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Abstract—All current detection of backdoor attacks on deep

learning models fall under the category of a non essential fea-
tures(NEF), which focus on fighting against simple and efficient
vertical class backdoor — trigger is small, few and not overlapping
with the source. Evade-adaptive backdoor (EAB) attacks have
evaded NEF detection and improved training efficiency.
We introduces a precise, efficient and universal detection and de-
fense framework coined as Isolate Trigger (IsTr). IsTr aims to find
the hidden trigger by breaking the barrier of the source features.
Therefore, it investigates the essence of backdoor triggering,
and uses Steps and Differential-Middle-Slice as components to
update past theories of distance and gradient. IsTr also plays
a positive role in the model, whether the backdoor exists. For
example, accurately find and repair the wrong identification
caused by deliberate or unintentional training in automatic
driving. Extensive experiments on robustness scross various tasks,
including MNIST, facial recognition, and traffic sign recognition,
confirm the high efficiency, generality and precision of the IsTr.
We rigorously evaluated the effectiveness of the IsTr against a
series of six EAB attacks, including Badnets, Sin-Wave, Multi-
trigger, SSBAs, CASSOCK, HCB. None of these countermeasures
evade, even when attacks are combined and the trigger and
source overlap.

I. INTRODUCTION

The deep learning field has been applied in various
industrial and living environments, becoming integral to
people’s daily lives [1]-[3]. However, both maliciously
implanted backdoors [4] and natural backdoors [5] have
triggered serious potential safety hazards in deep learning
models within safety-critical domains including autonomous
vehicles and facial recognition [6]-[8]. Simultaneously,
the increasing prevalence of evasive backdoor attacks
has rendered defensive measures imperative [4], [9]-[14].
Numerous defense schemes have demonstrated notable
success in detecting and remediating backdoor attacks [15].
Among these, backdoor reverse [12] has garnered significant
attention due to its near-lossless repair efficacy and broad
applicability across scenarios.

However, evasion-adaptive backdoor(EAB) attacks are
capable of circumventing non-essential feature(NEF) defenses
because NEF defenses rely on non-essential trigger features
and focus on source features. These backdoor attacks operate

to force misclassifications by embedding triggers in training
samples [16], thus defenses necessitate precise trigger reverse
engineering to achieve detection and subsequent impact
mitigation. Historically, to accommodate requirements such
as training efficiency, attackers deliberately designed triggers
to be compact, single-instance, and non-overlapping with
source features—the intrinsic feature representations of
samples (e.g., facial organs/hair in face recognition tasks) [4].
Conventional defenses detect backdoors by relying on these
trigger features [12]. However, emerging attacks [13], [14]
reveal that such characteristics constitute non-essential features
of triggers. It indicates they are not fundamental requirements
for successful backdoor embedding. Consequently, these novel
EAB attacks effortlessly nullify NEF defenses by modifying
non-essential feature of triggers. On the other hand, we
observe that legacy NEF defenses exhibit excessive focus on
source features instead of trigger when safeguarding complex
tasks—particularly those involving large-scale models and
high-resolution images like facial recognition systems [17].
This misalignment severely impedes model diagnostics and
remediation. In light of this, we pose a pivotal research
question: does there exist an efficient defense mechanism that
fundamentally targets the intrinsic nature of backdoor trigger?

We propose the Isolate Trigger (IsTr) framework for back-
door detection and remediation, comprising three sequential
components: Steps, Differential-Middle-Slice (DMS), and Un-
learning, as shown in Figure 1. Like Figure 1 left, our analysis
reveals that recent EAB attacks increasingly amplify the influ-
ence of source features , deliberately blurring the distinction
between source features and trigger signatures [13], [14]. This
deliberate obfuscation directly explains the failure of prior
defense schemes, which exhibit an excessive preoccupation
with source features at the expense of trigger detection. Hence,
effective defense fundamentally requires trigger isolation — the
core principle underpinning our IsTr framework.

To make the IsTr framework efficient, we propose a bidi-
rectional reverse defense framework employing back gradient
updates and forward validation, designated as Steps. When
the backdoor functionality forces misclassification of class b
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Fig. 1. Overview of IsTr. (Left) Threat model includs EAB attacks. (Right) IsTr framework. The framework initiates with suspicious label screening through
Steps. For each identified label group, IsTr employs DMS to derive feature extraction priorities using differential input statistics and generates constrained
masks through slice processing. These masks guide precise trigger inversion in Steps. IsTr rehabilitates the poisoning model through Unlearning with label-

flipped data.

samples as class a via trigger activation (as depicted in the
Poisoning Dataset of Figure 1), Steps reverse reconstruction
of trigger signatures rather than source features of class
a. This critical observation motivates the core innovation:
Instead of pursuing the ’class b to class a’ transformation
path, Steps can implement source-agnostic trigger synthesis
by diverging from class b characteristics. This method forces
misclassification to class a without interference from class a
source features, thereby achieving untainted trigger generation
through unconstrained label mutation.

Furthermore, Steps confers generality upon IsTr. IsTr re-
mains agnostic to model architectures and input specifications.
It maintains robust trigger isolation capabilities even for large-
scale, complex datasets and models scenarios that pose sig-
nificant challenges for most NEF defenses. By eliminating
the need for target selection, IsTr overcomes the critical
limitation of traditional reverse engineering methods which
require exhaustive class traversal and incur computational
costs scaling linearly with class cardinality. This enables
effective deployment in large-class scenarios. IsTr effectively
detects EAB attacks (including hybrid variants) even when
they successfully subvert NEF defenses. IsTr can remediate
natural backdoors [5] in models even when no deliberate
backdoor implantation has occurred.

To improve the precision of IsTr framework reverse triggers,

including visual similarity and functional integrity with the
original trigger, we divide the model’s feature extraction into
two components: response priority and processing priority,
which influence reverse engineering and backdoor activation
respectively, as will be discussed in Section II.B. Our intuition
is that the response priority for source features versus triggers
exhibits positive correlation with the training epochs required
to achieve convergence of normal training versus backdoor
attack training. This correlation intensifies particularly when
triggers overlap with source features. Backdoor attacks are
typically executed through simple fine-tuning after extended
pretraining and normal fine-tuning. Therefore, backdoor attack
training requires far fewer epochs than normal training [4],
[18]. Consequently, source features attain higher response
priority than triggers, while triggers maintain higher priority
than meaningless noise. To achieve trigger isolation under
these conditions, we implement DMS to support Steps.

