
SenseCrypt: Sensitivity-guided Selective Homomorphic Encryption for
Cross-Device Federated Learning

Borui Li 1, Li Yan 1, Junhao Han 1, Jianmin Liu 1, Lei Yu 2

1 School of Cyber Science and Engineering
Xi’an Jiaotong University
Shaanxi, China 710049

2 Department of Computer Science
Rensselaer Polytechnic Institute

Troy, NY USA 12180
boruili@stu.xjtu.edu.cn

Abstract
Homomorphic Encryption (HE) prevails in securing Fed-
erated Learning (FL), but suffers from high overhead and
adaptation cost. Selective HE methods, which partially en-
crypt model parameters by a global mask, are expected
to protect privacy with reduced overhead and easy adapta-
tion. However, in cross-device scenarios with heterogeneous
data and system capabilities, traditional Selective HE meth-
ods deteriorate client straggling, and suffer from degraded
HE overhead reduction performance. Accordingly, we pro-
pose SenseCrypt, a Sensitivity-guided selective Homomor-
phic EnCryption framework, to adaptively balance security
and HE overhead per cross-device FL client. Given the obser-
vation that model parameter sensitivity is effective for mea-
suring clients’ data distribution similarity, we first design a
privacy-preserving method to respectively cluster the clients
with similar data distributions. Then, we develop a scoring
mechanism to deduce the straggler-free ratio of model param-
eters that can be encrypted by each client per cluster. Finally,
for each client, we formulate and solve a multi-objective
model parameter selection optimization problem, which min-
imizes HE overhead while maximizing model security with-
out causing straggling. Experiments demonstrate that Sense-
Crypt ensures security against the state-of-the-art inversion
attacks, while achieving normal model accuracy as on IID
data, and reducing training time by 58.4%∼88.7% as com-
pared to traditional HE methods.

1 Introduction
Federated Learning (FL) is increasingly popular due to
its ability to enable collaborative Machine Learning (ML)
model training without exposing privacy-sensitive user data
(Li et al. 2020; Kairouz et al. 2021). However, multiple stud-
ies have shown that the model parameters transmitted during
FL training can be exploited via inversion attacks to recon-
struct users’ private data (Hitaj, Ateniese, and Pérez-Cruz
2017; Zhu, Liu, and Han 2019; Geiping et al. 2020). To de-
fend against such attacks, Homomorphic Encryption (HE)
has attracted much attention due to its strong privacy guar-
antee while enabling mathematical operation of encrypted
model parameters (Zhang et al. 2020; Roth et al. 2022; Jiang,
Wang, and Liu 2021; Hao et al. 2019; Han and Yan 2023;
Chen et al. 2021; Xu et al. 2021; Zheng et al. 2023; Jin et al.
2023; Hu and Li 2024).

Nevertheless, applying HE per parameter (Plain HE)
is computationally and communicatively expensive (Zhang
et al. 2020; Jin et al. 2023). To mitigate this, various
optimization strategies have been proposed. For instance,
Lightweight HE reduces cryptographic complexity at the
cost of weaker security (Jiang, Wang, and Liu 2021; Hao
et al. 2019), while Batch HE encrypts multiple parameters
together but can introduce accuracy loss from quantization
or require non-standard framework adaptations (Zhang et al.
2020; Han and Yan 2023; Chen et al. 2021; Xu et al. 2021;
Zheng et al. 2023). In contrast, Selective HE draws inspira-
tion from model pruning research (LeCun, Denker, and Solla
1989), which demonstrates that many model parameters are
non-essential. This approach encrypts only the most critical
parameters identified via a shared selective encryption mask.
A key advantage is its high compatibility with existing FL
frameworks, as it avoids altering the core encryption or ag-
gregation algorithms (Jin et al. 2023; Hu and Li 2024). How-
ever, existing Selective HE methods fail to balance security
and efficiency in cross-device FL with Non-IID data and het-
erogeneous device capabilities. Our experimental studies in
Appendix Sections C and D demonstrate that 1) the uniform
encryption budgets (defined as the upper bound quantity for
encrypting model parameters) used in these methods may
exacerbate the straggler problem on clients with heteroge-
neous device capabilities (i.e., system heterogeneity), and 2)
their unioned encryption masks may incur prohibitive over-
head when the clients’ data distributions diverge (i.e., statis-
tical heterogeneity).

Driven by these limitations, we aim to adaptively balance
security and HE overhead for each client in cross-device FL.
To achieve this, we need to address the following challenges:

• How to avoid the negative impact of statistical and
system heterogeneity on Selective HE? Multiple solutions
have been proposed to deal with statistical heterogeneity is-
sues in FL via privacy-preserving data similarity measure-
ment and clustering of clients with IID data (Cho, Mathur,
and Kawsar 2022; Liu, Guo, and Chen 2021). In the mean-
time, to mitigate the straggler problem, several methods have
been proposed to screen clients by their training perfor-
mance (Bonawitz et al. 2019; Chai et al. 2020; Zhou et al.
2023; Jiang et al. 2023). However, most of them rely on ad-

ar
X

iv
:2

50
8.

04
10

0v
1

 [
cs

.C
R

]
 6

 A
ug

 2
02

5

https://arxiv.org/abs/2508.04100v1

ditional components (e.g., sparsity of Convolutional Neu-
ral Networks, client scheduler) to measure data similarity
or coordinate FL training, which creates extra burden for FL
framework adaptation. We observe that in addition to weigh-
ing model parameter criticality in defending against inver-
sion attacks, model parameter sensitivity can reflect data dis-
tribution as well (Appendix Section E). Given this fact, a
non-intrusive while privacy-preserving method for guiding
the selective HE of cross-device FL clients is expected.

• How to adaptively balance security and HE over-
head for each client? Encrypting too many model parame-
ters on clients with low device capability significantly de-
grades FL performance, while encrypting insufficient pa-
rameters increases data leakage risk. However, without a
sound measurement of the clients’ device capability and
security impact caused by selective HE, it is challenging
to adaptively tailor the straggler-free encryption budget per
client, while ensuring sufficient model security.

Accordingly, we propose SenseCrypt, a Sensitivity-
guided selective Homomorphic EnCryption framework, to
adaptively achieve the optimal balance between model se-
curity and HE overhead for cross-device FL clients. Specifi-
cally, by exploiting model parameter sensitivity to represent
data distribution and similarity measurement, we first design
a privacy-preserving method to cluster the clients with IID
data into their respective groups. Then, based on the band-
width and device processing speed of the clients in FL, we
establish a scoring mechanism to deduce the straggler-free
encryption budget for each client per cluster. Finally, based
on the sensitivity assessment result and encryption budget,
we let each client formulate and solve a multi-objective
model parameter selection optimization problem that aims
to minimize HE overhead while maximizing model security
without causing straggling.

2 Preliminaries and Motivations
2.1 Definition of Model Parameter Sensitivity
Suppose W represents the model parameters of a neural net-
work. We denote the model loss function as L(W), and the
gradients of the loss with respect to W as∇WL(W). Given
a subset of the model parameters w ∈W, the sensitivity of
w is denoted as Γ(w) ∈ R|w|, and the model parameters
with w zeroed-out is denoted as W−w. The sensitivity of w
is defined as the change in the loss function after zeroing w
(LeCun, Denker, and Solla 1989):

Γ(w) = |L(W)− L(W−w)|. (1)

From Equation (1), the larger absolute loss change caused
by the removal of w, the more contribution w can make to
the loss, and the more sensitive w is. Thus, Γ(w) also corre-
sponds to the privacy risk on gradients that may be exposed
via observing w. Considering that it is computationally in-
feasible to calculate the sensitivity of any arbitrary subset of
model parameters by forward-passing the model every time,
we adopt the first-order Taylor expansion of L(·) with re-
spect to w at W to approximate Γ(w) as in (Xu, Koehn,
and Murray 2022; Liang et al. 2022):

Γ(w) ≈ |w⊤∇WL(W)|. (2)

Since w and ∇WL(W) can be easily obtained per client
during FL training, the calculation overhead of Γ(w) is
trivial as compared to the additional components used by
the previous statistical and system heterogeneity solutions
(Bonawitz et al. 2019; Chai et al. 2020; Zhou et al. 2023;
Jiang et al. 2023).

2.2 Privacy Leakage Evaluation
We employ Mutual Information (MI) to quantify the privacy
leakage caused by the selective encryption of model param-
eters. Given W and W−w, their mutual information is de-
fined as the expected value of the point-wise mutual infor-
mation over their joint distribution:

I(W;W−w) =
∑

y∈W−w

∑
x∈W

p(x, y) log2
p(x, y)

p(x)p(y)
(3)

where p(x, y) represents the joint probability distribution,
p(x) and p(y) represent the marginal distributions of W
and W−w respectively. Considering that we aim to selec-
tively encrypt the most privacy-sensitive model parameters
w, thus I(W;W−w) reflects the amount of privacy that can
be leaked via the unencrypted ones (i.e., W−w). The larger
I(W;W−w) is, the higher privacy leakage risk that the se-
lective encryption of w will result in.

2.3 Threat Model
Following existing Selective HE methods (Hu and Li 2024;
Jin et al. 2023), we assume an honest-but-curious server
that follows the FL protocol, yet attempts to infer sensitive
information through inversion attacks (Hitaj, Ateniese, and
Pérez-Cruz 2017; Zhu, Liu, and Han 2019; Geiping et al.
2020). We assume that the clients will use their public keys
to selectively encrypt model parameters, and will not share
their private keys to the server or the other clients as in
(Zhang et al. 2020; Jin et al. 2023). We also assume that
attackers can only launch inversion attacks via unencrypted
model parameters. The protection against other forms of ma-
licious activities is not the focus of this work, and we refer to
existing methods for protection (Zheng et al. 2023; Queyrut,
Schiavoni, and Felber 2023). To extend our threat model to
defend against client collusion attacks, we introduce a dual-
server setting in Appendix I. This setting decouples the key
distribution and decryption operations, while the rest of the
algorithmic procedure remains unchanged. The pseudocode
is provided in Algorithm 2 in the Appendix.

