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Abstract. Existing cybersecurity playbooks are often written in hetero-
geneous, non-machine-readable formats, which limits their automation
and interoperability across Security Orchestration, Automation, and Re-
sponse platforms. This paper explores the suitability of Large Language
Models, combined with Prompt Engineering, to automatically trans-
late legacy incident response playbooks into the standardized, machine-
readable CACAO format. We systematically examine various Prompt
Engineering techniques and carefully design prompts aimed at maximiz-
ing syntactic accuracy and semantic fidelity for control flow preserva-
tion. Our modular transformation pipeline integrates a syntax checker
to ensure syntactic correctness and features an iterative refinement mech-
anism that progressively reduces syntactic errors. We evaluate the pro-
posed approach on a custom-generated dataset comprising diverse legacy
playbooks paired with manually created CACAO references. The results
demonstrate that our method significantly improves the accuracy of play-
book transformation over baseline models, effectively captures complex
workflow structures, and substantially reduces errors. It highlights the
potential for practical deployment in automated cybersecurity playbook
transformation tasks.

Keywords: Incident Response Playbooks · Large Language Models ·
Prompt Engineering.

1 Introduction

Cybersecurity playbooks are predefined workflows that outline step-by-step pro-
cedures, including detection, containment, eradication, recovery, and post-incident
review for specific cybersecurity incidents [11]. They provide Security Operations
Center (SOC) teams with structured and consistent guidance, ensuring rapid
decision making, clear assignment of roles, and adherence to organizational poli-
cies during critical security events. When an incident is detected, SOC teams
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use these playbooks to efficiently initiate response actions and contain threats
promptly. Following containment, the playbooks guide SOC teams through the
recovery and post-incident phase, ensuring thorough documentation of all ac-
tivities, which is essential for regulatory compliance. For example, the General
Data Protection Regulation (GDPR) requires detailed records of responses to
personal data breaches. Furthermore, EU directives such as NIS2 emphasize the
importance of cross-border collaboration and standardized incident response, ad-
vocating predefined and clearly documented procedures, such as playbooks, to
facilitate effective, transparent, and accountable cybersecurity management [19].
Similarly, standards such as ISO/IEC 27001 require comprehensive documenta-
tion of security incidents and recovery measures. Consequently, standardized
playbooks enhance accountability, ensure traceability, and support compliance
with these regulatory frameworks.

However, despite their critical role, many existing cybersecurity playbooks
are manually maintained in unstructured or semi-structured formats, rendering
them non-machine-readable and non-executable. The legacy unstructured play-
books are typically written in narrative, natural language (i.e., free text) and
often exist in formats such as PDFs, Word documents, internal wikis, emails, or
operational manuals. This significantly hinders interoperability, automation, and
the effective sharing and reuse of best practices across organizational boundaries
[2]. This fragmentation limits the efficiency and speed of collaborative incident
response, ultimately impacting overall cybersecurity resilience [9]. To address
these interoperability challenges, the Collaborative Automated Course of Action
Operations (CACAO) standard was developed, defining a vendor-agnostic JSON
schema [12]. CACAO playbooks enable seamless exchange across organizations
without requiring rewriting, and can be automatically executed by Security Or-
chestration, Automation and Response (SOAR) platforms, significantly enhanc-
ing incident response speed and effectiveness [17]. However, transitioning legacy
playbooks to the CACAO format involves a significant manual transformation
effort. Mapping nested workflows, control flow branches, and action definitions
into the structured CACAO schema is both time consuming and error-prone.

This paper addresses these challenges by proposing and evaluating a system-
atic solution that translates various legacy playbook formats into a standardized,
machine-readable representation aligned with the CACAO specification with the
help of Large Language Models (LLMs). LLMs, pre-trained on massive text cor-
pora, including cybersecurity manuals, have shown advancements in machine
translation, entity extraction, and structured data generation [3, 4]. However,
out-of-the-box LLM outputs can hallucinate or violate schema constraints. En-
hancement techniques such as prompt engineering aim to address these issues.
We systematically examine various Prompt Engineering techniques, identify the
most effective methods, and carefully design natural language prompts aimed at
improving both syntactic accuracy and semantic fidelity in the transformation
process. We define the transformation process as the conversion of legacy play-
books into valid CACAO JSON, and we investigate whether prompt engineered
LLMs can produce syntactically valid outputs, preserve semantic fidelity (con-
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trol flow, actions, variables) and be refined via iterative feedback to eliminate
residual errors. Due to the absence of publicly available datasets, we generate
a custom evaluation dataset consisting of community playbooks across multiple
formats paired with their corresponding manually translated CACAO versions,
enabling benchmarking of state-of-the-art LLMs.

