arXiv:2508.03882v1 [cs.CR] 5 Aug 2025

Simulating Cyberattacks through a Breach Attack
Simulation (BAS) Platform empowered by Security
Chaos Engineering (SCE)

Arturo Sanchez-Matas?,

Angel Luis Perales Gémez®,

Pablo Escribano Ruiz?,
Pantaleone Nespoli',

Daniel Diaz-Lépez!»?
Gregorio Martinez Pérez!

!Department of Information and Communications Engineering, University of Murcia, 30100, Murcia, Spain
{arturo.sanchezm, pablo.escribanor, danielorlando.diaz, pantaleone.nespoli, gregorio} @um.es
2School of Engineering, Science and Technology, Universidad del Rosario, Bogot4, Colombia

danielo.diaz@urosario.edu.co
3Department of Computers Engineering and Technology, University of Murcia, 30100, Murcia, Spain
angelluis.perales @um.es

Abstract—In today’s digital landscape, organizations face con-
stantly evolving cyber threats, making it essential to discover
slippery attack vectors through novel techniques like Security
Chaos Engineering (SCE), which allows teams to test defenses
and identify vulnerabilities effectively. This paper proposes to
integrate SCE into Breach Attack Simulation (BAS) platforms,
leveraging adversary profiles and abilities from existing threat
intelligence databases. This innovative proposal for cyberattack
simulation employs a structured architecture composed of three
layers: SCE Orchestrator, Connector, and BAS layers. Utilizing
MITRE Caldera in the BAS layer, our proposal executes au-
tomated attack sequences, creating inferred attack trees from
adversary profiles. Our proposal’s evaluation illustrates how
integrating SCE with BAS can enhance the effectiveness of
attack simulations beyond traditional scenarios, and be a useful
component of a cyber defense strategy.

Index Terms—Breach Attack Simulation, adversary profiling,
attack trees, Security Chaos Engineering, threat intelligence,
Cyber Situational Awareness, cyber defense

Contribution type: Original research

I. INTRODUCTION

Cyber defense encompasses the strategies, technologies, and
processes designed to protect networks, devices, programs, and
data from cyberattacks [1]. It involves implementing security
measures such as firewalls, intrusion detection systems, and
encryption to safeguard information integrity, confidentiality,
and availability. Simulating cyberattacks is crucial in cyber
defense as it enables organizations to proactively identify and
address vulnerabilities before they can be exploited by adver-
saries [2]. Through realistic attack simulations, defenders can
evaluate the effectiveness of their security controls, improve
incident response strategies, and enhance overall resilience
against evolving cyber threats. This proactive approach ensures
that defense mechanisms are robust and adaptable, ultimately
strengthening an organization’s security posture.

Current methods for simulating adversary behavior in cy-
berspace primarily involve the utilization of automated frame-
works and deception techniques to replicate known attack

strategies [3]]. Tools such as adversary emulation frameworks
are specifically designed to mimic the actions of potential
attackers and assess the effectiveness of existing security
measures [4]. Additionally, Honeypots and Threat Intelligence
Platforms are crucial in profiling adversary behavior by attract-
ing attackers and providing detailed information about their
Tactics, Techniques, and Procedures (TTPs). While Honeypots
capture and analyze the actions of real adversaries, Threat
Intelligence Platforms aggregate indicators of compromise
and attack vectors from current and past campaigns, aiding
in the development of accurate adversary profiles. However,
traditional simulation methods face significant challenges,
including the difficulty of adapting to rapidly evolving threat
landscapes and accurately replicating the sophisticated tactics
of advanced adversaries. These limitations can result in incom-
plete assessments of an organization’s security posture, leaving
critical vulnerabilities undiscovered and unaddressed.

In this scenario, Breach Attack Simulation (BAS) plat-
forms are essential for enhancing cyber defense strategies
by enabling organizations to simulate realistic cyberattacks
in a controlled environment [S)]. That is, BAS facilitates the
creation of comprehensive and repeatable attack scenarios that
help security teams evaluate the effectiveness of their defenses,
identify vulnerabilities, and improve incident response pro-
tocols. Various BAS solutions are available in the market,
including proprietary and open-source platforms. Proprietary
BAS tools, such as SafeBreach and AttackIQ, offer extensive
features and dedicated support, providing organizations with
robust capabilities to simulate complex attack vectors. Open-
source frameworks such as MITRE Caldera and Atomic Red
Team provide adaptability and extensibility, allowing security
teams to tailor simulations to their specific needs [6].