3 System Design of SenseCrypt
3.1 Privacy-preserving Clustering of Clients
Given that model parameter sensitivity reflects data distribu-
tion (Appendix Section E), we aim to exploit it for privacy-
preserving clustering of clients, ensuring that those with IID
data are clustered together. Considering that both gradients
and sensitivity vectors can reveal the change of loss values,

 Deduction of

Encryption Budgets

 Privacy-preserving Clustering of Clients
O

n
 C

li
e
n

t

O
n

 S
e
r
v
e
r

min

max

∑ ∑ min

max

min

max

+

Sensitivity similarity
of clients

Clustering of clients

 Sensitivity-guided Selective HE for FL

Model and mask

aggregation

Figure 1: Framework of SenseCrypt.

we let each client only upload its sensitivity vector once dur-
ing the first FL training iteration. Thus, clients’ sensitivity
vectors cannot be observed (like gradients) for inversion at-
tack as in (Hitaj, Ateniese, and Pérez-Cruz 2017; Zhu, Liu,
and Han 2019; Geiping et al. 2020).

Specifically, during the first FL training iteration, we ap-
ply Equation (2) to obtain the sensitivity vector of each
client, and adopt the Euclidean Distance (Danielsson 1980)
as the metric of similarity between sensitivity vectors for the
sake of simplicity and generality. For the sensitivity vectors
of the i-th client (denoted as Γi) and the j-th client (de-
noted as Γj), their similarity is measured as: sim(Γi,Γj) =√∑Nw

k=1(γ
i
k − γj

k)
2, where γi

k and γj
k denote the k-th ele-

ment in Γi and Γj , respectively, and Nw denotes the total
number of model parameters. Considering that the aggrega-
tion server has no prior knowledge on client data distribu-
tion (e.g., how many IID clusters the clients belong to), we
use the Affinity Propagation (AP) method (Frey and Dueck
2007) to cluster the clients. Different from the K-means
method (MacQueen 1967), AP automatically selects clus-
ter centers “exemplars” by iteratively passing similarity and
responsibility messages between data points, eliminating the
need for predefined cluster numbers. Finally, the clients will
be clustered into their respective groups, within which the
clients’ data distribution is IID to each other.

To preemptively mitigate potential inference attacks tar-
geting sensitivity vectors, we introduce an optional Differ-
ential Privacy (DP) noise injection mechanism over sensi-
tivity values. Appendix Section G empirically demonstrates
the plausibility of privacy-preserving client clustering with
DP-noised sensitivity vectors and the inherent robustness of
AP to noise perturbations. The workflow of this component
is illustrated as 1⃝ in Figure 1.

3.2 Deduction of Encryption Budgets
To avoid the negative impact of system heterogeneity, the
encryption budgets of different clients must be set according
to their system capabilities. Considering that device com-
putation speed and communication bandwidth are the most
decisive factors in determining the device’s system capabil-
ity in FL (Chai et al. 2020; Liu, He, and Cao 2023), we use
them to deduce the clients’ respective encryption budgets.

Specifically, suppose that in Section 3.1, the server has
measured the bandwidth of each client per cluster (denoted
as ri for client i) based on the training delay and the amount
of data transmitted during the iteration. Meanwhile, from
the device specification of each client, the server can ob-
tain client i’s CPU clock speed vi (e.g., 2.4 GHz×4 cores).
Since the client’s system capability in FL will always be bot-
tlenecked by its most limited resource, we propose to use the
lesser of ri and vi to deduce each client’s encryption budget.
However, ri and vi are measured on different scales and are
independent of each other. Therefore, to score the clients’
relative system capabilities, the server first normalizes them
into the same scale (denoted as ri ∈ [0, 1] and vi ∈ [0, 1])
via the Max Absolute Scaling: ui = ui

max{|ui|}Nc , where
ui ∈ {ri, vi} is the original value of either ri or vi, and
max{|ui|}N

c

is the maximum absolute value of ri or vi
over all the N c clients in the cluster. Following this nor-
malization, the system capability of client i can be repre-
sented as the minimum of ri and vi, i.e., min{ri, vi}. Fi-
nally, the server further normalizes each client’s system ca-
pability, and sends it back to the client as its encryption bud-
get αi = min{ri,vi}

max{|min{ri,vi}|}Nc . It is obvious that the fastest
client’s encryption budget will be 1, and αi corresponds to
the ratio of model parameters that the client can timely en-
crypt without straggling. The workflow of this component is
illustrated as 2⃝ in Figure 1.

3.3 Sensitivity-guided Selective HE and Model
Aggregation

Given the calculated model parameter sensitivity and en-
cryption budget of each client, we elaborate: 1) the selection
of model parameters for encryption on each client, which
optimally balances model security and HE overhead , and 2)
model aggregation without the straggler problem.

Model Parameter Selection Optimization Problem We
use a binary mask vector Xi = [xi

k|k = 1, . . . , Nw] ∈
{0, 1}Nw

to represent the respective encryption decision of
model parameters. Specifically, if xi

k is 1, it means the model
parameter corresponding to xi

k will be encrypted, or remain
unencrypted if otherwise. On the one hand, we expect to
minimize the HE overhead through properly selecting the
model parameters for encryption. Thus, the first optimiza-
tion objective can be represented as:

min f1(Xi) =

Nw∑
k=1

xi
k. (4)

On the other hand, we expect to maximize the protection of
the model parameters against privacy risks, i.e., select masks

that maximize the sum of sensitivity values corresponding
to the masked parameters. Thus, the other objective can be
represented as:

max f2(Xi) =

Nw∑
k=1

xi
kγ

i
k. (5)

To minimize the straggler problem, the ratio of encrypted
model parameters should be lower than the client’s encryp-
tion budget αi. Specifically, the straggler-free number of
model parameters that the client can encrypt is estimated as
⌊αiN

w⌋, where ⌊·⌋ is the floor function. Thus, the constraint
can be represented as:

Nw∑
k=1

xi
k ⩽ ⌊αiN

w⌋. (6)

Meanwhile, we must ensure that the total sensitivity mea-
sure of protected model parameters is sufficiently large to
defend against inversion attacks. On the one hand, we expect
the security protection level of the clients generally follows
their encryption budgets, as the more model parameters a
client can encrypt without straggling, the higher the level of
security protection it can achieve (Chai et al. 2020). On the
other hand, we don’t expect the fast clients to excessively en-
crypt model parameters for the sake of HE overhead reduc-
tion. Therefore, we use an exponential function of the en-
cryption budget to scale the security protection level, which
is denoted as 1− Ce−Bαi , where C is the constant control-
ling the lower bound of security protection level, and B is
the constant controlling the scaling step size of the exponen-
tial function. Compared to linear functions, the exponential
function can more effectively prevent clients with excessive
computational power from encrypting too many parameters,
and renders a more gradual increase in the encryption bud-
get as the client’s computational capacity grows. Thus, the
security protection level constraint can be represented as:

1∑Nw

k=1 γ
i
k

Nw∑
k=1

xi
kγ

i
k ⩾ 1− Ce−Bαi , (7)

where γi
k is normalized by the sum of all the model param-

eters’ sensitivity values
∑Nw

k=1 γ
i
k to differentiate the model

parameters’ relative privacy risk. A detailed analysis for the
selection of B and C is provided in Appendix Section F.
Following the definition in Section 2.2, we add another con-
straint to limit the privacy leakage caused by selectively en-
crypting W into W−w = (1−Xi)⊙W, where⊙ indicates
element-wise multiplication:

I(W; (1−Xi)⊙W) ≤ ηMI. (8)

where ηMI is the MI threshold, and can be tuned based on
dataset complexity and privacy requirements. A lower ηMI
value enforces stricter privacy guarantee at the cost of higher
computational overhead. A detailed analysis of the relation
between MI, attack success rate and encryption overhead is
provided in Appendix Section H.

Finally, through combining the objectives and the con-
straints, the multi-objective model parameter selection op-
timization problem can be formulated as:

min f1(Xi),

max f2(Xi),

s.t. xi
k ∈ {0, 1}, (9)

Constraints(6) and (7) and (8).

To solve the Multi-Objective Binary Integer Pro-
gramming (MOBIP) problem, it is necessary to make
the following objective transformation: F (Xi) =
[min f1(Xi),max f2(Xi)]

⊤ = min[f1(Xi),−f2(Xi)]
⊤.

As fl(l = 1, 2) are separately scaled, we normalize them by
f l =

fl−fmin
l

fmax
l −fmin

l

, where fmin
l and fmax

l are the maximum
and minimum values of fl, respectively.

Then, we scalarize the MOBIP into a single-objective
optimization problem: min β1f1(Xi) − β2f2(Xi), where
βl > 0 (l = 1, 2) are the weights of respective objective
functions. Thus, the MOBIP problem is transformed to a
variant of the Knapsack problem with Nw decision vari-
ables. Here, we assume equal importance for the objectives
by setting β1 = β2 = 1, while noting that these weights
can be readily customized for other scenarios without al-
tering the overall framework. By applying Linear Program-
ming (LP) relaxation (Cormen et al. 2022) on the problem,
we can obtain the fractional solutions with O(Nw logNw)
time complexity, which provides a lower bound of the opti-
mal value. Then, through using algorithms such as rounding
or branch and bound, we can further obtain the binary in-
teger solutions to the problem (i.e., the optimal encryption
mask vector Xi). Finally, the client selectively encrypts its
model parameters by Xi, and uploads Xi to the server. Since
the sensitivity of model parameters changes along with the
progress of FL training, the sensitivity vector Γi and mask
vector Xi will be updated per training iteration.

Model Aggregation without Straggling Considering that
FedAvg (McMahan et al. 2017) has been proved as still one
of the most robust FL aggregation strategies while main-
taining computational simplicity (Jin et al. 2023), especially
when the data is IID, we utilize it for model aggregation
per cluster without losing generality. Moreover, since the
Paillier HE supports the addition of ciphertext to plaintext
(Paillier 1999), unlike the traditional Selective HE meth-
ods that aggregate models by the union of clients’ mask
vectors, SenseCrypt directly aggregates the clients’ models,
which are separately encrypted by their respective Xi, with-
out modifying FedAvg’s aggregation strategy. Thus, only the
decryption of the aggregation result needs the union of the
clients’ mask vectors (denoted as X̂ = ∪Nc

i=1Xi).
Finally, the workflow of SenseCrypt is summarized as Al-

gorithm 1 and illustrated in Figure 1. At Lines 1-2, each
client calculates its sensitivity vector and encryption bud-
get as in Section 2.1 and Section 3.2, respectively. At Line
3, the server applies the clustering of clients as in Section
3.1 to split the clients into respective clusters with IID data

Algorithm 1: Workflow of SenseCrypt.
1 Γi ← calculate sensitivity vector as in Section 2.1;
2 αi ← calculate encryption budget as in Section 3.2;
3 {GIID} ← clustering of clients as in Section 3.1;
4 for each iteration e = 1, 2, ... do
5 for each group GIID in parallel do
6 for client i ∈ GIID in parallel do
7 We

i ← local model update as in FedAvg;

8
Γi ← update sensitivity vector as in Section
2.1;

9 Xi ← calculate mask vector as in Section 3.3;
10 We,∗

i ← selective HE of We
i by Xi;

11 We+1,∗ ← aggregate We,∗
i as in FedAvg;

12 X̂← union of the clients’ uploaded Xi;
13 for client i ∈ GIID in parallel do
14 We+1 ← decryption of We+1,∗ by X̂;

(denoted as {GIID}). At Lines 6-10, each client updates its
sensitivity vector and mask vector to selectively encrypt its
model parameters. At Lines 11-12, the server aggregates
the selectively encrypted models from the clients, and de-
termines the mask vector X̂ for decryption per cluster. At
Lines 13-14, each client uses X̂ to decrypt the global model.