Contributions: This paper makes four primary contributions: (a) a prompt
engineering taxonomy tailored specifically for CACAO transformation, cover-
ing techniques such as Persona, Template, Chain-of-Thought, Direct Knowledge
Injection, and Few-Shot, while highlighting the trade-offs between cost and ac-
curacy; (b) a modular pipeline that integrates task decomposition, structured
prompt assembly, a CACAO syntax checker, and an iterative feedback loop to
progressively correct errors; (c) a custom evaluation dataset composed of struc-
tured SOAR community playbooks [25] along with their corresponding manually
translated CACAO versions as ground truths; and (d) an extensive evaluation
of state-of-the-art LLMs using syntactic error counts, and semantic similarity
metrics including Damerau–Levenshtein distance and Graph Edit Distance3.

2 Background and Related Work

Cybersecurity Playbooks: Modern incident response relies on well-defined
cybersecurity playbooks, semi-automated workflows that guide security teams
[8]. Traditionally, these playbooks are expressed in ad hoc formats (documents,
spreadsheets, bespoke JSON), making them laborious to share, adapt, or exe-
cute automatically. To address this, the CACAO specification provides a vendor-
agnostic, structured, and standardized JSON schema for cybersecurity playbooks
[12]. The current version of the CACAO specification is 2.0, which includes re-
source updates from the previous version. CACAO playbooks define workflows
that comprise logically ordered steps that enable organizations to systemati-
cally detect, investigate, prevent, mitigate, and remediate cybersecurity threats
effectively. The CACAO structure encompasses key properties such as meta-
data, workflow definitions, playbook variables, agents, and targets, as shown in
Figure 1). Important metadata fields include playbook_types, which describe
operational roles (e.g. detection), and playbook_activities, specifying detailed
actions such as scan-system for a potentially compromised device. Central to
CACAO is the richly expressive workflow model with eight step types (start,
end, action, conditional, loop, parallel, switch, playbook-action). It organizes
actions into sequences or parallel execution flows and supports advanced logic
constructs such as conditions, loops, and nested playbook invocations, which
enables complex cybersecurity processes.

The CACAO standard provides a vendor-agnostic schema for playbooks,
unifying metadata (e.g., playbook_types, playbook_activities), variables,
agents, targets, and a richly expressive workflow model with eight step types
(start, end, action, conditional, loop, parallel, switch, playbook-action) [12]. In
3 The source code, prompts, dataset, and evaluation results are available at

https://github.com/Fraunhofer-FIT-DSAI/CyberGuard.
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addition, recent work by Tsirakis et al. [26] demonstrates ongoing advancements
in CACAO-centric developments, presenting a Knowledge Management System
for the lifecycle management of CACAO playbooks.

Fig. 1: Simplified CACAO playbook structure based on [12].

LLMs and Prompt Engineering: LLMs have revolutionized natural lan-
guage processing (NLP) by taking advantage of the self-attention mechanism
of the transformer architecture for highly parallelizable pretraining in massive
corpora [27, 18]. Early pipelines required expensive fine-tuning for each down-
stream task, but new models demonstrated that a single, task-agnostic LLM can
perform new tasks with carefully crafted prompts and a few in-context examples
[3]. Key advances include expanding context windows to maintain coherence over
long inputs [15], and instruction-tuning to align models with human instructions
without task-specific weight updates [29]. Prompt engineering guides LLM out-
put without changing their parameters [23]. Examples of common patterns are
listed in Table 1.

Table 1: Example of prompt engineering techniques.
Technique Description
Persona “Act as an expert in a field” to bias domain-relevant language [10].
Template Enforce a specific schema output via placeholders [31].
Reflection Request explanations of reasoning to surface assumptions [31].
Chain-of-
Thought (CoT)

Elicit intermediate reasoning steps for complex tasks [30], with a zero-shot variant
’Let’s think step by step’ [13].

Least-to-Most Decompose problems into subproblems and solve incrementally [32].
Retrieval-
Augmented
Generation
(RAG)

Fetch external context to supplement model knowledge [20], although naive RAG
can introduce irrelevant or hallucinated content [6].

Direct Knowl-
edge Injection

Embed precise snippets in the prompt to constrain outputs without external re-
trieval.

Few-Shot
Prompting

Provide a handful of input–output examples in the prompt, markedly boosting
performance [3]; trades higher token usage against zero-shot prompting, which relies
only on task descriptions [23].

Together, the structured schema of CACAO and advanced prompt engineer-
ing patterns create a promising pathway to automate the transformation of ex-
isting playbooks into the CACAO standard.
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Related Work: Prior efforts have demonstrated the power of prompt en-
gineered LLMs to extract structured information and generate formal process
models from natural language. Vijayan [28] used Google Bard and ChatGPT
to pull tuples (e.g., traveler name, origin, dates) from unstructured email text,
combining Persona, Few-Shot and CoT prompts. They report that Few-Shot
prompting yielded the best precision–recall trade-off, while CoT improved rea-
soning over complex extraction tasks. Polak and Morgan’s ChatExtract pipeline
[22] also uses LLM in a three-stage approach: identify relevant passages, extract
triplets of unit value of material and verify by follow-up queries to mitigate hallu-
cinations. However, their focus remains narrow (single-triplet schema) compared
to the multilayered, nested structure of CACAO playbooks.