A novel methodology, known as Security Chaos Engineer-
ing (SCE), used to evaluate security in systems emerged in the
last years and is winning popularity in industry and academy.
SCE is a transformative approach that applies the principles

https://orcid.org/0009-0007-9471-8409
https://orcid.org/0009-0006-9057-4666
https://orcid.org/0000-0001-7244-2631
https://orcid.org/0000-0003-1004-881X
https://orcid.org/0000-0002-4041-1205
https://orcid.org/0000-0001-5532-6604
https://arxiv.org/abs/2508.03882v1

of chaos engineering to the security domain. It involves
deliberately injecting faults or simulated attacks into a live
system to observe how it behaves under adverse conditions. By
intentionally triggering failures, SCE aims to expose hidden
vulnerabilities and validate the resilience of complex, modern
software systems. SCE experiments can range from simulating
network congestion to testing the limits of authentication
mechanisms, with each test designed to mimic real-world at-
tack scenarios. As a result, SCE transforms a reactive security
stance into a proactive and adaptive one, fostering a culture
of continuous learning and improvement [7]].

The main objective of our research is to enhance orga-
nizational defenses by proactively identifying vulnerabilities,
thereby enabling continuous improvement in their security
posture. To achieve this, we design an innovative framework
that utilizes a BAS platform and SCE as integrated means. In
this paper, we present the design of our framework, demon-
strating how these integrated means facilitate a comprehensive
approach to proactive security testing. All of the material
developed in our proposal is available as open-source code
in the project repository.

The main contributions of this paper are summarized as
follows:

e Proposal of a novel method to simulate adversary be-
havior through the integration of a BAS platform with a
SCE methodology. This seamless combination allows for
dynamic and realistic security assessments by leveraging
the strengths of both BAS platforms and SCE principles.

o The composition of Attack Trees (AT) that leverage exist-
ing databases of TTPs to facilitate realistic simulations.
By utilizing comprehensive TTP databases, our frame-
work constructs detailed and accurate attack scenarios
that mirror real-world adversary strategies.

o The validation of our proposal in a simulated scenario
composed by a critical-target information system attacked
by an advanced adversary, who is known for having
access to a TTP database. This simulation demonstrates
that our proposal is reliable and effective in identifying
the possible attack vectors in a target systems.

This paper is structured as follows: Section [II] reviews the
most recent works related to BAS and SCE, evaluating their
strengths and weaknesses. Next, Section |[II| introduces our pro-
posed framework for simulating cyberattacks. In Section [IV]
we describe the experiments performed using our framework
to validate its effectiveness. Finally, Section [V| concludes the
paper, discussing the implications of our findings and outlining
directions for future research.

II. STATE OF THE ART

In this section we will present several research papers
related to BAS, attack trees and SCE, which are relevant to
understand the novelty of our proposal.

In particular, an attack emulation proposal, named SpecRec,
applicable to a variety of steps of a cyberattack was described
in [8]]. It analyzes white papers related to known groups or Ad-
vanced Persistent Threats (APT), like Mirai, to extract attack

specification that will be emulated later. SpecRep leverages an
LLM to translate selected white papers into high-level attack
specifications, which are used internally to define the attack’s
logic. SpecRec also defines a metalanguage to extract attack
objectives and a compiler to build attack scenarios. In this way,
SpecRep is analog to a BAS platform, where it can generate
new attack flows, and is not limited to a predefined playbook
of attacks.

Kijong Koo et al. [9] proposed a novel machine learning-
based method to generate attack graphs to predict attack paths.
In order to perform this task, two stages were set. The first
one revolves around learning the attack paths from known
databases relying on machine learning, and the second one
consists of generating attack graphs using information such
as the network topology and the systems in it. This approach
promises to tackle the main issue around the generation of
attack graphs, which is the amount of time required to build
them manually.

Basit Ajmal et al. [10] proposed an approach for adversary
emulation based on the MITRE ATT&CK framework to pro-
vide an effective way of testing the defense of cyber systems,
allowing the profiling of adversaries. Such a paper explored
the idea of automated attack generation, facilitating repeated
tests and mimicking the behavior of a real-world attack. The
simulation developed in such proposal is performed through
several means, depending on the attack to be performed, using
scripts and adapting payloads.

In a similar way as the previous related work, Sang Ho
Oh et al. [[11] proposed the use of a Deep Reinforcement
Learning (DRL) algorithm to simulate dynamic cyberattacks
in scenarios derived from the MITRE ATT&CK framework.
This algorithm is applied to agents that simulate cyberattacks
in an environment that mimics a real-world scenario with real
vulnerabilities. The DRL agents are trained to adapt on the
fly and change their strategies depending on the interactions
within the scenario, improving the accuracy of the simulations.