4 Performance Evaluation
4.1 Experimental Settings
FL Datasets. We use the CIFAR10, CIFAR100, MNIST
and FMNIST datasets for evaluations.

Models. For evaluations on the FMNIST and CIFAR10
datasets, we train a Fully-Connected Neural (FCN) net-
work and an AlexNet (Krizhevsky, Sutskever, and Hinton
2012), respectively. To evaluate effectiveness against inver-
sion attacks, we train a ResNet-50 (He et al. 2016) on the
CIFAR100 dataset, and a LeNet-5 (LeCun et al. 1998) on
the MNIST dataset.

Implementation. We use PyTorch to implement Sense-
Crypt on a server with 2 NVIDIA RTX 4090 GPUs, 104
Intel Xeon CPUs, and 256 GB memory. The total number
of clients is 20. We adopt the python-paillier (Pyt 2013) as
the HE implementation. The HE key size of each client is
2048. The privacy leakage threshold ηMI=2.0. For FMNIST
and CIFAR10, we set {C=0.7, B=1.3} and {C=0.5, B=2},
respectively. For details on the selection of hyperparameters
B and C, please refer to Appendix section F.

Experiment Scenarios. We design three scenarios:
• Statistical Heterogeneity Scenario. We evenly split

the clients into 4 categories and ensure the clients’ data is
IID within the same category, but Non-IID across different
categories. To exclusively evaluate the impact of statistical
heterogeneity, each client has 5% of overall data, a band-
width of 50 MBps and 32 CPUs.

• System Heterogeneity Scenario. We first evenly split
the clients into 4 categories. Then, 1) for bandwidth het-
erogeneity, we assign 50, 45, 40, 35 and 30 MBps to the 5
clients per category, respectively, 2) for computation speed

heterogeneity, we assign 24, 16, 12, 10 and 8 CPUs to the 5
clients per category, respectively. To exclusive evaluation of
system heterogeneity, all the clients hold IID training data.

• Statistical & System Heterogeneity Scenario. We di-
vide the clients into 4 categories, each containing 5 clients,
and adopt the same settings as in the above scenarios.

Comparison Methods. We compare SenseCrypt with a
representative Selective HE method (denoted as MaskCrypt)
(Hu and Li 2024), FedAvg with ciphertext encrypted by
the Paillier HE method (denoted as Baseline) (Pyt 2013),
and FedAvg with plaintext (denoted as Plaintext) (McMa-
han et al. 2017). Specifically, MaskCrypt utilizes the change
of gradient value to select the model parameters that need
encryption. Baseline utilizes the stock implementation of
python-paillier (Pyt 2013) to encrypt each model parameter.

4.2 Experimental Results
Performance in Heterogeneity Scenarios Figures 2, 3
and 4 show the evaluation results of different methods in the
three scenarios. For fairness, the union of masks in Sense-
Crypt has the same size as that in MaskCrypt.

Figures 2a, 3a and 4a show the training time of the meth-
ods over 30 iterations in the three scenarios. We can see
that Plaintext consistently results in the shortest training
time as it spends no time on HE, whereas Baseline con-
sistently results in the longest training time as it encrypts
each model parameter. In comparison, MaskCrypt greatly
shortens the training time. This is because that MaskCrypt
only selectively encrypts partial model parameters by sen-
sitivity. However, MaskCrypt still consumes >33× and
>20× more time than that of Plaintext on CIFAR10 and
FMNIST, respectively, in both system heterogeneity and sta-
tistical & system heterogeneity scenarios. This is because
that MaskCrypt cannot assign encryption masks in accor-
dance with the clients’ system capabilities, thereby deteri-
orates the straggler problem in these scenarios. In contrast,
SenseCrypt reduces the training time by 58.4%∼62.7% and
81.4%∼88.7% as compared to MaskCrypt and Baseline, re-
spectively, in Figures 3a and 4a. Even in the statistical het-
erogeneity scenario where clients share the same system ca-
pabilities (Figure 2a), SenseCrypt requires shorter training
time than MaskCrypt. This is primarily due to the adaptive
selection of model parameters for encryption in SenseCrypt,
which not only considers the clients’ system capabilities, but
also adapts to their Non-IID data via client clustering. We
also notice that the training time of MaskCrypt and Sense-
Crypt in Figure 4a is slightly shorter than that in Figure 3a.
The primary reason is that, in SenseCrypt, the number of
clients per cluster (i.e., 5 clients sharing IID data) in the sta-
tistical & system heterogeneity scenario is smaller than that
in the system heterogeneity scenario (i.e., 20 clients shar-
ing IID data), which causes the union of encryption masks
per cluster shrinks in size. For fairness, the mask size in
MaskCrypt also shrinks correspondingly.

Figures 2b, 2c, 3b, 3c, 4b and 4c show the testing accu-
racy of each client’s trained model of different methods in
the three scenarios. Each curve represents the mean testing
accuracy of all the clients, and the shaded areas surround-
ing the curve represent the fluctuation range of testing ac-

0

3

6

0.03
1.09 1.16

4.05
CIFAR10

Plaintext
SenseCrypt

MaskCrypt
Baseline

0

2

4

0.02 0.47 0.54

2.39

FMNIST

T
ra

in
in

g
 t
im

e
 (

h
o
u
r)

(a) Training time.

0 10 20 30 40 50 60 70 80
Training time (minute)

0

20

40

60

80

100

Te
st

in
g

ac
cu

ra
cy

 (
%

) Plaintext
SenseCrypt

MaskCrypt
Baseline

(b) Performance on CIFAR10.

0 5 10 15 20 25 30 35
Training time (minute)

0

20

40

60

80

100

Te
st

in
g

ac
cu

ra
cy

 (
%

) Plaintext
SenseCrypt

MaskCrypt
Baseline

(c) Performance on FMNIST.

0
300
600
900

0.4
8

47
.24

51
.28

28
9.8

4

0.4
8

51
.28

51
.28

28
9.8

4

CIFAR10
Clients to server
Server to clients

Plaintext
SenseCrypt

MaskCrypt
Baseline

0

60

120

0.2
0 16

.86 23
.17

59
.18

0.2
0 23

.17
23

.17
59

.18
FMNIST

C
o
m

m
u
n
ic

a
tio

n
 c

o
st

 (
M

B
)

(d) Communication cost.

Figure 2: Performance comparison in statistical heterogeneity scenario.

0

8

16

0.14 2.03
4.88

10.93
CIFAR10

Plaintext
SenseCrypt

MaskCrypt
Baseline

0

4

8

0.08 0.66
1.74

4.92

FMNIST

T
ra

in
in

g
tim

e
(h

ou
r)

(a) Training time.

0 25 50 75 100 125 150 175 200
Training time (minute)

0

20

40

60

80

100

Te
st

in
g

ac
cu

ra
cy

 (
%

) Plaintext
SenseCrypt

MaskCrypt
Baseline

(b) Performance on CIFAR10.

0 10 20 30 40 50 60
Training time (minute)

0

20

40

60

80

100

Te
st

in
g

ac
cu

ra
cy

 (
%

) Plaintext
SenseCrypt

MaskCrypt
Baseline

(c) Performance on FMNIST.

0
300
600
900

0.4
8

39
.81

64
.88 28

9.8
4

0.4
8 64

.88
64

.88 28
9.8

4

CIFAR10
Clients to server
Server to clients

Plaintext
SenseCrypt

MaskCrypt
Baseline

0

60

120

0.2
0 13

.18 22
.96

59
.18

0.2
0 22

.96
22

.96
59

.18
FMNIST

C
o
m

m
u
n
ic

a
tio

n
 c

o
st

 (
M

B
)

(d) Communication cost.

Figure 3: Performance comparison in system heterogeneity scenario.

0

8

16

0.12 1.44
3.60

11.63
CIFAR10

Plaintext
SenseCrypt

MaskCrypt
Baseline

0

4

8

0.06 0.63
1.69

5.56
FMNIST

T
ra

in
in

g
 t

im
e

 (
h

o
u

r)

(a) Training time.

0 20 40 60 80 100 120 140
Training time (minute)

0

20

40

60

80

100

Te
st

in
g

ac
cu

ra
cy

 (
%

) Plaintext
SenseCrypt

MaskCrypt
Baseline

(b) Performance on CIFAR10.

0 5 10 15 20 25 30 35
Training time (minute)

0

20

40

60

80

100

Te
st

in
g

ac
cu

ra
cy

 (
%

) Plaintext
SenseCrypt

MaskCrypt
Baseline

(c) Performance on FMNIST.

0
300
600
900

0.4
8

30
.44

43
.82

28
9.8

4

0.4
8

43
.82

43
.82

28
9.8

4

CIFAR10
Clients to server
Server to clients

Plaintext
SenseCrypt

MaskCrypt
Baseline

0

60

120

0.2
0 10

.73 20
.13

59
.18

0.2
0 20

.13
20

.13
59

.18
FMNIST

C
o
m

m
u
n
ic

a
tio

n
 c

o
st

 (
M

B
)

(d) Communication cost.

Figure 4: Performance comparison in statistical & system heterogeneity scenario.

curacies among the clients. We can see that despite the fast
convergence rate of Plaintext, the clients’ testing accuracy
after convergence is significantly lower than that of Sense-
Crypt in the statistical heterogeneity scenario and the statis-
tical & system heterogeneity scenario. Similarly, such model
performance degradation in scenarios with high statistical
heterogeneity can also be observed in MaskCrypt and Base-
line. The reason is that these methods cannot adapt to the
clients’ Non-IID data, causing the global models trained via
FL to fail to converge to satisfactory performance levels. In
contrast, SenseCrypt can always achieve normal model per-
formance levels as on IID data, while enjoying approximate
convergence rate as Plaintext, especially on FMNIST. This
is majorly due to the client clustering, which ensures that the
clients per group have IID data, and the adaptive selection
of model parameters for encryption, which prevents conver-

gence delay caused by straggling.

