
lates realistic APT-like scenarios where adversaries perform
stealthy, persistent attacks over an extended period. These



11

scenarios include initial access, privilege escalation, and multi-
hop LM across hosts and network subnets, reflecting the
sophisticated behaviors of modern attackers targeting enter-
prise networks. By leveraging the CALDERA platform for
attack emulation, the framework enables flexible attack design,
supporting a variety of LM techniques and bypassing typical
security defenses. To enhance realism, these attacks occur
within a backdrop of benign user activities generated by the
Benign Data Engine (BDE), providing a nuanced environment
for distinguishing between normal and malicious behavior.
This threat model thus offers a robust foundation for evaluat-
ing detection and response mechanisms against complex and
dynamic cyber threats.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we have comprehensively examined current
cybersecurity benchmark datasets with a specific focus on
evaluating the presence and characteristics of LM attacks. Our
analysis, the first of its kind, assessed LM datasets across
multiple dimensions, including the quantity and variety of
LM techniques, attack duration, number of movement hops,
data sources (e.g., authentication logs, network flows), labeling
methodologies, and testbed configurations. This investigation
has highlighted gaps and challenges within existing datasets,
providing insight into the strengths and limitations of current
approaches to LM detection.

We developed a benchmark dataset focused explicitly on
LM attacks to address the identified limitations. This dataset,
designed to overcome many existing issues in LM datasets,
provides a valuable resource for the research community,
facilitating the training and evaluation of more effective LM
detection models. Our qualitative dataset analysis demonstrates
its applicability for various LM scenarios. It ensures that the
diversity and complexity of attacks are suitable for testing
advanced detection techniques.

Additionally, we introduced the LM Dataset Generator
(LMDG) framework, a reproducible toolset for generating
high-quality LM and APT datasets. The LMDG frame-
work automates benign data generation, attack execution,
and—crucially—the labeling of attack-related events in sys-
tem and network logs. Recognizing the challenges posed by
automatic labeling in LM scenarios, where benign hosts may
perform malicious actions, we proposed a novel technique,
process tree labeling. This method offers improved precision
and accuracy over existing techniques such as injection timing,
behavior profiles, and network security tools. Overall, the con-
tributions of this work enhance the landscape of LM dataset
generation and analysis, supporting further advancements in
cybersecurity research and LM detection capabilities.

Several limitations of our framework warrant consideration.
First, using virtualization to construct testbeds necessitates ex-
tensive domain expertise, making the process time-consuming
and highly case-dependent, as discussed in more detail in [31].
This requirement for specialized knowledge may hinder the
framework’s scalability and accessibility. Second, the client-
server architecture employed in attack automation, as outlined
in Sections II-D3 and II-D4, introduces traffic and log accu-

racy challenges. Specifically, the traffic generated by client-
server communication must be filtered to avoid contaminating
the dataset with automation-related signals, ensuring that the
resulting data remains realistic and reflective of actual attack
behaviors. Finally, our proposed labeling methodology, process
tree labeling, the most accurate automatic labeling technique,
is inherently tied to the client-server automation model. This
dependency arises from the need to identify the process IDs
of deployed agents, creating a coupling between labeling and
attack automation. This coupling is discussed in more detail in
[20] and may limit the applicability of our labeling approach
in environments where such client-server structures are not
feasible.

While this study includes a qualitative analysis of our
dataset IV and comparisons with existing datasets in the litera-
ture, further work is needed to incorporate quantitative analysis
methods. A systematic review of current quantitative assess-
ment techniques used in cybersecurity datasets will enable us
to apply rigorous, data-driven evaluation metrics to our dataset,
enhancing its reliability and usability. In addition, future efforts
may focus on producing a more comprehensive dataset that
encompasses the full spectrum of Advanced Persistent Threat
(APT) attack stages rather than concentrating solely on LM
. Such a dataset would capture all phases of APT attacks,
offering a richer resource for developing and benchmarking
holistic detection models that address the complete lifecycle
of sophisticated attack vectors. This extension will advance
research into multi-stage threat detection, providing excellent
value for the cybersecurity community.

REFERENCES

[1] MITRE ATT&CK®. [Online]. Available: https://attack.mitre.org/, 2024.
[2] Adel Alshamrani, Sowmya Myneni, Ankur Chowdhary, and Dijiang

Huang. A survey on advanced persistent threats: Techniques, solutions,
challenges, and research opportunities. IEEE Communications Surveys
& Tutorials, 21(2):1851–1877, 2019.

[3] Francisco J Aparicio-Navarro, Konstantinos G Kyriakopoulos, and
David J Parish. Automatic dataset labelling and feature selection for
intrusion detection systems. In 2014 IEEE Military Communications
Conference, pages 46–51. IEEE, 2014.

