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Abstract: The security of research software is essential for ensuring the integrity and reproducibility of
scientific results. However, research software security is still largely unexplored. Due to its dependence
on open source components and distributed development practices, research software is particularly
vulnerable to supply chain attacks. This study analyses 3,248 high-quality, largely peer-reviewed
research software repositories using the OpenSSF Scorecard. We find a generally weak security
posture with an average score of 3.5/10. Important practices, such as signed releases and branch
protection, are rarely implemented. Finally, we present actionable, low-effort recommendations that
can help research teams improve software security and mitigate potential threats to scientific integrity.

Keywords: Software Security, Software Supply Chain Security, Research Software, OpenSSF
Scorecard

1 Introduction

The increasing prevalence of software supply chain attacks presents a major challenge to
cybersecurity across all sectors. In the open-source ecosystem alone, over 512,000 malicious
packages were identified in the past year, marking a 156% year-over-year increase [So24].
Research Software (RS) constitutes a common type of open-source software, encompassing
”source code files, algorithms, scripts, computational workflows and executables that were
created during the research process or for a research purpose” [Gr21]. Since RS is an
integral part of scientific research, ensuring its security is critical to maintaining confidence
in scientific results. Compromised research software can undermine both the integrity and
reproducibility of results, create risks for sensitive data and violate the FAIR principles
(Findable, Accessible, Interoperable and Reusable) by limiting reusability [Ba22]. From a
security perspective, RS is particularly vulnerable due to the high number of dependencies
of packages, which creates a broad attack surface and provides numerous vectors for
compromise [Pr21]. Despite this, the security status of research software repositories has
not yet been systematically assessed, leaving a gap in our understanding of the risks to the
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scientific community.

A compromise in the software supply chain of research software is not only a theoretical
risk. Researchers who installed PyTorch?, a foundational Python package for Al research,
between the 25th and 30th December 2022, not only downloaded the library itself, but also
the malicious Triton binary. Triton scanned and exfiltrated sensitive information from the
host machine. This attack did not target the source code of the PyTorch directly, but merely
replaced a dependency with a malicious package [Py22]. While research software generally
has the same risk of falling prey to unspecific attacks as other open-source packages, this
case presents a targeted attack on a major research software package. This incident is not
isolated, as evidenced by Conda-Forge Core Team [C025] and Sharma [Sh24], and as such
raises questions about the overall resilience of research software against future attacks.
Previous large-scale analyses have focused on entire package ecosystems, but these ap-
proaches often overlook the particular constraints faced by RS engineers, such as the lack of
formal software engineering training and limited resources for maintenance [An21; JH18].
Therefore, the results of such studies can be difficult to interpret or apply to the context of
academic research, where operational realities differ from those of commercial software
development. In this study, we conduct a domain-focused analysis of the security posture of
largely peer-reviewed research software. Our analysis is based on the OpenSSF Scorecard
tool and targets publicly available GitHub repositories to answer the following research
questions:

(RQ1) What is the current state of supply chain security in research software?

(RQ2) What security best practices are commonly adopted in research software, and which
are often overlooked or underutilised?

(RQ3) What actionable recommendations can be made to research software engineers to
improve the supply chain security of their software?

2 Background and Related Work

The OpenSSF Scorecard is a tool for automatically assessing the security of git repositories.
It was launched in November 2020 and is maintained and organised by the OpenSSF Best
Practices Working Group. Scorecard is organised into a series of checks that can be run
independently on a software repository. At the time of writing, Scorecard implements 20
checks, 18 of them being run by default, while the remaining 2 are considered experimental.
Checks are categorised into 4 risk levels (Low, Medium, High, and Critical) and scored
using a scale from O to 10, with 0 being the lowest and 10 being the highest security score.
An aggregate score is calculated by adding up the individual check scores, weighted by
risk level [Op25a]. Recently Zahan et al. [Za23b] presented a large scale analysis of the
PyPI and npm package ecosystems using the OpenSSF Scorecard, pointing out relevant
gaps in the adoption of security best practices. While ecosystem wide analysis can be
helpful in assessing the general state of security in these packages, this approach separates