DMS-Steps enables IsTr to eliminate interference from
source features, reconstructing inverted trigger with high re-
semblance to the original trigger. This precision manifests
through spatial and structural alignment (matching the position
and pattern of original triggers) and functional equivalence (in-
ducing identical model misclassification). Historically, inver-
sion precision received less emphasis than detection accuracy
and repair effectiveness in experimental evaluations. However,



we empirically demonstrate its positive correlation with both
detection accuracy and repair performance. This result affirms
the critical importance of high-fidelity trigger reconstruction.

Collectively, by employing a bidirectional reverse defense
framework, IsTr achieves detection with significantly fewer it-
erations. With its concentrated focus on trigger signatures, IsTr
attains higher inversion fidelity, thereby enhancing detection
accuracy and remediation efficacy to EAB attacks and attacks
defensible by NEF. Crucially, as previously established, IsTr’s
elimination of class traversal accelerates defense execution by
orders of magnitude.

Our contributions are summarized as follows:

« Novel Backdoor Isolation Defense Paradigm. We intro-
duce IsTr defense—a new, generalized framework that su-
persedes prior distance-based and gradient-based theories
through innovations in Steps and DMS. By fundamen-
tally targeting the intrinsic properties of backdoors, IsTr
establishes a distinct theoretical foundation that diverges
fundamentally from NEF defenses. We formally define
both NEF and IsTr to crystallize their differences.

+ Revealing Essential Characteristics of Backdoor Con-
cealment. Through a refined stratification of feature
extraction, we establish the critical distinction between
response priority and processing priority, thereby identi-
fying essential characteristics required for backdoor per-
sistence and evasion. We validate this theoretical insight
via differential statistical analysis and achieve precise
separation of trigger signatures from source features.

o Comprehensive Attack Assessment. We define and
analyze EAB attacks—a novel attack specifically engi-
neered to circumvent defenses. Through comprehensive
evaluation across diverse datasets (MNIST, GTSRB, Pub-
Fig) against state-of-the-art EAB variants (BadNets, Sin-
wave, Multi-trigger, SSBAs, CASSOCK, HCB). results
demonstrate IsTr’s consistent robustness. This stems from
IsTr’s ability to orthogonally decouple trigger signatures
from source features. Additionally, IsTr demonstrates ro-
bust mitigation efficacy against inherent natural backdoor
vulnerabilities in models.

II. BACKGROUND AND RELATED WORK

A. Backdoor Defense and Evasive Attacks

Data-based Defenses (DBD) [15] operates under the “data
outsourcing” [19] paradigm, granting access to poisoned
datasets for analysis and retraining [20]-[22]. In contrast,
Model-based Defenses (MBD) [15] functions within “model
outsourcing” [23] constraints, where only compromised mod-
els are available for defense. This distinction is critical due
to:

o The prevalence of distributed training and privacy preser-
vation, increasingly restricting defender access to training
samples while facilitating model access [12], [24], [25].

o The technical asymmetry whereby poisoned samples
(generated before backdoor training) enable efficient

reconstruction of poisoned models, whereas model-to-
sample inversion remains computationally non-trivial [4],
[12].

Consequently, MBD can subsume DBD’s defense
assumptions, but the converse does not hold. Despite
limited research attention, MBD increasingly replaces DBD
in deployments due to its broader applicability.

Definition 1 Non-Essential Feature(NEF). DBD require
fewer defensive assumptions when granted dataset access,
whereas MBD offen demand stricter operational constraints
(e.g., small and single triggers) to function effectively.
This limitation renders past MBD vulnerable to multi-
trigger and large-scale backdoor attacks [9]-[11]. Although
DBD was historically perceived as unbreakable, it remains
fundamentally constrained by excessive focus on source
features. This constraint is exploited by attacks targeting its
implicit reliance on distant source-trigger separation [14].
These phenomena confirm that conventional defenses fail to
address essential backdoor properties, thus categorized as
non-essential features defenses.

Definition 2 Evade-Adaptive Backdoor(EAB). Attackers
have exploited these defensive flaws, spurring the development
of backdoor attacks specifically engineered to bypass
detection—collectively termed evade-adaptive backdoors
attacks. Conventional EAB variants circumvented singular
defensive assumptions (e.g., trigger size constraints), enabling
mitigation through defense stacking. This paradigm was
shattered by CASSOCK [13] and HCB [14], which pioneer
overlapping trigger-source patterns or leverage naturally
occurring source-trigger relationships to comprehensively
compromise all existing defenses.

B. Analysis of Backdoor Activation Mechanisms

Collectively, NEF defenses lack granular analysis of activa-
tion mechanisms—conflating genuine trigger signatures with
source features under the broad category of misclassification-
causing triggers. EAB attacks exploit this flaw by inducing
source-trigger obfuscation, which forces excessive focus on
source features while neglecting trigger signatures. To enable
finer-grained activation analysis, we decompose feature extrac-
tion into response priority (identifying spatially susceptible
regions) and processing priority (governing recognition out-
comes), formalized in Figure 2. This Figure explains triggered
misclassifications from Leonardo DiCaprio to Hugh Jackman.

Response priority(RP) governs feature capture order, ex-
hibiting positive correlation with training epochs in Figure
2 left. Typically, source features require substantially more
epochs than trigger signatures to achieve convergence, granting
them higher RP and thus greater spatial influence. Trigger
signatures, trained with fewer epochs, exert weaker influence.
Additionally, although spatial separation between source fea-
tures and triggers allowed independent activation [4] before
CASSOCK [13], CASSOCK and HCB [14] induce spatial
overlap, causing source features to mask trigger signatures.
These factors explain Strip’s [20] failure due to secondary
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Fig. 3. Comparison between the original trigger and the reverse-engineered
result when Neural Cleanse performs reverse generation on facial datasets.
Neural Cleanse tends to generate face rather than trigger.

masking during analysis and Neural Cleanse’s inversion [24]
of faces instead of triggers (as shown in Figure 3).

Processing priority(PP) determines the identified outcomes.
Features are collected in descending order of RP, and the final
output is synthesized from all collected results. Thus, model
first searches for features with high RP (source features),
followed by those with low RP (trigger signatures). If only
source features are found, it yields the clean result. When
both source features and trigger signatures coexist, trigger
signatures attains higher PP than source features alone. Then,it
activates the backdoor. Consequently, Leonardo DiCaprio’s
photo with trigger is misclassified as Hugh Jackman in Figure
2 right.

Since PP yields results asymmetrically,

whereas RP

operates symmetrically, existing reverse-engineering methods
often use RP for trigger generation and PP for trigger
verification. This leads to source features with higher RP
being more extensively generated. Specifically, Figure 2
demonstrates that when reverse-engineering “Hugh Jackman”,
the model more readily reconstructs Hugh Jackman’s source
feature rather than generating a trigger placed on Leonardo
DiCaprio’s face.