[4] Giovanni Apruzzese, Fabio Pierazzi, Michele Colajanni, and Mirco
Marchetti. Detection and threat prioritization of pivoting attacks in
large networks. IEEE Transactions on Emerging Topics in Computing,
8(2):404–415, 2020.

[5] Giovanni Apruzzese, Fabio Pierazzi, Michele Colajanni, and Mirco
Marchetti. Detection and threat prioritization of pivoting attacks in large
networks. IEEE Transactions on Emerging Topics in Computing, 8:404–
415, 2020.

[6] Lora Aroyo, Matthew Lease, Praveen Paritosh, and Mike Schaekermann.
Data excellence for ai: why should you care? Interactions, 29(2):66–69,
feb 2022.

[7] Tim Bai, Haibo Bian, Mohammad A. Salahuddin, Abbas Abou Daya,
Noura Limam, and Raouf Boutaba. Rdp-based lateral movement
detection using machine learning. Computer Communications, 165:9–
19, 2021.

[8] Monowar H Bhuyan, Dhruba K Bhattacharyya, and Jugal K Kalita.
Towards generating real-life datasets for network intrusion detection.
Int. J. Netw. Secur., 17(6):683–701, 2015.

[9] Haibo Bian, Tim Bai, Mohammad A. Salahuddin, Noura Limam, Ab-
bas Abou Daya, and Raouf Boutaba. Uncovering lateral movement
using authentication logs. IEEE Transactions on Network and Service
Management, 18(1):1049–1063, 2021.

[10] Atul Bohara, Mohammad A. Noureddine, Ahmed Fawaz, and William H.
Sanders. An unsupervised multi-detector approach for identifying
malicious lateral movement. In 2017 IEEE 36th Symposium on Reliable
Distributed Systems (SRDS), pages 224–233, 2017.



12

[11] Benjamin Bowman, Craig Laprade, Yuede Ji, and H. Howie Huang.
Detecting lateral movement in enterprise computer networks with un-
supervised graph AI. In 23rd International Symposium on Research
in Attacks, Intrusions and Defenses (RAID 2020), pages 257–268, San
Sebastian, October 2020. USENIX Association.

[12] Huu-Khoi Bui, Ying-Dar Lin, Ren-Hung Hwang, Po-Ching Lin, Van-
Linh Nguyen, and Yuan-Cheng Lai. Creme: A toolchain of automatic
dataset collection for machine learning in intrusion detection. Journal
of Network and Computer Applications, 193:103212, 2021.

[13] José Camacho, Katarzyna Wasielewska, Pablo Espinosa, and Marta
Fuentes-Garcı́a. Quality in / quality out: Data quality more relevant than
model choice in anomaly detection with the ugr’16. In NOMS 2023-2023
IEEE/IFIP Network Operations and Management Symposium, pages 1–
5, 2023.

[14] Gideon Creech and Jiankun Hu. Generation of a new ids test dataset:
Time to retire the kdd collection. In 2013 IEEE wireless communications
and networking conference (WCNC), pages 4487–4492. IEEE, 2013.

[15] Gustavo de Carvalho Bertoli, Lourenço Alves Pereira Júnior, Filipe
Alves Neto Verri, Aldri Luiz dos Santos, and Osamu Saotome. Bridging
the gap to real-world for network intrusion detection systems with data-
centric approach. CoRR, abs/2110.13655, 2021.

[16] Emily Denton, Alex Hanna, Razvan Amironesei, Andrew Smart, Hi-
lary Nicole, and Morgan Klaus Scheuerman. Bringing the people
back in: Contesting benchmark machine learning datasets. CoRR,
abs/2007.07399, 2020.

[17] Fermin Galan, David Fernandez, Jorge E. Lopez de Vergara, and Ramon
Casellas. Using a model-driven architecture for technology-independent
scenario configuration in networking testbeds. IEEE Communications
Magazine, 48(12):132–141, 2010.

[18] Chenquan Gan, Jiabin Lin, Da-Wen Huang, Qingyi Zhu, and Liang
Tian. Advanced persistent threats and their defense methods in industrial
internet of things: A survey. Mathematics, 11(14), 2023.

[19] Sebastian Garcia, Martin Grill, Jan Stiborek, and Alejandro Zunino.
An empirical comparison of botnet detection methods. computers &
security, 45:100–123, 2014.

[20] Julie Gjerstad, Fikret Kadiric, Gudmund Grov, Espen Hammer Kjell-
stadli, and Markus Leira Asprusten. Lademu: a modular & continuous
approach for generating labelled apt datasets from emulations. In 2022
IEEE International Conference on Big Data (Big Data), pages 2610–
2619. IEEE, 2022.