Licardo et al. [16] and Kourani et al. [14] pushed LLMs into business process
modeling, from free-text descriptions they generate BPMN diagrams, adopting
Role-Prompting (similar to Persona), Knowledge Injection, and Few-Shot tech-
niques. Kourani et al. also embed an interactive feedback loop, allowing users to
correct model missteps. Their evaluations show the strength of GPT-4 in captur-
ing non-hierarchical dependencies [1]. However, these methods are insufficient for
translating cybersecurity playbooks because the structured outputs they handle
are typically less complex than cybersecurity playbooks. Thus, directly applying
BPMN-oriented methods does not adequately address the semantic richness re-
quired for cybersecurity incident response. Our approach extends beyond these
foundational studies in two significant ways. Firstly, translating legacy cyber-
security playbooks demands handling deeply nested workflow logic, conditional
branches, parallel, and loop constructs, far more complex than flat tuple extrac-
tion or BPMN generation. Secondly, we systematically compare multiple prompt
engineering patterns (Persona, Template, CoT, Knowledge Injection, Few-Shot)
to optimize both syntactic validity and semantic fidelity of the resulting CACAO
JSON, rather than focusing on a single technique or schema. This comprehensive
evaluation enables us to identify the most effective approaches for capturing the
nuanced structure of cybersecurity playbooks.

3 Overview of LLM-Assisted Playbook Transformation
Framework

Requirements: Transformation success is governed by six primary require-
ments listed in Table 2. In particular, the translation process must meet sev-
eral critical requirements to ensure effective adoption. These include producing
machine-readable CACAO JSON output, syntactic accuracy which means en-
suring strict compliance with the CACAO JSON schema, semantic fidelity for
maintaining the original workflow logic and metadata integrity, cost-efficiency
by optimizing LLM token usage, adherence to LLM context-window constraints,
and optimizing the implementation effort. Balancing these requirements is es-
sential to create a robust, scalable, and practical transformation pipeline.

System Architecture: Our approach decomposes the complex task of trans-
lating heterogeneous playbook formats into the CACAO schema into a modu-
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Table 2: Key requirements for automated playbook transformation.
Requirement Description

Ensuring formatted output Outputs must be emitted as valid CACAO JSON.
Syntactic accuracy Generated playbooks must conform to CACAO 2.0 specification without

manual fixes.
Semantic fidelity control flow constructs, conditional branches, and action definitions must

match the source playbook’s intended logic.
Token budget Prompt and response token counts should be minimized to control API

usage costs.
Staying within Context
window/output token limit

All individual sub-task prompts must stay within the model’s maximum
token capacity (input and output) to avoid truncation.

Moderate implementation
effort

The transformation pipeline should balance performance improvements
against engineering complexity and facilitate adoption.

lar pipeline, combining a Prompt Engineering Module (PEM), a schema-based
Syntax Checker, and an optional human–in–the–loop feedback loop. This de-
sign ensures that each stage remains focused on a single responsibility: prompt
generation, syntactic validation, or error remediation. The overall orchestration
handles large playbooks without exceeding model context or output limits.

Figure 2 depicts the high-level architecture of our transformation pipeline.
First, the PEM constructs a series of sub-task prompts, each targeting a specific
CACAO entity (metadata, workflow skeleton, step attributes, variables). These
prompts leverage selected engineering patterns to guide the LLM toward valid
and semantically sound outputs. The selected engineering prompts are Persona,
Template, CoT, Direct Knowledge Injection, and Few-Shot. Each JSON frag-
ment produced by the LLM is then passed to the Syntax Checker, which enforces
consistency against a patched set of CACAO 2.0 JSON schemas, immediately
flagging omissions or type mismatches. Any fragments that fail validation would
be routed into the feedback loop, where an analyst optionally reviews error logs,
issues corrections via natural language, and those corrections in addition to the
automatically generated syntax errors are fed back into the PEM for iterative
refinement.

Task Decomposition: Rather than prompting the LLM to translate an
entire playbook at once, a strategy prone to context overload and cascading
errors, we manually decompose the transformation into four sequential subtasks.
First, metadata extraction retrieves top-level fields such as name, description,
and playbook_types. Next, the workflow skeleton step identifies all playbook
steps by name, assigns unique identifiers, and classifies each into one of the eight
CACAO step types. The third subtask, step attributes extraction, iterates over
each skeleton step to pull type-specific properties (e.g. on_success, commands,
conditional expressions), injecting the appropriate CACAO schema snippet to
constrain the model. Finally, variable extraction collates both global and per-
step variables, capturing names, types, and descriptions. The prompt for each
subtask includes only its immediate input plus a minimal history, ensuring that
the model stays within its context window and focuses on a narrowly defined
goal. This decomposition not only reduces token usage and error rates, but also
simplifies error isolation and iterative refinement.
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Fig. 2: Modular transformation pipeline from decomposition of task, to PEM
generates focused prompts, LLM produces JSON fragments, Syntax Checker
validates against CACAO schemas, and Feedback Loop refines invalid fragments.