On the other side, we have ChaosXploit, which is a SCE
framework proposed by Palacios et al. [12]], that facilitates
the implementation of the SCE methodology through different
experiments. ChaosXploit leverages attack trees to perform
experiments attacking cloud infrastructure, such as AWS S3
buckets. This is done thanks to a “hypothesis generator”, which
forms part of a “knowledge database”, an “observer” who
has knowledge about the system and the experiments being
run, and an “experiment runner”, in charge of running the
experiments.

Another application of SCE was found in [13]]. Such
a paper studies the security of the traditional DevSecOps
lifecycle, arguing that new software vulnerabilities might
appear as early as the design phases. It complements the
conventional DevSecOps practice through the use of LLMs
to automate threat discovery. This proposal also applies the
SCE methodology to execute more complex and chaotic
tests, which would not be possible with more conventional or
standard approaches.

After analyzing the previous papers, we realized that there
was no previous proposal combining both BAS and SCE.
BAS platforms suffer from a lack of variety when it comes to
choosing the attack vectors to use, and a failure on a chosen
vector will often lead to the attack ending. Thus, integrating
BAS and SCE sounds like a promising idea that would allow to
compose attack trees from the information contained in a threat
intelligence database. In addition, cyberattacks would benefit
from the complexity and freedom of SCE, without suffering
the rigidity of a BAS platform that is limited to a set of attack
vectors.

III. PROPOSAL OF ATTACK SIMULATIONS EMPOWERED BY
SECURITY CHAOS ENGINEERING

This section presents our proposed solution for integrating
SCE into adversary simulation workflows. The architecture
of the proposal, illustrated in Figure [I] is organized into
three interconnected layers: i) BAS layer, which is based
on MITRE Caldera and executes automated attack sequences
using real-world adversary profiles, ii) Connector layer, which
is a middleware layer that interfaces with external platforms
and standardizes communication; and iii) SCE Orchestrator
layer, who is responsible for designing and managing chaos-
driven attack scenarios. Together, these 3 layers facilitate
systematic and adaptive testing of defenses by combining
the unpredictability of SCE with the precision of BAS tools.
The following subsections detail the design, functionality, and
integration of each component within this modular framework.

A. BAS layer

The BAS layer allows us to run controlled and defined
attacks on targets of our choice, giving the possibility of
checking what the systems are vulnerable to, and seeing
how they were attacked. Our BAS layer is implemented with
MITRE Caldera, which is an open source BAS solution
developed by MITRE. The Caldera module behind the
decision-making process was adjusted to allow the SCE
methodology to work in conjunction with it, leveraging some
native Caldera modules, such as agents, operations, and
abilities, which are vital for the proposal and provide the
groundwork from which we have expanded.

1) Core System: The core system, which lays at the
foundation of Caldera, allows the management of each of
its components, like campaigns, operations, adversaries, and
abilities, as well as the intercommunication between each
of them. This core system offers an API connection so the
connector layer can communicate with it via API requests.

2) Agents: To provide proper attacker simulation, Caldera
offers a selection of different agents, i.e. attackers, which
are not so different in functionalities from a Remote Access
Trojan (RAT). These agents communicate with the Caldera
core system, which acts as a Command and Control (C2)
server, providing information about the target, reporting result
of the actions they perform, and receiving orders about the
attacks to perform. Different parameters of the agents can be

adjusted to simulate real attackers, like sleep timers, which are
useful when trying to avoid detection.

3) Abilities: (referred to as Technique in MITRE TTP
Matrix) An ability is a term used to describe the action that
an agent is going to take, the instruction it is going to receive,
and even the attack that it is going to perform; all of the terms
can be used interchangeably.

4) Adversary profiles: An adversary profile determines
which actions will be taken in an attack from start to finish
to achieve an attack goal, which could be data ex-filtration,
discovery, or many other options. Thus, an adversary profile
is comprised of several abilities, and a user can choose to run
the abilities he/she deems necessary.

5) Operations: An operation is a “scene” of sorts, a play-
ground for Caldera to work in. In our proposal, we use a
blank operation which does not contain any adversary profile
so that the SCE Orchestrator layer can decide which actions
to execute freely.

6) Campaigns: Caldera offers us the possibility of manag-
ing a scenario with offensive and defensive actions simulta-
neously. This scenario is referred to as a campaign, where
multiple operations, ones for defense and ones for offense
are executed by red and blue agents. Each campaign can
mirror real-life scenarios, allowing to test the resilience of
an organization via a controlled and repeatable exposure to
multiple campaigns.

7) Plugins: Finally, Caldera allows for easy extensibility
through plugins which are software components addressed to
do specific tasks, e.g. allowing to view the interaction between
blue and red agents, simulating human behavior in a target
machine, among others.