Figures 2d, 3d and 4d show the communication cost of
different methods incurred in one iteration in the three sce-
narios. The upstream communication cost (i.e., clients →
server) and the downstream communication cost (i.e., server
→ clients) are separately illustrated. Given that the cipher-
text generated by the Paillier HE method increases in size
by more than 64× as compared to the plaintext (Zhang
et al. 2020), the fewer model parameters are encrypted in a
method, the lower communication cost it will render. We can
see that the results are generally consistent with the train-
ing time due to the same aforementioned reasons. Note that
unlike the comparison methods, the upstream communica-
tion cost of SenseCrypt is always much lower than its down-
stream communication cost. This is because that Sense-
Crypt uses the adaptively determined mask to encrypt par-

0
10
20
30 CIFAR10

SenseCrypt
MaskCrypt

Round 1
Round 2

Round 3
Round 4

0
3
6
9

FMNIST

T
ra

in
in

g
 t
im

e
 (

m
in

u
te

)

Figure 5: Training time under
system heterogeneity.

0

50

100
CIFAR100

1 2 3 4 5 6 7 8 90

50

100
MNIST

LeAcc LnAcc

0

50

100

0

50

100

HE ratioP
er

ce
nt

ag
e

(%
)

H
E

 r
at

io
 (

%
)

Client ID

Figure 6: Attack results under
extreme system heterogeneity.

0

50

100
CIFAR100

SenseCrypt MaskCrypt

Round 1
Round 2

Round 3
Round 4

0

50

100
MNIST

Le
A

cc
 (

%
)

Figure 7: LeAcc under statisti-
cal heterogeneity.

0

50

100
CIFAR100

SenseCrypt MaskCrypt

Round 1
Round 2

Round 3
Round 4

0

30

60
MNIST

Ln
A

cc
 (

%
)

Figure 8: LnAcc under statis-
tical heterogeneity.

tial model parameters of respective clients, thereby further
reducing the communication cost.

Cost Efficiency under Varying Heterogeneity Degrees
We further evaluate cost efficiency in terms of training time
under varying system heterogeneity degrees. Specifically,
we conduct FL training on 5 clients for 4 rounds and gradu-
ally increase the variance in the number of CPUs as: Round
1 ([32, 30, 28, 26, 24]), Round 2 ([32, 28, 24, 20, 16]),
Round 3 ([32, 24, 18, 16, 12]) and Round 4 ([32, 16, 12,
10, 8]). To avoid the impact of statistical heterogeneity, we
set that the clients have IID training data, 20% of overall
data samples, and a bandwidth of 50 MBps. For fairness,
the size of the union of masks is the same in SenseCrypt and
MaskCrypt. Then, we measure each client’s training time per
iteration.

Figure 5 shows the minimum, mean and maximum values
of all the measured results under each system heterogeneity
degree on CIFAR10 and FMNIST. We can see that as the
system heterogeneity degree increases, the mean and fluctu-
ation of the clients’ training time in MaskCrypt also signifi-
cantly rise on both datasets. In contrast, the training time of
SenseCrypt remains nearly static across different system het-
erogeneity degrees, primarily due to the adaptive partial en-
cryption of model parameters in accordance with the clients’
system capabilities. We hence conclude that SenseCrypt can
tolerate varying system heterogeneity degrees.

Effectiveness against Inversion Attacks Intuitively, un-
der extremely high system heterogeneity, the slowest client’s
encryption mask determined by SenseCrypt might be very
small, which may affect its security. To evaluate the ef-
fectiveness of SenseCrypt against inversion attacks in such
cases, we further increase the system heterogeneity degree
and launch inversion attacks to reconstruct each client’s pri-
vate data. Specifically, we conduct another round of FL
training on 9 clients. The numbers of CPUs of Clients 1-8
follow [32, 24, 16, 12, 10, 8, 2, 1]. For reference, Client 9
trains without HE. The other settings are the same as in Sec-
tion 4.2. Then, we launch the instance-wise Labels Restora-
tion from Gradients (iLRG) attack (Ma et al. 2023) on each
client, which utilizes the batch-averaged gradients to recon-
struct each data sample and its label per batch. To evalu-
ate the general effectiveness, the 1st attack is launched on
ResNet-50 with a batch size of 200, a model depth (i.e.,
number of model layers) of 50, and the CIFAR100 dataset.

The 2nd attack is launched on LeNet-5 with a batch size of
30, a model depth of 7, and the MNIST dataset. Finally, we
calculate the Label existence Accuracy (LeAcc), which mea-
sures the accuracy score for predicting label existences, and
the Label number Accuracy (LnAcc), which measures the
accuracy score for predicting the number of instances per
class, of the reconstructed results as in (Ma et al. 2023).

Figure 6 shows the measured results of each client. We
find that among Clients 1-8, the HE ratio decreases along
with the decrement in the number of CPUs to avoid strag-
gling. Interestingly, no matter how low the HE ratio is (as
low as 5.7% on CIFAR100 and 3.1% on MNIST), LeAcc
remains almost static and LnAcc is significantly lower than
that of Client 9 (no encryption). This confirms that the re-
dundancy of model parameters allows the adaptive selective
HE of model parameters while ensuring each client’s secu-
rity under extremely high system heterogeneity.

We additionally launch iLRG attacks under varying sta-
tistical heterogeneity degrees. Specifically, we conduct FL
training on 10 clients for 4 rounds: 1) in the 1st round, each
client has equal splits of all data classes (i.e., strictly IID); 2)
in the 2nd, 3rd and 4th rounds, each client has all the data sam-
ples of 5, 2 and 1 classes, respectively. For the rest classes,
each client has one data sample per class. For fairness, both
SenseCrypt and MaskCrypt encrypt 5.0% and 3.1% of the
model parameters on CIFAR100 and MNIST, respectively.

Figures 7 and 8 show the minimum, mean and maxi-
mum values of the measured results of different methods per
round. Note that the exceptionally high LeAcc in Round 1
of Figure 7 is caused by the label prediction logic of iLRG,
which infers that all labels exist by default (Ma et al. 2023),
thereby favoring the case with strictly IID data. We can see
that along with the increase of Non-IID degree, the LeAcc
and LnAcc of MaskCrypt significantly rise, while those of
SenseCrypt almost remain static. This is primarily because
that under a more Non-IID degree, the union of sensitive
(important) model parameters that need encryption becomes
larger, which cannot be fully covered by the shared encryp-
tion mask of MaskCrypt. While in SenseCrypt, the cluster-
ing of clients with IID data avoids the expansion of impor-
tant model parameters that need encryption, thereby ensur-
ing sufficient encryption of the important model parameters
per cluster under varying Non-IID degrees.

5 Conclusion
We propose SenseCrypt, a Selective HE framework that

clusters clients with IID data by model parameter sensitivity,
assigns straggler-free encryption budget, and adaptively bal-
ances model security and HE overhead for cross-device FL
clients with heterogeneous data and system capabilities. Our
experiments conducted in multiple heterogeneity scenarios
showed that compared with the state-of-the-art, SenseCrypt
achieves normal model accuracy as on IID data, while re-
ducing training time by 58.4%∼88.7%, and ensuring model
security against the state-of-the-art inversion attacks.

References
2013. Python Paillier Library. https://github.com/data61/
python-paillier. Accessed in June, 2024.
Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H. B.;
Mironov, I.; Talwar, K.; and Zhang, L. 2016. Deep Learning
with Differential Privacy. In Proc. of CCS.
Bonawitz, K.; Eichner, H.; Grieskamp, W.; Huba, D.; Inger-
man, A.; Ivanov, V.; Kiddon, C.; Konečný, J.; Mazzocchi,
S.; McMahan, B.; Van Overveldt, T.; Petrou, D.; Ramage,
D.; and Roselander, J. 2019. Towards Federated Learning at
Scale: System Design. In Proc. of MLSys.
Chai, Z.; Ali, A.; Zawad, S.; Truex, S.; Anwar, A.; Bara-
caldo, N.; Zhou, Y.; Ludwig, H.; Yan, F.; and Cheng, Y.
2020. TiFL: A Tier-Based Federated Learning System. In
Proc. of HPDC.
Chen, W.; Ma, G.; Fan, T.; Kang, Y.; Xu, Q.; and Yang,
Q. 2021. Secureboost+: A High Performance Gradient
Boosting Tree Framework for Large Scale Vertical Feder-
ated Learning. arXiv preprint arXiv:2110.10927.
Cho, H.; Mathur, A.; and Kawsar, F. 2022. FLAME: Fed-
erated Learning across Multi-Device Environments. ACM
IMWUT, 6(3).
Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein, C.
2022. Introduction to Algorithms. MIT press.
Danielsson, P.-E. 1980. Euclidean Distance Mapping. Com-
puter Graphics and Image Processing, 14(3).
Ding, X.; ding, g.; Zhou, X.; Guo, Y.; Han, J.; and Liu, J.
2019. Global Sparse Momentum SGD for Pruning Very
Deep Neural Networks. In Proc. of NeurIPS.
Fan, J.; Wu, K.; Tang, G.; Zhou, Y.; and Huang, S. 2024.
Taking advantage of the mistakes: Rethinking clustered fed-
erated learning for iot anomaly detection. IEEE TPDS,
35(6).
Frey, B. J.; and Dueck, D. 2007. Clustering by passing mes-
sages between data points. science, 315(5814).
Geiping, J.; Bauermeister, H.; Dröge, H.; and Moeller, M.
2020. Inverting gradients-how easy is it to break privacy in
federated learning? In Proc. of NeurIPS.
Han, J.; and Yan, L. 2023. Adaptive Batch Homomorphic
Encryption for Joint Federated Learning in Cross-Device
Scenarios. IEEE IoT-J, 11(6).
Hao, M.; Li, H.; Xu, G.; Liu, S.; and Yang, H. 2019. Towards
Efficient and Privacy-Preserving Federated Deep Learning.
In Proc. of ICC.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. In Proc. of CVPR.
Hitaj, B.; Ateniese, G.; and Pérez-Cruz, F. 2017. Deep Mod-
els Under the GAN: Information Leakage from Collabora-
tive Deep Learning. In Proc. of CCS.
Hu, C.; and Li, B. 2024. MASKCRYPT: Federated Learn-
ing With Selective Homomorphic Encryption. IEEE TDSC,
Early Access.
Jiang, Z.; Wang, W.; and Liu, Y. 2021. Flashe: Additively
symmetric homomorphic encryption for cross-silo federated
learning. arXiv preprint arXiv:2109.00675.
Jiang, Z.; Xu, Y.; Xu, H.; Wang, Z.; and Qian, C. 2023.
Heterogeneity-Aware Federated Learning With Adaptive
Client Selection and Gradient Compression. In Proc. of IN-
FOCOM.
Jin, W.; Yao, Y.; Han, S.; Joe-Wong, C.; Ravi, S.; Aves-
timehr, S.; and He, C. 2023. FedML-HE: An Efficient
Homomorphic-Encryption-Based Privacy-Preserving Fed-
erated Learning System. In Proc. of NeurIPS.
Kairouz, P.; McMahan, H. B.; Avent, B.; Bellet, A.; Bennis,
M.; Bhagoji, A. N.; Bonawitz, K.; Charles, Z.; Cormode, G.;
Cummings, R.; et al. 2021. Advances and Open Problems in
Federated Learning. Foundations and Trends® in Machine
Learning, 14(1–2).
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
agenet Classification With Deep Convolutional Neural Net-
works. In Proc. of NeurIPS.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-Based Learning Applied to Document Recogni-
tion. Proc. of the IEEE, 86(11).
LeCun, Y.; Denker, J.; and Solla, S. 1989. Optimal Brain
Damage. Proc. of NeurIPS.
Li, T.; Sahu, A. K.; Talwalkar, A.; and Smith, V. 2020. Fed-
erated Learning: Challenges, Methods, and Future Direc-
tions. IEEE SPM, 37(3).
Liang, C.; Jiang, H.; Zuo, S.; He, P.; Liu, X.; Gao, J.; Chen,
W.; and Zhao, T. 2022. No Parameters Left Behind: Sen-
sitivity Guided Adaptive Learning Rate for Training Large
Transformer Models. In Proc. of ICLR.
Liu, B.; Guo, Y.; and Chen, X. 2021. PFA: Privacy-
preserving Federated Adaptation for Effective Model Per-
sonalization. In Proc. of WWW.
Liu, H.; He, F.; and Cao, G. 2023. Communication-Efficient
Federated Learning for Heterogeneous Edge Devices Based
on Adaptive Gradient Quantization. In Proc. of INFOCOM.
Lubana, E. S.; and Dick, R. P. 2021. A Gradient Flow
Framework For Analyzing Network Pruning. In Proc. of
ICLR.
Ma, K.; Sun, Y.; Cui, J.; Li, D.; Guan, Z.; and Liu, J.
2023. Instance-Wise Batch Label Restoration via Gradients
in Federated Learning. In Proc. of ICLR.
MacQueen, J. 1967. Some Methods for Classification and
Analysis of Multivariate Observations. In Proc. of BSMSP.
McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; and
y Arcas, B. A. 2017. Communication-Efficient Learning of