Prompt Engineering Taxonomy: To systematically explore how differ-
ent prompt styles affect transformation quality, we categorize core patterns and
analyze their relationships with the requirements in Table 3. Persona prompts
(“Act as a cybersecurity playbook translator”) inject domain context at negligible
cost and yield small improvements in both syntax and meaning. The Template
pattern enforces strict JSON output at zero additional cost, significantly re-
ducing schema violations. Reasoning combines zero-shot Chain-of-Thought cues
(“Let’s think step-by-step”) with a Reflection request (“Justify your answer”),
adding roughly an overhead token 8% and producing mixed gains, useful for
complex conditional logic but sometimes verbose. Knowledge Injection embeds
brief excerpts from the CACAO specification, incurring 5–10% more tokens but
delivering large reductions in syntax errors and moderate semantic gains. Fi-
nally, a single example One-Shot illustrates the target JSON format at a cost
of 5–20% more tokens and yields a medium improvement in syntactic validity
and small semantic benefits. An overview of the potential approaches and their
relationships with the requirements is illustrated in Table 3.

4 Implementation

Our transformation pipeline is implemented in Python, leveraging three state-of-
the-art LLMs to explore trade-offs between cost, context capacity, and fidelity.
We first compared different language models in Table 4 in three categories of
ultra-large, mid-sized, and compact models. Then we selected one from each
category for the experiments. We evaluate GPT-4o and its lower-cost and smaller
sibling GPT-4o-mini, as well as the open-source Llama3.1-8B compact model,
each with up to 128K token context windows. Prompt orchestration and caching
are handled via LangChain’s prompt-assembly framework, with an SQLite back-
end to avoid redundant API calls during development.
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Table 3: Potential approaches against requirements. A checkmark (✓) indicates
that the technique either fulfills or is unlikely to violate the specified requirement.
A cross (✗) suggests that the technique may violate the requirement, while a dash
(-) indicates a neutral or unknown impact.

Approach /
Requirement

Maximizing
Syntactic
Accuracy

Maximizing
Semantic
Accuracy

Minimizing
Cost

Staying Within
the Model’s
Maximum

Token Capacity

Ensuring a
Formatted

Output

Minimizing
Implementa-

tion
Complexity

Persona
Pattern - ✓ ✓ ✓ - ✓

Template
Pattern - - ✓ - ✓ ✓

Few-Shot ✓ ✓ ✗ ✓ - ✗
CoT ✓ ✓ ✗ ✗ - ✗

Zero-Shot CoT
with Reflection

Pattern
- ✓ ✓ ✗ - ✓

Manual
Decomposition ✓ ✓ ✗ ✓ - ✗

Direct
Knowledge
Injection

✓ ✓ ✗ ✗ - ✓

Fine-tuning ✓ ✓ ✗ - ✓ ✗

Throughout the implementation phase, we aimed to ensure reproducibility
of our approach’s results. However, due to the probabilistic nature of the Trans-
former architecture behind LLMs [27], this was not entirely possible. Despite the
stochastic output of LLMs [3], we partially limited result fluctuations by setting
the temperature parameter to zero. This parameter regulates randomness, lead-
ing to more diverse outputs as it increases [21]. We achieved reproducible results
only for LLama3.1. For OpenAI models, even with zero temperature, we ob-
served variability in tasks like extracting the on_completion step parameter. To
mitigate this, we used the seed parameter as recommended in the OpenAI docu-
mentation4, setting it to 42, but it did not fully support reproducibility. Likely,
the seed parameter is supported only by specific models like GPT-3.5-Turbo5.

Every sub-task in the pipeline (metadata extraction, workflow skeleton, step
attributes, variable enumeration) uses a carefully crafted prompt template, com-
bining Persona, Template, Chain-of-Thought, and Direct Knowledge Injection
patterns. By isolating the variable placeholders (playbook JSON, schema snip-
pets, prior context fragments) from the static instruction text, our design makes

4 https://platform.openai.com/docs/advanced-usage/reproducible-outputs - Accessed
14.09.2024

5 https://cookbook.openai.com/examples/reproducible_outputs_with_the_seed_parameter
- Accessed 14.09.2024

6 Price definition from https://artificialanalysis.ai/methodology - Accessed 09.05.2025
7 https://artificialanalysis.ai/leaderboards/models - Accessed 09.05.2025
8 https://openai.com/index/hello-gpt-4o/ - Accessed 09.05.2025
9 https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/ - Ac-

cessed 09.05.2025
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Table 4: Comparison of LLMs: The models are clustered according to their
price 6. The data comes from the Artificial Analysis LLM leaderboard7 unless
specified otherwise.
Model Name Context Price6 Type MMLU (%) DROP (f1)
GPT-4o 128k 4.38$ closed 88.7 83.48