B. Connector layer

The Connector layer is responsible for ensuring
communication between the SCE Orchestrator layer and the
BAS layer. Whenever a specific branch of the attack tree is
chosen by the SCE orchestrator layer, the connector layer
will execute the abilities associated with this branch, for
which it will use a set of API requests addressed to different
endpoints available in the BAS layer. The connector layer is
composed of a set of modules described next.

1) State Fetcher: The state fetcher enables the initial in-
formation recollection step of our proposal, allowing us to
obtain the general state of the BAS before progressing further.
This module permits a swift collection of relevant BAS layer
information, such as the agents deployed, available abilities,
and existing adversary profiles. The collected information
mentioned is used to create an “operation”, which allows the
execution of a selected “adversary profile” ant its “abilities”,
through an agent deployed in the target.

2) Operation creator: All actions in the BAS have to exist
in the context of an operation, so this module ensures the
creation of a blank operation in which all subsequent decisions
can be made, like a blank canvas waiting for a painter.

SCE ORCHESTRATOR

BBE cHAos EKPEIIIMEHT ATTACK TREE
SR e SENERATOR » | STEADY STATE@= CONTINUOUS (5) »TERMINATOR % f

2 THREAT O e ® VALIDATOR vnunnmn A

S 27" | INTELLIGENCE ofe ROLLBACK (\;nmcxs GoALs =2 ') EXPLONTER | & LTI <
et DATABASE .o... CONTROLLER *. DECIDER _ sy A EXPLOIT Y
5 21
Q. O =
X = =
o : S
2 : v v CONNECTOR g
o :
0 . & .
10 e < '
8 2. ABILITY EXPLOIT m
o5t o
8 ! PLUGINS 3
+ . I|'i,_ mmi "'_E
Reg 14 eloe CORE BASIP o @ :
i 555 GORE) SERVER -~ .. ;
S)| | camPAIGNS > PERATIONS ADVERSARIES) ABILITIES . v M

. — 2% AGENTS

Figure 1: Three-layered architecture combining BAS with SCE

3) Operation Manager: Once the operation is created, there
is a certain degree of settings that can be modified before
running the experiments. These settings can range from a set of
actions, such as modifying the sleep timer of agents, the trusted
timer to mark agents as untrustworthy, or, more importantly for
the experiments, mutating the operation adding new abilities
to execute. These abilities are called potential links, which is
a technical term for an ability or technique, and is a way of
telling the operation what abilities should be executed.

4) Ability executor: After having a blank operation, we can
proceed by traversing the attack tree and selecting the next
action. For these actions to be performed, the ability executor
is in charge of performing the communication with the BAS
layer’s API to request the execution of an action, i.e., an
“ability”.

5) Ability result retriever: Once an ability is executed, the
result is not available immediately. Thus, the ability result
retriever “polls” the BAS layer to validate if a result has been
generated, facilitating the recovery of the output of an attack.
The reason for this behavior is that the agents do not perform
actions in real time, but according to timers that simulate real
threat agents that might want to remain inconspicuous.

C. SCE Orchestrator layer

The SCE Orchestrator layer is the one devoted for planning
and managing chaos-based attack simulations. In particular,
it is responsible for accepting user inputs (target machine

(t;), agent to use (a;), number of parallel experiments (n),
and security objective (0;)) to create customized attack sce-
narios. Leveraging these inputs, it oversees the execution of
experiments, ensuring efficient alignment with overall security
strategies. This layer manages the entire simulation lifecycle,
from setup to teardown, while maintaining consistency across
multiple runs. Additionally, it incorporates safety mechanisms
to monitor system stability during tests and automatically
reverts actions if unexpected issues occur. By transforming
security goals into structured chaos experiments, the orchestra-
tor enables teams to evaluate and enhance their defenses under
realistic and unpredictable conditions. This layer is composed
by a set of modules described next.

1) Threat intelligence database: The SCE orchestrator con-
sumes a threat intelligence database to identify the attack
procedures which are applicable to a target, according to
aspects like the type of operative system, the expected attack
goal, the requirements for execution, among others. This
database can be one included in the BAS or an external one.

2) Chaos Experiment Designer: The Chaos Experiment
Designer module defines the scope and parameters of chaos-
driven attack simulations. It allows users to specify require-
ments such as the target machine (¢;), deployment agent (a;),
number of parallel experiments (n), and security objective
(0;) (e.g., testing ransomware resilience). By integrating with
threat intelligence databases, it dynamically selects adversary
Tactics, Techniques, and Procedures (TTPs) that align with the

o cheeo o @

validate_system A
(t,a,n,o0)

Y=

get_agents()

get_agents()

send_agents()

get_abilities()
send_abilities()

get_adversaries()

get_adv()

send_adv()

send_adversaries()

gen_attack_tree()

~
"’; exec_branch-n() [') pjank_operation()
‘N create_oper()
: 4 send_oper_id()
! te_ability-
:m CEn i) exec_ability()

send_id_pt_link(

attk_report()

generate_valid()

get_attack_result() get_result()

send_result()

send_result()

generate_report()

send_report()

Figure 2: Flow diagram depicting the interaction between the
modules of the proposed architecture

defined goals, ensuring simulations reflect real-world attack
patterns.