Deep Networks From Decentralized Data. In Proc. of AIS-
TATS.
Molchanov, P.; Mallya, A.; Tyree, S.; Frosio, I.; and Kautz, J.
2019. Importance Estimation for Neural Network Pruning.
In Proc. of CVPR.
Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; and Kautz, J.
2017. Pruning Convolutional Neural Networks for Resource
Efficient Inference. In Proc. of ICLR.
Paillier, P. 1999. Public-Key Cryptosystems Based on Com-
posite Degree Residuosity Classes. In Proc. of EURO-
CRYPT.
Queyrut, S.; Schiavoni, V.; and Felber, P. 2023. Mitigating
Adversarial Attacks in Federated Learning with Trusted Ex-
ecution Environments. In Proc. of ICDCS.
Roth, H. R.; Cheng, Y.; Wen, Y.; Yang, I.; Xu, Z.; Hsieh, Y.-
T.; Kersten, K.; Harouni, A.; Zhao, C.; Lu, K.; et al. 2022.
Nvidia Flare: Federated Learning From Simulation to Real-
World. arXiv preprint arXiv:2210.13291.
Shahapure, K. R.; and Nicholas, C. 2020. Cluster quality
analysis using silhouette score. In Proc. of DSAA.
Theis, L.; Korshunova, I.; Tejani, A.; and Huszár, F. 2018.
Faster Gaze Prediction With Dense Networks and Fisher
Pruning. arXiv preprint arXiv:1801.05787.
Xu, H.; Koehn, P.; and Murray, K. 2022. The Importance of
Being Parameters: An Intra-Distillation Method for Serious
Gains. In Proc. of EMNLP.
Xu, W.; Fan, H.; Li, K.; and Yang, K. 2021. Efficient Batch
Homomorphic Encryption for Vertically Federated Xgboost.
arXiv preprint arXiv:2112.04261.
Zhang, C.; Li, S.; Xia, J.; Wang, W.; Yan, F.; and Liu, Y.
2020. BatchCrypt: Efficient Homomorphic Encryption for
Cross-Silo Federated Learning. In Proc. of USENIX ATC.
Zhang, S.; Li, Z.; Chen, Q.; Zheng, W.; Leng, J.; and Guo,
M. 2021. Dubhe: Towards Data Unbiasedness With Homo-
morphic Encryption in Federated Learning Client Selection.
In Proc. of ICPP.
Zhang, T.; Lam, K.-Y.; Zhao, J.; Li, F.; Han, H.; and Jamil,
N. 2023. Enhancing federated learning with spectrum allo-
cation optimization and device selection. IEEE/ACM TON,
31(5).
Zheng, Y.; Lai, S.; Liu, Y.; Yuan, X.; Yi, X.; and Wang, C.
2023. Aggregation Service for Federated Learning: An Effi-
cient, Secure, and More Resilient Realization. IEEE TDSC,
20(2).
Zhou, R.; Yu, J.; Wang, R.; Li, B.; Jiang, J.; and Wu, L.
2023. A Reinforcement Learning Approach for Minimizing
Job Completion Time in Clustered Federated Learning. In
Proc. of INFOCOM.
Zhu, L.; Liu, Z.; and Han, S. 2019. Deep Leakage from
Gradients. In Proc. of NeurIPS.

A Notations

Notation Description
W Model parameters of a neural network

W−w Model parameters with w zeroed-out
L(W) Model loss function

∇WL(W)
Gradients of the loss function with respect to
W

Γ(w) Sensitivity of a subset of model parameters w
Γi Sensitivity vector of the i-th client

I(W;W−w) The mutual information between W and W−w

γi
k The k-th element in Γi

αi Encryption budget of the i-th client
ri Bandwidth of the i-th client
vi CPU clock speed of the i-th client
Nc Number of clients in a cluster
Nw Total number of model parameters

Np Number of input pixels in a local batch of train-
ing data

Nb Batch size
n Number of pixels in a data sample

βl
Weight of objective function l in the optimiza-
tion problem

Xi Encryption mask vector of the i-th client

X̂
Union of clients’ encryption mask vectors in a
cluster

GIID Set of clusters with IID data

Table 1: Table of main notations.

B Paillier Homomorphic Encryption
The Paillier cryptosystem (Paillier 1999) is a probabilistic
asymmetric encryption scheme classified as a Partial Ho-
momorphic Encryption (HE) system. Its security relies on
the decisional composite residuosity assumption (DCRA),
which posits the computational infeasibility of distinguish-
ing random elements modulo n2 from the n-th residues,
where n = pq is an RSA modulus with large primes p and
q. Paillier satisfies the additive homomorphic property:

Enc(m1) · Enc(m2) ≡ Enc(m1 +m2 mod n) mod n2,

which makes it particularly suitable for Federated Learning
scenarios where encrypted local model updates need to be
aggregated without decryption.

C Straggler Problem of Existing Selective
HE Methods in System Heterogeneity

Scenarios
In existing Selective HE methods (Jin et al. 2023; Hu and Li
2024), all clients use the same encryption mask to encrypt
model parameters. However, in scenarios with high system
capability heterogeneity, the clients with the lowest capabil-
ity may need substantially more time to encrypt the masked
model parameters per training iteration, and always delay
the completion of FL training (i.e., the straggler problem
(Chai et al. 2020)). To confirm this conjecture, we vary the
encryption budget of the clients, and measure their HE time
costs (encryption plus decryption time).

Round 1
All = 10% Round 2

All = 50%
Round 3
All = 90%

0

1

2

3

4

H
E

tim
e

co
st

 (h
ou

r)

Client 1
Client 2
Client 3
Client 4
Client 5
Client 6

Figure 9: Imbalanced client HE time costs of existing Selec-
tive HE methods in system heterogeneity scenarios.

Specifically, we set up 6 clients to conduct the FL training
of an AlexNet on the CIFAR10 dataset. To emulate sys-
tem heterogeneity, we allocate 6, 5, 4, 3, 2, 1 CPUs to the
clients (denoted by Client 1-6), respectively. We conduct the
FL training for 3 rounds, within which the model parameters
are selectively encrypted by MaskCrypt (Hu and Li 2024)
with the encryption budgets of 10%, 50% and 90%, respec-
tively. Each round of FL training lasts for 3 iterations. Then,
for each client, we measure its mean HE time cost over all
the iterations per round, which is illustrated in Figure 9. We
can see that when only 10% of the model parameters are en-
crypted, the clients’ HE time costs are not significantly dif-
ferent. This means that the overhead caused by FL training
is not the major cause of straggling. Along with the increase
of the encryption budget, the imbalance of the clients’ HE
time costs deteriorates significantly. For example, when the
encryption budget increases from 10% to 90%, the HE time
cost of Client 6 increases by >10×, while the HE time cost
of Client 1 only increases by <5×. Thus, Clients 1-5 have
to wait for Client 6 per model aggregation, which signifi-
cantly delays the completion of FL training. Therefore, we
must maximally align the clients’ HE time costs by adap-
tively tailoring the clients’ encryption budgets according to
their respective device capabilities.

D Performance Degradation of Existing
Selective HE Methods in Statistical

Heterogeneity Scenarios
To ensure the collaborative aggregation of encrypted model
parameters, the existing Selective HE methods utilize the
union of clients’ selected model parameter subsets to repre-
sent the global selective encryption mask (Jin et al. 2023; Hu
and Li 2024). However, in statistical heterogeneity scenar-
ios where clients have Non-IID training data, the encryption
mask may be much larger than any clients’ encryption sub-
sets since the clients’ data distributions may have little over-
lap. In this case, the performance of HE overhead reduction
of these methods may significantly degrade. To confirm this
conjecture, we vary the degree of statistical heterogeneity in
the clients’ training data and measure the corresponding HE
ratios of model parameters.