Based on this understanding, IsTr approaches the problem
from the perspective of “decoupling triggers from source
features”, bypassing source features entirely to directly
reverse-engineer triggers. While attackers can circumvent
NEF by modifying trigger signatures and blending trigger
signatures with source features, the trigger cannot evade
detection once the influence of source features is eliminated.
Attackers cannot manipulate the very existence of the trigger,
as this constitutes an inherent requirement for backdoor
attacks. Thus, EAB attacks may be unable to circumvent IsTr,
which eliminates reliance on non-essential features.

ITII. ISOLATE TRIGGER

In this section, we first define the threat model for IsTr,
followed by an overview of the Steps and DMS schemes
designed to isolate trigger signatures. Upon acquiring reverse-
engineered trigger signatures, we repair the model via Un-
learning.

A. Threat Model

Functioning as an MBD, IsTr operates in model outsourcing
scenarios while natively maintaining compatibility with data
outsourcing contexts, thereby possessing broader applicabil-
ity. Within such frameworks, constraints including privacy
preservation mandates, distributed training requirements, and
related factors restrict defenders to accessing only trained or
compromised models alongside minimal clean samples, with
no access to poisoned samples [19], [23].

Defense Objectives. The defender aims to reverse-engineer
models using IsTr as shown in Figure 1 right. For backdoored
models, the defender can: (a) detect triggers causing misclas-
sification between source and target classes; (b) acquire the
trigger signatures; (c) repair the backdoor via Unlearning [26]
through relabeling trigger-poisoned samples to the source class
followed by retraining.

For non-backdoored models, the defender identifies inher-
enty (natural backdoor) that induce misclassification, thereby
enhancing model robustness.

Defense Capabilities. We focus on three core metrics:

o Detection Accuracy (Generality): High accuracy and low
false positive rates in identifying suspicious label groups,
even under multiple backdoor scenarios.

o Detection Speed (Efficiency): Time-efficient performance
across diverse tasks.

o Repair Efficacy (Precision): Reverse-engineered trigger
signatures must exhibit high similarity to original trig-
gers to ensure effective model repair while maintaining



uncompromised performance on legitimate recognition
tasks.

B. Detection

As formalized in Algorithm 1, the potentially backdoored
model is f. The limited locally available clean data is X. The
clean model trained on X is fs. Samples and labels drawn
from X are represented by (z,[,), while source-target class
pairs (m,n) mark potential backdoor or natural vulnerability
locations.The reverse trigger 71" is the reconstructed trigger.
Differential slices E matrix serve as the constrained masks.
When the Steps algorithm Steps() is unconstrained, the values
of E matrix are 1.

Algorithm 1: Detection Algorithm

Input: Validation dataset X, Constrained mask E;
Output: Possible backdoor infection label pairs
(m,n), Reverse trigger T;

1 for data x and original label 1, in X do
2 T = Steps(x,l,) * E;

3 if Label(max{f(x)}) = I, then

4 l; = Label(max{f(x+T)});

5 Lead(lo.l¢) += (Io # 11);

6 end

7 end

8 data processing:

9 for each label m = 1 to N do do

10 ‘ (m,n) = {m,Label(k-means{Lead(m),2})};
11 end
12 Return (m,n),T;

1) Unconstrained Label Mutation (Steps):

Source features and trigger signatures exhibit higher RP.
Positions with elevated RP acquire more pixels during gradient
generation. Concurrently, regions with higher PP exert greater
influence on altering model predictions. Under this dual ef-
fect of heightened pixel generation and significant predictive
impact, the model becomes more susceptible to adversarial
samples that induce prediction changes (I, # I;). This phe-
nomenon is termed label flipping [27], [28], as validated in
Section IV.B.1). In Algorithm 1 data processing, the label
flipping results are stored in the data structure Lead(m,n),
with Lead(m) aggregating all cases originating from class m.
These results undergo selection via k-means [29] clustering
(k = 2), and the corresponding label n for each Lead(m,n)
entry is retrieved using Label.

Detection based on label flipping epochs achieves superior
efficiency and enables EAB backdoor detection, outperforming
traditional L; norm dependent schemes [30]. Whereas prior
methods define the minimal pixel sum (L; norm) inducing
label flipping as the inter-class distance [12], we term the
rounds required for label flipping in our novel method as Steps.

Due to the unconstrained gradient G, the initial method
simultaneously generated both source features and trigger
signatures toward classes other than the original. Under the

synergistic enhancement from both components, label flipping
occurred significantly faster than in trigger-free scenarios, thus
enabling detection as formalized in Algorithm 2 unconstrained
label mutation. However, the influence of source features
remains incompletely suppressed. We improve this method
through opposite unconstrained label mutation (Algorithm 2).

Opposite unconstrained label mutation deviates from the
original class. This method reduces the influence of source
features, avoids the influence of target class source, and ampli-
fies trigger feature when they are present. This triad effectively
eliminates the interference of source features. Crucially, by
bypassing class traversal during generation, this method ac-
celerates reverse-engineering by a factor of C' (where C' is the
number of labels in the dataset). This acceleration significantly
outpaces prior methods.

Algorithm 2: Steps Algorithm
Input: data x, Original label [,, number of classes N;
Output: Unconstrained reverse trigger T;
1 Unconstrained label mutation:
for generate target label l; = 1 to N do
Training a generative network G with x and /;;
T=G;

Opposite unconstrained label mutation:
Training a generative network G with x and [,;
T = -G;

2
3
4
5 end
6
7
8
9 Return T;

2) Differential-Middle-Slice (DMS):

Although Steps achieve high detection accuracy, they
cannot acquire precise triggers for model repair. Therefore,
detection accuracy and reverse precision are further enhanced
through constrained gradient generation (Constrained Mask F
by DMS) applied to the filtered Steps results in Algorithm 1.

