arXiv:2508.03321v1 [cs.NI] 5 Aug 2025

Bidirectional TLS Handshake Caching for
Constrained Industrial IoT Scenarios

Jorn Bodenhausen®, Simon Mangel*, Thomas Vogt*, Martin Henze*$
*Security and Privacy in Industrial Cooperation, RWTH Aachen University, Germany
§Cyber Analysis & Defense, Fraunhofer FKIE, Germany
{bodenhausen, vogt, henze} @spice.rwth-aachen.de - simon.mangel @rwth-aachen.de

Abstract—While TLS has become the de-facto standard for
end-to-end security, its use to secure critical communication in
evolving industrial IoT scenarios is severely limited by prevalent
resource constraints of devices and networks. Most notably, the
TLS handshake to establish secure connections incurs significant
bandwidth and processing overhead that often cannot be handled
in constrained environments. To alleviate this situation, we
present BiTHaC which realizes bidirectional TLS handshake
caching by exploiting that significant parts of repeated TLS
handshakes, especially certificates, are static. Thus, redundant
information neither needs to be transmitted nor corresponding
computations performed, saving valuable bandwidth and pro-
cessing resources. By implementing BiTHaC for wolfSSL, we
show that we can reduce the bandwidth consumption of TLS
handshakes by up to 61.1% and the computational overhead
by up to 8.5%, while incurring only well-manageable memory
overhead and preserving the strict security guarantees of TLS.

Index Terms—Transport Layer Security, Industrial IoT, Hand-
shake Caching, Session Resumption, Constrained Environments

I. INTRODUCTION

With the omnipresence of Internet technology in modern
communication, its use in industrial settings such as smart
cities [1], vehicular communication [2], sensor networks [3],
or industrial control systems [4] becomes increasingly relevant.
Due to the connection to critical infrastructure and the result-
ing significance of operational safety [5], end-to-end (E2E)
security of industrial communication is crucially important [6].

To ensure interoperability, Transport Layer Security (TLS),
the de-facto standard protocol for E2E security on the Internet,
is a key candidate for securing IIoT communication [7]. Often,
the use of TLS in industrial communication is even required
by laws and standards [8], [9]. However, as any security
solution in constrained IIoT scenarios, TLS has to adhere to
often strict constraints regarding bandwidth, processing, and
memory prevalent across industrial devices and networks [10],
[11], especially when considering the push towards deeply
embedded devices relying on wireless communication [12],
[13]. Contrary to these strict resource bounds, especially the
use of public-key cryptography during TLS handshakes incurs
significant bandwidth and processing overheads. This makes
the use of TLS in constrained IIoT scenarios challenging [8],
[14], an issue that will further exaggerate with the ongoing
transition towards post-quantum cryptography [15], [16].

To account for the restrictions imposed by constrained IIoT
scenarios and still allow for the use of TLS, related work has

proposed optimizations for TLS: (i) use of profiles [17], [18]
and optimized encoding [19], [20], (ii) out-of-band transmis-
sion [21], [22] and handshake delegation [23], [24], as well as
(iii) caching of sessions [25], [26] and handshakes [27], [28].

Especially caching allows for substantial resource savings.
However, session caching [25], [26] requires frequent full
handshakes to cryptographically decouple connections [29],
making it unsuited for industrial scenarios [8]. Contrary,
handshake caching [27], [28] fully preserves E2E security
guarantees and thus is an extremely promising candidate to
optimize TLS for constrained IIoT scenarios. Still, existing
approaches mainly target to reduce the bandwidth overhead
imposed by server certificates in Internet communication and
thus do not consider the specifics of the constrained IIoT.

To fill this gap, we present BiTHaC, our approach to realize
bidirectional TLS handshake caching for constrained IIoT
scenarios. BiTHaC exploits that significant parts of the TLS
handshake are static, and thus cacheable. Consequently, after
an initial full handshake, those parts neither need to be trans-
mitted (saving bandwidth) nor corresponding computations
performed (reducing processing overhead and latency) again.
To this end, BiTHaC adapts the idea of caching server certifi-
cates on the client [28] and adds a corresponding counterpart
to cache client certificates on the server. Furthermore, BiTHaC
specifically accounts for constrained devices through memory-
optimized caching and skipping of redundant computations.
As such, BiTHaC substantially decreases the overhead of TLS
handshakes without impacting E2E security guarantees.
Contributions. We address the need to reduce bandwidth con-
sumption and computational overhead of the TLS handshake
in constrained scenarios with the following contributions:

1) We tailor the idea of caching static parts of server mes-
sages in TLS handshakes to constrained IIoT scenarios
and provide a mechanism to also cache static parts of
client messages without compromising security.

2) We propose a novel paradigm to handling client-side
caches such that redundant yet resource-intensive com-
putations can be skipped with minimal memory impact.

3) Our evaluation for TLS 1.2 and 1.3 shows that BiTHaC
successfully reduces the bandwidth consumption by up
to 61.1%. Likewise, BiTHaC reduces the computational
overhead of TLS handshakes by up to 8.5%.

Availability Statement. Our implementation of BiTHaC is
available at https://github.com/RWTH-SPICe/BiTHaC

Author’s version of a paper accepted for publication in Proceedings of the 2025 IEEE 50th Conference on Local Computer Networks (LCN).
© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

https://arxiv.org/abs/2508.03321v1

II. E2E SECURITY IN CONSTRAINED ENVIRONMENTS

To better understand the root causes for the challenges of us-
ing E2E security and specifically TLS in resource-constrained
environments [6], [8], [12], we first introduce TLS and then
discuss resulting implications for constrained environments.

A. Transport Layer Security (TLS)

TLS is an application layer cryptographic protocol to realize
communication security in an E2E manner, i.e., between client
and server. Over the years, multiple updates and extensions of
TLS have been developed, with TLS 1.2 [30] and 1.3 [31]
being the currently most relevant ones [7].

TLS realizes its functionality through various sub-protocols.
Both for security and resource-consumption, the handshake
protocol for establishing a secure connection is particularly
relevant. It is used to negotiate the required parameters and
authenticate one or both peers. Negotiation allows the protocol
to be versatile and support a wide range of cryptographic
algorithms. Moreover, an extension mechanism can be used
to realize additional functionality. Using this mechanism, the
client can offer additional functionality which the server can
choose to accept. The extension mechanism is designed rather
lightweight and consist of a header with a two-byte identifier,
a two-byte length field, followed by extension specific data.

While previous version updates kept the handshake largely
unchanged, TLS 1.3 introduces notable changes to achieve a
more secure and faster connection establishment. The main
differences are illustrated in Fig. 1 alongside the size of each
message based on an exemplary connection establishment.
In TLS 1.2, connection establishment requires four flights
and starts with the Hello messages, in which fundamental
parameters and the extensions are negotiated. Subsequently,
key-exchange and authentication steps are performed through
the exchange of Certificate and Key Exchange messages.
Finally, the connection establishment is concluded through
Finished messages. Connection establishment in TLS 1.3
differs substantially and requires only three flights. To achieve
this, dedicated Key Exchange messages are omitted and their
functionality moved to extensions. Moreover, all messages
after the Hello messages are encrypted, including a newly
added Encrypted Extensions message, for additional privacy.