2 gpecifically: pytorch-nightly installed via pip on Linux



software projects mainly by the employed programming language and fails to take into
account different types, scopes and resources of software projects. Scorecard has also been
used to assess the effect of various security best practices on vulnerability count in Zahan
et al. [Za23a]. However, the predictive power of this approach was limited, as noted by
the authors. Furthermore, Younis; Hu; Abdunabi [YHA?23] use Scorecard to provide a
domain-focused analysis on the supply chain security of industrial control system protocols.
Supply-chain Levels for Software Artifacts (SLSA) presents a lightweight, end-to-end
security framework initiated in 2021 by the Open Source Security Foundation. [Op25b]. The
framework encompasses an accessible threat model and a set of security controls organised
into tracks that organisations and developers can adopt to increase the supply chain security
of their software [Op25b]. Since both SLSA and the Scorecard are organised by the
OpenSSF and tailored to open-source projects, the integration of these two components
provides a more suitable representation of the addressed threats, in comparison to other
frameworks like OWASP Software Component Verification Standard as used in Zahan
et al. [Za23b]. In Table 1, we provide a mapping that presents which threat of the SLSA
framework is addressed by each Scorecard check, showing that the OpenSSF Scorecard is
an adequate tool for assessing software supply chain security.

SLSA Threat Associated Checks

(A) Producer Security-Policy, CI-Test, CII-Best-Practices, Contributors, License, Code-
Review

(B) Source Control Binary-Artifacts, Branch-Protection, Code-Review, Contributors, Token-
Permission

(C) Source Platform Token Permission

(D) External Build Parameters ~ Dangerous-Workflow, Pinned-Dependencies

(E) Build Process Dangerous-Workflow, Packaging

(F) Artifact Publication Signed-Releases, Packaging

(G) Distribution Signed-Releases

(H) Package Selection Dependency-Update-Tool, Pinned-Dependencies

(I) Usage Vulnerabilities, Fuzzing, SAST, Maintained, CI-Test

Tab. 1: Assignment of the OpenSSF Scorecard Checks to the SLSA Threats according to SLSA v1.1

3 Methodology

3.1 Data

One of the difficulties in assessing the security posture of research software projects is the
variability in scope of each project. For our analysis, we aimed to include only projects that
justify a certain commitment to software security, even to researchers unaware of supply
chain risks. We decided on projects published in the Research Software Directory (RSD)
of the Netherlands eScience Center 3 and the Journal of Open Source Software (JOSS)

3 https://research-software-directory.org/ (accessed 20/07/2025)



4 to ensure a broad and representative sample of high quality research software from all
disciplines to minimise selection bias. The Research Software Directory is a platform that
allows researchers to register their software to showcase the impact of their software. The
project provides a well documented API and is used by over 500 organisations. The second
and dominant source we included is software published in The Journal of Open Source
Software. JOSS is an established software journal with a formal peer review process for
every publication, including an extensive code review. Furthermore, according to the review
criteria, JOSS contributions must represent a ,,substantial scholarly effort”, meaning ,,not
less than three months of work for an individual* 3.

3.2 Data Collection & Inclusion Criteria

The data collection workflow is described in Figure 1. To run a scan, OpenSSF Scorecard
requires the URL of a software repository. For projects registered on the RSD, the
corresponding repository URLs could be retrieved from REST API data 6. Since there is no
comprehensive list of repositories of JOSS contributions, we downloaded publicly available
peer review discussions organised in the issues section of a central GitHub repository’
using the GitHub API3. By filtering for issues with the accepted tag, we were able to scrape
the repository URL of each published, peer-reviewed contribution from the initial issue
description. While the majority of collected repositories were hosted on GitHub, some were
hosted on other source code management (SCM) platforms like GitLab. Although most of
the Scorecard checks work on GitLab repositories as well, others are exclusive to GitHub.
We therefore excluded any projects not hosted on GitHub from our analysis. After removing
any duplicate repositories, we then queried the resulting list against the approximately
1.3M scan results which are reported weekly by the OpenSSF [Go25]. If a score could be
retrieved, it was downloaded and the repository removed from the list. The security scores
of the remaining repositories were then calculated using a local instance of the OpenSSF
Scorecard scanner with default configuration (for 18 security checks) during April 2025.

3.3 Preprocessing & Analysis

The Scorecard results were preprocessed and analysed with Python using the NumPy [Ha20]
and Pandas [Th24] packages. Data preprocessing included filtering out inconclusive results
(scores of -1) for each check, ensuring that only interpretable and comparable scores were
included in subsequent analyses. Descriptive statistics, including mean, standard deviation,
and skewness, were determined for both aggregate and individual high risk security check

https://joss.theoj.org/ (accessed 20/07/2025)

JOSS Review Criteria: https://joss.readthedocs.io/en/latest/review_criteria.html (accessed 20/07/2025)
RSD REST API: https://research-software-directory.org/swagger/ (accessed 20/07/2025)
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Fig. 1: Data Collection Workflow based on the PRISMA 2020 guidelines [Pa21].

scores. Individual checks were scored either on an ordinal scale ranging from O to 10 or
on a binary scale (0 or 10), and all scores were included in the statistical analyses. Score
distributions were visualised using Seaborn [Wa21], SciPy [Vi20] and Matplotlib [Hu07]
packages. The workflow itself was implemented in Snakemake [M621].