Section II establishes the RP hierarchy: source feature
> trigger signature > noise. Therefore, DMS quantify
location-specific response priorities through differential [31]
inputs-generating perturbed variants x; from x as formalized
in Eqnarray 1. This constructs distributions for source features,
triggers, and noise. Concurrently, DMS uses a secure model
fs trained on clean data to extract distributions of source
features and noise. It enables isolating the influence of source
features within the target detection model. Subsequently,
DMS perform stratified processing on the activation priority
distribution of the target detection model. Using thresholds
and 7, DMS extract middle-layer slices (exhibiting maximal
divergence from upper-layer slices) as gradient generation
constraints E. This enables precise reverse-engineering of
trigger signatures, as validated in Section IV.B.2). Here,
minimum denotes an infinitesimal near-zero value.

|

1f () = flai)ll2 = 1 fs(2) = f

S(xi)H27(7al7T2) (l)
minimum , others



C. Unlearning

This mitigation method trains models to forget original trig-
ger signatures [26]. By retraining with the reverse-engineered
trigger to recognize correct label, the model consistently
produces accurate predictions regardless of trigger presence.
This effectively transforms trigger into inconsequential noise.
Compared to pruning-based alternatives, this method empiri-
cally preserves the model’s accuracy while suppressing attack
success rates to negligible levels (<6.70%) [12], [32].

IV. IMPLEMENTATION AND EVALUATION

We commence by detailing the experimental setup, fol-
lowed by a viability assessment of IsTr through metrics.
This experimental framework simultaneously validates our
theoretical propositions and benchmarks performance against
canonical reverse-engineering schemes and their state-of-the-
art optimizations.

A. Setup

The experimental setup extends and refines well-established
evaluation protocols from prior work [12], with comprehensive
metrics detailed in Table I and visualized in Figure 4.

1]

K

(a) Original (b) MNIST (c) MNIST (d) MNIST (e) MNIST
MNIST BadNets SIN Multi- Multi-
trigger1 trigger2

(f) Original GTSRB (g) GTSRB BadNets

(h) GTSRB SIN

(k) PubFig HCB

(i) Original PubFig

(j) PubFig CASSOCK

Fig. 4. Clean samples and poisoned samples
Datasets and Models. The experimental setup employs
three widely-adopted datasets: MNIST [33], GTSRB [34],
and PubFig [35]. Table I summarizes their specifications and
corresponding models. MNIST is used for efficient defense

validation, containing 60,000 training and 10,000 test samples
of 28x28x1 grayscale images. It implements a 3Conv+2FC
architecture with 413,882 parameters. GTSRB serves as
the traffic sign recognition benchmark, with 43 classes
across 39,200 training and 12,600 test samples (32x32x3
RGB). The model adopts 6Conv+2FC layers totaling 571,723
parameters. PubFig provides facial recognition data with
11070 training and 2,768 test images from 83 celebrities.
Images are resized to 224x224x3. It utilizes VGG16 [36]
(13Conv+3FC) comprising 122,245,715 parameters.

Backdoor Attacks. The experimental setup augments
existing evaluation protocols with EAB backdoors. Detailed
introductions of these EAB backdoors are in the Appendix.
Figure 4 displays representative attack samples. BadNets [4]
overlays a square trigger at the top-right corner of images,
relabeling poisoned samples to class 8. The experimental
setup enhances its stealth by alternating black-white patterns
to challenge reverse-engineering, demonstrating our method’s
resilience. It is optimized into a Source-Class-Specific
Backdoor Attacks (SSBAs)(USENIX’21) [11], [12] to
become EAB. SIN-wave(CVPR’20) [9] implements stealthy
EAB attacks via enlarged trigger. It employs full-image
stripe watermarks with alternating luminance as trigger.
Multi-trigger(JSAC’21) [37] deploys multiple concurrent
triggers. In dual-trigger experiments: top-right triggers relabel
to class 8, lower-left triggers to class 1. We further scale
this to four triggers configurations within a single model
in Section V.E. CASSOCK(ASIACCS’23) [13] executes
efficient covert training by superimposing trigger onto source
features via cross-entropy optimization. The experimental
setup implements colored square watermark as trigger.
HCB(CCS’24) [14] utilizes extraneous features as triggers.
Here, smiling expressions serve as the trigger.

Device. Experiments run on a computer with the following
configuration: Intel Core i7 processor with eight CPU cores
running at 2.30 GHz and 16 GB main memory, and a GPU
card of NVIDIA GeForce RTX 3060.

B. Metrics

We validate IsTr’s defense precision, efficiency, generality,
and theoretical foundations through five key metrics:

Label Flipping manifests significant divergence between
benign and poisoned classes, forming the detection basis
for backdoors. By monitoring label flipping rates and their
dynamics, it verify the elimination of source feature influence
and the successful isolation of trigger signatures.

Slice Constraints exhibit high spatial overlap with trigger,
determining reverse-engineering accuracy. Precise constraints
enable efficient backdoor detection with reduced false
positives while ensuring accurate trigger acquisition for
enhanced Unlearning’s repair.

Detection Performance Comparison evaluates generality
of IsTr against three mainstream reverse-engineering schemes
and their optimizations using: Accuracy (ACC) measuring
correct class detection probability, and True Positive Rate



TABLE I
DETAILED INFORMATION OF DATASETS, TASK COMPLEXITY, AND MODEL ARCHITECTURES PER TASK; COUPLED WITH ATTACK SUCCESS RATES AND
CLEAN ACCURACY RATES FOR BACKDOOR INJECTION ATTACKS ACROSS DIVERSE TASKS.

Dataset Model Attacks

Name  classes Images size training samples  Architecture training parameters  Backdoor  Success rate  Accuracy of clean samples
BadNets 100% 99.99%
MNIST 10 28x28x1 60,000 3Conv+2FC 413,882 SIN 99.42% 97.75%
MT 89.06% 98.72%
BadNets 100% 96.03%
GTSRB 43 32x32x3 39,200 6Conv+2FC 571,723 SIN 100% 04.74%
. CASSOCK 100% 98.61%
PubFig 83 224x224x3 11,070 13Conv+3FC 122,245,715 ACE 100% 99.86%

(TPR) quantifying the proportion of correctly identified
poisoned classes among all poisoned classes.

Trigger Similarity & Repair Efficacy evaluates the
precision of IsTr. It first assesses Normal Success Rate
(NSR) and Attack Success Rate (ASR) pre/post-repair, then
quantify trigger similarity via: Average Pixel Difference
(APD) calculated as % > | Torig — Trevl|, and Functional
Integrity Rate (FIR) measuring reverse trigger functionality.

Time Efficiency. evaluates the efficiency of IsTr by
measuring time consumption per sample versus comparative
methods across tasks.

1) Label Mutation:

IsTr leverages label flipping for detection, operating on the
principle that the dual influence of high pixel generation and
significant predictive impact heightens susceptibility to adver-
sarial samples causing prediction alterations. We quantify the
disparity in label flipping rates between benign and poisoned
classes across datasets, as visualized in Figure 5. Subfigures
(a)-(c) correspond to Steps, while (d)-(f) represent DMS-Steps.