[21] Jorge Luis Guerra, Carlos Catania, and Eduardo Veas. Datasets are not
enough: Challenges in labeling network traffic. Computers & Security,
120:102810, 2022.

[22] Waqas Haider, Jiankun Hu, Jill Slay, Benjamin P Turnbull, and Yi Xie.
Generating realistic intrusion detection system dataset based on fuzzy
qualitative modeling. Journal of Network and Computer Applications,
87:185–192, 2017.

[23] Xueyuan Han, Thomas Pasquier, Adam Bates, James Mickens, and
Margo Seltzer. Unicorn: Runtime provenance-based detector for ad-
vanced persistent threats. In Proceedings 2020 Network and Distributed
System Security Symposium, NDSS 2020. Internet Society, 2020.

[24] Grant Ho, Mayank Dhiman, Devdatta Akhawe, Vern Paxson, Stefan
Savage, Geoffrey M. Voelker, and David Wagner. Hopper: Modeling
and detecting lateral movement. In 30th USENIX Security Symposium
(USENIX Security 21), pages 3093–3110. USENIX Association, August
2021.

[25] Microsoft Threat Intelligence. Defending new vectors: Threat actors
attempt sql server to cloud lateral movement. October 3, 2023.

[26] A. Kenyon, L. Deka, and D. Elizondo. Are public intrusion datasets fit
for purpose characterising the state of the art in intrusion event datasets.
Computers & Security, 99:102022, 2020.

[27] Sean Michael Kerner. Crowdstrike outage explained: What caused it
and what’s next. TechTarget, Oct 2024. A CrowdStrike update caused
a massive IT outage, crashing millions of Windows systems. Critical
services and business operations were disrupted, revealing tech reliance
risks.

[28] Meejoung Kim and Inkyu Lee. Human-guided auto-labeling for network
traffic data: The gelm approach. Neural networks, 152:510–526, 2022.

[29] Max Landauer, Maximilian Frank, Florian Skopik, Wolfgang Hotwagner,
Markus Wurzenberger, and Andreas Rauber. A framework for automatic
labeling of log datasets from model-driven testbeds for hids evaluation.
In Proceedings of the 2022 ACM Workshop on Secure and Trustworthy
Cyber-Physical Systems, pages 77–86, 2022.

[30] Max Landauer, Florian Skopik, Maximilian Frank, Wolfgang Hotwagner,
Markus Wurzenberger, and Andreas Rauber. Maintainable log datasets
for evaluation of intrusion detection systems. IEEE Trans. Dependable
Secur. Comput., 20(4):3466–3482, jul 2023.

[31] Max Landauer, Florian Skopik, Markus Wurzenberger, Wolfgang Hot-
wagner, and Andreas Rauber. Have it your way: Generating customized
log datasets with a model-driven simulation testbed. IEEE Transactions
on Reliability, 70(1):402–415, 2020.

[32] Fucheng Liu, Yu Wen, Yanna Wu, Shuangshuang Liang, Xihe Jiang,
and Dan Meng. Mltracer: Malicious logins detection system via graph
neural network. In 2020 IEEE 19th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom),
pages 715–726, 2020.

[33] Qingyun Liu, Jack W. Stokes, Rob Mead, Tim Burrell, Ian Hellen,
John Lambert, Andrey Marochko, and Weidong Cui. Latte: Large-scale
lateral movement detection. In MILCOM 2018 - 2018 IEEE Military
Communications Conference (MILCOM), pages 1–6, 2018.

[34] Xiaohan Ma, Chen Li, and Bibo Tu. An unsupervised approach for
detecting lateral movement logins based on knowledge graph. In 2022
IEEE Intl Conf on Parallel & Distributed Processing with Applications,
Big Data & Cloud Computing, Sustainable Computing & Communica-
tions, Social Computing & Networking (ISPA/BDCloud/SocialCom/Sus-
tainCom), pages 700–707, 2022.

[35] Anas Mabrouk. Lateral movement attacks datasets: Benchmarking,
challenges, and solutions. M.sc. thesis, University of Windsor, Windsor,
Ontario, Canada, 2024. Available from the University of Windsor Digital
Repository.

[36] Anas Mabrouk, Mohammad Mamun, Sherif Saad, and Mohamed Hatem.
Lateral movement dataset generation (LMDG): Dataset and documenta-
tion, 2025. Available at: https://github.com/WASPLab/LMTrace.