Specifically, to exclude the impact of system heterogene-
ity and data quantity difference, we set up 10 clients, each of

Round 1
Round 2

Round 3
Round 4

0

20

40

60

80

H
E

ra
tio

 (%
)

50.60 53.20
58.90 62.70

HE ratio

0

1

2

3

4

5

6

M
ea

n
EM

D

0.00

2.78

3.56 3.67

Mean EMD

Figure 10: HE ratios of existing Selective HE methods under
different degrees of statistical heterogeneity.
which has 10% data samples of CIFAR10, 1 CPU and a HE
key size of 2048. We conduct the FL training for 4 rounds,
with 3 iterations per round: 1) in the 1st round, each client
has all the 10 classes of data samples (i.e., strictly IID); 2)
in the 2nd and 3rd rounds, each client has 5 and 2 classes of
data samples, respectively; 3) in the 4th round, each client
only has 1 class of data samples (i.e., strictly Non-IID).
To visualize the statistical heterogeneity, we calculate the
mean Earth Mover’s Distance (EMD) between the training
data of every two clients in each round, which measures the
similarity between two statistical distributions (Zhang et al.
2021). The larger mean EMD that the clients result in, the
more statistically heterogeneous they are in a round. As il-
lustrated with black bars in Figure 10, the measured mean
EMDs are: 0 (Round 1), 2.78 (Round 2), 3.56 (Round 3)
and 3.67 (Round 4), respectively. The white bars in Figure
10 illustrate the measured mean HE ratios of model param-
eters across varying degrees of statistical heterogeneity. We
can see that as the mean EMD increases, the HE ratio also
significantly rises. This indicates that the existing Selective
HE methods become less cost-efficient in the presence of
statistical heterogeneity. To effectively minimize HE over-
head through selective encryption, it is better to determine
the HE mask over clients with IID data. This motivates us
to develop methods for measuring data distribution similar-
ity, which can be utilized to cluster clients with IID data and
determine cost-efficient HE masks for each cluster.

E Relation between Model Parameter
Sensitivity and Data Distribution

We know that model parameter sensitivity is intrinsically
the same as gradients, both of which represent the change
of loss values. Since previous inversion attacks (Hitaj, Ate-
niese, and Pérez-Cruz 2017; Zhu, Liu, and Han 2019; Geip-
ing et al. 2020) have demonstrated that the gradients trans-
mitted during FL training can reveal clients’ data distribu-
tion information, we can intuitively infer that the clients’
model parameter sensitivity is also consistent with their data
distribution. To confirm this, we continue to analyze the re-
lationship between model parameter sensitivity and data dis-
tribution.

Specifically, we first set up 20 clients, each of which has
1 CPU and a HE key size of 2048. Then, we classify the

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Client ID

2019181716151413121110987654321

C
lie

nt
 ID

0

2

4

6

8

Figure 11: Heat map matrix of pairwise statistical hetero-
geneity in the training data of 20 clients.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Client ID

2019181716151413121110987654321
C

lie
nt

 ID
0.0

0.5

1.0

1.5

2.0

Figure 12: Heat map matrix of pairwise model parameter
sensitivity similarity between the 20 clients.
clients into 5 categories with 4 clients per category, and
ensure that every 2 classes of CIFAR10 data samples are
equally split to every 4 clients within the same category. Fig-
ure 11 shows the heat map matrix of the pairwise EMD be-
tween every two clients. The darker the color of the square
corresponding to two clients, the more statistically hetero-
geneous they are. As expected, the clients are clearly split
into 5 categories, within which the clients’ data distribu-
tions are IID. Subsequently, we conduct the training of an
AlexNet (Krizhevsky, Sutskever, and Hinton 2012) for one
iteration on each client, and obtain the gradients∇WL(W)
and model parameter values w. Next, we calculate the Eu-
clidean distance (Danielsson 1980) between the sensitivity
vectors of every two clients as their similarity, which is also
illustrated as a heat map matrix in Figure 12. We can see
that although Figure 12 does not completely follow Figure
11, the pairwise similarities between the sensitivity vectors
of the clients within the same category (i.e., antidiagonal of
Figure 12) are highly consistent with those in Figure 11. This
means that model parameter sensitivity can provide an al-
ternative for data distribution representation and similarity
measurement.

F Selection of B and C

The values of B and C are scenario-dependent and must
balance security, computational efficiency, and system het-
erogeneity. To guide their selection, we propose an empirical

1.5 2.0
B values

0.4

0.6

0.8

1.0

1.2

C
 v

al
ue

s

Optimal (B=1.50, C=0.30)

0.00

0.02

0.04

0.06

0.08

En
cr

yp
tio

n
R

at
io

Figure 13: Encryption ratios under different B and C values.

1.5 2.0
B values

0.4

0.6

0.8

1.0

1.2

C
 v

al
ue

s

Optimal (B=1.50, C=0.30)

1.25

1.30

1.35

1.40
M

ut
ua

l I
nf

or
m

at
io

n

Figure 14: Mutual information under different B and C val-
ues.
methodology based on the following objectives:

(1) Ensure the model parameter selection optimization
problem has a valid solution under system heterogeneity.

(2) Reduce Mutual Information (MI) between the origi-
nal model parameters W and the ones after selective encryp-
tion W−w, thereby limiting privacy leakage.

Figures 13 and 14 illustrate the heat map matrix of en-
cryption ratio and MI I(W,W−w) under different combi-
nations of B and C values for a resource-constrained client
(encryption budget αi = 0.1) on the CIFAR-10 dataset, re-
spectively. We can see that with the increase of encryption
ratio, MI generally decreases. The white squares in the heat
map matrix represent the combinations of B and C values
for which no feasible solutions can be obtained for the opti-
mization problem.

Based on the empirical analysis results, we know that
(B = 1.5, C = 0.3) is the best combination that can
achieve the maximum encryption ratio with the minimum
MI. Note that the selection of B and C values should adapt
to the actual statistical and system heterogeneity condition
of participating clients, which may shift or fluctuate dur-
ing FL. To improve the robustness of the encryption strat-
egy, the selection of B and C values should tolerate cer-
tain variation margins (e.g., suboptimal combinations such
as (B = 1.4, C = 0.4)).

Algorithm 2: Privacy-Preserving Clustering of
Clients with DP-noised Sensitivity Vectors.

Input : Set of sensitivity vectors {Γk}, noise scale
σ, norm bound G

Output: Set of clusters {cn}
1 Client:
2 Clip sensitivity vector:

Γ̄k ← Γk/max(1, ∥Γk∥2/G);
3 Add DP noise: Γ̃k ← Γ̄k +N (0, σ2G2I);
4 return Γ̃k

5 Server:
6 Initialize the set for storing sensitivity vectors

{Γ̃k};
7 for the k-th client do
8 {Γ̃k} ← received DP-noised sensitivity

vector Γ̃k;

9 {cn} ← AffinityPropagation({Γ̃k});
10 return {cn}

G Clustering with DP-noised Sensitivity
Vectors

Although no existing attack methods can directly recon-
struct user data from sensitivity vectors, the inherent pri-
vacy risks cannot be entirely neglected. To preemptively mit-
igate potential inference attacks, we adopt the noise injection
methodology in DP-SGD (Abadi et al. 2016) for perturbing
sensitivity vectors.

The noise magnitude σ is calibrated to satisfy (ϵ, δ)-
differential privacy through the Gaussian mechanism σ =√

2 ln(1.25/δ)

ϵ , where ϵ denotes the privacy budget. The lower
the value of ϵ, the stronger privacy protection that the sen-
sitivity value will enjoy, but the greater error it will suffer.
δ represents the probabilistic relaxation parameter (fixed at
10−5), and σ quantifies the standard deviation of the Gaus-
sian noise injected into sensitivity vectors.

Algorithm 2 presents the details of our proposed method
for privacy-preserving clustering of clients based on their
DP-noised sensitivity vectors. The inputs include the set of
clients’ sensitivity vectors {Γk}, the noise scale σ, and the
norm bound G. At line 2, each client performs l2-norm clip-
ping on its sensitivity vector, with the clipping bound G. At
line 3, each client adds the DP noise to its clipped sensi-
tivity vector Γ̄k. The noise follows the Gaussian distribu-
tion N (0, σ2G2I), with zero mean and covariance matrix
σ2G2I. At lines 6-9, the FL server receives all clients’ DP-
noised sensitivity vectors, and applies the Affinity Propaga-
tion (AP) method to cluster the clients into their respective
groups cn, within which the clients’ data distribution is IID
to each other.

Following the experimental setup in Section D, we fur-
ther evaluate the effectiveness of client clustering based on
DP-noised sensitivity vectors. As shown in Figure 15a, when
ϵ = 0.1, although most pairwise similarity values are greatly
perturbed, the similarity between the clients with IID data is
still significantly higher than the others. However, as shown

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Client ID

12
34
56
78
91011121314151617181920

C
lie

nt
 ID

0.0

0.5

1.0

1.5

×10 3

(a) Higher privacy budget
(ϵ = 0.1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Client ID

12
34
56
78
91011121314151617181920

C
lie

nt
 ID

4

2

0

2

4

×10 3

(b) Lower privacy budget
(ϵ = 0.01)

Figure 15: Heat map matrix of pairwise similarity between
the DP-noised sensitivity vectors of the 20 clients.

0.01 0.02 0.05 0.1 0.2 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Si
lh

ou
et

te
 S

co
re

AP
K-means

Baseline AP
Baseline K-means

Figure 16: Impact of ϵ on Silhouette Score.
in Figure 15b, excessive noise injection over sensitivity val-
ues (ϵ = 0.01) significantly hinders the effective measure-
ment of data similarity.

Driven by these observations, we vary ϵ from 0.01 to 1.0
and apply the AP method and the K-means method to clus-
ter the clients based on their DP-noised sensitivity vectors.
We use the Silhouette Score (Shahapure and Nicholas 2020;
Fan et al. 2024) and the Adjusted Rand Index (ARI) (Zhang
et al. 2023) to evaluate clustering quality and clustering ac-
curacy, respectively. Specifically, the Silhouette Score (S)
is an intrinsic metric for evaluating cluster quality based on

0.01 0.02 0.05 0.1 0.2 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0

C
lu

st
er

in
g

Ac
cu

ra
cy

AP
K-means

Figure 17: Impact of ϵ on Clustering Accuracy.
cohesion and separation. It is computed as:

S(i) =
b(i)− a(i)

max(a(i), b(i))
, (10)

where a(i) is the mean distance between sample i and all
other data points in the same cluster, and b(i) is the mean
distance between sample i and all the data points in its near-
est cluster. S(i) ranges from −1 to 1, with higher scores
indicating better clustering quality.