Gemini 1.5 Pro 1M 5.25$ closed 85.9 78.98

Claude 3 Opus 200k 30$ closed 86.8 83.18

GPT-4o-mini 128k 0.26$ closed 82 79.79

GPT-3.5-turbo 16k 0.75$ closed 70 70.29

Gemini 1.5 Flash 128k 0.13$ closed 78.9 78.49

Claude 3 Haiku 128k 0.5$ closed 75.2 78.49

Llama3.1 8B 128k 0* open 66.7§ 59.5§

Mistral 7B 8k 0* open 63.6§ 53§

Gemma 7B 8k 0.07$ closed 64.3§ 56.3§

* denotes that the model can be run locally and therefore no "token cost" is incurred
§ denotes the fact that the data comes from [7]

it straightforward to extend or adapt the prompts for additional CACAO fields
or alternative LLMs without rewriting the core template logic.

Experimental Setup: We evaluate our transformation pipeline on a corpus
of 40 structured SOAR playbooks from three leading vendors [25]: 20 Phantom
playbooks, 10 Fortinet playbooks, and 10 Demisto playbooks. Each source play-
book was converted from its native JSON or YAML format into a “non-CACAO”
baseline. From those dataset, we selected 10 playbooks and manually crafted
CACAO translations used as ground truth for semantic evaluation. This dataset
balances format diversity with a manageable size for thorough error analysis.
We measure three primary metrics: the number of syntactic errors flagged by
our patched CACAO JSON-schema checker; the Damerau–Levenshtein similar-
ity between generated and reference string fields; and the normalized Graph Edit
Distance (GED) between the extracted and target workflow graphs. To capture
real-world cost, we log total API usage and compute per-playbook expenditure
(e.g. $0.23 on average with GPT-4o-mini in the “all-patterns” configuration).
Experiments involving the open source Llama3.1 model are run locally on an
Intel Xeon (32 cores, 256 GB RAM) with an NVIDIA A100 GPU; all OpenAI
API calls are executed from the same Linux server. As GPT inference hardware
is opaque, the comparison focuses on cost and translation accuracy, not GPU
seconds.

4.1 Syntactic Accuracy

Syntactic accuracy measures how many errors the Syntax Checker identifies in
the generated translations, relying on JSON schemas defined by the OASIS Tech-
nical Committee. During implementation, however, certain discrepancies be-
tween the original schemas and CACAO specification were identified. Therefore,
we created a customized version of these schemas to more precisely align with
the CACAO standard and to prevent irrelevant error reporting for untranslated
fields. We use the following formula for the average syntax error. where d denotes
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a dataset of playbooks, p represents a single playbook, syntax_err_count(i) is
the number of syntactic errors per playbook p, and l(d) is the total number of
playbooks in dataset d. These metrics respectively capture the average syntactic
accuracy across an entire dataset for a given model m.

avg_syn_err(m) =

∑
p∈d syntax_err_count(p)

l(d)

Evaluation results indicate that using all Prompt Engineering techniques col-
lectively reduces syntactic errors significantly, averaging a 73% reduction across
models. Figure 3 shows the results for GPT-4o, 4o-mini, and Llama3.1-8B mod-
els. Generally, employing all Prompt Engineering techniques and all without
on-shot, leads to the lowest syntactic error rate, demonstrating significant im-
provements in transformation accuracy. Individually, Llama3.1 initially outper-
formed OpenAI models in the baseline scenario, yet the inclusion of individual
techniques (e.g., Persona, Reasoning) had mixed results, with Reasoning increas-
ing errors in smaller models. Direct Knowledge Injection proved particularly ef-
fective for OpenAI models, reducing errors by approximately 83%, likely due to
their larger scale and richer pre-training data. Interestingly, adding the One-Shot
example did not substantially affect overall accuracy. In general, combining mul-
tiple Prompt Engineering techniques consistently improves syntactic accuracy,
especially noticeable in smaller models like Llama3.1. Removing the Task Decom-
position step (i.e. issuing a single “translate whole playbook” prompt) increases
the average syntax error count by a factor of three. This ablation underscores
the importance of breaking the task into focused subtasks to stay within context
limits and reduce cascading errors.

Fig. 3: Average syntactic errors per playbook for GPT-4o, 4o-mini, and Llama3.1-
8B across different Prompt Engineering configurations (baseline, persona, reason,
knowledge, one-shot, all without one-shot, and all).
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4.2 Semantic Fidelity

The Syntax Checker validates only syntactic compliance with the CACAO stan-
dard, overlooking semantic correctness, specifically, whether the translated play-
book accurately represents the logic and metadata of the original. Thus, we
conducted an additional semantic evaluation to assess the fidelity of the trans-
lated playbooks to their original workflows and metadata. Semantic fidelity cap-
tures whether critical steps or properties are accurately preserved, recognizing
that a syntactically valid transformation might still omit crucial details, such
as necessary workflow actions. Furthermore, we carefully managed the inferen-
tial capabilities of the LLM during manual translation, penalizing unwarranted
inferences to avoid inaccuracies, but permitting reasonable inference when re-
quired by the CACAO specification, for example in the case of playbook_types.
Notably, improved syntactic accuracy does not always correlate with semantic
fidelity, forcing syntactic completeness could prompt LLMs to hallucinate infor-
mation instead of correctly assigning null values. To measure semantic accuracy,
we employ specific metrics that reflect these considerations.