3) Attack Tree Generator: The attack tree begins with
a central attack objective, such as unauthorized access to
sensitive data. From this root node, multiple branches extend,
each representing a unique pathway an adversary might take
to achieve the objective, based on adversary profiles sourced
from MITRE Caldera. For example, one branch may involve
exploiting software vulnerabilities to gain initial access, while
another branch might utilize phishing techniques to obtain
user credentials. Each branch further subdivides into specific
tactics and techniques, aligning with the principles of Security
Chaos Engineering to ensure realistic and unpredictable attack
scenarios. This structured approach allows for a compre-
hensive simulation of diverse attack vectors, facilitating the
identification and mitigation of potential security weaknesses
within the target architecture.

4) ChaosXploit: We use the implementation of
ChaosXploit to control the logic of SCE experiments,
adapting the components needed, and taking advantage of a
previously defined framework [12]. ChaosXploit is composed
of modules, with two of the most important being the
Exploiter and Continuous Validator. On the one hand, the

Exploiter module executes attacks based on the attack tree
structure, ensuring targeted actions within the simulation
environment. It utilizes selected adversary tactics to perform
precise attack steps, effectively challenging the security
posture. On the other hand, the Continuous Validator module
continuously monitors system performance and stability
throughout the simulations. It tracks real-time operational
parameters to detect anomalies and ensures immediate
responses are initiated when deviations occur, maintaining
the integrity and reliability of the experiments.

The flow between the modules of our proposed architecture
is depicted in Figure 2] The SCE Orchestrator layer receives
the user inputs (target machine (¢;), deployment agent (a;),
number of parallel experiments (n), and security objective
(0;)) and starts the validation. To achieve the validation, the
SCE Orchestrator layer communicates with the connector
layer, which also communicates with the BAS layer to obtain
available agents, abilities, and adversaries. Finally, with all the
obtained information (agents, abilities, adversaries), the SCE
Orchestrator layer checks all the required components to start
an attack simulation.

When the user requests the generation of an attack tree
gen_attack_tree (), the SCE Orchestrator layer initiates
the Attack Tree Generator module. It analyzes adversary
profiles from the Threat Intelligence Database to infer potential
attack paths. By leveraging predefined tactics and techniques,
the generator constructs a structured attack tree, detailing each
possible step based on the input parameters. The completed at-
tack tree is then ready for execution, offering a comprehensive
visual of potential threat vectors.

Upon the user’s request to execute a branch
execute_branch-n(), the SCE Orchestrator layer
coordinates with the BAS layer to establish an operation.
This involves executing “m” abilities designed within the
attack tree branch. Each ability is processed sequentially to
reflect real-world attack scenarios. The execution may involve
“n” branches, depending on the complexity and objectives
defined by the user. Throughout this process, the BAS layer’s
Core Framework manages the Attack Execution Engine to
ensure precise application of the designed sequences. After
execution, the results are gathered and prepared for analysis
in the form of an attack report attack_report ().

After completing the execution, the SCE Orchestrator layer
retrieves the attack results using get_attack_result ().
It systematically collects the outcomes and performs an ini-
tial analysis of the simulation’s effectiveness. The processed
results are then sent back to the user send_result ()
to validate the attack’s success and effectiveness, providing
insights into potential security improvements.

When the wuser requests to generate a report
generate_report (), the SCE Orchestrator layer
compiles all data and findings into a comprehensive

document. This report encapsulates the simulation process,
including objectives, methodologies, executed abilities, and
results. Moreover, such a report highlights key vulnerabilities

discovered and suggests potential remediation steps. This
detailed report serves as a critical tool for organizations
to understand their current security posture and prepare
strategies for future improvements.

IV. EXPERIMENTS

Several experiments were created, executed, and reviewed
for the validation of our proposal. All experiments are avail-
able in the project repositoryﬂ To ensure repeatability, Sec-
tion describes the scenario, where the hardware and
software elements will be detailed, Section [[V-B| describes the
parameters needed for the simulation, Section |IV_I"| indicates
the attack tree that will be followed by the simulated adversary,
Section [[V-D] defines the SCE experiment, and Section [[V-E]
resumes the results of execution.