The message sizes in Fig. 1 show that a single handshake
adds up to a bandwidth overhead in the order of KBs,
even for single self-signed certificates. In reality, chains of
multiple certificates further increase the bandwidth overhead
[32]. Nevertheless, even in this simple case, the two Certificate
messages make up 61.5% of the TLS 1.2 handshake messages
and 57.9% for TLS 1.3. Moreover, when considering the
upcoming use of post-quantum algorithms, this will further
increase, as the utilized public keys are several KBs in size
[32] and expected to be utilized in a hybrid manner [33].

B. Constrained Industrial IoT Scenarios

Devices and networks in Industrial IoT (IIoT) environments
impose various resource constraints [10], [12], [34]. Most no-
tably, industrial devices and networks are severely constrained

TLS 1.2 Handshake TLS 1.3 Handshake

Client Server Message Sizes Client Server
Client Hello 130 B 229 B Client Hello
Server Hello 91 B 128 B Server Hello
Certificate 796 B 28 B Encrypted Extensions
Server Key Exchange 338 B 75 B Certificate Request
Certificate Request 35B| 816B . Certificate
Server Hello Done 9B| 286B Certificate Verify
74 B Finished
Chent Rey Exch TNE
ient Key Exchange :
Certiicaté Veriy | SM0B||Comfine
Finished 45B| 74 B| |Finished
Finished 45 B
2.578 B| 2.806 B

Fig. 1. Handshake comparison between TLS 1.2 and 1.3 alongside measured
message sizes. Both handshakes use mutual authentication with single self-
signed 2048-bit RSA certificates. A single cipher is offered by the client,
resulting in an ECDHE key exchange and use of AES 256 GCM SHA384.

w.r.t. bandwidth, processing, memory, or energy [10], [35]-
[37], especially for wireless communication [12], [38], [39].

IIoT devices are often limited w.r.t. processing power,
memory, and energy [10]. Using TLS to secure communication
affects all three dimensions. Energy consumption is affected,
as the transmission of larger messages over wireless networks
consumes considerable power. Moreover, asymmetric cryp-
tography utilized in TLS is particularly resource intensive
[40], leading to substantial computational and indirectly power
consumption overhead. Lastly, the memory overhead of TLS,
especially the impact of asymmetric cryptography [40], is
challenging for devices with only a few KB of memory [10].

Considering IIoT networks, constraints resulting from the
prevalent use of wireless network technology limit the band-
width available to each device and thus its ability to establish
and maintain a TLS connection [8]. Moreover, wireless net-
work technologies commonly impose restrictions on individual
message sizes [41]. For instance, LoORaWAN has a maximum
message size of only 256 bytes [12], which would already
cause the Certificate messages from our example with a
single certificate (cf. Fig. 1) to be fragmented, thus invoking
additional overhead on lower network layers and delays.

Overall, the use of certificate chains and associated com-
putations for mutual authentication are integral for security
in TLS. At the same time, they heavily influence the overall
resource overhead and particularly bandwidth consumption,
especially in constrained IIoT environments, often rendering
the application of secure communication infeasible.

III. RELATED WORK ON OPTIMIZING TLS OVERHEAD

Various work motivate the use of TLS in the IoT [42]-
[44] without detailing applicability and resulting overheads.
Other proposals suggest to realize E2E secure communication
other than TLS, e.g., based on HIP [45], [46] or custom
solutions [47], [48]. As these jeopardize the interoperability
of E2E security and often do not meet the requirements
of industrial contexts [8], [9], our discussion focuses on
approaches to optimize the overhead imposed by TLS.

Profiles & Optimized Encoding aim to reduce overhead
through enhanced message formats or protocol restrictions,

leaving protocol features and security guarantees largely
unchanged. For example, header compression improves the
overhead of Datagram TLS (DTLS) [19], [49], [50]. More-
over, Compact TLS 1.3 reduces the amount of transmitted
information through re-design and a templating mechanism
[20]. However, such savings usually come at the cost of
interoperability. Improvements on the typically used X.509
[51] certificates encoding are explored through compression
[52], [53] and more efficient encoding [54]-[56]. Still, these
improved certificates still need to be transmitted for every con-
nection. Conversely, different approaches reduce the overhead
of TLS through restriction to a subset of available features
based on profiles, e.g., exclusively using ECC [17], [54], [57].
Furthermore, an official set of profiles for IoT environments
[18] is being updated for TLS 1.3 [58]. As such configuration
optimizations are relevant in any particular scenario, they are
orthogonal to more fundamental improvements.

Out-of-Band Transmission improves the overhead of TLS
by utilizing an additional, typically unconstrained, communi-
cation channel. A prominent example is on-demand retrieval,
as utilized by client certificate URLs [59]. However, this
mechanism merely shifts overhead from client to server and
comes with various security considerations. As an alternative,
pre-provisioning of such information allows to entirely leave
out information in the actual connection establishment. Ex-
amples are the templating mechanism of Compact TLS 1.3
[20], the direct use of raw public keys [22], or pre-sharing
of symmetric keys [21]. However, as such information needs
to be exchanged in advance, potential application scenarios
and scalability are limited. Lastly, handshake delegation can
be utilized for devices that are too constrained to establish
a connection on their own by (partly) offloading connection
establishment to another device [23], [24], [60], [61]. Such
mechanisms, however, require the presence of a trustworthy
powerful device [62], which often is an unrealistic assumption.
Finally, the less intrusive approach of certificate pre-validation
on gateways [63] avoids the unnecessary validation of invalid
certificates, but still causes the full overhead for valid certifi-
cates (which is the majority of cases).

Caching omits static parts of the connection establishment
across repeated connections. As the most drastic form of
caching, session caching or resumption caches the entire
established connection. Up to TLS 1.2, the used ID-based
mechanism [17], [30], [64], shows significant security impli-
cations, especially a lack of perfect forward secrecy (PFS). In
contrast, session ticket-based resumption [25] allows for PFS
[31] and proven advantageous for [oT environments [18], [63].
Further extensions have been proposed, e.g., handshake dele-
gation [23], [65] and rTLS [26]. However, session resumption
generally cryptographically links subsequent connections to
the original connection, which limits their lifetime and leads
to the need for frequent full handshakes [29].

Handshake caching constitutes a promising alternative (or
complement) to session resumption by more granularly retain-
ing aspects of the connection establishment rather than the
entire connection. Various approaches for handshake caching

were proposed [27], [54], [66], [67], leading to the stan-
dardization of the cached information extension (RFC 7924)
[28]. Unlike other alternatives, this extension does not break
the protocol and can be flexibly negotiated, positioning it as
a promising approach to improve resource efficiency of the
TLS handshake. However, RFC 7924 [28] still has significant
drawbacks for constrained IIoT environments: As caching
only happens on the client-side, only half of the optimization
potential is leveraged in IIoT scenarios where mutual authenti-
cation is imperative [68]. Furthermore, device constraints are
not considered, resulting in optimization potential w.r.t. the
implementation of the cache. On the technical side, RFC 7924
does not work with TLS 1.3 [15] due to ephemeral content in
Certificate and Certificate Request messages.