String-based Similarity: We used the Damerau-Levenshtein distance [5]
to quantify the differences between the manually translated and LLM extracted
CACAO string fields. Because some fields employ fixed CACAO vocabularies
that require exact matches (e.g., playbook_types and playbook_activities), we
utilize the recall metric for those. More details on the metrics, calculations, and
results are presented in the Appendix A.

Workflow Similarity: We employed the Graph Edit Distance (GED) [24]
metric to evaluate how well the workflows extracted by the LLM matched the
manually translated workflows. GED measures the minimum edit cost—through
node or edge insertion, deletion, or substitution—required to transform one
graph into another. Each workflow is represented as an attributed relational
graph, with nodes corresponding to individual workflow steps and edges repre-
senting the labeled CACAO connections (on_completion, on_success, on_failure,
on_true, on_false). To facilitate interpretation, we normalized the GED scores
using min-max normalization:

normalized_GED =
x−min

max−min

where x denotes the GED computed by the graph_edit_distance function
from the networkx package6, min = 0 (representing identical graphs), and max
is the sum of all edges and nodes from both graphs. This normalization ensures
a clear and intuitive measure of similarity between the original and translated
workflows.

Figure 4 highlights substantial differences among LLMs in accurately captur-
ing complex workflow structures. GPT-4o achieved the best performance with
the lowest average normalized Graph Edit Distance (GED) of around 0.15, in-
dicating superior capability in accurately extracting control flows. GPT-4o-mini

6 https://pypi.org/project/networkx/ - Accessed 09.05.2025
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ranked second, exhibiting the most noticeable variation in performance when
different Prompt Engineering techniques were applied, particularly with a 10%
improvement in the reasoning case. Llama3.1 consistently showed the lowest
performance across all conditions. While the persona and one-shot approaches
had negligible effects, the reasoning method demonstrated modest improvement,
notably for GPT-4o-mini. Combining all Prompt Engineering techniques consis-
tently yielded the greatest enhancement. Overall, these results affirm that GPT-
4o effectively captures essential metadata and workflow properties with minimal
benefit from additional Prompt Engineering techniques, though GPT-4o-mini
clearly benefits from them. The accuracy for playbook variables was lower but
deemed less critical than workflow accuracy, which GPT-4o reliably captured.
Thus, GPT-4o emerges as particularly effective at maintaining semantic fidelity
in translating playbook workflows.

Fig. 4: Average normalized Graph Edit Distance across different Prompt Engi-
neering configurations (baseline, persona, reason, knowledge, one-shot, all with-
out one-shot, and all). Lower distance means higher similarity.

4.3 Syntactic Refinement

To investigate whether the LLM could iteratively correct syntactic errors from
its initial transformation, we designed an iterative refinement procedure. In this
approach, we repeatedly provided the LLM with the original playbook, its previ-
ously generated transformation, detailed syntactic error messages, and selected
prompt patterns (template, persona, zero-shot CoT). By applying this iterative
correction process up to five times, we aimed to significantly reduce syntactic
errors in the generated transformations. However, we recognize that this iter-
ative refinement could potentially reduce semantic fidelity, as the LLM might
introduce syntactically valid yet incorrect or semantically unsupported values.
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For simplicity and practical feasibility, we opted not to incorporate Task Decom-
position into this refinement process.

Fig. 5: Comparison of average syntactic errors before and after syntactic refine-
ment. GPT-4o and GPT-4o-mini effectively reduce errors to nearly zero after
five iterations; Llama3.1 improves significantly but less effectively.

The results of the syntactic refinement process, shown in Figure 5, demon-
strate significant reductions in syntactic errors after iterative corrections. GPT-
4o and GPT-4o-mini were highly effective, nearly eliminating syntactic errors
after five iterations. Although Llama3.1 also improved notably, its performance
did not match the larger OpenAI models, likely due to its smaller size and
lower pre-trained knowledge capacity. Increasing iterations might further en-
hance Llama3.1’s performance, but intrinsic limitations should be acknowledged.
Appendix B shows that iterative syntactic refinement causes negligible harm to
control-flow integrity and incurs only minor semantic losses.

5 Discussion

Our experiments highlight that Direct Knowledge Injection is the most effec-
tive Prompt Engineering technique for reducing syntactic errors. By embedding
precise snippets from the official CACAO schema directly into prompts, the
LLM is effectively constrained to produce strictly schema-compliant outputs. In
contrast, more generalized techniques such as naïve Retrieval-Augmented Gen-
eration (RAG) often introduce extraneous or outdated information, potentially
confusing the model and inadvertently causing hallucinations or inaccuracies [6].
Direct Knowledge Injection addresses these shortcomings by providing minimal,
verified context explicitly tailored to each subtask, thus ensuring a high level of
syntactic accuracy.