ARI reflects clustering accuracy by comparing the DP-
noised clustering result with the baseline (i.e., ground truth
clusters). It is computed as:

ARI(Cp
n, C

g
n) =

2(β00β11 − β01β10)

(β00 + β01)(β01 + β11) + (β00 + β10)(β10 + β11)
,

(11)
where Cp

n is the predicted clustering result, Cg
n is the ground

truth clusters, β11 is the number of pairs that are in the same
cluster in both Cp

n and Cg
n, β00 is the number of pairs that are

in different clusters in both Cp
n and Cg

n, β01 is the number of
pairs that are in the same cluster in Cp

n but in different clus-
ters in Cg

n, and β10 is the number of pairs that are in different
clusters in Cp

n but in the same cluster in Cg
n. The ARI will

be close to 0 if two clusters do not have any overlapped pair
of data samples and exactly 1 if the clusters are the same.

Figures 16 and 17 illustrate the measured Silhouette
Scores and accuracy of the clustering results under the two
methods, respectively. Baseline AP and Baseline K-means
represent the cases without DP-noise injection, AP and K-
means represent the cases on DP-noised sensitivity vectors.
We can see that as the Silhouette Score is dependent on the
distances between data samples, it is sensitive to subtle per-
turbation caused by DP noise. In comparison, the clustering
accuracy of both methods suffers no drop until ϵ decreases
below 0.2. This is mainly because that sensitivity vectors, as
long as not excessively perturbed by noise, can effectively
capture the underlying data distribution patterns, which val-
idates the effectiveness of exploiting DP-noised sensitivity
vectors for high-quality clustering of clients while preserv-
ing privacy. What’s more, we also notice that compared with
the K-means method, which requires predefined number of
clusters in advance, the AP method can automatically de-
termine the number of clusters, and even tolerate the noise
level at ϵ = 0.1. This indicates that the AP method is more
robust to DP noise perturbation than the K-means method

0.0

0.5

1.0

1.5

2.0

M
ut

ua
l i

nf
or

m
at

io
n

×10 3

0.2

0.4

0.6

0.8

1.0

Le
A

cc

0.0 0.2 0.4 0.6 0.8
Encryption Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Ln
A

cc
High Sensitivity Prioritized
Low Sensitivity Prioritized

Random

Figure 18: Impact of Encryption Ratio and Strategy on Mu-
tual Information and Attack Success Rate.
and more effective for client clustering in scenarios where
the server cannot predetermine the number of clusters.

H Effectiveness of Sensitivity-guided
Selective HE

To validate the effectiveness of the sensitivity-guided selec-
tive HE strategy, we make a detailed analysis of MI and at-
tack success rate under varying encryption ratios using three
different encryption strategies:

• High Sensitivity Prioritized. Given a specified encryp-
tion ratio, we prioritize the selection of model parameters
with the highest sensitivity for encryption.

• Low Sensitivity Prioritized. Given a specified encryp-
tion ratio, we prioritize the selection of model parameters
with the lowest sensitivity for encryption.

• Random. Given a specified encryption ratio, we ran-
domly select model parameters for encryption.

Specifically, we launch the iLRG attack under varying
encryption ratios ranging from 0 to 0.8, and measure the

changes of MI, Label existence Accuracy (LeAcc) and La-
bel number Accuracy (LnAcc). The experiments are con-
ducted on ResNet-50 with a batch size of 30, and the MNIST
dataset. This set of experimental settings is vulnerable to
iLRG attacks on plaintext, thereby excluding the influence
of settings other than the encryption strategies.

Figure 18 illustrates the measured results of each strategy.
We can see that along with the increasing of encryption ratio,
the MI of Random almost decreases linearly. While for the
case of Low Sensitivity Prioritized, the MI almost remains
unchanged, and for the case of High Sensitivity Prioritized,
the MI sharply drops to almost 0 when the encryption ratio is
above 0.1. Correspondingly, LeAcc and LnAcc follow sim-
ilar change patterns. These results confirm the reliability of
employing MI to quantify the privacy leakage caused by the
selective encryption of model parameters. What’s more, we
can also notice that Low Sensitivity Prioritized and High
Sensitivity Prioritized demonstrate stark contrast in privacy
protection in terms of LeAcc and LnAcc. Although Random
can finally reach a high privacy protection level, it consumes
significantly more encryption overhead than High Sensitiv-
ity Prioritized.

In summary, these observations strongly advocate the ef-
fectiveness and necessity of applying sensitivity-guided se-
lective HE strategy, which validates the theoretical founda-
tion of our proposed framework that adaptively balances se-
curity and HE overhead for each client in cross-device FL.

I HE Key Management and Distribution
In the standard threat model, the server is honest-but-
curious, and clients are honest. However, a more realistic
threat model considers the presence of malicious clients who
might collude with the server or other clients. If all clients
share a single private key, a malicious client could intercept
and decrypt the model updates from any other client, com-
pletely compromising their privacy.

To address this expanded threat, we propose a framework
that decouples the aggregation server from a trusted Decryp-
tion and Key Management Server (DKMS). In our frame-
work, the DKMS assumes the critical role of generating and
distributing public/private key pairs, as well as decrypting
the final aggregated model. This design does not introduce
additional physical infrastructure; instead, it formally dele-
gates key management and decryption operations to a trusted
third party - a function that is frequently implied but rarely
explicitly defined in most homomorphic encryption-based
federated learning systems. Maintaining the private key ei-
ther at the aggregation server or with participating clients
would compromise security, as possession of the private key
would enable decryption of all sensitive communications.
The modified complete algorithm pseudocode can be re-
ferred to in Algorithm 3.

This decoupled architecture offers two significant advan-
tages:

1. Enhanced Security: By isolating the private key on a
dedicated DKMS, we prevent the aggregation server and
any potentially malicious clients from decrypting indi-
vidual client updates. The aggregation server only per-

forms homomorphic additions on ciphertexts, and clients
only receive the final, decrypted global model from the
DKMS.

2. Improved Efficiency in Heterogeneous Environ-
ments: In our system, clients only perform encryption.
The final aggregated model is decrypted once by the
DKMS and then distributed to all clients. This elimi-
nates the need for each client to perform decryption lo-
cally, which can be a significant bottleneck, especially for
resource-constrained devices. Since the final aggregated
model requires a union of all clients’ encryption masks
for decryption, the decryption time would be dictated by
the slowest device, exacerbating the straggler problem.
Centralizing decryption at the DKMS effectively miti-
gates this issue.

J Proof of Collusion Resistance
Theorem 1: If the aggregation server is honest-but-curious,
and the server colludes with at most |GIID|−2 clients within
a cluster GIID, SenseCrypt achieves model confidentiality
for the honest clients in that cluster.

Proof: Let C and H denote the set of corrupted and
honest clients respectively, within a specific cluster GIID,
where |C|+ |H| = |GIID|. Since the homomorphic encryp-
tion is IND-CPA secure, adversaries cannot infer an honest
client’s plaintext model Wi directly from its encrypted ver-
sion W∗

i .
However, adversaries can access the final decrypted ag-

gregation result We+1 for their cluster. Following the ag-
gregation protocol, the server and the colluding clients in C
can compute the aggregated model of the honest clients by
subtracting their own contributions:∑

i∈H

piWi = We+1 −
∑
j∈C

pjWj

If there is only one honest client (i.e., |H| = 1), the ad-
versary can recover the full model update Wi of that client.
However, as long as there are at least two honest clients (i.e.,
|H| ≥ 2), adversaries can only obtain the aggregated sum of
their models, but cannot disentangle this sum to recover the
individual model update Wi of any specific honest client.

Therefore, given the server colludes with at most
|GIID| − 2 clients, ensuring |H| ≥ 2, SenseCrypt protects
the model confidentiality of individual honest clients within
the cluster.

K Choice of Encryption Method: Paillier vs.
CKKS

While both Paillier and schemes like CKKS (Cheon-Kim-
Kim-Song) are popular homomorphic encryption solutions,
Paillier is better suited for the SenseCrypt framework. The
primary reason lies in the incompatibility of our selective
encryption strategy with the batching (or packing) technique
that makes CKKS highly efficient.

In SenseCrypt, the decision to encrypt a parameter is
based on its individual sensitivity score. This means that sen-
sitive and non-sensitive parameters can be adjacent to one

Algorithm 3: Workflow of SenseCrypt with Dual-
Server Architecture.

Input : Set of clients {1, . . . ,K}, parameters B,C, ηMI;
Output: Converged global model Wfinal;

1 Phase 1: Initialization;
2 DKMS():

Generate HE key pair: (pk, sk)← Paillier.keygen();
Distribute pk to all clients;
for each client i = 1, . . . ,K in parallel do

3 Client(i):
Local training to get initial W1

i and∇WL(W1
i);

Calculate sensitivity vector: Γi ← |(W1
i)

⊤∇WL(W1
i)|;

Send Γi and (ri, vi) to AggregationServer();
4 AggregationServer():

Receive Γi and (ri, vi) from all clients;
for each client i = 1, . . . ,K do

Calculate encryption budget:

αi ←
min{ri, vi}

max{|min{rj , vj}|}Kj=1

Send αi back to client i;
Cluster clients based on sensitivity similarity:
{GIID} ← AffinityPropagation({Γ1, . . . ,ΓK});

5 Phase 2: Federated Training Loop;
6 for each iteration e = 1, 2, . . . do
7 for each group GIID ∈ {GIID} in parallel do
8 for each client i ∈ GIID in parallel do
9 Client(i):

Receive global model We ;
Update local model: We

i ← local training on We;
Update sensitivity vector: Γi ← |(We

i)
⊤∇WL(We

i)|;
Solve for optimal mask Xi = [xi

k] ∈ {0, 1}N
w

by:
min [

∑Nw

k=1 x
i
k,−

∑Nw

k=1 x
i
kγ

i
k]

⊤

s.t.:
1.