Source
machine

L
|

Target

DNS server machine

Caldera
server

Figure 3: Network topology for the experiments

A. Settings

The components required for the experiments were virtual-
ized through a host machine with an Arch-based distribution,
AMD Ryzen 7 5800X CPU, Nvidia RTX 4070 GPU, 32GB
RAM, and 2TB SSD. Four virtual machines were used in
the experiments as detailed next, and following the network
topology of Figure [3}

o Caldera server: This machine serves as the location where
the BAS will be located and running. It is the central point
where the agents report to, and from where they receive
the instructions. Our proposal does not have to be run on
the same machine, but on a machine which can access
its API through the network. Caldera version 4.2.0. was
virtualized on an Ubuntu Desktop 22.04 distribution with
stock settings.

« Source machine: The source machine serves as the initial
point for the cyberattack, being a machine infected by a
worm that is trying to perform lateral movement to other
targets within the network. It is virtualized on a Windows
10 base installation.

o Target machine: The target machine will represent our
victim, which is a machine that shares a network with the

Uhttps://github.com/noname 13a/SCE-BAS

Selected value
for the experiment

t1 = Windows10 4

Variable Variable value(s)
name
TargetList = {Windows10y4,
WindowsServer 4, UbuntuServer 4 }
AgentList = {sandcat 4,
sandcat g, sandcatc }

n n € NT 1
ObjectiveList = { Lateral Movement,
Ex filtration, PrivilegeEscalataion}

t;

a; a1 = sandcat o

0 o1 = Lateral M ovement

Table I: Selected variables for our experiment

source machine. It has some settings that make it vulner-
able, such as a vulnerable SMB server configuration, and
weak security policies.

e DNS server: A DNS server which will allow both the
target and source machine to have a fully qualified
domain name (FQDN), albeit a local one. This is a
requirement to run certain adversary profiles and allows
the communication to be done with natural names instead
of IP addresses.

B. Defining the parameters of the simulation

As previously mentioned, some variables have to be deter-
mined in preparation for the simulation. First, it would be
the target machine (¢;) chosen between a list of available
targets (TargetList = {t1,...,t,})). Without a target, other
machines found on the network could be attacked, which may
or may not be the expected behavior. Setting this target ensures
the attack is directed at the machine we want to test. Secondly,
we must specify a deployed agent (a;) existing in an agent list
(AgentList = {ay, ..., a, }), which will be used to execute the
abilities determined on the attack graph. Though Caldera offers
us the possibility of using several agents on an operation,
each with a different role, for our experiments we will limit
ourselves to one agent, trying to pivot to the target machine.
The last two parameters are the number of parallel experiments
(n), which is a default value, and the security objective (o;),
will be chosen between a list of possible available objectives
(ObjectiveList = {01, ...,0,}). The selected variable values
for our experiments are described in Table

C. Identifying the Adversary Options

Our framework composes an attack tree (Figure [) au-
tonomously, extracting attack goals from Caldera’s adversary
profiles, presented as a comprehensive final report, which
serves as a foundational tool for conducting Security Chaos
Engineering (SCE) experiments.

Each branch of the attack tree corresponds to one of these
adversary profiles with their respective abilities depicted as
nodes within each branch. This structure allows the SCE
Orchestrator to utilize the attack tree in conjunction with
the SCE philosophy to design chaos-driven experiments that
emulate realistic adversary behaviors. For this example, we
have filtered the attack tree to include adversary profiles with
common attack goals of discovery, lateral movement, and
execution, although some profiles possess additional abilities.
This attack tree integrates multiple adversary profiles, each
sharing common attack objectives such as discovery, lateral

https://github.com/noname13a/SCE-BAS

TARGET INFORMATION SYSTEM

WINDOWS
WORM #2

m

Lz COLLECT ARP DETAILS p
L2 COLLECT ARP DETAILS

F> 3 REVERSE NSLOOKUP IP
>
Lzl REVERSE NSLOOKUP IP

LI VIEW REMOTE SHARES SN

= #3
LZ% COLLECT ARP DETAILS

p=3
kil VIEW REMOTE SHARES
k&4 COPY 54NDCA7 (WINRM AND SCP)

WINDOWS
WORM #4

WINDOWS
WORM #3

L3 PARSE SSH CONFIG

L3 DUMP HISTORY
VIEW ADMIN SHARES

£Z3 COLLECT ARP DETAILS

= L3 RUN POWERKATZ
bl REVERSE NSLOOKUP IP

Ll FIND HOSTNAME
LIl REVERSE NSLOOKUP IP
L MOUNT SHARE

" g (! SaN0cA7 D 2 COPY 5ANDCAT (SMB)
b
B STANT AGENT (NINEN) B =Y PP COPY 5ANDCA7 CWINRM AND SCP)
#5 LN START AGENT (WINRM)

.' Attack Goal

LATERAL MOVEMENT

seell START 54NDCA7 (WMD
#12 WG

START 54NDCA7

Figure 4: Attack Tree composed from adversary profiles existing in Caldera

movement, and execution. Specifically, in our experiment, we
have included four distinct adversary profiles: Windows Worm
#1 (SMB + WMI), Windows Worm #2 (WinRM + SCP),
Windows Worm #3 (SMB + WinRM), and Worm (SMB +
WinRM + WMI).