We can observe the differences in two aspects:

e Accelerated mutation in poisoned classes. Under the
Steps method, increased dataset complexity correlates
with enhanced trigger concealment. Despite rigorous
isolation efforts, GTSRB and PubFig exhibit partial
source features. Nevertheless, poisoned classes demon-
strate faster mutation speeds than benign classes due
to Steps’ isolation effect. Like Steps’ performance on
MNIST, DMS-Steps achieves near-complete trigger isola-
tion where poisoned classes undergo rapid mutation while
benign classes remain virtually unaffected.

« When approaching stability, the poisoned class exhibits a
higher mutation rate. We can also observe that the gap in
mutation rate between the backdoor class and the benign
class at convergence exceeds 20%. In the early stages
of detection, the mutation rate of most backdoor classes
surpasses twice that of the benign class. These factors
allow us to distinguish between the backdoor class and
the benign class based on mutation rate.

2) Effect of Slice Constraint:

DMS-Steps is effective based on two key insights: 1) DMS
can accurately locate positions with larger trigger pixels and
preliminarily mitigate the source effect; 2) Leveraging the

orthogonality between gradient information and differential
information further eliminates source features and reconstructs
the trigger signatures. We validated this method on multiple
EAB attacks, as shown in Figure 6. Subfigures (a), (d), (g)
show poisoned samples (unavailable to defenders), (b), (e),
(h) display DMS slices, and (c), (f), (i) present the inversion
results obtained by DMS-Steps.

Overall, DMS significantly mitigates source features,
and the reconstructed trigger signatures exhibit substantial
similarity to the original triggers. As seen in (e), even for
the SIN-wave backdoor covering the entire image, DMS can
locate regions exhibiting significant pixel-level discrepancies
between poisoned and clean data caused by the implanted
trigger. Although residual source features persist in (b) and
(e), the inversion results have largely eliminated it, validating
the existence of orthogonality.

3) Comparison of Detection Effects:

We selected three classic schemes from the inversion do-
main for comparison, representing three mainstream inversion
methods, and incorporated novel optimizations. We provide
introductions to these methods in the Appendix, including:

o GangSweep (GS) [17]: A scheme that employs GAN
(ACM MM °20)

o Neural Cleanse (NC) [12]: A constraint-based generation
scheme (Oakland °19), optimized with tanh [38].

e MESA [39]: A maximum entropy approximation scheme
(NISP °19), optimized with BAERASER [40].

We compared the accuracy (ACC) and true positive
rate (TPR) of our IsTr framework (Steps and DMS-Steps)
with those of the three aforementioned classic defense
methods, as shown in Table II. Steps and DMS-Steps both
sustain stable ACC (>0.9) and TPR (>0.8). Moreover,
DMS-Steps achieves higher precision than Steps. IsTr
retains an accuracy advantage even within the threat models
covered by the defensive assumptions of these three defense
methods (e.g., BadNets). Furthermore, IsTr exhibits strong
detection capabilities against EAB attacks(such as SIN-wave,
CASSOCK, and HCB) that prove challenging for the three
defense methods.

We observed that most detection methods generally achieve
relatively high ACC, but their TPR is often low. This occurs
because the number of backdoor classes is typically smaller
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Fig. 6. Trigger of three backdoors, DMS and reverse result.

than that of clean classes. Consequently, misclassifying some
clean samples as backdoor has a limited impact on the

final ACC. This trade-off is acceptable in security detection,
because “missing a backdoor class” (false negative) is far
less tolerable than “misclassifying a clean class as backdoor”
(false positive). Therefore, most schemes tend to employ
overly aggressive detection strategies. Under the prevalent
condition of high ACC, the TPR metric better reflects the
true detection capability for backdoors.

Comparing the detection effectiveness against different
backdoor attacks, we observe that some classic methods
exhibit relatively low metrics when confronting large-scale
triggers (e.g., SIN-wave). This limitation stems from their
defensive assumption requiring small triggers [12], [38], [39].
While the IsTr framework, designed to handle triggers of
varying sizes, is also affected by such extreme cases (e.g.,
full-image coverage), it maintains ACC and TPR above 0.95
and 0.83. This robustness demonstrates the generality of IsTr
across diverse trigger specifications.

4) Repair Effect and Trigger Similarity:

We compared the effectiveness of model repair using Un-
learning [26], as presented in Table III. The evaluation em-
ploys Normal Success Rate (NSR) and Attack Success Rate
(ASR) as metrics. A repaired model is considered effective
when it achieves a high NSR and a low ASR. As shown,
BadNets and Multi-trigger successfully reduced ASR to be-
low 0.2%, outperforming SIN-wave, CASSOCK, and HCB.
This performance correlates positively with the detection and



TABLE II
COMPARISON OF ACC & TPR FOR DIFFERENT BACKDOOR ATTACKS AND DEFENSE METHODS ACROSS DATASETS.

Dataset MNIST GTSRB PubFig
Backdoor BadNets SIN MT BadNets SIN CASSOCK HCB
Metric ACC & TPR
GS 0.99 & 0.99 0.53 & 0.78 0.92 & 0.78 [ 0.96 & 0.80 0.94 & 0.81]0.94 & 0.56 0.97 & 0.62
NC 0.99 & 0.99 0.85 & 0.11 0.90 & 0.89]0.95 & 0.70 0.95 & 0.10]0.95 & 0.95 0.95 & 0.72
MESA [0.73 & 0.38 0.88 & 0.50 0.92 & 0.88|0.86 & 0.19 0.78 & 0.19|0.61 & 0.50 0.54 & 0.60
Steps 0.99 & 0.99 0.90 & 0.99 0.97 & 0.93]0.96 & 0.83 0.95 & 0.85[0.99 & 0.98 0.99 & 0.99
DMS-Steps [0.99 & 0.99 0.96 & 0.99 0.99 & 0.99|0.98 & 0.98 0.97 & 0.83(0.99 & 0.99 0.99 & 0.99

inversion results. Nevertheless, the ASR remains below 3%.
For most EAB backdoors, IsTr can reduce ASR to near-zero
levels while maintaining NSR virtually unchanged.

TABLE III
COMPARISON OF ASR AND NSR BEFORE AND AFTER REPAIR.