∑Nw

k=1 x
i
k ⩽ ⌊αiN

w⌋ (Budget Constraint)

2.
∑

xi
kγ

i
k∑

γi
k

⩾ 1− Ce−Bαi (Security Constraint)

3. I(W; (1−Xi)⊙W) ≤ ηMI (MI Constraint)
Selectively encrypt model:

We,∗
i ← Encrypt(We

i ,Xi, pk)

Send We,∗
i and Xi to AggregationServer();

10 AggregationServer():
Receive We,∗

i and Xi from all clients in GIID;
Aggregate encrypted models:

We+1,∗ ←
∑

i∈GIID

ni

NG
We,∗

i

Create union mask for decryption: X̂←
⋃

i∈GIID
Xi;

Send We+1,∗ and X̂ to DKMS();
11 DKMS():

Receive We+1,∗ and X̂ from AggregationServer();
Decrypt aggregated model:

We+1 ← Decrypt(We+1,∗, X̂, sk)

Distribute plaintext global model We+1 to all clients;

Quantity Scheme Encryption Time (s) Ciphertext Size (bytes)

1 Paillier 0.3748 768
CKKS 0.0073 333324 × 1

10 Paillier 3.7613 7680
CKKS 0.0076 333570 × 10

100 Paillier 40.7887 76800
CKKS 0.0120 334488 × 100

1000 Paillier 396.1321 767990
CKKS 0.0079 334366 × 1000

10000 Paillier 3925.9769 7679907
CKKS 0.0261 1002800 × 10000

Table 2: Comparison of Encryption Performance between
Paillier and CKKS Schemes.
another in the model’s structure. Furthermore, each client
generates a unique encryption mask tailored to its data and
system capabilities.

CKKS achieves its efficiency by packing multiple plain-
text values (a vector) into a single ciphertext and performing
SIMD (Single Instruction, Multiple Data) operations. This
requires the data to be arranged in a specific order before
encryption. In our case, to use batching, clients would need
to reorder their model parameters, separating the ones to be
encrypted from the ones to be sent in plaintext. Since each
client has a different mask, their reordering would be dif-
ferent, and the server would be unable to perform meaning-
ful aggregation because the parameter positions would not
align.

Therefore, we cannot leverage the batching capabilities of
CKKS. As shown in Table 2, when encrypting a single pa-
rameter without batching, Paillier is far more practical. Al-
though CKKS is faster for the encryption operation itself,
its resulting ciphertext is designed to hold a large vector
and is therefore massive, regardless of the number of en-
crypted values. Specifically, encrypting a single parameter
with CKKS would generate a ciphertext of 333324 bytes,
which is over 434 times larger than Paillier’s 768 byte ci-
phertext. This dramatic increase in data size would lead to an
untenable communication overhead. Given our parameter-
wise selective strategy, Paillier offers a more efficient solu-
tion by minimizing this overhead.

L Time Consumption Analysis of
Components

To understand the computational overhead of each compo-
nent in SenseCrypt, we profiled the execution time for a
single client during one training iteration on the CIFAR10
dataset. The results are summarized in Table 3.

As the table shows, the most time-intensive operations
on the client side are encryption and solving the optimiza-
tion problem. Local model training and decryption also con-
tribute significantly to the overall latency. In contrast, the ini-
tial one-off cost of clustering on the server is negligible, and
the sensitivity calculation on the client side is very fast. The
server-side aggregation time is comparable to the client-side
encryption time. These results underscore the importance of
our approach to adaptively manage the encryption overhead
to mitigate the straggler problem.

Step Min (s) Max (s) Avg (s)
Local training 7.1 7.7 7.4
Sensitivity calculation 0.03 0.15 0.1
Optimization problem solving 11.8 17.7 13.2
Encryption 79.7 103.8 87.3
Decryption 24.8 86.4 56.8
FedAvg aggregation (server-side) - - 87.9
Clustering (server-side, one-off) - - 0.002

Table 3: Average time consumption per iteration for a single
client.
M Approximation of Parameter Sensitivity

Our use of a first-order Taylor expansion is a well-
established and reasonable method for approximating pa-
rameter importance. This technique is standard in machine
learning, notably in classic network pruning algorithms.
Here is the proof of the approximation expansion. The sensi-
tivity of a parameter subset w is defined as the change in loss
when w is zeroed-out: Γ(w) = |L(W) − L(W−w)|. We
can approximate the term L(W−w) by performing a Taylor
series expansion of the loss function L around the point W:

L(W−w) = L(W) + (W−w −W)⊤∇WL(W)

+
1

2

(
(W−w −W)2

)⊤
H(W−w −W)

+ · · ·

where H is the Hessian matrix of L evaluated at W, and the
ellipsis represents higher-order terms.

The difference vector (W−w −W) is a vector that is
equal to −w at the positions corresponding to the parame-
ters in the subset w, and is zero everywhere else. The first-
order approximation is made by truncating the series after
the linear term, assuming that the quadratic and higher-order
terms are negligible. This is a common assumption when the
change (in this case, zeroing out w) is relatively small. This
truncation leads to the approximation:

L(W−w)− L(W) ≈ (W−w −W)⊤∇WL(W)

= −w⊤∇WL(W)

Rearranging the terms, we get the change in loss:

L(W)− L(W−w) ≈ w⊤∇WL(W)

Substituting this approximation back into the sensitivity
definition, we obtain the final, computationally tractable for-
mula:

Γ(w) ≈ |w⊤∇WL(W)|

N Related Work
Statistical & system heterogeneity in FL. Cho et al. (Cho,
Mathur, and Kawsar 2022) proposed to personalize model
training for countering statistical heterogeneity in cross-
device FL. Liu et al. (Liu, Guo, and Chen 2021) proposed
to utilize the sparsity of CNNs for privacy-preserving simi-
larity measurement of clients’ data. To mitigate system het-
erogeneity issues, Bonawitz et al. (Bonawitz et al. 2019)
designed a FL system that filters clients by their response
speed in FL training. Chai et al. (Chai et al. 2020) proposed

a tier-based FL system that selects clients by training per-
formance to mitigate system heterogeneity problems. Zhou
et al. (Zhou et al. 2023) proposed to cluster clients by de-
vice capabilities, and utilize reinforcement learning to miti-
gate statistical heterogeneity issues. Jiang et al. (Jiang et al.
2023) proposed to utilize adaptive client selection and gradi-
ent compression for addressing the straggler problem. How-
ever, these methods mostly rely on additional components
to measure data similarity or coordinate FL training, which
creates extra burden for FL framework adaptation.

Overhead-optimized HE for FL. To make HE more
lightweight, Jiang et al. (Jiang, Wang, and Liu 2021) pro-
posed to drop the asymmetric-key design to meet the mini-
mum requirements of security and functionality. Hao et al.
(Hao et al. 2019) proposed to combine lightweight symmet-
ric additive HE with DP technique to improve security pro-
tection. However, such methods generally suffer from de-
graded security since symmetric encryption cannot provide
the same level of security as public-key encryption.

Another alternative is to encrypt multiple model param-
eters in one go. Zhang et al. (Zhang et al. 2020) proposed
BatchCrypt, which utilizes batch quantization and encryp-
tion of model parameters to reduce HE overhead. Chen et
al. (Chen et al. 2021) further migrated BatchCrypt to the es-
tablishment of gradient boosting decision trees for vertical
FL. Xu et al. (Xu et al. 2021) indicated that the gradient
quantization in BatchCrypt may cause frequent overflow er-
rors due to the addition of negative numbers represented in
two’s complement, and result in accuracy loss. To fix this
issue, Zheng et al. (Zheng et al. 2023) modified BatchCrypt
via down-scaling and identification of negative model pa-
rameter values. Han et al. (Han and Yan 2023) proposed an
adaptive accuracy-lossless batch HE method that shifts pa-
rameters to non-negative values for the prevention of over-
flow errors. Nevertheless, these methods cannot easily fit in
mainstream FL frameworks without specific adaptation.

Inspired by the model pruning methods that remove re-
dundant model parameters by sensitivity (Molchanov et al.
2017; Theis et al. 2018; Ding et al. 2019; Molchanov et al.
2019; Lubana and Dick 2021), several methods proposed to
selectively encrypt relatively more sensitive model param-
eters to reduce HE overhead. For example, Jin et al. (Jin
et al. 2023) designed FedML-HE, which utilizes the union of
clients’ sensitive model parameter masks for encryption. Hu
et al. (Hu and Li 2024) proposed MaskCrypt, which lets the
clients agree on a consensus mask for selective HE with re-
duced overhead. However, these methods cannot adaptively
ensure the security of each client with low HE overhead in
cross-device FL.

O Comparison with FedML-HE

Although FedML-HE (Jin et al. 2023) proposes a selective
encryption mechanism based on parameter sensitivity, its ef-
ficiency is extremely low. FedML-HE calculates sensitivity
via sequentially iterating the gradient value of each parame-
ter and computing its partial derivative with respect to each

data label, as formulated in

Jm(yk) =
∂

∂yk

(
∂ℓ(X,y,W)

∂wm

)
,

where ℓ(X,y,W) denotes the loss function. Specifically,
FedML-HE requiresO(Nw ·N b) complex backpropagation
operations, where Nw is the total number of model param-
eters and N b is the batch size. In contrast, SenseCrypt only
requiresO(Nw) simple multiplication operations, which are
significantly less time-consuming than backpropagation.

Consequently, while FedML-HE required more than 4
hours to compute the sensitivity of 50,000 parameters on
a 5-thread CPU, SenseCrypt and MaskCrypt completed it
in less than 0.1 seconds. Even with an extreme space-for-
time trade-off optimization, FedML-HE’s computation time
could only be reduced to 340 seconds, at the cost of consum-
ing over 100 GB of memory. Table 4 summarizes the sensi-
tivity computation time for a single evaluation over 200 sam-
ples on different models. Therefore, FedML-HE is unsuit-
able for selective encryption in heterogeneous device sce-
narios due to its prohibitive computational overhead.

Model Params Dataset Time (s)
MLP 50,890 MNIST 17214.75
AlexNet 124,534 CIFAR-10 42823.79

Table 4: Sensitivity Computation Time of FedML-HE

P Data Reconstruction Example
Figure 19 illustrates a MNIST data sample reconstructed
from batch-averaged gradients via iLRG from Round 4 in
Fig. 8 of the main text. Compared with MaskCrypt, the re-
constructed data in SenseCrypt exposes much less useful in-
formation to attackers.

Pla
int

ext
Original iter=0 iter=100 iter=200 iter=300 iter=400 iter=500

Mask
Cryp

t
Original iter=0 iter=100 iter=200 iter=300 iter=400 iter=500

Se
nse

Cryp
t

Original iter=0 iter=100 iter=200 iter=300 iter=400 iter=500

Figure 19: Comparison of data reconstruction results.