The worms described utilize various techniques for lat-
eral movement, with some overlapping techniques. Those
worms typically begin by collecting ARP details and reversing
nslookup IPs to map the network environment. The movement
is achieved by using protocols like SMB, WinRM, and SCP
to copy and start processes on remote machines. For instance,
Windows Worm #1 utilizes SMB and WMI to move later-
ally, while Windows Worm #2 employs WinRM and SCP.
Windows Worm #3 combines both SMB for copying and
WinRM for execution. The general approach involves viewing
remote or admin shares, copying essential files, and starting
agent processes to ensure the worm propagates effectively.
The Worm adversary example illustrates a combination of
these techniques, enhancing its lateral movement capabilities
by parsing SSH configurations and utilizing both WMI and
WinRM for process initiation, thus ensuring versatility and
robustness in achieving its objectives across a network.

D. Composing SCE experiments

Our goal with this experiment stems from the question
of how secure would an organization be in front of a self-
replicating worm giving attackers Command and Control (C2)
and Remote Access Tool (RAT) control of the computers

in the network. This experiment could be performed by an
organization interested in simulate cyber attacks coming from
an adversary with a known arsenal, with the purpose of
identify which attack vector, i.e. a branch of the tree, could be
successful. Based on the attack tree presented beforehand, we
can define the experiment following the SCE scientific method
the following way:

« Observability: We have several options for observability,
all related to the creation of a new agent. First, the
response from Caldera for the ability execution, which we
can parse to determine if it has been successful. Another
would be obtaining this information through API calls,
in particular, getAgents (), which could be used to
compare it to the base call result, seeing if we have a
new agent on the list.

o Steady State: The system in its base state, without
running experiments, representing an objective that has
not been attacked yet.

« Hypothesis: Assuming proper configuration of the ser-
vices and security of the system, a lateral movement
attack, like a self-replicating worm, should fail.

E. Execution of simulations

Following the execution of our experiments, we will explain
first the branches that succeeded, being Windows Worm #1
and #3. Those reached the end, refuting the hypothesis
mentioned in Section [[V-D] and proving that the worm was

allowed to pivot to a different machine within the network.

Both worm #1 and #3 managed to implant the agent
on the source machine through a shared SMB folder with
incorrect permissions assigned, allowing unauthenticated
users to copy files to the public directory of the machine.
This file was then executed, via different methods, frist with
WMIC and then with WinRM, both succeeding due to weak
credentials (Worm #1) and improper configuration (Worm #3).

As for the branches that failed, starting with Windows Worm
#2, this branch aborted due to not having the knowledge
required to propagate the worm through SCP, this is the
reason behind the failure of branch #4 as well. This failure
could be mitigated with intermediate steps, which could try to
bypass or find the credentials of the target machine, allowing
its implantation. Once implanted, the execution methods are
the same as the branches that succeeded, meaning that the
only reason those branches failed was the lack of credentials.
Details about the execution of experiments and the obtained
results can be consulted in the project repository.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce a framework that integrates
Breach Attack Simulation (BAS) tools with Security Chaos
Engineering (SCE) methodologies to conduct comprehensive
security experiments across diverse target architectures. Lever-
aging hypotheses generated from our knowledge database and
detailed attack representations, our proposal executes SCE-
driven experiments to identify potential security vulnerabilities
within target systems. To demonstrate the effectiveness of
our proposal, we conducted a series of experiments a cyber
defense scenario, assessing the security posture through SCE-
based simulations. The results highlighted that some adversary
profiles, i.e. some branches of the attack tree, successfully
exploited the target. Our proposal is publicly available to the
cybersecurity community through our the project repositoryﬂ

Even with the results of the experiments, the proposal is
still far from complete, as it requires an extensive amount
of tinkering and work, and the range of scenarios it covers
is fairly limited. We intend to extend the functionality to
work with all of the adversary profiles provided by Caldera,
but more importantly, adding the possibility of jumping from
one branch to another inside the attack graph, or even taking
leaps and backtracking to different nodes in it, expanding the
capabilities of the solution developed.

ACKNOWLEDGMENT

This work has been co-funded by the European Union
(project ECYSAP EYE). Views and opinions expressed are
however those of the author(s) only and do not necessarily
reflect those of the European Union or the European Defence
Fund. Neither the European Union nor the granting authority
can be held responsible for them.