IV. BIDIRECTIONAL TLS HANDSHAKE CACHING

Existing approaches to optimize E2E security do not con-
sider the specifics of IIoT scenarios (cf. Sec. III), most
importantly strict resource constraints on the client and the
mandatory use of mutual authentication [68]. To fill this
gap, we present BiTHaC to optimize TLS for IIoT scenar-
ios without compromising security. As illustrated in Fig. 2,
BiTHaC leverages the substantial static parts of TLS hand-
shakes (Fig. 2a) to cache their transmission and corresponding
processing (Fig. 2b) without impacting E2E security.

To reduce the bandwidth overhead of TLS, we first leverage
an existing caching mechanism to avoid the unnecessary
transmission of static information sent by the server (Sec.
IV-A), before we introduce a novel caching scheme for static
information sent by the client (Sec. IV-B). Based on this,
we propose a mechanism to substantially reduce processing
overhead with cached information (Sec. IV-C). Finally, we
present required adaptations for TLS 1.3 (Sec. IV-D).

A. Caching of Static Server Information (RFC 7924)

To cache static server information on the client-side, we
leverage the caching mechanism of RFC 7924 [28] (illustrated
in Fig. 3 in purple) that allows for caching of the server’s
Certificate and Certificate Request messages. After an initial
full handshake, the client caches these messages (Fig. 3-i).
In subsequent handshakes, it provides the server with options
from its cache by including a list of object type and fingerprint
(i.e., hash of the cached message) in the Client Hello (Fig. 3-
ii). The server can then reuse cached elements by indicating
its selection in the Server Hello (Fig. 3-iii). Subsequently, the
respective messages are replaced with the fingerprint and thus
substantial bandwidth savings realized.

As RFC 7924 [28] only defines the changes to the TLS
handshake protocol, to actually use it in BiTHaC, we derive
a cache structure with two distinct lookup mechanism specif-
ically tailored to constrained IIoT devices. Here, the primary
lookup utilizes the type and fingerprint value to retrieve a
cached object and can be used to access the required cached
information selected by the server. Moreover, we utilize a
secondary lookup via a peer index to scope the selection of
cached elements included in the Client Hello to each server.

Client Server Client

—

Client
Hello

Server

Hello + @

Store +

Server

Handshake

B

Cl'“g

<
«
\

— 8

Initial (Full)

. ... Generate
b + Done
3

/[l

Object Object
Cache Cache Cache

— .
g Processing
<_—_ﬂ-——_ savings |

(a) original TLS handshake

Fig. 2. Significant parts of bandwidth- and computationally-intensive TLS handshakes are static (Fig. 2a).
BiTHaC caches these parts to significantly reduce bandwidth consumption and processing overhead (Fig. 2b).

Otherwise, the client would need to send all cached elements
for each new connection, leading to unnecessary bandwidth
overhead and a potential risk of tracking. To uniquely identify
servers, we rely on the commonly used server name indication
(SNI) extension or the IP address, if SNI is not used.

With these adaptations, we realize the first half of bandwidth
savings while catering for the specific requirements of the IIoT.

B. A Novel Caching Scheme for Static Client Information

While caching of static server information already saves
some bandwidth (by caching the servers’ Certificate and
Certificate Request messages), the prevalent use of mutual
authentication in constrained IIoT scenarios [68] coupled with
tight bandwidth restrictions demand for also caching static
client information on the server-side. To this end, we propose
a ticket-based mechanism for caching static client information,
i.e., the Certificate message (while extensible to other objects,
we only consider the Certificate message here). Our design
specifically focuses on bandwidth efficiency and client privacy,
i.e., tracking prevention. In the following, we provide an
overview of our caching scheme, detail cache structure, ex-
tension format, ticket generation, and adapted behavior during
the TLS handshake alongside Fig. 3 (in green).

Overview of Caching Scheme. Our caching scheme for
static client information relies on tickets to negotiate the use
of cached information. More specifically, the client generates
a ticket which is used to identify an object cached at the server
after a successful handshake (Fig. 3-1). Analogously, the
server stores the respective object and generates the associated
ticket (Fig. 3-2). In subsequent handshakes, the client includes
suitable tickets in its Hello message (Fig. 3-3). If the server
has a matching entry in its cache, it informs the client which
cached information it selected for use (Fig. 3-4). Subsequently,
the client omits the selected cached information from sent
messages. Unlike for caching static server information, we
thus move the choice which cached objects will be used to
the entity storing the cached information (i.e., the server).
This is necessary, as servers usually cannot identify clients at
the beginning of connection establishment (while clients can
easily identify servers, e.g., based on their SNI). Consequently,

", H 4
vy . v
. , R R
\ . ; N N [lel]o+'+ @ ‘i z
Bandwidth savings E B " Indicate | £ g
Lookup ™., . -]
.......... Hello + B+ @ Choice { s :;
: - s
[l Client authentication @ { 5%
HE
H
H
[

(b) adapted BiTHaC handshake

[Server authentication Done

\

Fig. 3. BiTHaC introduces a ticket-based sig-
naling flow to realize server-side caching.

if the client were to make the selection of which cached
information to use (similar to RFC 7924), the server would
need to send information on its complete cache to the client,
which is not feasible and would raise privacy issues.

Cache Structure. Using tickets requires to not only main-
tain an object cache at the server (for static client information
— Fig. 3-A), but also a cache of tickets at the side (Fig. 3-B).
For each ticket, this cache retains the type of the cached object,
the associated server’s identity (i.e., SNI) for scoping (to
prevent tracking), and a reference to the matching object, as we
support caching multiple objects (e.g., certificate chains). On
the server side, an object cache is required to retain static client
information and link it to tickets. As no scoping is required
here, a single lookup mechanism via the ticket suffices.

Extension Format. For the exchange of information be-
tween client and server, we create a dedicated TLS extension,
as this allows for minimal modification and ensures inter-
operability. More specifically, we define extensions for the
respective Hello messages of client and server (cf. Sec. II).
On both sides, we utilize a single list, such that the extension
consists of the four-byte header, a two byte length field, and
the (potentially empty) list. The Client Hello message then
contains a list of entries with the form object type (1 B),
ticket length (1 B) and ticket (see below), where object types
are chosen according to RFC 7924 [28]. Similarly, the Server
Hello message contains a list of elements with the form object
type (I B) and ticket index (2 B), indicating the server’s
selection of cached objects. In case the server does not cache
any of the objects signaled by the client, it responds with
an empty list. During the initial handshake, client and server
signal support for BiTHaC using a zero-length extension.

Ticket Generation. As we use tickets to identify cache
objects, client and server need to obtain the same ticket when
caching static client information. Typically, e.g., in session
resumption [25], one party generates a ticket and explicitly
transmits this to the other party. However, this results in
unnecessary bandwidth overhead. Instead, BiTHaC relies on
implicit ticket generation based on the TLS key derivation
function [30] to derive eight-byte tickets from the Master-
Secret: PRF (MasterSecret, "ssc_ticket_label",

object type || object hash). As ownership of the
actual cached object is still proven in the handshake, no sub-
stantial bit security needs to be provided by the ticket’s length.
Furthermore, our mechanism generates fresh tickets for each
connection, thus cryptographically decoupling connections.