Attacks After repair

Dataset Backdoor ASR NSR ASR NSR
BadNets 100%  99.99% | 0.10% 99.23%
MNIST SIN 99.42% 97.75% | 2.17% 98.98%
MT 89.06% 98.72% | 0.04% 99.45%
GTSRB BadNets 100%  96.03% | 0.13% 96.60%
SIN 100% 94.74% | 2.60% 95.29%
PubFig CASSOCK | 100%  98.61% | 0.22% 98.87%
HCB 100%  99.86% | 1.78% 99.85%

The effectiveness of Unlearning in model repair hinges
on the premise that rebuilt trigger signatures exhibit high
visual similarity and functional integrity compared to original
triggers. We compared the inverted trigger signatures produced
by IsTr and the three classic inversion schemes, as shown
in Figure 7. (a)(f)(k)(p) denote original triggers. Notably,
MESA primarily captures the trigger’s pattern. The results
demonstrate IsTr’s superiority in both mitigating source
features and achieving higher similarity. Particularly in facial
recognition tasks, while other methods tend to generate source
features (facial features), IsTr still focuses on recovering
trigger signatures.

We also compared the Functional Integrity Rate (FIR)
(Table IV) and Average Pixel Difference (APD) (Table V) of
the inverted trigger signatures generated by all four schemes
across scenarios, relative to the original trigger. FIR refers to
the probability that a sample injected with the inverted trigger
signature is misclassified. A lower APD value indicates a
smaller discrepancy between the inverted trigger signature
and the original trigger in terms of visual appearance. (APD
was not calculated for HCB due to the absence of a fixed
trigger pattern.)

As shown in Table IV, the inverted trigger signatures
obtained by IsTr achieve near-complete FIR across all cases.
A decrease is only observed for the SIN trigger on GTSRB,
yet it still exceeds 0.8, outperforming all other schemes. IsTr
also achieves lower APD values for generated triggers. In
most defense tasks, APDs remain below 0.1. While higher for
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Fig. 7. Visual Comparison between Reverse Trigger and Original Trigger

the SIN trigger, IsTr’s APD is still superior to other schemes.
These metrics effectively demonstrate the inversion precision
of IsTr. The variations in FIR and APD observed across
different EAB attacks positively correlate with the model
repair effectiveness. This correlation validates our premise
that inversion precision and detection accuracy are positively
correlated with the effectiveness of the repair.

TABLE IV
COMPARISON OF FUNCTIONAL INTEGRITY RATE (FIR).

Dataset MNIST GTSRB PubFig
Backdoor |{BadNets SIN MT |BadNets SIN|CASSOCK HCB
GS 0.99 0.060.99] 091 0.81 0.97 0.83
NC 0.81 0.300.69] 0.71 0.08 0.99 0.99
MESA 0.62 0.170.13| 0.88 0.74 0.75 0.83
DMS-Steps| 0.99 0.99 0.99| 0.94 0.82 0.99 0.99

5) Time Efficiency:

Finally, we compared the processing time per sample con-



TABLE V
COMPARISON OF AVERAGE PIXEL DIFFERENCE (APD).

Dataset MNIST GTSRB PubFig
Backdoor |[BadNets SIN MT |BadNets SIN |CASSOCK

GS 0.0490 0.2612 0.1015| 0.0357 0.3896| 0.5585

NC 0.0864 0.4728 0.0899| 0.0295 0.4872| 0.1534

MESA | 0.3035 0.2574 0.5167| 0.3062 0.4846| 0.4994

DMS-Steps| 0.0052 0.2290 0.0026| 0.0224 0.2897| 0.0708

sumed by IsTr (Steps and DMS) and three classic inversion
schemes, as shown in Table VI (units: seconds). The results
demonstrate that Steps achieves an order-of-magnitude advan-
tage over other methods since it eliminates class traversal.
This efficiency gain further scales with increasing number
of classes. Although DMS requires longer processing time
per sample, its practical deployment maintains time-efficiency.
The IsTr framework leverages Steps to perform preliminary
screening, enabling DMS to operate exclusively on samples
flagged by suspicious classes.

TABLE VI
COMPARISON OF TIME EFFICIENCY.
Dataset | GS NC MESA  Steps DMS
MNIST | 1.36 2.32 1591 0.14 2.51
GTSRB | 12.04 7484 43024 027 22.12
PubFig | 57.33 249.69 3320.87 0.53 541.26

V. DISCUSSION
A. Accurate Reverse

For an extended period in the past, “precisely reconstructing
the trigger” received significantly less emphasis than
“detecting backdoor classes” within the inversion domain.
This prioritization stemmed from two key observations: 1)
Even with correct backdoor class detection, the obtained
trigger often exhibited low similarity to the original trigger
[39]; 2) Such dissimilar triggers could still achieve effective
model repair via Unlearning [40] (when the backdoor class
is known, Unlearning reduces ASR below 30% even with
randomly generated images as triggers). Consequently,
dedicating substantial computational resources to construct
precise trigger was deemed unnecessary.

However, this work reaffirms the criticality of “precise
trigger reconstruction’:

1) The increasing adoption of EAB attacks that leverage
source features to conceal triggers makes imprecise inversion
methods prone to recovering source features rather than
genuine trigger signatures. It causes true triggers to be
submerged by source features, creating latent risks.

2) Empirical evidence demonstrates positive correlations
between precise inversion and key performance metrics across
various attacks (MNIST-BadNets, MNIST-SIN, MNIST-
MT, GTSRB-BadNets, GTSRB-SIN, PubFig-CASSOCK):
Detection ACCs are 0.99 / 0.96 / 0.99 / 0.98 / 0.97 / 0.99 ,

10

Reverse trigger APDs are 0.0052 / 0.2290 / 0.0026 / 0.0224
/ 0.2897 / 0.0708 , Reverse trigger FIRs are 0.99 / 0.99 /
0.99 7/ 094 / 0.82 / 0.99 , Post-repair ASRs are 0.10% /
2.17% /1 0.04% / 0.13% / 2.60% / 0.22%. This data confirms
that precise inversion positively correlates with detection
accuracy, visual similarity, functional integrity, and model
repair effectiveness. Therefore, pursuing precise inversion
intrinsically enhances detection and repair capabilities.
Moreover, achieving high-precision inversion is governed
by both the method and external factors such as model
complexity, dataset scale, and attack selection. Specifically,
larger models and higher-resolution datasets increase detection
difficulty, while extreme attacks (e.g., full-image triggers) are
significantly harder to detect and repair.