The process of converting legacy playbooks into CACAO can be operational-
ized effectively through a straightforward three-step procedure. First, the legacy
playbooks in non-CACAO formats (JSON, YAML, or semi-structured text) are
translated using the LLM-driven pipeline to generate initial CACAO fragments.
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Second, a JSON schema checker validates these fragments, and identified errors
or inconsistencies can be routed into a human-in-the-loop feedback mechanism
for rapid correction. Finally, validated playbooks are automatically registered
and integrated into the SOAR platform catalog, becoming immediately exe-
cutable. This streamlined translate → validate → push workflow facilitates effi-
cient, near-zero-touch onboarding, potentially enabling organizations to rapidly
convert and deploy hundreds of playbooks each month.

In addition to accuracy improvements, employing Prompt Engineering offers
significant practical advantages over alternative approaches such as fine-tuning
or embedding explicit reasoning steps directly into model training. Prompt En-
gineering primarily involves careful design of input prompts without modifying
the underlying model, leading to substantially lower computational costs and
reduced resource usage, including fewer tokens consumed during inference. This
efficiency contrasts sharply with embedded reasoning methods in the state-of-
the-art LLMs, higher token budgets, and considerable computational resources.
It also has advantages over fine-tuning which typically require extensive datasets
and longer training cycles. Thus, from an operational perspective, prompt en-
gineered solutions provide a more lightweight, flexible, and economically viable
pathway for transforming cybersecurity playbooks into standardized formats like
CACAO.

Additionally, the use of cloud-based LLM APIs raises important ethical and
confidentiality concerns. Incident Response playbooks often contain highly sen-
sitive information, such as proprietary detection logic or details of customer
environments, making them unsuitable for processing by third-party cloud ser-
vices. To mitigate such risks, a hybrid deployment strategy is recommended.
Organizations can leverage powerful cloud-based LLMs for non-sensitive trans-
formation tasks, while reserving sensitive, classified, or regulated content for
on-premise, open-source models such as Llama3.1. Supplementary safeguards,
including strict logging policies, encryption, and robust access control mecha-
nisms, further ensure the protection and integrity of playbook data throughout
the transformation and deployment processes.

Limitations: While our results are promising, there are some limitations to
consider. First, our evaluation corpus comprises only 40 fully structured play-
books from three vendors including 10 manual CACAO translations as ground
truths. This small, vendor-specific dataset may not capture the full diversity of
real-world playbooks, particularly semi-structured or free-form documents fre-
quently found in practice. Therefore, our findings may not generalize without
additional data and evaluation on unstructured sources. Second, to streamline
syntactic validation we patched the official CACAO 2.0 JSON schemas to ignore
fields we did not extract (e.g. agents, targets, commands). Although this allowed
us to focus on metadata, workflow, and variables, it also means our pipeline does
not yet cover the full CACAO specification. Future work must address the com-
plete schema and handle nested or optional entities to ensure truly end-to-end
playbook transformation.
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Future Work: An immediately actionable enhancement is to extend our
pipeline to cover the remaining core CACAO entities (e.g., Agents, Targets, and
Commands), which are essential for fully automated execution. Incorporating
these elements would enable the end-to-end generation of runnable playbooks,
eliminating the current need for manual post-processing. A more ambitious but
impactful direction is to embed an active learning feedback loop with SOC an-
alysts. By surfacing low-confidence mappings or semantic ambiguities for rapid
human correction, the system could iteratively refine its prompt strategies and
fine-tune model behavior over time, leading to continuous improvements in both
syntactic and semantic accuracy.

Our current study focuses on prompt engineering because it offers a favor-
able cost/performance ratio, yet this does not rule out other strategies. We
will explore complementary techniques, such as parameter-efficient fine-tuning,
reasoning-centric prompting, and agent-based pipelines to assess when they may
outperform prompt-only methods. Finally, to validate generalizability, it is crit-
ical to evaluate the approach in semi-structured or free-form playbooks, such as
mixing prose, tables, and bullet lists, and to benchmark emerging LLMs such as
GPT-o3, Claude 3.7, and Gemini 2.5 Pro. Exploring how these models handle
unstructured inputs and larger context windows will guide future adaptations of
our transformation framework to next-generation LLM capabilities.