Adapted Behavior. To realize our caching scheme for static
client information, we adjust different steps of the TLS hand-
shake at the client and server. First, when building the Client
Hello message, the client checks its cache for available tickets
scoped to the server and includes them into the extension
(if no tickets are available, it sends an empty extension to
signal support for BiTHaC). Upon receiving tickets from the
client, the server checks its cache for corresponding entries
and responds with the cache entry it selected (or an empty list
if no matching cache entry exists). If the client only sends an
empty extension (to signal support for BiTHaC), the server
likewise signals its support. Should either client or server
not support BiTHaC, the handshake proceeds as normal, thus
ensuring backwards compatibility. Upon receiving the Server
Hello message, the client keeps track of server support for
BiTHaC and parses the server’s selection of cached objects.
If a cached certificate should be used, the client replaces the
content of the Certificate message with a zero-length message.
The server expects such an abbreviated message and uses
the selected cached certificate chain instead. Finally, after
exchanging the Finished messages, both peers generate (new)
tickets (as described above) and update their caches.

By caching static client information, we can omit redundant
content of messages sent by the client, most notably the client
certificate, and thus substantially reduce bandwidth usage.

C. Minimizing Processing with Cached Static Information

Besides cutting bandwidth consumption, BiTHaC also lever-
ages cached information to substantially reduce the processing
overhead for validating certificate chains. To this end, BiTHaC
validates the certificate chain only once during the initial
handshake and subsequently only re-validates time-dependent
operations, e.g., certificate revocation checks. Thus, BiTHaC
not only substantially reduces processing overhead but also
obviates the need to cache the complete certificate chain and
thus allows to save valuable memory on constrained devices.
In an essence, only the public key of the leaf certificate re-
quired during every handshake as well as information required
to perform time dependent validation steps need to be cached.

These steps validate certificate lifetimes, for which it suf-
fices to cache the two most restrictive timestamps (i.e., the
maximum of “not before” and minimum of “not after” values
across the certificate chain). Furthermore, if optional checks
for revocation using Certificate Revocation Lists (CRL) [51] or
Online Certificate Status Protocol (OCSP) [69] are used, also
the hash of the issuer name and public key, the serial number,
and potentially the CRL distribution points are cached.

Thus, by substantially reducing the number of signature
verifications for repeated handshakes, BiTHaC speeds up
handshakes and cuts energy consumption. Likewise, as cache
entries are reduced to one public key and two timestamps

(if no optional revocation checks are used) instead of storing
complete certificate chains, the memory overhead of BiTHaC
is well-manageable even for memory constrained IIoT devices.

D. Interoperability with TLS 1.3

While TLS 1.2 still is the prevalent choice in IIoT scenar-
ios [7], future deployments will likely only support TLS 1.3
and should equally benefit from the tremendous improvements
of BiTHaC. As TLS 1.3 introduces significant changes to
connection establishment (cf. Sec. II), we briefly discuss how
these changes impact BiTHaC. The most notable change in
TLS 1.3 is that all messages after the Hello messages are
encrypted and an additional Encrypted Extension message is
introduced. We leverage this to move the server-side signaling
to this message for additional tracking protection.

The changes to the Certificate message require further
consideration. Here, TLS 1.3 adds a request context and the
option to add extensions to each certificate in the chain.
Although providing useful functionality, this might lead to
non-static content, complicating caching. To address this, we
leverage a conversion function that (after verification of the
certificate chain) transforms a TLS 1.3 message into its TLS
1.2 equivalent by removing certificate extensions and request
context, which can then be handled by BiTHaC as for TLS
1.2. An abbreviated Certificate message is then achieved by
utilizing zero-length certificate fields followed by their non-
static extensions rather than a zero-length Certificate message.

With these minor adaptations, the advantages of BiTHaC
also apply to constrained IIoT devices using TLS 1.3.

V. EVALUATION

To quantify the improvements of BiTHaC and thus the po-
tential to widely deploy TLS in constrained IIoT environments,
we implement BiTHaC on top of wolfSSL version 5.6.0 [70].
We implement RFC 7924 [28], our caching scheme for static
client information, and our approach to reduce processing
overhead based on caching for TLS 1.2 and 1.3.

A. Bandwidth Improvements

To demonstrate the effectiveness of BiTHaC in reducing the
bandwidth overhead of TLS handshakes by omitting redundant
transmissions of certificate chains, we perform measurements
of bandwidth usage across various parameters.

Methodology. We evaluate BiTHaC in a Docker [71] en-
vironment by deploying both a client and server utilizing our
adapted wolfSSL library in a docker container based on Alpine
Linux version 3.18.3. A third docker container runs t cpdump
[72] to capture communication over a virtual Ethernet network.
As wireless networks used in constrained IloT environments
impose tight restrictions on message sizes, TLS messages often
get fragmented [8], [12]. Thus, we adapt the virtual network
to study different Maximum Transmission Units (MTUs):
127 B (MTU in IEEE 802.15.4 wireless networks [73]), 576
B (minimum receivable datagram size IPv4 devices must
support [74]), and 1500 B (typical MTU in Ethernet [75]).

To put the bandwidth improvements of BiTHaC into per-
spective, we compare (i) an unmodified version of wolfSSL
without caching support (Vanilla), (ii) our extended version
of wolfSSL with support for RFC 7924 (RFC7924), (iii) our
implementation of BiTHaC (BiTHaC), and (iv) an unmodified
version of wolfSSL with ID-based (TLS 1.2) or ticket-based
(TLS 1.3) session resumption (Sess.Res.).

For each measurement, we establish a connection, send one
message per direction and then close the connection. Unless
stated otherwise, both peers use a chain of three 2048-bit
RSA certificates for authentication. Root certificates are not
transmitted, as allowed by the specification [30]. Connections
relying on caching or resumption are preceded by an initial
full handshake to populate the cache resp. generate a session.
We repeat each measurement ten times, report the arithmetic
mean over these measurements, and indicate the minimum and
maximum observed values through error bars.

Different MTUs. In Fig. 4, we report on the resulting
bandwidth usage of the four TLS configurations for TLS 1.2
and varying MTUs, divided by the different protocol layers.
As expected, the unmodified TLS configuration (Vanilla) con-
sumes the most bandwidth with 6 to 11 kB (slight deviations
denoted by the error bars result from race conditions leading to
different numbers of acknowledgments). Already by deploying
RFC 7924 to cache static server information, bandwidth usage
can be reduced by 31.67% to 27.58% (depending on the
MTU). When using BiTHaC to additionally cache static client
information, this can be further decreased to between 43.25%
and 38.86%. While session resumption is even more efficient
and decreases the required bandwidth by up to 80%, this
comes at the cost of cryptographically linking all resumed
sessions to the initial session, severely limiting the allowed
lifetime of cached sessions (< 24 h for TLS 1.2 sessions [30]),
thus requiring to carry out full handshakes frequently [8]. Still,
BiTHaC and session resumption are not mutually exclusive
and can be used in tandem to combine their strengths.

Considering the influence of varying MTUs, we observe that
the different network layers contribute differently. While the
bandwidth required for TLS remains unchanged, a decrease
in the MTU leads to a disproportionate increase in bandwidth
overhead on the lower layers. This particularly highlights the
importance of optimizing bandwidth consumption for severely
constrained wireless networks such as IEEE 802.15.4.