3.4 Recommendations

Recommendations for improving supply chain security were derived by independently
assessing each security check using a risk-adoptability matrix by the authors. The risk
dimension for each security check was adopted directly from the risk classification provided
by the OpenSSF Scorecard, which assigns risk levels to the individual checks. The
adoptability assessment considered, for each practice, the expected ease of implementation for
research software engineers, accounting for maintenance effort, implementation complexity,
and required time. The individual assessments were subsequently consolidated into a
single consensus matrix after jointly discussing individual assessments. Finally, three
recommendations were prioritised with the aim of maximising security improvements by
selecting those practices from the matrix that combine high security impact with high
adoptability.

4 Results

Figure 2 presents the high-level results of our analysis of 3248 research software repositories
as a distribution of aggregated Scorecard scores. The analysis yielded a mean aggregate score
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Fig. 2: Aggregate Security Scores. Distribution of aggregated Scorecard scores of 3248 research software
repositories. Whiskers represent +1.5 IQR.

of p = 3.50 with a standard deviation of o = 1.06. This indicates a substantial potential
for improvement across the majority of scanned software repositories. Furthermore, 68%
of repositories score between [2.43;4.58] while 95% fall within the range of [1.35;5.65].
The resulting distribution has a significant positive skew y = 0.62 (p < 3.7 - 107*°). When
examining the individual checks, substantial heterogeneity between the individual scores
was observed. Of the 18 checks examined, 4 had a median score of 10, while 13 checks had
a median score of 0. Overall, 13 out of 18 checks had a mean score below 4 (out of 10),
whereas 3 checks had mean score above 7 (Tab. 2). Among the high-risk checks, 6 out of 9
had mean score below 3 (Fig. 3).

Signed-Releases determines if a project cryptographically signs release artifacts to guarantee
that the release artifacts have not been tampered with (Fig. 3A). Only for 14.04% of those
repositories a release could be found, with 97.4% of those scoring 0, indicating that the
majority of projects do not implement release signing.

Token-Permission evaluates whether a project’s automated workflows tokens are set to read-
only by default, limiting potential damage from token compromise (ex. prevent unauthorised
repository modification). For 71.86% of repositories a result could be found, for 96.9% of
those the set tokens were not set with the minimum required permissions (Fig. 3B).
Branch-Protection checks whether a project’s default and release branches are protected
with rules that enforce code review workflows, and prevent force pushes. 69.6% of
repositories scored 0, while only 0.1% received the maximum score of 10; overall scores are
concentrated on the lowest scores, with a mean of 1.39 (Fig. 3C). 27% of the repositories
prevented force push and branch deletion. Only 15.1% require at least 1 reviewer approval
before merging, and had admin exceptions: they required a pull-request prior to make any
code changes, require branch to be up to date before merging and needed approval for most
recent push.

Dependency-Update-Tool evaluates whether a project uses automated tools to update
dependencies. For 75.03% of the repositories a score of either O or 10 could be calculated.
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Fig. 3: Security State of individual high risk checks across repositories. (A-I) Distributions of individual
OpenSSF Scorecard check scores for high-impact security practices across the analysed repositories, sorted by
ascending mean of scores of individual check. For each check sample size n and risk classification is given.

85.5% of scored repositories did not use an automatic dependency update tool and therefore
received O points, while 14.5% had such a tool enabled and received 10 points; the check
only distinguishes between ‘tool enabled’ and ‘not enabled’ and does not check whether
updates are actually performed or merged (Fig. 3D).

Code-Review identifies if a project enforces human code review before PRs are merged.
62.9% of repositories received the lowest score of 0, while 3.8% achieved the highest score
of 10; the distribution shows that most projects have very low scores, with a low mean
of 1.45 (Fig. 3E). Points were deducted if code changes were not reviewed by humans: 3
points deducted for unreviewed bot changes, 7 points for an unreviewed human change and
a further 3 points if multiple human changes remained unreviewed; bot reviews did not
count as valid code reviews.