6 Conclusion

In this work, we explored the potential of automating the transformation of
legacy unstructured cybersecurity playbooks into the standardized machine-
readable playbook format CACAO. We evaluated the effectiveness of our LLM-
based translation process using different prompt engineering techniques, assess-
ing the performance not only on the syntactic level but also on the semantic
level. Our results demonstrate the potential of this approach, exhibiting near-
zero syntax error in our experiments. Especially the use of a capable model
such as GPT-4o in combination with comprehensive prompt engineering pro-
vided promising results, reducing the syntax errors by 84% and capturing the
control-flow with a normalized graph edit distance of 0.15. In terms of CACAO’s
semantic fidelity, we observed the best results with the combination of Direct
Knowledge Injection and Task Decomposition. Finally, we hope that our work
will support practitioners interested in adopting CACAO in their security op-
erations, serving as a step toward implementing near-zero-touch onboarding of
cybersecurity playbooks into respective SOAR pipelines.
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A String-based Similarity Results

Damerau-Levenshtein distance was used to quantify differences between manu-
ally translated and LLM-extracted CACAO string fields. This metric measures
the minimum number of operations (insertion, deletion, substitution, transposi-
tion) required to convert one string into another. Given two strings a and b, we
define the Damerau-Levenshtein similarity metric S(a, b) as follows.

S(a, b) =

{
0 if either a or b are empty strings,
1− D(a,b)

max(|a|,|b|) otherwise,

where D(a, b) is the Damerau-Levenshtein distance (calculated by the jel-
lyfish package7) and |a|, |b| represent the lengths of the respective strings. For
fields constrained by CACAO vocabularies, such as playbook_types and play-
book_activities, we use recall instead, defined as:

Recall(f) =
TP (f)

TP (f) + FN(f)

where TP and FN represent True Positives and False Negatives for field f .
The final semantic fidelity is the average of these metrics in all relevant fields F :

accuracy(F ) =
1

|F |
∑
f∈F

{
S(fground_truth, ftransformation) if ftype = string,
Recall(fground_truth, ftransformation) otherwise,

where fground_truth and ftransformation denote the manual and generated
translations respectively, and ftype indicates the field type.

Figure 6a presents the semantic fidelity for metadata extraction across differ-
ent Prompt Engineering scenarios. Direct Knowledge Injection significantly im-
proved accuracy by over 20% for the OpenAI models, while adding the one-shot
example to the combined techniques provided a slight additional gain. Similar to
the syntactic results, individual Prompt Engineering methods, except for Direct
Knowledge Injection, slightly decreased semantic fidelity for Llama3.1. Notably,
the most powerful model, GPT-4o, showed a substantial improvement exceed-
ing 30% when all Prompt Engineering techniques were utilized together. Figure
6b shows that, unlike metadata extraction, adding the one-shot example did
not notably enhance workflow-field accuracy when combined with other Prompt
Engineering techniques. Direct Knowledge Injection again had the strongest
positive effect, improving semantic fidelity across all models—most notably for
GPT-4o, with an increase of up to 15%. The Persona, Reasoning, and One-Shot
techniques individually showed minimal to no impact. As anticipated, GPT-4o
consistently achieved the highest semantic fidelity, followed by GPT-4o-mini.
Figure 6c illustrates a distinct trend for semantic fidelity regarding playbook
variables compared to earlier evaluations. Surprisingly, the baseline case out-
performed scenarios utilizing additional Prompt Engineering techniques across
7 https://pypi.org/project/jellyfish/ - Accessed 09.05.2025
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all models, suggesting that these methods may hinder rather than enhance the
accurate extraction of variables. Direct Knowledge Injection, notably, resulted
in an accuracy decline exceeding 18% for Llama3.1. Furthermore, a substantial
22% accuracy difference between GPT-4o and GPT-4o-mini in the reasoning
and one-shot cases implies that complex reasoning tasks and illustrative exam-
ples are more effectively handled by larger models. We attribute the observed
performance decrease to the LLMs’ increasing difficulty in clearly distinguishing
between CACAO workflow step variables and general playbook variables when
more Prompt Engineering techniques are introduced.

(a) (b)

(c)

Fig. 6: Semantic fidelity evaluation for a) metadata, b) workflow, and c) playbook
variable fields across different Prompt Engineering techniques.

B Impact of Syntactic Refinement on Semantic Fidelity

Figures 7 illustrate the semantic impact of the refinement process. It shows that
syntactic refinement does not degrade the control flow (i.e., GED remains sta-
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ble in (a)) while only marginally lowering metadata fidelity (b), with maximum
reductions of around 20% (Llama3.1 baseline), 19% (GPT-4o, knowledge case),
and 15% (GPT-4o-mini, combined case). Similarly, certain cases showed moder-
ate decreases in semantic fidelity for workflow fields (c) and playbook variables
(d), especially with Llama3.1. Despite these minor trade-offs, the substantial
syntactic improvements generally justify the iterative refinement process. After
reviewing these results, we can confidently state that the average number of
syntactic errors for OpenAI models is nearly zero across all scenarios. Llama3.1
also manages to achieve a similar reduction, although to a lesser degree.

(a) (b)

(c) (d)

Fig. 7: Semantic impact of syntactic refinement: (a) The graph edit distance stays
constant, confirming that control-flow semantics are preserved. Minor drops in
semantic fidelity appear for (b) metadata, (c) workflow fields, and (d) playbook
variables, more noticeably with Llama, while remaining negligible for GPT.