B. DMS Ablation Experiment

To rigorously investigate the necessity of the DMS-assisted
Steps method, we conducted round-by-round comparisons of
detection accuracy between Steps and DMS-Steps across three
datasets, as shown in Figure 8. Here, symbol q denotes Steps
and symbol e denotes DMS-Steps. The results reveal that
similar to most detection schemes favoring overly aggressive
detection, the ACC rapidly approaches convergence within the
first round. This behavior stems from the fundamental security
principle that “failure to detect attacks” is substantially less
tolerable than “false alarms on clean samples”. Detection
PTR progressively increased in subsequent rounds, ultimately
achieving high accuracy levels exceeding 0.9 across all tasks.
Notably, DMS-Steps consistently outperformed Steps in all
three datasets, demonstrating both greater growth magnitude
during progression and superior accuracy when stable.With the
exception of a slight reversal on GTSRB in the second epoch
(nearly identical), DMS-Steps consistently achieved higher
detection precision than Steps across all datasets. We attribute
this minor reversal to the pixel constraint mechanism in DMS-
Steps: The masks generated by DMS restricted pixel sampling,
resulting in an low overall mutation rate (1.41%) during
initial rounds. Consequently, some backdoor classes remain
entirely inactive in DMS-Steps. In contrast, Steps achieves a
23.12% mutation rate due to superior pixel accessibility. This
higher mutation capacity triggers widespread backdoor class
mutations, yielding a transient precision advantage. Critically,
once all backdoor classes commenced mutation, DMS-Steps
demonstrated significantly more accurate detection than Steps.

C. Compatibility

The core philosophy of IsTr is “Deconstruction” —
decoupling activation behaviors into response prioritization
and processing prioritization, while disentangling inversion
from constraint mechanisms. This deconstruction yields
lightweight, refined, and efficient solutions. We posit
that artificial intelligence evolution follows a cyclical
“Deconstruction-Expansion-Redeconstruction” pattern.

The deconstruction method grants our solution exceptional
compatibility. We validated this by: 1) Feeding IsTr’s trigger
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samples to DBD frameworks, enabling DBD operation in
MBD environments (e.g., MNTD, STRIP); 2) Utilizing DMS
outputs as constraint guidance for MBD schemes, enhancing
inversion precision; 3) Employing Steps for preliminary
screening in other backdoor detectors, boosting detection
efficiency. All implementations demonstrated enhanced
defense outcomes.

D. Natural Backdoor

With growing security awareness, most tasks in practical
applications are now significantly resistant to malicious
backdoor implantation. However, model misidentification
remains prevalent, primarily attributed to inherent robustness
deficits, inadequate training, or limited transferability.
Such failures are intolerable in safety-critical domains like
autonomous driving. Although modern autonomous vehicles
employ industry-standard multi-camera systems with radar
achieving exceptional safety benchmarks [41], incidents still
occur where localized misidentification triggers accidents on
specific road segments. The underlying conditions causing
such misjudgments in models constitute natural backdoors
[5].

We further applied the IsTr framework to clean model,
demonstrating its capability to detect and remediate natural
backdoors. When deploying IsTr inverted triggers against
these natural backdoors, we observed consistent biases
toward classes 9 (MNIST), 38 (GTSRB), and 61 (PubFig),
achieving ASR of 81.42%, 73.66%, and 90.48% respectively.
Post-repair ASR were effectively suppressed to 0.11%,
0.26%, and 0.17% across these datasets. We recommend
defenders prioritize mitigation for high-risk classes where
misassociation is unacceptable—such as preventing traffic
signs with “prohibited passage” semantics from being
misclassified as “passage permitted” signs (as this could
cause catastrophic accidents). Similarly, any misrecognition
of ordinary faces as individuals holding sensitive positions
must be prevented due to severe security implications.
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E. Multiple Coexisting Backdoors and Hybrid EAB Attacks

The advent of CASSOCK has simplified the integration of
multiple backdoor attacks. To validate IsTr’s robustness, we
generated poisoned models using hybrid EAB techniques and
tested scenarios with four or more coexisting triggers. For the
MNIST task with four simultaneous backdoors (Figure 9 (a)-
(d)), IsTr achieved average ACC=0.8711 and TPR=0.8647,
suppressing post-repair ASR below 0.1%. Crucially, IsTr
maintains strong performance against combined EAB attacks
on PubFig recognition, with simultaneous implantation of four
trigger types: colored squares, white checkerboard patterns,
sine-wave triggers, and smiley face triggers. These target
labels 0, 6, 42, 50, and 77 (Figure 9(e)-(h)). Beyond each
trigger targeting a single label, we implement an enhanced
SSBA attack: all four triggers force misclassification of a
small subset of classes to label 0. IsTr achieves 0.9880 ACC
and 0.8940 TPR. Although the original ASRs reach 99.17%,
99.83%, 99.33%, and 95.06% respectively, post-repair ASRs
are suppressed below 3% across all attack vectors.

Fig. 9. Four Backdoors and Hybrid EAB Attacks

VI. CONCLUSION

To approach the problem of why EAB attacks can cir-
cumvent NEF defenses, we explore the essence of backdoor
attacks, and subsequently develop a new defense frame-
work—IsTr. IsTr is grounded in the insight that a model’s
feature extraction can be subdivided into “response priority”
and “processing priority”. By further linking these priorities




to training epochs, we reveal the underlying logic of trigger
concealment. We validate our insights through rigorous exper-
iments and evaluate IsTr’s precision, generality and efficiency
across three distinct tasks. This stems from our separation of
feature extraction and reverse engineering, allowing IsTr to fo-
cus more closely on the core element of backdoor attacks—the
trigger. We comprehensively demonstrate that IsTr can defense
six major EAB attacks and their combinations. The primary
reason is IsTr’s ability to concentrate on the trigger while
eliminating the influence of source features, whereas NEF
becomes confused by the interplay of source features and
trigger signatures. We also verified IsTr’s compatibility and
its effectiveness against natural backdoors. This further proves
that IsTr is a general solution, orthogonal to other detection
schemes. This work emphasizes that backdoor defenses should
focus on the trigger itself, making EAB attacks harder to
evade. Notably, this paper reaffirms the critical importance
of precisely reconstructing triggers, demonstrating a positive
correlation between precise trigger reconstruction and key
metrics such as detection accuracy, visual similarity, functional
integrity, and mitigation effectiveness. Pursuing precise trigger
reconstruction is no longer a redundant task outside detection
and mitigation; instead, it deserves greater emphasis.
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VII. APPENDIX
A. EAB

1) BadNets:

BadNets shows that outsourced training introduces new
security risks: an adversary can create a maliciously trained
network (a backdoored neural network, or a BadNet) that
has state-of-the-art performance on the user’s training and
validation samples, but behaves badly on specific attacker-
chosen inputs. They conducted experiments on different recog-
nition tasks. Results demonstrate that backdoors in neural
networks are both powerful and—because the behavior of
neural networks is difficult to explicate—stealthy.