Maintained check assesses project activity through commit frequency and issue tracking.
The distribution is bimodal with 63.5% of projects scored O points as they were either
archived or inactive, while 21.0% scored full points for regular commits (at least one commit
per week in the last 90 days) (Fig. 3F).

Vulnerabilities check uses the OSV service (Open Source Vulnerabilities) ° to identify
unfixed known vulnerabilities. For each vulnerability found, the score was reduced by one.

62.8% of the repositories achieved the highest score of 10, as they had no known, unfixed
vulnerabilities in their own code or dependencies, while 21.8% received the score O (Fig.
3G).

Binary-Artifacts check searches for binary artifacts in repositories that cannot be properly
reviewed. With a high mean of 9.59, 91.8% of the repositories achieved the score of 10, as
they did not contain any binary files in the source code (Fig. 3H).

9 https://osv.dev/ (accessed 20/07/2025)



Dangerous-Workflow identifies three dangerous patterns in GitHub Action workflows,
insecure use of pull_request_target or workflow_run triggers and potential script injection
attacks. 98.7% of repositories did not contain such patterns (Fig. 3I).

5 Discussion

The current state of supply chain security in research software was investigated by analysing
3,248 GitHub repositories using the OpenSSF Scorecard. The results show an average
score of 3.5 out of 10 (Fig. 2). This is considerably below the OpenSSF-recommended
threshold of 7 for adequate supply chain security '°. For reference, similar aggregated
scores have been observed in broader open-source ecosystems, with scores of 4.82 for
projects in npm and 4.79 for PyPI derived from Zahan et al. [Za23b] data. Though their
security check scores were computed using an earlier Scorecard version and may not be
directly comparable due to recent increases in scoring sensitivity for several checks. The top
scoring high-risk checks are Binary-Artifacts, Vulnerabilities and Dangerous-Workflows
(Figs. 3G-I). This matches the results presented in [Za23b], where the Binary-Artifacts and
Dangerous Workflow checks also score consistently high in the scanned npm and PyPI
ecosystems. The comparatively low Vulnerability score is a result of a software upgrade,
that increased the sensitivity of this check. Older Scorecard versions only looked for directly
reported vulnerabilities of the package whereas newer versions also check dependencies.
Conversely, the lowest scoring high-risk checks are Signed-Releases, Token-Permissions
and Branch-Protection (Figs. 3A-C). Here as well, one can find a similar scores for the
Signed-Releases and Branch-Protection checks in [Za23b] although the score for Token-
Permissions is notably worse. This difference can also be attributed to a change in the
underlying scoring mechanism. The analysis reveals that most security-critical practices
are either nor or only insufficiently implemented, evidenced by the fact that 6 out of 9
high-risk checks having a mean score below 3 (Fig. 3). The results indicate that research
software repositories in their current form are inadequately protected against supply chain
attacks. As compromised research software can result in data leakage or manipulation,
it poses significant risks to the reproducibility, integrity, and reusability of scientific
research, as well as to compliance with FAIR principles. The low adoption rate of security
practices, including those with minimal implementation effort suggests a possible lack of
security awareness, a possible lack of knowledge of source code management platforms’
capabilities and a possible lack of resources to address these issues. However, these causes
are currently speculative, targeted surveys among research software developers are needed
to empirically identify the underlying causes. If confirmed, they could be addressed by
increasing awareness and providing adequate training. As recommended by Anderson
[An20], it is suggested that security aspects should be systematically integrated into software
engineering and research software engineering courses. The OpenSSF Scorecard could be
used as a practical teaching tool to illustrate security best practices, allowing students to

10" https://best.openssf.org/SCM-BestPractices/github/repository/scorecard_score_too_low.html,(accessed
20/07/2025)
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directly assess and improve the security posture of their own projects. However, addressing
these challenges should not rely solely on individual developers. Responsibility must also
be shared with other stakeholders in the software ecosystem. For instance, platforms that
publish research software could include selected security practices (e.g. branch protection,
a security policy or signed releases) as part of the publication requirement. Git hosting
platforms such as GitHub should also support security by making configurations secure
by default [CI23]. Furthermore, long-term funding from funding agencies is needed to
ensure ongoing maintenance and sustainable security improvements for research software.
The use of the OpenSSF Scorecard as supply chain security assessment tool enables an
automated, comparable and reproducible evaluation of many projects [Op25a]. However,
there are methodological limitations. Some best practices such as two-factor authentication
or multi-factor authentication are not machine-readable and therefore not captured. It also
does not check quality of code review or the response times to vulnerabilities. Future studies
should compare our findings with analyses based on alternative security tools and metrics
to validate and extend these results. Additionally, future work should evaluate the feasibility
and impact of the our prioritised recommendations through experiments, such as user
studies with Research Software Engineers. The effort required, the relevant resources, the
level of acceptance and the actual security gains should be measured. To better understand
and categorise the specific weaknesses and strengths of research software in security, a
systematic comparison with non-RS repositories is desirable. Such a comparison could also
inform the development of a security maturity model specific to research software, marking
an important next step.