Savings of BiTHaC. Further investigating the bandwidth
reductions realized by BiTHaC, we observe that the server’s
Certificate message is reduced to a constant size of 42 B with
caching. Likewise, the variable size of the client’s Certificate
message is reduced to a constant size of only 9 B, due
to BiTHaC’s more efficient caching scheme for static client
information. Furthermore, the CertificateRequest message is
replaced with the selected fingerprint, which results in a
marginal reduction of the already constant size of 45 B to
42 B. To realize these savings, BiTHaC introduces a reason-
able overhead of combined 111 B in the Hello messages of
client and server. For initial handshakes, BiTHaC’s signaling
mechanism (cf. Sec. IV-B) causes merely 8 B of overhead.

MTU=127
MTU=576
MTU=1500

MTU=127
MTU=576
MTU=1500

MTU=127

Sess.Res. BiTHaC RFC7924 Vanilla

MTU=576
MTU=1500 Protocol layer
. ETH
MTU=127 P
MTU=576 . TCP
MTU=1500 = TS
2000 4000 6000 8000 10000 12000

Bandwidth usage [bytes]

Fig. 4. BiTHaC substantially reduces bandwidth usage compared to unmod-
ified TLS 1.2 as well as straightforward caching based on RFC 7924. While
session resumption provides even more savings, those weaken security.

. TLSv1.2 440 6015
TLSv1.2 400 4356
TLSv1.3 380 4339 Protocol layer

BiTHac TLSv1.2 8360 2602 B ETH
THaC 1 5y1.3 28380 2726 P

TLSv1.2 8380 1809 . TCP
TLSv1.3 288360 2274 = TS

RFC 7924

Sess.Res

T
1000

T T T T T
2000 3000 4000 5000 6000

Bandwidth usage [bytes]

Fig. 5. When switching from TLS 1.2 to 1.3, BiTHaC is still able to achieve
substantial bandwidth savings. In contrast, session resumption cannot uphold
the same level of bandwidth savings due to the switch to session tickets.

Notably, BiTHaC replaces variable-sized static information
with a fixed, small placeholder. Consequently, for larger cer-
tificates (or chains), bandwidth savings become even more pro-
nounced. E.g., when switching to a 4096-bit RSA certificate
chain for the server, BiTHaC reduces the TLS portion of the
bandwidth usage from 5667 B to only 1494 B. Thus, with
the ongoing switch to post-quantum cryptography, BiTHaC’s
optimizations become even more relevant.

TLS 1.2 vs. 1.3. In Fig. 5, we compare TLS 1.2 and 1.3 for
an MTU of 1500 B. Overall, the results are mostly comparable,
with BiTHaC realizing a bandwidth reduction of more than
33 kB (54.89%) for TLS 1.3. Particularly noteworthy is
the relative improvement of BiTHaC compared to session
resumption, which only realizes additional bandwidth savings
of 16.58% (452 B) for TLS 1.3, with still weaker security
guarantees. Session resumption’s increase in bandwidth mainly
stems from the switch to session tickets in TLS 1.3 to provide
PFS [31]. Consequently, with the ongoing shift towards TLS
1.3 in IIoT scenarios [7], the added security of BiTHaC over
session resumption becomes even more attractive.

B. Processing Improvements

Besides substantially reducing bandwidth overhead,
BiTHaC also reduces processing overhead using cached static
information to avoid redundant computations (cf. Sec. IV-C).
Most notably, for cached certificate chains, this promises to
save several costly signature verifications.

Methodology. To evaluate the processing advantages of
BiTHaC, we implement the corresponding optimizations on
the client side for wolfSSL [70] version 5.7.0 and perform a
series of measurements on a Raspberry Pi Zero W equipped
with a 1GHz single-core CPU. In our measurement setup,
client and server communicate directly via the local interface.
We record the total E2E duration of handshakes, repeat mea-
surements 100 times, and report the arithmetic mean as well
as the standard deviation over these repetitions.

Savings of BiTHaC. In Fig. 6, we report on the processing
improvements of BiTHaC compared to unmodified TLS. As
expected, connection establishments with RSA certificates
invoke a larger processing overhead than ECC certificates
and longer certificate chains cause additional overhead. For
BiTHaC, however, we measure a constant processing overhead
for both certificate types. For RSA, this leads to a reduction of
3.3% (15 ms) to 4.9% (23 ms), while BiTHaC achieves an even
larger relative reduction for the already more efficient case of
ECC certificate chains, were the overhead is reduced by 5.5%
(21 ms) to 8.6% (32 ms). Thus, BiTHaC not only realizes
substantial bandwidth improvements, but additionally speeds-
up handshakes by tens of ms, which constitutes a significant
improvement for latency-critical IIoT applications [76], [77].

C. Memory Costs

While BiTHaC realizes substantial bandwidth and process-
ing savings, these require to cache additional information. To
assess whether this is feasible for constrained devices, we
evaluate the memory overhead of BiTHaC.

Methodology. The evaluation setup is similar to the band-
width evaluation (cf. Sec. V-A). However, instead of capturing
network traffic, we utilize the memory profiler Bytehound [78].
Furthermore, we use the lowresource compilation option of
wolfSSL to obtain a realistic baseline for constrained devices.
With this setup, we record the maximum measured memory
overhead for various events of the connection setup.

Peak Memory Usage. First, we observe that the memory
overhead usually peaks while sending the ClientKeyExchange
message. Moreover, the overhead for a single cached certifi-
cate, i.e., a client connecting only to one particular server,
is almost negligible small. Specifically, the relative memory
overhead amounts to 3.44% on the initial handshake and to
1.22% for subsequent handshakes. Thus, the memory overhead
of BiTHaC when connecting to only one server is negligible
and well-manageable even for tightly-constrained devices.

Memory Usage for Larger Caches. To assess the memory
usage based on the number and type of cached certificates,
we examine the memory overhead for different types (2048-
bit RSA keys and 256-bit ECC keys) and numbers of cached
certificates, again for chains of length 3. As shown in Fig. 7,
memory usage scales linearly. More precisely, each cache
entry amounts to an overhead of 420 B for RSA certificates
and 241 B for ECC certificates. Considering that constrained
IIoT devices connect to a small number of servers, the sub-
stantial bandwidth and processing savings clearly outweigh the

Vanilla (7 RSA Certs)
Vanilla (5 RSA Certs)
Vanilla (3 RSA Certs)
BiTHaC (7 RSA Certs)
BiTHaC (5 RSA Certs)
BiTHaC (3 RSA Certs)
Vanilla (7 ECC Certs)
Vanilla (5 ECC Certs)
Vanilla (3 ECC Certs)
BiTHaC (7 ECC Certs)
BiTHaC (5 ECC Certs)
BiTHaC (3 ECC Certs)

0 100 200 300 400 500
Processing Time [milliseconds]

Fig. 6. BiTHaC reduces the variable processing overhead for validating the
entire certificate chain to a constant overhead that only depends on the public
key in the leaf certificate, achieving a reduction of up to 8.6% (32 ms).

—&— BiTHaC (RSA certs)

90K - Baseline: No caching (RSA certs)
i —@— BiTHaC (ECC certs)
4“;’ --=- Baseline: No caching (ECC certs)
£ 80K A
]
(2]
©
2]
3 70K A
Fa
o
§
S 60K A

0T e e e e e e e

0 10 20 30 40 50 60 70 80 90 100
Number of cached certificates

Fig. 7. The memory usage of BiTHaC scales linearly in the amount of cached
certificates and is well-manageable for memory-constrained IIoT devices.

resulting minor memory overhead. Furthermore, if cache size
should become a limiting factor, old entries can be pruned.