[37] Mark Mazumder, Colby R. Banbury, Xiaozhe Yao, Bojan Karlavs,
William Gaviria Rojas, Sudnya Diamos, Gregory Frederick Diamos,
Lynn He, Douwe Kiela, David Jurado, David Kanter, Rafael Mosquera,
Juan Ciro, Lora Aroyo, Bilge Acun, Sabri Eyuboglu, Amirata Ghorbani,
Emmett D. Goodman, Tariq Kane, Christine R. Kirkpatrick, Tzu-Sheng
Kuo, Jonas W. Mueller, Tristan Thrush, Joaquin Vanschoren, Margaret J.
Warren, Adina Williams, Serena Yeung, Newsha Ardalani, Praveen K.
Paritosh, Ce Zhang, James Y. Zou, Carole-Jean Wu, Cody Coleman,
Andrew Y. Ng, Peter Mattson, and Vijay Janapa Reddi. Dataperf:
Benchmarks for data-centric ai development. ArXiv, abs/2207.10062,
2022.

[38] Grant McDonald, Pavlos Papadopoulos, Nikolaos Pitropakis, Jawad
Ahmad, and William J Buchanan. Ransomware: Analysing the impact
on windows active directory domain services. Sensors, 22(3):953, 2022.

[39] MITRE Corporation. Caldera Documentation, 2024. Accessed: 2024-
10-31.

[40] Basem Ibrahim Mokhtar, Anca D Jurcut, Mahmoud Said ElSayed, and
Marianne A Azer. Active directory attacks—steps, types, and signatures.
Electronics, 11(16):2629, 2022.

[41] Kate O’Flaherty. CrowdStrike Reveals What Happened, Why—And
What’s Changed. Forbes, 2024. Senior Contributor; Kate O’Flaherty is
a cybersecurity and privacy journalist.

[42] Emilie Purvine, John R. Johnson, and Chaomei Lo. A graph-based
impact metric for mitigating lateral movement cyber attacks. In Pro-
ceedings of the 2016 ACM Workshop on Automated Decision Making
for Active Cyber Defense, SafeConfig ’16, page 45–52, New York, NY,
USA, 2016. Association for Computing Machinery.

[43] Markus Ring, Sarah Wunderlich, Dominik Grüdl, Dieter Landes, and
Andreas Hotho. Flow-based benchmark data sets for intrusion detection.
In Proceedings of the 16th European conference on cyber warfare and
security. ACPI, pages 361–369, 2017.

[44] Nithya Sambasivan, Shivani Kapania, Hannah Highfill, Diana Akrong,
Praveen Kumar Paritosh, and Lora Mois Aroyo. ”everyone wants to do
the model work, not the data work”: Data cascades in high-stakes ai.
2021.

[45] Amit Sharma, Brij B Gupta, Awadhesh Singh, and V. Saraswat.
Advanced persistent threats (apt): evolution, anatomy, attribution and
countermeasures. Journal of Ambient Intelligence and Humanized
Computing, 14:1–27, 05 2023.

[46] Hadi Shiravi, Ali Shiravi, and Ali A Ghorbani. A survey of visualization
systems for network security. IEEE Transactions on visualization and
computer graphics, 18(8):1313–1329, 2011.

[47] Christos Smiliotopoulos, Georgios Kambourakis, and Konstantia Barm-
patsalou. On the detection of lateral movement through supervised
machine learning and an open-source tool to create turnkey datasets
from sysmon logs. International Journal of Information Security, 22:1–
27, 07 2023.

[48] Branka Stojanović, Katharina Hofer-Schmitz, and Ulrike Kleb. Apt
datasets and attack modeling for automated detection methods: A review.
Computers & Security, 92:101734, 2020.

https://github.com/WASPLab/LMTrace


13

[49] Xiaoqing Sun and Jiahai Yang. Hetglm: Lateral movement detection by
discovering anomalous links with heterogeneous graph neural network.
In 2022 IEEE International Performance, Computing, and Communica-
tions Conference (IPCCC), pages 404–411, 2022.

[50] Ngan Tran, Haihua Chen, Jay Bhuyan, and Junhua Ding. Data cura-
tion and quality evaluation for machine learning-based cyber intrusion
detection. IEEE Access, 10:121900–121923, 2022.

[51] Martin Ussath, David Jaeger, Feng Cheng, and Christoph Meinel. Ad-
vanced persistent threats: Behind the scenes. In 2016 Annual Conference
on Information Science and Systems (CISS), pages 181–186, 2016.


	Introduction
	LMDG Framework
	Overview
	Testbed Infrastructure
	Benign Data Engine (BDE)
	Sessions Scheduler
	Sessions Executor

	Attack Engine (AE)
	LM Attacks
	Challenges in Automating LM Attacks
	A Candidate Solution
	CALDERA as an Attack Engine
	LM Attacks in LMDG Dataset

	LMDG Labelling Engine (LE)
	Challenges in Attack Data Labeling
	LMDG Labeling Engine


	Dataset
	Qualitative Analysis
	Related Work
	LADEMU Framework
	AIT Framework
	CREME Framework

	Discussion
	Conclusions and Future Work
	References