6 Recommendations

The OpenSSF Scorecard Security Checks were evaluated for risk and feasibility to provide
actionable recommendations for RS engineers to improve supply chain security, using a
risk-adoptability matrix (Fig. 4) and implementation state of high impact security practices
(Fig. 3). Based on the analysis, the following concrete measures are recommended for
adoption by researchers, specifically targeting GitHub-centred projects:

Recommendation 1: Set up branch protection rules. Modern SCM platforms such
as GitHub or GitLab enable the maintainers of a repository to set up general rules for
how contributors must interact with specific branches and tags. These rules will mostly
follow standard patterns, with little to no maintenance overhead. Using this feature, it is
recommended to block force pushes and the deletion of main development and release
branches. For projects with multiple contributors, code reviews should be enforced by
requiring a pull request for any changes on the main branch.

Recommendation 2: Use restrictive token permissions. Many projects will opt to use
inbuilt CI/CD features such as "GitHub Actions” for their projects, because they eliminate
the need for open-source projects to set up and maintain their own build infrastructure. When
using GitHub Action workflows, it is important to restrict the permissions of individual jobs
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implementation effort of the security practice for research software developers.

as much as possible, to prevent attackers from circumventing security controls or exfiltrating
environment variables and secrets from a repository. For many reusable workflows, the
minimal permissions are stated in the documentation and just need to be copied. Additionally,
automated tools exist to assist maintainers in securing their workflows !!.
Recommendation 3: Sign your releases. For many software packages, there is currently
no reliable method for consumers to verify that a pre-built package has not been maliciously
altered after uploading. To provide this assurance to users, maintainers should leverage the
inbuilt “Releases” feature of GitHub and upload release assets for every published version
of a package. The release assets should include the source code, a prebuilt package as well
as signatures for every asset. Signatures can be created using established tools such as GPG.
Recent developments, such as GitHub’s artifact attestation feature, represent alternatives
that are potentially easier to use for both maintainers and consumers '2.

7 Conclusion

In this study we performed an analysis of the supply chain security of quality research
software. We find that most research software is inadequately protected against supply chain
threats. This holds true for both high and low effort mitigations to known risks and thus
points to a lack of knowledge of RS engineers on fundamental security practices as well as
protection mechanisms of SCM platforms.

11 Step Security - Secure Workflow Tool: https://app.stepsecurity.io/secure-workflow (accessed 20/07/2025)
12 https://docs.github.com/en/actions/how-tos/security-for-github-actions/using-artifact-attestations/using-
artifact-attestations-to-establish-provenance-for-builds (accessed 20/07/2025)



The data and code supporting the findings of this article are openly available in Zenodo at
https://doi.org/10.5281/zenodo.16279383
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Appendix

Security Check Mean Score  Std Dev  Risk Level
Fuzzing 0.04 0.61 Medium
CII-Best-Practices 0.08 0.50 Low
Pinned-Dependencies 0.11 0.67 Medium
Signed-Releases 0.20 1.26 High
Security-Policy 0.27 1.58 Medium
Token-Permissions 0.30 1.70 High
SAST 0.35 1.72 Medium
Branch-Protection 1.39 2.39 High
Code-Review 1.45 2.65 High
Dependency-Update-Tool 1.45 3.52 High
Packaging 1.46 3.53 Medium
Maintained 2.71 4.12 High
CI-Tests 3.79 441 Low
Contributors 6.20 3.97 Low
Vulnerabilities 7.07 4.23 High
Binary-Artifacts 9.59 1.73 High
Licence 9.65 1.43 Low
Dangerous-Workflow 9.87 1.13 Critical

Tab. 2: Scores of Single Security Checks of Repositories. For each security check, the mean and standard
deviation of repository scores (excluding -1) are shown, along with the corresponding risk level as classified by the
OpenSSF Scorecard.
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