Overall, BiTHaC reduces both bandwidth consumption and
computational overhead of TLS handshakes, while incurring
only minor costs in terms of a memory overhead.

VI. DISCUSSION

BiTHaC substantially reduces bandwidth and computational
overhead without impacting E2E security. By refraining from
protocol-breaking changes, we ensure interoperability with
legacy deployments. As both peers are authenticated and no
trust in a third party is needed, strong security is assured.

Does BiTHaC weaken security? In contrast to other
approaches such as offloading [23], [24], [60], [61], which
require a trusted third party, or improvements at the cost of
security, e.g., by foregoing perfect forward secrecy in ID-
based session resumption [17], [30], [64], BiTHaC shrinks
TLS handshakes while preserving security guarantees. Most
importantly, BiTHaC does not change the semantics of the
key establishment of the handshake. Merely the explicit trans-
mission of bandwidth-heavy parts, particularly the certificate
chain, is omitted. Still, those remain cryptographically linked
to the handshake through the included tickets or fingerprints.
Furthermore, both peers still prove possession of the asso-
ciated private keys. Our optimized certificate cache warrants
additional consideration, as the certificate chain is stored only
in significantly abbreviated form (cf. Sec. IV-C). To rule out

potential attack vectors, only public keys included in a verified
certificate chain are added to the cache after an initial suc-
cessful handshake. Thus, attack potential only arises from an
attacker using a certificate chain that was compromised after it
was added to the cache or through direct cache modification.
As BiTHaC upholds support for revocation checks, the risks
arising from compromised certificate chains are identical to
TLS without caching. Likewise, direct manipulation of the
cache requires an attacker to modify application memory,
which also contains further security-critical information such
as the session key, resulting in comparable risk to plain TLS.

Is there an increased risk for device tracking? Since
BiTHaC caches certificates, which hold identifiable informa-
tion, the question of privacy risks arises. However, these risks
are not larger than those inherent to client certificates [79]. For
our discussion, we differentiate between TLS 1.2 [30], where
certificates are transmitted in clear, thus allowing for passive
tracking, and TLS 1.3 [31], where additional encryption and
changes in the handshake prevent passive tracking (cf. Sec.
II-A). Due to these stronger privacy guarantees, we focus our
discussion on TLS 1.2. To prevent tracking, BiTHaC scopes
the cached client-side information (cf. Sec. IV), i.e., the client
onlys transmit fingerprints and tickets associated with the
current peer. Without proper scoping, e.g., naively sending
all fingerprints in the cache to every server, clients would
become sufficiently identifiable for tracking. For server-side
caching, tickets are freshly generated after each connection
and implicitly derived. Hence, passive correlation of TLS
connections is prevented even though tickets are transmitted
in clear. As this does impact the additional privacy guarantees
of TLS 1.3., BiTHaC does not add any new risks over those
deemed an acceptable trade-off for the use of TLS anyways.

What about compatibility with legacy devices? In con-
trast to other approaches to reduce the overhead of TLS which
rely on protocol breaking changes (cf. Sec. III), BiTHaC
ensures compatibility with legacy devices by using the built-
in extension mechanism of TLS [30], [31]. Both peers signal
support for BiTHaC by including a corresponding extension
in their Hello message (cf. Sec. IV-B). Including arbitrary
(new) extensions is fully protocol compliant and a peer will
simply ignore unsupported extensions [30], [31]. Thus, if one
peer does not signal support for BiTHaC, the connection
establishment continues with a default TLS handshake.

How is BiTHaC different from RFC 7924? BiTHaC
builds upon the cached information extension (RFC 7924)
[28]. However, RFC 7924 merely targets to reduce the band-
width overhead resulting from the use of server certificates and
CertificateRequest messages and leaves cache structure and
content to individual implementations. In contrast, BiTHaC not
only adds functionality to significantly reduce the bandwidth
overhead resulting from client certificates (whose use is often
required in IIoT scenarios [8], [9]), but additionally substan-
tially reduces the computational overhead resulting from the
verification of TLS certificates on constrained IIoT devices.
As such, BiTHaC even provides performance improvements
over RFC 7924 when only using server authentication.

Why not use session resumption instead? The advantages
of the full authentication provided by BiTHaC over ID-based
session resumption used up to TLS 1.2 [30], where keys for
resumed sessions are directly derived from previous secrets,
are striking due to the resulting lack of PFS and limited session
lifetime. For TLS 1.3, which provides PFS, BiTHaC’s ad-
vantages require further consideration. Most notably, BiTHaC
performs a full handshake for each connection and thus
provides identical security as TLS without session resumption.
Hence, while session resumption has a bandwidth advantage
over BiTHaC (cf. Sec. V-A), these savings are limited to rather
short session ticket lifetimes. While TLS 1.3 generally allows
for a ticket lifetime of up to 7 days [31], these are significantly
restricted by policies or regulations [8], [9], down to the upper
limit of 24 hours for TLS 1.2 [30]. As a cache entry in BiTHaC
can remain valid for the complete validity period of cached
certificates, its lifetime greatly exceeds that of sessions tickets.
Notably, session resumption and BiTHaC are not mutually
exclusive and can thus be used together to combine short-term
(session resumption) and long-term (BiTHaC) savings.

VII. CONCLUSION

By bi-directionally caching static parts of recurring TLS
handshakes, BiTHaC addresses the substantial bandwidth and
processing overhead of TLS, which often prevents its use
in constrained IloT environments. When leveraging BiTHaC,
redundant information, e.g., certificates, neither have to be
transmitted nor corresponding costly computations, such as
the validation of certificates, performed repeatedly. Notably,
BiTHaC is fully compatible with legacy implementations
through the use of TLS extensions, allowing for incremen-
tal deployability. Finally, through our approach of extending
caching to redundant computations, we particularly improve
upon the computational overhead of asymmetric cryptogra-
phy, while keeping the memory overhead, i.e., the inherent
trade-off of any caching mechanism, minimal. Our evaluation
of BiTHaC shows bandwidth savings of up to 61.1% and
processing reductions of up to 8.5%, while the memory
overhead remains well-manageable. Most notably and unlike
other approaches such as session resumption, BiTHaC fully
upholds the strong security notions of E2E security. With
the ongoing deployment of post-quantum cryptography in
TLS and resulting further increases in bandwidth demand, the
savings offered by BiTHaC will become even more relevant.

ACKNOWLEDGMENTS

Funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence
Strategy — EXC-2023 Internet of Production — 390621612,
the German Federal Office for Information Security (BSI)
under project funding reference number 01M0O23003D (Plus-
MoSmart), and the German Federal Ministry of the Interior
represented by the German Federal Agency for Public Safety
Digital Radio (BDBOS) under project funding reference num-
ber 16BEC0049 (MissionXconnect). The responsibility for the
content of this publication lies with the authors.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

REFERENCES

T.-h. Kim, C. Ramos, and S. Mohammed, “Smart City and IoT,” Future
Generation Computer Systems, vol. 76, 2017.

H. Zhang and X. Lu, “Vehicle communication network in intelligent
transportation system based on Internet of Things,” Computer Commu-
nications, vol. 160, 2020.