Zhttps://github.com/noname 13a/SCE-BAS

This work has also been partially supported by
MCIN/AEI/10.13039/501100011033 NextGeneration
EU/PRTR, UE, under Grant TED2021-129300B-100, by
MCIN/AEI/10.13039/501100011033/FEDER, UE, under
Grant PID2021-1224660B-100, by the Spanish National
Institute of Cybersecurity (INCIBE) by the Recovery,
Transformation and Resilience Plan, Next Generation EU
under the strategic project DEFENDER, by the CyberDatalLab
(Cybersecurity and Data Science Laboratory) at the University
of Murcia (Spain), and the School of Engineering, Science
and Technology at the University of Rosario (Colombia).

REFERENCES

[11 J. Kizza, Guide to Computer Network Security, ser. Computer Commu-
nications and Networks. Springer International Publishing, 01 2017.

[2] F. Basholli, D. Hyka, A. Basholli, A. Daberdini, and B. Mema, “Anal-
ysis of cyber-attacks through simulation,” Advanced Engineering Days
(AED), vol. 7, pp. 120-122, 07 2023.

[3] M. Kouremetis, D. Lawrence, R. Alford, Z. Cheuvront, D. Davila,
B. Geyer, T. Haigh, E. Michalak, R. Murphy, and G. Russo, “Mirage:
cyber deception against autonomous cyber attacks in emulation and
simulation,” Annals of Telecommunications, vol. 79, p. 15, 03 2024.

[4] Y. Kalra, S. Upadhyay, and P. Patheja, “Advancements in Cyber Attacks
and Security,” International Journal of Innovative Technology and
Exploring Engineering, vol. 9, p. 3, 02 2020.

[5] N. Mohamed, “Study of bypassing Microsoft Windows Security using
the MITRE CALDERA Framework,” F1000Research, vol. 11, p. 21, 04
2022.

[6] M. Landauer, K. Mayer, F. Skopik, M. Wurzenberger, and M. Kern, “Red
Team Redemption: A Structured Comparison of Open-Source Tools for
Adversary Emulation,” arXivLabs - arXiv preprint arXiv:2408.15645,
p. 12, 08 2024.

[7]1 K. Shortridge and A. Rinehart, Security Chaos Engineering. O’Reilly
Media, 2023.

[8] R. M. Portase, A. Colesa, and G. Sebestyen, “SpecRep: Adversary
Emulation Based on Attack Objective Specification in Heterogeneous
Infrastructures,” Sensors, p. 21, 08 2024.

[9]1 K. Koo, D. Moon, J.-H. Huh, S.-H. Jung, and H. Lee, “Attack Graph

Generation with Machine Learning for Network Security,” Electronics,

p. 25, 04 2022.

A. B. Ajmal, S. Khan, M. Alam, A. Mehbodniya, J. Webber, and

A. Waheed, “Toward Effective Evaluation of Cyber Defense: Threat

Based Adversary Emulation Approach,” IEEE Access, p. 16, 05 2023.

[11] J. P. Sang Ho Oh, Jeongyoon Kim, “Dynamic Cyberattack Simulation:

Integrating Improved Deep Reinforcement Learning with the MITRE-

ATT&CK Framework,” Electronics, p. 17, 07 2024.

S. Palacios Chavarro, P. Nespoli, D. Diaz-Lépez, and Y. Nifio Roa, “On

the Way to Automatic Exploitation of Vulnerabilities and Validation of

Systems Security through Security Chaos Engineering,” Big Data and

Cognitive Computing, vol. 7, no. 1, 2023.

M. Bedoya, S. Palacios, D. Diaz-Lépez, E. Laverde, and P. Nespoli,

“Enhancing DevSecOps practice with Large Language Models and Secu-

rity Chaos Engineering,” International Journal of Information Security,

vol. 23, no. 6, pp. 3765-3788, Dec 2024.

[10]

[12]

[13]

https://github.com/noname13a/SCE-BAS

	Introduction
	State of the art
	Proposal of Attack Simulations empowered by Security Chaos Engineering
	BAS layer
	Core System
	Agents
	Abilities
	Adversary profiles
	Operations
	Campaigns
	Plugins

	Connector layer
	State Fetcher
	Operation creator
	Operation Manager
	Ability executor
	Ability result retriever

	SCE Orchestrator layer
	Threat intelligence database
	Chaos Experiment Designer
	Attack Tree Generator
	ChaosXploit

	Experiments
	Settings
	Defining the parameters of the simulation
	Identifying the Adversary Options
	Composing SCE experiments
	Execution of simulations

	Conclusions and Future Work
	References