2) Sin-wave:

Traditional data poisoning attacks manipulate training data
to induce unreliability of an ML model, whereas backdoor
data poisoning attacks maintain system performance unless the
ML model is presented with an input containing an embedded
“trigger” that provides a predetermined response advantageous
to the adversary. Their work builds upon prior backdoor data-
poisoning research for ML image classifiers and systematically
assesses different experimental conditions including types of
trigger patterns, persistence of trigger patterns during retrain-
ing, poisoning strategies, architectures (ResNet-50, NasNet,
NasNet-Mobile), datasets (Flowers, CIFAR-10), and potential

defensive regularization techniques (Contrastive Loss, Logit
Squeezing, Manifold Mixup, Soft-Nearest-Neighbors Loss).
Experiments yield four key findings. First, the success rate
of backdoor poisoning attacks varies widely, depending on
several factors, including model architecture, trigger pattern
and regularization technique. Second, they find that poisoned
models are hard to detect through performance inspection
alone. Third, regularization typically reduces backdoor success
rate, although it can have no effect or even slightly increase
it, depending on the form of regularization. Finally, backdoors
inserted through data poisoning can be rendered ineffective
after just a few epochs of additional training on a small
set of clean data without affecting the model’s performance.
(CVPR’20)

3) Multi-trigger:

Concerning that an untrustworthy cloud service provider
may inject backdoors to the returned model, the user can
leverage state-of-the-art defense strategies to examine the
model. They aim to develop robust backdoor attacks (named
RobNet) that can evade existing defense strategies from the
standpoint of malicious cloud providers. The key rationale is
to diversify the triggers and strengthen the model structure so
that the backdoor is hard to be detected or removed. To attain
this objective, They refine the trigger generation algorithm by
selecting the neuron(s) with large weights and activations and
then computing the triggers via gradient descent to maximize
the value of the selected neuron(s). They extend the attack
space by proposing multi-trigger backdoor attacks that can
misclassify inputs with different triggers into the same or
different target label(s). (JSAC’21)

4) SSBA:

Source label specific (Partial) Backdoors Attack (SSBA)

is a concept first proposed by Neural Cleanse.(Oakland °19)
Detection scheme is designed to detect triggers that induce
misclassification on arbitrary input. A “partial” backdoor that
is effective on inputs from a subset of source labels would be
more difficult to detect.
Targeted contamination attack (TaCT) has conducted com-
prehensive research.(USENIX’21) A security threat to deep
neural networks (DNN) is data contamination attack, in which
an adversary poisons the training data of the target model to
inject a backdoor so that images carrying a specific trigger
will always be given a specific label. They discover that
prior defense on this problem assumes the dominance of the
trigger in model’s representation space, which causes any
image with the trigger to be classified to the target label.
Such dominance comes from the unique representations of
trigger-carrying images, which are assumed to be significantly
different from what benign images produce. Their research,
however, shows that this assumption can be broken by a
targeted contamination TaCT that obscures the difference
between those two kinds of representations and causes the
attack images to be less distinguishable from benign ones,
thereby evading existing protection.They observe that TaCT
can affect the representation distribution of the target class
but don’t change the distribution across all classes.



5) CASSOCK:

As a critical threat to deep neural networks (DNNs),
backdoor attacks can be categorized into two types, i.e.,
source-agnostic backdoor attacks (SABAs) and source-specific
backdoor attacks (SSBAs). Compared to traditional SABAs,
SSBAs are more advanced in that they have superior stealthier
in bypassing mainstream countermeasures that are effective
against SABAs. Nonetheless, existing SSBAs suffer from two
major limitations. First, they can hardly achieve a good trade-
off between ASR (attack success rate) and FPR (false positive
rate). Besides, they can be effectively detected by the state-
of-the-art (SOTA) countermeasures (e.g., SCAn). To address
the limitations above, CASSOCK propose a new class of
viable source-specific backdoor attacks.(ASIACCS’23) The
key insight is that trigger designs when creating poisoned data
and cover data in SSBAs play a crucial role in demonstrating
a viable source-specific attack, which has not been considered
by existing SSBAs. With this insight, CASSOCK focus on
trigger transparency and content when crafting triggers for
poisoned dataset where a sample has an attacker-targeted
label and cover dataset where a sample has a ground-truth
label. Specifically, CASSOCK implement CASSOCKr;qns
and CASSOCK ¢ont. While both they are orthogonal, they
are complementary to each other, generating a more powerful
attack, called CASSOC K ¢ omyp, With further improved attack
performance and stealthiness.

6) HCB:

In VCB attacks, any sample from a class activates the
implanted backdoor when the secret trigger is present. Existing
defense strategies overwhelmingly focus on countering VCB
attacks, especially those that are source-class-agnostic. This
narrow focus neglects the potential threat of other simpler yet
general backdoor types, leading to false security implications.
This study introduces a new, simple, and general type of
backdoor attack coined as the horizontal class backdoor (HCB)
that trivially breaches the class dependence characteristic of
the VCB, bringing a fresh perspective to the community. HCB
is now activated when the trigger is presented together with an
innocuous feature, regardless of class. For example, the facial
recognition model misclassifies a person who wears sunglasses
with a smiling innocuous feature into the targeted person, such
as an administrator, regardless of which person. The key is that
these innocuous features are horizontally shared among classes
but are only exhibited by partial samples per class.

B. Reverse

1) GangSweep:

GangSweep, a new backdoor detection framework that
leverages the super reconstructive power of Generative Ad-
versarial Networks (GAN) to detect and “sweep out” neural
backdoors.(ACM MM 20)It is motivated by a series of intrigu-
ing empirical investigations, revealing that the perturbation
masks generated by GAN are persistent and exhibit interesting
statistical properties with low shifting variance and large
shifting distance in feature space.The author claims that this is
the first work that successfully leverages generative networks
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to defend against advanced neural backdoors with multiple
triggers and their polymorphic forms.

2) Neural Cleanse:

Neural Cleanse(NC)is the first robust and generalizable
detection and mitigation system for DNN backdoor
attacks.(Oakland *19) NC identifies backdoors and reconstruct
possible triggers, thus identifies multiple mitigation techniques
via input filters, neuron pruning and unlearning. The author
claims that their techniques also prove robust against a
number of variants of the backdoor attack.

3) MESA:

The author believes that getting the entire trigger distribu-
tion, e.g., via generative modeling, is a key to effective de-
fense. propose max-entropy staircase approximator (MESA),
an algorithm for high-dimensional sampling-free generative
modeling and use it to recover the trigger distribution.(NISP
’19) Theirr experiments on colorful dataset demonstrate the
effectiveness of MESA in modeling the trigger distribution
and the robustness of the proposed defense method.