J. Ko, J. Eriksson, N. Tsiftes, S. Dawson-Haggerty, J.-P. Vasseur,
M. Durvy, A. Terzis, A. Dunkels, and D. Culler, “Industry: Beyond
interoperability: Pushing the performance of sensor network IP stacks,”
in SenSys, 2011.

S. Lenz, D. Schachtschneider, S. Jonas, L. Tirpitz, S. Geisler, and
M. Henze, “CoFacS — Simulating a Complete Factory to Study the
Security of Interconnected Production,” in LCN, 2025.

L. P. Rondon, L. Babun, A. Aris, K. Akkaya, and A. S. Uluagac,
“Poisonlvy: (In) secure Practices of Enterprise IoT Systems in Smart
Buildings,” in BuildSys, 2020.

E. Wagner, D. Heye, M. Serror, 1. Kunze, K. Wehrle, and M. Henze,
“Madtls: Fine-grained Middlebox-aware End-to-end Security for Indus-
trial Communication,” in ACM ASIA CCS, 2024.

M. Dahlmanns, J. Lohmdller, J. Pennekamp, J. Bodenhausen, K. Wehrle,
and M. Henze, “Missed Opportunities: Measuring the Untapped TLS
Support in the Industrial Internet of Things,” in ACM ASIA CCS, 2022.
M. Rademacher, H. Linka, J. Konrad, T. Horstmann, and K. Jonas,
“Bounds for the Scalability of TLS over LoRaWAN,” in ITG MKT,
2022.

F. Heimgaertner and M. Menth, “Distributed controller communication
in virtual power plants using smart meter gateways,” in /ICE IEEE/ITMC,
2018.

C. Bormann, M. Ersue, and A. Keranen, “Terminology for Constrained-
Node Networks,” RFC Editor, RFC 7228, 2014.

M. Henze, J. Hiller, S. Schmerling, J. H. Ziegeldorf, and K. Wehrle,
“CPPL: Compact Privacy Policy Language,” in WPES, 2016.

J. Bodenhausen, C. Sorgatz, T. Vogt, K. Grafflage, S. Rotzel,
M. Rademacher, and M. Henze, “Securing Wireless Communication
in Critical Infrastructure: Challenges and Opportunities,” MobiQuitous,
2023.

M. Rademacher, H. Linka, T. Horstmann, and M. Henze, ‘“Path Loss
in Urban LoRa Networks: A Large-Scale Measurement Study,” in VT'C
Fall, 2021.

A. L. M. Neto, A. L. Souza, I. Cunha, M. Nogueira, I. O. Nunes,
L. Cotta, N. Gentille, A. A. Loureiro, D. F. Aranha, H. K. Patil et al.,
“AoT: Authentication and Access Control for the Entire IoT Device
Life-Cycle,” in SenSys, 2016.

P. Schwabe, D. Stebila, and T. Wiggers, “More Efficient Post-quantum
KEMTLS with Pre-distributed Public Keys,” in ESORICS, 2021.

A. O. Bang, U. P. Rao, A. Visconti, A. Brighente, and M. Conti, “An
IoT Inventory Before Deployment: A Survey on IoT Protocols, Com-
munication Technologies, Vulnerabilities, Attacks, and Future Research
Directions,” Computers & Security, vol. 123, 2022.

V. Gupta, M. Wurm, Y. Zhu, M. Millard, S. Fung, N. Gura, H. Eberle,
and S. C. Shantz, “Sizzle: A standards-based end-to-end security archi-
tecture for the embedded Internet,” Pervasive and Mobile Computing,
2005.

H. Tschofenig and T. Fossati, “Transport Layer Security (TLS) /
Datagram Transport Layer Security (DTLS) Profiles for the Internet of
Things,” RFC 7925, 2016.

S. Raza, D. Trabalza, and T. Voigt, “6LoWPAN Compressed DTLS for
CoAP,” in DCOSS, 2012.

E. Rescorla, R. Barnes, H. Tschofenig, and B. M. Schwartz, “Compact
TLS 1.3,” Internet-Draft, 2023, work in Progress.

T. Kothmayr, C. Schmitt, W. Hu, M. Briinig, and G. Carle, “A DTLS
based end-to-end security architecture for the Internet of Things with
two-way authentication,” in LCNW - Workshops, 2012.

P. Wouters, H. Tschofenig, J. Gilmore, S. Weiler, and T. Kivinen, “Using
Raw Public Keys in Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS),” RFC 7250, 2014.

R. Hummen, H. Shafagh, S. Raza, T. Voig, and K. Wehrle, “Delegation-
based authentication and authorization for the IP-based Internet of
Things,” in SECON, 2014.

S. Raza, L. Seitz, D. Sitenkov, and G. Selander, “S3K: Scalable Security
With Symmetric Keys—DTLS Key Establishment for the Internet of
Things,” TASE, 2016.

[25]

[26]

[27]
[28]

[29]

[30]
[31]
(32]

(33]

[34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]
[46]
(471

[48]

[49]

[50]

(51]

P. Eronen, H. Tschofenig, H. Zhou, and J. A. Salowey, “Transport Layer
Security (TLS) Session Resumption without Server-Side State,” RFC
5077, 2008.

K. Tange, D. Howard, T. Shanahan, S. Pepe, X. Fafoutis, and N. Dragoni,
“rTLS: Lightweight TLS Session Resumption for Constrained IoT
Devices,” in Information and Communications Security, 2020.

G. Apostolopoulos, V. Peris, and D. Saha, “Transport layer security:
how much does it really cost?” in IEEE INFOCOM ’99., 1999.

S. Santesson and H. Tschofenig, “Transport Layer Security (TLS)
Cached Information Extension,” RFC 7924, 2016.

S. Hebrok, S. Nachtigall, M. Maehren, N. Erinola, R. Merget, J. So-
morovsky, and J. Schwenk, “We Really Need to Talk About Session
Tickets: A Large-Scale Analysis of Cryptographic Dangers with TLS
Session Tickets,” in USENIX Security 23, 2023.

T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.2,” RFC Editor, RFC 5246, 2008.

E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3,”
RFC Editor, RFC 8446, 2018.

P. Kampanakis and M. Kallitsis, “Faster post-quantum TLS handshakes
without intermediate CA certificates,” in CSCML, 2022.

D. Stebila, S. Fluhrer, and S. Gueron, “Hybrid key exchange in TLS 1.3,”
IETF, Internet-Draft draft-ietf-tls-hybrid-design-10, Apr. 2024, work in
Progress.

M. Eggert, R. HiduBling, M. Henze, L. Hermerschmidt, R. Hummen,
D. Kerpen, A. Navarro Pérez, B. Rumpe, D. Thien, and K. Wehrle,
“SensorCloud: Towards the Interdisciplinary Development of a Trust-
worthy Platform for Globally Interconnected Sensors and Actuators,” in
Trusted Cloud Computing, 2014.

M. Serror, S. Hack, M. Henze, M. Schuba, and K. Wehrle, “Challenges
and Opportunities in Securing the Industrial Internet of Things,” IEEE
TII, vol. 17, no. 5, 2021.

C. Karlof, N. Sastry, and D. Wagner, “TinySec: A Link Layer Security
Architecture for Wireless Sensor Networks,” in SenSys, 2004.

M. Henze, R. Hummen, R. Matzutt, D. Catrein, and K. Webhrle,
“Maintaining User Control While Storing and Processing Sensor Data
in the Cloud,” I/JGHPC, 2013.

S. Michaelides, S. Lenz, T. Vogt, and M. Henze, “Secure Integration of
5G in Industrial Networks: State of the Art, Challenges and Opportuni-
ties,” Future Generation Computer Systems, vol. 166, 2025.

A. Brighente, J. Mohammadi, P. Baracca, S. Mandelli, and S. Tomasin,
“Interference Prediction for Low-Complexity Link Adaptation in Be-
yond 5G Ultra-Reliable Low-Latency Communications,” IEEE Transac-
tions on Wireless Communications, vol. 21, no. 10, 2022.

G. Restuccia, H. Tschofenig, and E. Baccelli, “Low-Power IoT Com-
munication Security: On the Performance of DTLS and TLS 1.3,” in
IFIP PEMWN, 2020.

J. Bodenhausen, L. Grote, M. Rademacher, and M. Henze, “Adaptive
Optimization of TLS Overhead for Wireless Communication in Critical
Infrastructure,” CSNet, 2024.

T. Kothmayr, W. Hu, C. Schmitt, M. Bruenig, and G. Carle, “Poster:
Securing the Internet of Things with DTLS,” in SenSys, 2011.

M. Brachmann, S. L. Keoh, O. G. Morchon, and S. S. Kumar, “End-
to-end transport security in the IP-based internet of things,” in ICCCN,
2012.

R. Behrens and A. Ahmed, “Internet of Things: An end-to-end security
layer,” in ICIN, 2017.

S. Sahraoui and A. Bilami, “Compressed and distributed host identity
protocol for end-to-end security in the IoT,” in NGNS, 2014.

——, “Efficient HIP-based approach to ensure lightweight end-to-end
security in the internet of things,” Computer Networks, vol. 91, 2015.
J. Granjal and E. Monteiro, “Adaptable End-To-End Security For Mobile
IoT Sensing Applications,” in SafeThings, 2017.

J. Plusquellic, E. E. Tsiropoulou, and C. Minwalla, “Privacy-Preserving
Authentication Protocols for IoT Devices Using the SiRF PUF,” I[EEE
Transactions on Emerging Topics in Computing, vol. 11, no. 4, 2023.
S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt, “Lithe:
Lightweight Secure CoAP for the Internet of Things,” IEEE Sensors
Journal, 2013.

U. Banerjee, C. Juvekar, S. H. Fuller, and A. P. Chandrakasan, “eeDTLS:
Energy-Efficient Datagram Transport Layer Security for the Internet of
Things,” in GLOBECOM, 2017.

S. Boeyen, S. Santesson, T. Polk, R. Housley, S. Farrell, and D. Cooper,
“Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,” RFC 5280, 2008.

[52]
[53]
[54]

[55]

[56]

(571

[58]
[59]

[60]

[61]

[62]

[63]

[64]

D. McGrew and M. Pritikin, “The Compressed X.509 Certificate For-
mat,” Internet-Draft, 2010, expired.

A. Ghedini and V. Vasiliev, “TLS Certificate Compression,” RFC 8879,
2020.

D. A. Ortiz-Yepes, “Optimizing TLS for Low Bandwidth Environments,”
in Foundations and Practice of Security, 2015.

J. Hoglund, S. Lindemer, M. Furuhed, and S. Raza, “PKI4IoT: Towards
public key infrastructure for the Internet of Things,” Computers &
Security, 2020.

J. P. Mattsson, G. Selander, S. Raza, J. Hoglund, and M. Furuhed,
“CBOR Encoded X.509 Certificates (C509 Certificates),” Internet-Draft,
2024, work in Progress.

W. Jung, S. Hong, M. Ha, Y.-J. Kim, and D. Kim, “SSL-Based
Lightweight Security of IP-Based Wireless Sensor Networks,” in AINA
Workshops, 2009.

H. Tschofenig, T. Fossati, and M. Richardson, “TLS/DTLS 1.3 Profiles
for the Internet of Things,” Internet-Draft, 2023, work in Progress.

D. E. Eastlake 3rd, “Transport Layer Security (TLS) Extensions: Exten-
sion Definitions,” RFC 6066, 2011.

S. Fouladgar, B. Mainaud, K. Masmoudi, and H. Afifi, “Tiny 3-TLS:
A Trust Delegation Protocol for Wireless Sensor Networks,” in ESAS,
2006.

T. Polk, D. Cooper, R. Housley, A. N. Malpani, and T. Freeman, “Server-
Based Certificate Validation Protocol (SCVP),” RFC 5055, 2007.

M. Henze, R. Hummen, R. Matzutt, and K. Wehrle, “A Trust Point-
based Security Architecture for Sensor Data in the Cloud,” in Trusted
Cloud Computing. Springer, 2014.

R. Hummen, J. H. Ziegeldorf, H. Shafagh, S. Raza, and K. Wehrle,
“Towards viable certificate-based authentication for the internet of
things,” ser. HotWiSec ’13, 2013.

T. S. Sobh, A. Elgohary, and M. Zaki, “Performance improvements
on the network security protocols,” International Journal of Network
Security, 2008.

[65]

[66]
[67]
[68]
[69]
[70]
[71]
[72]
[73]
[74]
[75]

[76]

(771
(78]

(791

R. Hummen, J. Gilger, and H. Shafagh, “Extended DTLS Session
Resumption for Constrained Network Environments,” Internet-Draft,
2013, expired.

H. Shacham, D. Boneh, and E. Rescorla, “Client-Side Caching for TLS,”
ACM TISSEC, 2004.

A. Langley, “Transport Layer Security (TLS) Snap Start,” Internet-Draft,
2010, expired.

M. Schukat, “Securing Critical Infrastructure,” in DT, 2014.

S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, and D. C.
Adams, “X.509 Internet Public Key Infrastructure Online Certificate
Status Protocol - OCSP,” RFC 6960, 2013.

“wolfSSL: Embedded TLS Library for Applications, Devices, IoT, and
the Cloud,” https://github.com/wolfSSL/wolfssl.

“Docker: Accelerated Container Application Development,” Available
online: https://www.docker.com/.
“tcpdump: Command-line packet
https://www.tcpdump.org/.

C. Gomez, J. Crowcroft, and M. Scharf, “TCP Usage Guidance in the
Internet of Things (IoT),” RFC 9006, Mar. 2021.

Information Sciences Institute, University of Southern California, “In-
ternet Protocol,” RFC 791, Sep. 1981.

“IEEE Standard for Ethernet,” IEEE Std 802.3-2022 (Revision of IEEE
Std 802.3-2018), vol. IEEE 802.3-2022, pp. 1-7025, 2022.

J. Hiller, M. Henze, M. Serror, E. Wagner, J. N. Richter, and K. Wehrle,
“Secure Low Latency Communication for Constrained Industrial IoT
Scenarios,” in IEEE LCN, 2018.

S. Michaelides, J. Mucke, and M. Henze, “Assessing the Latency of
Network Layer Security in 5G Networks,” in WiSec, 2025.
“Bytehound - a memory profiler for Linux,” Available online:
https://github.com/koute/bytehound.

L. Foppe, J. Martin, T. Mayberry, E. C. Rye, and L. Brown, “Exploiting
TLS Client Authentication for Widespread User Tracking,” PETS, 2018.

analyzer,” Available online:

