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Abstract

Recent progress in generative Al has made it increasingly easy
to create natural-sounding deepfake speech from just a few sec-
onds of audio. While these tools support helpful applications,
they also raise serious concerns by making it possible to gener-
ate convincing fake speech in many languages. Current research
has largely focused on detecting fake speech, but little attention
has been given to tracing the source models used to generate
it. This paper introduces the first benchmark for multilingual
speech deepfake source tracing, covering both mono- and cross-
lingual scenarios. We comparatively investigate DSP- and SSL-
based modeling; examine how SSL representations fine-tuned
on different languages impact cross-lingual generalization per-
formance; and evaluate generalization to unseen languages and
speakers. Our findings offer the first comprehensive insights
into the challenges of identifying speech generation models
when training and inference languages differ. The dataset,
protocol and code are available at https://github.com/
xuanxixi/Multilingual-Source-Tracing.

Index Terms: Source Tracing, Speech Deepfakes, Cross-
Lingual generalization, Linguistic Diversity, Unseen Speaker

1. Introduction

Recent advances in Generative Al (GenAl) have resulted in an
unprecedented surge in synthetic data generation. The National
Security Agency (NSA), Federal Bureau of Investigation (FBI),
and Department of Homeland Security (DHS) recently released
a joint report'. It warns that synthetic media, especially deep-
fake content, is now spreading quickly across many languages
worldwide. This warning comes at a time when generative Al
has made strong progress. Voice synthesis tools, including text-
to-speech (TTS) [1] and voice conversion (VC) [2], can now
create very natural speech from just a few seconds of audio [3].
These tools help with positive applications like virtual assis-
tants. However, they can also be used to create harmful deep-
fake speech in several languages. These harmful use cases in-
clude phone scams, disinformation and defaming campaigns,
and spoofing voice biometric systems to mention a few [4-8].
To address the growing threats of deepfake speech, inter-
national challenges like ASVspoof [9, 10] and audio deepfake
detection (ADD) [11, 12] promote development of new de-
fense methods to detect deepfake speech [13-15]. Some of
these detectors are already very accurate, reaching equal error
rates (EERs) below 0.5% on ASVspoof19 [16]. But checking
whether the audio is real or fake is insufficient; it is imper-
ative to trace the source of a deepfake speech sample—who

Ihttps://www.dhs.gov/sites/default/files/
publications/increasing_threats_of_deepfake_
identities_0.pdf
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Figure 1: llustration of mono-lingual and cross-lingual sce-
narios on source tracing systems. The English data-trained
system works well with English data (left) but fails with other
languages (right).
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created it (or, more practically, which generative architecture
is a likely origin of the deepfake speech sample). In foren-
sic science, source tracing (ST) of evidentiary materials, in-
cluding telephone recordings [17], digital images [18], and text
documents [19], has been extensively studied for law enforce-
ment applications. Prior research from audio forensics has es-
tablished methodologies for tracing microphones [20, 21], cell
phones [22,23], and caller networks [24,25]. While audio foren-
sic source analysis is a well-established field, ST for speech
deepfakes has emerged as a new and pressing research chal-
lenge, receiving thus far relatively little attention.

Some early studies on ST give promising results. For ex-
ample, [26] compared different ST system designs (end-to-
end or two-stages), and [27] proposed a general ST frame-
work which was later extended to a benchmark for neural-codec
models [28]. However, these studies are all limited to a single
language (specifically, English) for training and testing. They
do not study what happens when the model is trained in one
language but tested in another. As illustrated in Figure 1, the
language mismatch effects refer to the decrease in performance
resulting from discrepancies between the languages used during
training and inference. These effects have been extensively ob-
served since different languages (and language families) differ
at lexical, prosodic, and phonotactic levels — any data-driven
model trained on one language only is expected to be over-
fit to the training language, hindering generalization to new
languages. This general problem, called language mismatch,
is well-known in many tasks including translation [29-31],
speaker anonymization [32], and speaker verification [33-38].
Its impact on ST, however, remains thus far unknown. At the
same time, audio language models are growing fast. They now
support thousands of languages [39]. With only a short voice
sample, they can create high-quality speech in any target lan-
guage [40]. This makes it easier to create fake speech that can
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Figure 2: Overview of the multilingual source tracing (ST) benchmark framework. The framework evaluates model generalization
across languages and speakers through four experimental scenarios: (1) Monolingual (same-language/family training and testing); (2)
Crosslingual (train on one language/family, test on another language/family); (3) Unseen languages generalization (train on multiple
languages, test on unseen language); (4) Unseen speaker generalization (train on multiple languages and speakers, test on unseen

speakers across multiple languages).

escape current detection tools. While some new datasets in-
clude many languages [41-43], they all focus on the detection
task, not tracing which model made them. Our study seeks to
fill this knowledge gap.

Recent related studies have advanced multilingual deep-
fake detection. For instance, [44] studied how multilingual pre-
trained models can detect speech deepfakes across accents and
tones, whereas [45] transferred detection knowledge across lan-
guages using domain adaptation methods. The study in [46],
in turn, proposed accent-based data expansion to reduce the
effects of language mismatch [46]. Finally, [47] tested multi-
lingual ability of detection models, demonstrating that training
only on English limits their effectiveness in other languages.
Despite progressing understanding of the impact of language in
the context of deepfakes, all the prior studies share a key limi-
tation: they focus on detection, rather than ST.

In contrast, our work shifts the focus from binary detec-
tion to ST. This task brings new challenges, especially in cross-
lingual conditions where the model must trace the origin of fake
speech even when the training and testing languages differ. To
address this gap, we propose to first explore a benchmark for ST
in both mono- and cross-lingual scenarios, and evaluate it across
multiple feature types, language settings, and low-resource con-
ditions. We introduce the first multilingual benchmark for
ST of speech deepfakes, covering both mono-lingual and
cross-lingual scenarios. Furthermore, this work is the first
to explore the effects of unseen languages and speakers in
ST tasks. The speech data itself is drawn from Multi-Language
Audio Anti-Spoofing (MLAAD) dataset [43] used in multiple
recent studies, including studies under Interspeech 2025 special
session Source tracing: The origins of synthetic or manipulated
speech. Despite consisting of an extensive collection of deep-
fake samples in multiple languages, MLAAD does not contain
an evaluation protocol to address ST in both mono-lingual and
cross-lingual scenarios. Our new benchmark is intended as a re-
producible starting point to foster further work in performance
assessment and improving multilingual ST models.

Our immediate scientific aim is to better understand how
language differences and resource limitations influence ST per-
formance. We address seven key research questions (RQs):
RQ1 What is the performance of ST models in monolingual scenarios?
RQ2 How effectively do ST models generalize to cross-lingual scenar-
ios?

RQ3 Does training and testing within the same language family im-
prove cross-lingual performance?

RQ4 How do digital signal processing (DSP) and self-supervised
learning (SSL)-based ST models compare in cross-lingual generaliza-
tion?

RQS5 How do training strategies and linguistic diversity of pre-training

corpora affect the cross-lingual generalization performance of SSL-
based ST models?

RQ6 How do unseen languages impact ST models generalization?
RQ7 How do unseen speakers impact ST models robustness against
shortcut learning?

By answering these questions, our work offers the first sys-
tematic evaluation of multilingual ST and lays a foundation for
future research in this area.

2. Multilingual Source Tracing Benchmark

As shown in Figure 2, to comprehensively and fair eval-
uate Multilingual ST model performance in both Mono-
and Cross-Lingual scenarios, we propose the linguistically-
balanced dataset MCL-MLAAD and establish novel protocols
for thorough assessment of generalization capabilities.

2.1. Dataset

Accurate evaluation of Multil-lingual ST models needs a dataset
with balanced language and TTS synthesizer distribution. For
this, we present the Lingual-Balanced MLAAD dataset. It is an
improved version of the original MLAAD corpus [43], which
contains 420.7 hours of synthetic speech in 38 languages, pro-

2https://deepfake-total.com/sourcetracing



duced by 91 TTS models (including 32 types of architectures).
This data was created using the M-AILABS multilingual au-
dio source®. However, the original corpus has two limitations.
First, no single TTS model covers all 38 languages. Second,
each language does not include all the 91 TTS models. These
limitations hinder multilingual generalization studies.

To address this, we built a refined version of MLAAD v5,
referred to as MCL-MLAAD. We select six languages from
three language families: Germanic (English, German), Ro-
mance (French, Italian), and Slavic (Polish, Russian). We
also include four popular TTS architectures: Griffin-Lim, Bark,
XTTS vl.1, and XTTS v2. Our dataset design aligns with
the partitioning methods in [47]. To simulate diverse acous-
tic environments, the dataset includes four types of noise per-
turbations—namely, noise, music, babble, and reverberation
from MUSAN [48]—systematically applied to each clean utter-
ance. Thus, five acoustic variants (the clean original and its four
perturbed counterparts) are generated per utterance, enhancing
real-world robustness. Due to uneven spoofing attack distribu-
tion, we partitioned the data into train, dev, and test sets with a
60:20:20 ratio for each language as detailed in Table 1.

Table 1: Dataset Statistics for Different Languages

Language Language Code Samples Dur
Family (x5) (x5)
Germanic  English en 2,100  4h 37m 59.59s
German de 2,100 4h 35m 7.89s
Romance French fr 2,100 5h 6m 38.35s
Italian it 2,100 4h 14m 4.82s
Slavic Polish pl 2,100 S5h 12m 4.68s
Russian u 1,200  3h 11m 16.03s
Total - - 11,700  26h 57m 11s

2.2. Protocols

Our benchmark evaluates source tracing capabilities through
four experimental protocols designed to isolate critical dimen-
sions of multilingual generalization:

2.2.1. Mono- & Cross-Lingual Protocol

We trained ST models using only one language each: English,
German, French, Italian, Polish, or Russian. These models help
us study how the model performs within a single language.
Later, we also use them for cross-lingual experiments by testing
them on different languages.

2.2.2. Mono- & Cross Language Family Protocol

To explore how language families affect performance, we
grouped the six languages into three families: Germanic, Ro-
mance, and Slavic. We then trained one model per family.
These models help examine whether training on one language
group improves performance on related languages.

2.2.3. Seen & Unseen Languages Protocol

To investigate the generalization capability for unseen lan-
guages, we employ a leave-one-language-out experimental pro-
tocol. Our work explicitly contrasts seen” and “unseen” lan-
guage conditions and rigorously analyzes how pre-training data
affects cross-lingual robustness.

3https://huggingface.co/datasets/mueller9l/
MLAAD

2.2.4. Seen & Unseen Speakers Protocol

Besides content-related variability (which manifests as phone-
mic differences between languages), speaker-related factors can
be expected to impact ST performance. For instance, if train-
ing data for TTS method A represents only one voice identity
1 while training data for TTS method B represents only voice
identity 2, a model may learn to differentiate the two speakers,
as opposed to the two sources—an instance of shortcut learn-
ing [49]. To analyze the impact of seen vs. unseen speakers, we
use a leave-one-language-out protocol: the model is trained on
all but one language, which serves as an unseen test language.

This analysis brings up some new challenges. As op-
posed to language labels, the MLAAD metadata does not
contain speaker labels. Moreover, arguably synthetic speech
does not even have crisply-defined speaker identity (only tar-
geted speaker identity). These necessitate approximate, pseudo-
speaker labels that we obtain through an approach similar to
[26, Section 3.3]. We use an off-the-shelf* ECAPA2 [50] model
to extract speaker embeddings from each synthetic utterance,
followed by clustering the resulting 11, 700 embeddings using
spherical k-means [51], a method suitable for clustering length-
normalized d = 192 dimensional embeddings. We first run
10 repeats (each with different random initialization) of spher-
ical k-means for each cluster count in k& € [1,100] and use an
’elbow’ criterion [52] to set the number of clusters. We then
repeat clustering with the selected cluster count (k = 18) using
100 restarts. The cluster assignments of speaker embeddings
give us unique pseudo-speaker label per utterance.

Table 2: Protocol statistics for speaker effect analysis.

Unseen Utterance Count

Threshold
Language Seenspk. Unseen spk.
English 938 982 0.085
German 1,029 891 0.075
French 908 1,012 0.079
Italian 919 1,001 0.077
Polish 1,026 894 0.077
Russian 1,064 1,036 0.074

A pseudo-speaker ¢ is defined as seen if the empirical
speaker prior in the combined training and development data
P, = Nl Nimval oxceeds threshold 6, and speaker i is
present in the test data. Here, N™" and NS+ denote
speaker-specific and total training-development samples respec-
tively. Here, 6 mitigates the inherent trade-off between strict
speaker exclusion (which causes severe data scarcity) and com-
plete inclusion (which induces class imbalance), ensuring sta-
tistically viable group comparisons. We balanced the number
of test samples between the seen and unseen groups. The per-
language seen/unseen utterance counts and thresholds summa-
rized in Table 2.

3. Multilingual Source Tracing Methods

3.1. ST Models

This section introduces the models used for ST tasks. We
first study how different input features influence performance

“https://huggingface.co/Jenthe/ECAPA2



in both mono-lingual and cross-lingual settings. Based on the
type of front-end feature, we group the models into two cate-
gories: DSP-based and SSL-based. The architectural diagrams
of both model types are presented in Figure 3.

3.1.1. Models with DSP front-end

We developed three models using classic digital signal pro-
cessing features: LFCC-ResNet18, LFCC-AASIST and LFCC-
ECAPA-TDNN. LFECCs (linear frequency cepstral coefficients)
were used in early synthetic speech detectors [53]. We con-
sider three different backends: (1) AASIST [54] is an audio
anti-spoofing method using integrated spectro-temporal graph
attention networks; (2) ResNet18 [55] is designed to learn local
spectral patterns using residual blocks; (3) ECAPA-TDNN [56]
focuses on capturing global information using attention mecha-
nisms and multi-scale features.

3.1.2. Models with SSL front-end

We also develop eight models that use self-supervised learning
(SSL) front-ends with a shared back-end, AASIST [54]. These
front-ends include: (1) two foundation models—XLS-R-300M
[57], trained on multilingual data [58-62], and wav2vec2.0
Large LV-60 [63], trained on English [64]; (2) six versions of
XLS-R fine-tuned on specific languages. The XLS-R builds
on wav2vec2.0 by enabling cross-lingual learning. It does this
through shared quantization over encoded features, allowing
different languages to share acoustic representations [65]. The
front-end details are summarized in Table 3.

Table 3: Evaluation of self-supervised representations for ST.
All SSL models have 300M parameters. Base models include
wav2vec2.0 Large LV-60 and XLS-R-300M. Language-specific
fine-tuned variants are based on large-xlsr-53, trained on six
languages (en, de, fv, it, pl, ru). The datasets abbreviations
are: Librispeech (LL) [64], CommonVoice (CV) [60], BABEL
(BBL) [62], multilingual Librispeech (MLS) [59], VoxPopuli
(VP) [58], and VoxLingual07 (VL) [61].

Name Pretraining Fine-tuning Datasets
Model Dur. (h) Langs. Lang.

wav2vec2

1 large-lv60 53k en - LL

2 xIs-r-300m 436k many - CV, BBL, MLS, VP, VL
Fine-tuned variants

3 large-xlsr-53-en 56k many en CV-en

4 large-xlsr-53-de 56k many de CV-de

5 large-xlsr-53-fr 56k many fr CV-fr

6 large-xlsr-53-it 56k many it CV-it

7 large-xlsr-53-pl 56k many pl CV-pl

8 large-xlsr-53-ru 56k many ru CV-ru

3.2. Implementation details

All audio samples were downsampled to 16 kHz and trimmed or
padded to 4 seconds (64,000 samples). Multiclass cross-entropy
loss was used to train all the models with a batch size of 16, and
50 epochs. We used an initial learning rate of 5 x 10, and
selected the final model based on the lowest development loss.

3.2.1. Models with DSP front-end

LFCCs are extracted using 20ms window and 10ms shift, pro-
ducing feature matrices of shape (80, 399), where 80 is the
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Figure 3: Architecture Comparison of DSP-based and SSL-
based Source Tracing (ST) Models. Red components represent
variable components that can be replaced or adjusted in differ-
ent scenarios, while white components represent fixed compo-
nents that remain consistent across the models.

number of LFCCs and 399 is the number of frames. We im-
plemented two classifiers: ResNet18> and ECAPA-TDNN®.

3.2.2. Models with SSL front-end

Each SSL front-end converts raw audio into a matrix of size
199 x 1024, where 199 is the time frame and 1024 is the feature
dimension. These were linearly projected to 128 dimensions
before being passed to the AASIST classifier’. During training,
we used Mixup [66, 67], a method that blends two samples and
their labels. The mixing ratio A is drawn from a Beta distri-
bution with parameters o = 0.5. This process keeps the input
size unchanged and adds a label smoothing effect, which helps
improve model generalization.

3.2.3. Metrics

Experimental results were quantified using (Macro-averaged)
Macro-F1 metric: Macro-F1 is defined as

Macro-F1 = fP ;R
P+ R
where P and R denote the average precision and recall across

all classes (synthesizer). Precision and recall are computed per-
class as

__ ™ 4 p=_TP
TP+ FP TP+ FN’

respectively, with T'P, F'P, and F'N representing true positives,
false positives, and false negatives. This aligns with evaluation
metrics from recent studies [26].

Shttps://github.com/hubert10/ResNet18_from
Scratch_using_PyTorch/blob/main/resnetl8.py

Shttps://github.com/TaoRuijie/ECAPA-TDNN/
blob/main/model.py

Thttps://github.com/clovaai/aasist/blob/main/
models/AASIST.py



4. Results and Discussion
4.1. Mono-Lingual Performance (RQ1)

As shown in the diagonal entries of Table 4, monolingual per-
formance demonstrates that W2V2(xx)-AASIST achieves high-
est macro-F1 score of 97.91%, indicating that language-specific
fine-tuning enhance phonetic differentiation. Notably, LFCC-
ECAPA-TDNN attains 97.78% (18.98% higher than LFCC-
AASIST), indicating its back-end could more effectively cap-
ture subtle artifacts.

4.2. Cross-Lingual Transfer Performance (RQ2)

As shown in the off-diagonal entries of Table 4, LFCC-ECAPA-
TDNN achieved optimal cross-lingual performance (88.40%),
exceeding LFCC-AASIST by 33.94%, suggesting its back-
end better handle phonological variations. W2V2EN-AASIST
showed strong English—other transfers (average 95.76%) but
lower performance for non-English pairs, reflecting English-
only pretrained SSL bias. Low-resource language transfers ex-
hibit significant performance degradation compared to high-
resource pairs, highlighting persistent challenges in modeling
typologically distant languages.

4.3. Language Family Effects (RQ3)

As shown in Figure 4, cross-family performance analysis re-
veals consistent advantages for monofamily transfers compared
to cross-family settings across all architectures. DSP models
demonstrate superior robustness, maintaining minimal perfor-
mance variance between language pairs while achieving strong
cross-family generalization. In contrast, XLSR-AASIST ex-
hibits significant performance degradation under cross-family
conditions despite comparable effectiveness in monofamily sce-
narios, highlighting its heightened sensitivity to linguistic dis-
tance. Notably, DSP models preserve near-optimal performance
for typologically distant language groups, whereas XLSR-
AASIST shows pronounced disparities, suggesting fundamen-
tal differences in cross-linguistic divergence modeling.

XLSR-AASIST LFCC-ResNet18 LFCC-ECAPA-TDNN
100 100 100
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Figure 4: Heatmaps illustrating the Macro F1-score (%) com-
parison across XLSR-AASIST, LFCC-ResNetlS8, and LFCC-
ECAPA-TDNN models. Rows indicate source language fami-
lies used for training (G: Germanic, R: Romance, S: Slavic).
Columns indicate target language families used for evaluation.

4.4. Comparison between DSP and SSL Models (RQ4)

As shown in the off-diagonal entries of Table 4, the SSL-based
models (top three) and DSP-based models (bottom three) are
displayed their cross-lingual performance. When backend ar-
chitectures are comparable (top four subtables), SSL models
English-only pretrained and language-specific fine-tuning SSL
front-end demonstrate competitive cross-lingual performance,
suggesting that domain adaptation strategies can mitigate inher-
ent language biases. However, DSP-based methods with robust
backend ECAPA-TDNN exhibit superior cross-lingual stabil-
ity, particularly under low-resource conditions. These findings

Table 4: Performance comparison (macro Fl-scores, %) of
SSL-based (top three) and DSP-based (bottom three) models
across six languages, with the highest macro Fl-scores for
monolingual (mono) and cross-lingual (cross) settings under-
lined. SSL-based models: XLSR denotes XLS-R-300M (multi-
lingual pretrained), W2V2EN denotes wav2vec2.0 Large LV-
60 (English-only pretrained), and W2V2 (xx) denotes XLS-R
(language-specific fine-tuned, language code: xx). Cells show
source (S)—target (T) language performance, with diagonals
indicating monolingual results and off-diagonals cross-lingual
transfer.

S\T | en | de | fr | it | pl | ru
XLSR-AASIST (mono:80.05; cross:59.75)

en | 93.55 | 91.89 | 78.09 | 73.21 | 81.11 | 64.95
de | 80.46 | 88.53 | 74.78 | 75.17 | 83.28 | 50.11
fr 3394 | 3578 | 41.43 | 36.95 | 41.19 | 2542
it 76.00 | 63.55 | 75.17 | 82.08 | 70.05 | 59.25
pl 51.36 | 53.12 | 68.31 | 52.23 | 92.64 | 39.45
ru 54.10 | 46.26 | 47.42 | 53.98 | 55.82 | 82.07

W2V2EN-AASIST (mono:92.84; cross:78.18)

en | 99.51 | 98.64 | 95.06 | 93.09 | 96.61 | 91.63
de | 90.95 | 66.21 | 89.76 | 64.75 | 67.03 | 71.47
fr | 93.68 | 92.74 | 98.62 | 90.40 | 98.42 | 90.17
it | 96.64 | 96.13 | 93.75 | 97.35 | 97.17 | 94.09
pl | 50.08 | 60.70 | 76.30 | 57.39 | 98.93 | 57.62
ru | 43.59 | 36.72 | 50.28 | 61.04 | 49.45 | 96.40

W2V2 (xx)-AASIST  (mono0:97.91; cross:73.45)

en | 99.12 | 97.85 | 93.66 | 9522 | 95.76 | 91.06
de | 92.63 | 96.37 | 90.93 | 83.58 | 95.03 | 70.95
fr | 88.29 | 9191 | 97.36 | 87.57 | 97.03 | 88.12
it | 94.45 | 88.27 | 92.53 | 97.53 | 94.85 | 89.33
pl | 43.90 | 5443 | 66.69 | 44.78 | 99.16 | 35.31
ru | 47.35 | 37.63 | 59.06 | 60.85 | 62.40 | 97.91

LFCC-AASIST (mono:78.80; cross:54.46)

en | 82.58 | 62.71 | 57.85 | 59.53 | 64.49 | 54.28
de | 56.51 | 74.33 | 60.50 | 57.15 | 72.57 | 49.25
fr | 5835 | 62.12 | 78.40 | 62.28 | 73.17 | 54.79
it | 6548 | 59.42 | 5590 | 73.56 | 65.58 | 58.48
pl | 4253 | 5435 | 55.63 | 49.01 | 87.18 | 43.84
ru | 32.30 | 30.26 | 3248 | 37.87 | 4525 | 76.76

LFCC-ResNetl8 (mono:95.76; cross:79.23)

en | 97.32 | 87.00 | 79.49 | 81.13 | 88.92 | 64.04
de | 93.60 | 96.44 | 89.99 | 85.52 | 93.78 | 71.86
fr | 90.32 | 87.43 | 94.86 | 84.22 | 90.34 | 72.08
it | 91.98 | 87.36 | 86.29 | 92.74 | 91.12 | 82.79
pl | 80.53 | 84.56 | 79.76 | 70.83 | 97.37 | 55.33
ru | 6591 | 56.71 | 56.73 | 62.84 | 64.34 | 95.82

LFCC-ECAPA-TDNN (mono:97.78; cross:88.40)

en | 98.42 | 94.67 | 92.44 | 89.82 | 94.87 | 78.13
de | 9595 | 98.03 | 95.73 | 93.53 | 96.32 | 89.26
fr | 88.86 | 94.65 | 96.59 | 89.78 | 94.06 | 92.87
it | 96.45 | 9691 | 95.63 | 97.19 | 97.19 | 84.69
pl | 79.26 | 87.46 | 81.04 | 72.73 | 98.76 | 60.01
ru | 83.73 | 84.66 | 84.45 | 81.43 | 85.48 | 97.98




Table 5: Macro-Averaged F1 Scores (1) under Leave-One-Language-Out Setting for Seen and Unseen Languages;, Method A: XLSR-
AASIST: Method B: LFCC-ResNetl8; Method C: LEFCC-ECAPA-TDNN.

Method | Seen Languages

\ Unseen Languages

-en -de -fr -it -pl -ru Avg en de fr it pl ru Avg
A 5450 72.09 9573 50.18 8252 48.83 6731 49.61 7246 9439 54.12 8540 2535 63.56
B 9775 9749 97.68 9821 9775 9575 9744 96.80 97.06 9555 93.00 97.88 99.20 96.58
C 97.62 9499 9796 97.53 9745 9826 9730 96.82 96.75 97.16 9492 98.62 9191 96.03

Table 6: Macro-averaged F1 scores (1) for three methods on Unseen Languages, evaluated under Seen and Unseen Speaker conditions.
Method A: XLSR-AASIST, Method B: LFCC-ResNetl8, Method C: LFCC-ECAPA-TDNN.

Method ‘ Seen Speakers

Unseen Speakers

‘ en de fr it pl ru Avg en de fr it pl ru Avg
A 54.66 52.69 96.19 40.62 84.70 48.11 6283 5463 7578 9397 4988 7891 49.13 67.05
B 98.04 86.76 97.64 9339 9759 98.16 9526 96.84 94.69 97.65 9745 97.01 9835 97.00
C 98.67 80.63 9833 90.53 98.23 9842 94.14 96.82 91.73 9837 96.12 96.61 97.71 96.23

indicate that while SSL models benefit from language-specific
fine-tuning to bridge linguistic gaps, DSP architectures inher-
ently prioritize language-agnostic patterns through their signal
processing pipelines, offering a more resilient framework for
cross-lingual source tracing when paired with advanced back-
end designs.

4.5. Training Strategy Effects (RQS)

As shown in Table 4, this section compares the SSL-based
models (top three) and LFCC-based models (bottom three)
under varying training strategies to assess their cross-lingual
generalization capabilities. Among SSL models, multilin-
gual SSL pretraining (XLSR-AASIST) exhibits lower mono-
lingual performance and weaker cross-lingual transfer capabil-
ities, particularly in low-resource settings. In contrast, English-
only SSL pretraining (W2V2EN-AASIST) achieves stronger
monolingual performance and moderate cross-lingual effective-
ness but retains asymmetric transfer biases between language
pairs. Language-specific fine-tuning (W2V2(xx)-AASIST) fur-
ther enhances monolingual results while showing limited im-
provement in cross-lingual scenarios. Conversely, LFCC-
ECAPA-TDNN demonstrate stronger cross-lingual robustness
with comparable monolingual performance, maintaining sta-
ble accuracy across both high- and low-resource language
groups. These findings indicate that (1) SSL models heavily de-
pend on pretraining language coverage and fine-tuning strate-
gies, whereas (2) LFCC-based approaches inherently priori-
tize language-agnostic acoustic features, enabling more reliable
generalization across linguistic and resource-diverse conditions.

4.6. Unseen Languages Generalization Experiment (RQ6)

As shown in Table 5, the leave-one-language-out evaluation
demonstrates generalization capabilities to unseen languages.
The results reveal that XLSR-AASIST exhibits notable perfor-
mance degradation on unseen languages, highlighting limita-
tions due to its reliance on language-specific pretraining data.
Furthermore, a trade-off between local and global modeling is
observed: LFCC-ResNet18 effectively preserves local phoneme
boundaries but struggles with cross-lingual prosody modeling,
whereas LFCC-ECAPA-TDNN aggregates multi-scale tempo-
ral features, capturing both local articulatory details and global
prosodic features through hierarchical modeling.

4.7. Unseen Speakers Generalization Experiment (RQ7)

Finally, Table 6 reports the seen/unseen speaker analysis fol-
lowing the leave-one-language out setup with pseudo-speaker
labels, broken down according to the held-out language and the
three models. The findings related to the six languages and the
three models are in line with the previous analyses. As for the
relative performance for seen/unseen speakers, unlike was hy-
pothesized, no apparent trends are visible—the results are de-
pendent both on the held-out language and the model. While
this may suggest that the investigated models can be robust to
speaker factors, the number of speakers is low and the speaker
labels were derived through clustering process. Another future
study with larger number speakers and known target speaker
labels is needed to validate these preliminary findings.

5. Conclusion

In this work, we establish the first multilingual benchmark for
speech deepfake source tracing, covering both monolingual and
cross-lingual scenarios across six languages and two model cat-
egories (DSP- and SSL-based models). Furthermore, we first
explore the effects of unseen languages and speakers in ST
tasks. Our findings reveal three key insights: First, in monolin-
gual scenarios, SSL front-ends fine-tuned on language-specific
data outperform both multilingual/English-only pretrained SSL
front-ends and LFCC front-ends. Second, LFCC features com-
bined with ResNet or ECAPA-TDNN backends demonstrate su-
perior cross-lingual generalization. Third, while cross-lingual
generalization is stronger within the same language family, sig-
nificant performance variations persist across language pairs.

We also explored the impact of speaker variability, find-
ing no consistent performance gap between seen and unseen
pseudo-speakers, though results fluctuated across held-out lan-
guages and model types. This indicates a potential robustness
to speaker variation, yet also highlights current limitations, in-
cluding reliance on unsupervised speaker clustering and the lack
of ground-truth speaker labels. As a future direction, we en-
courage further validation using larger, labeled datasets to bet-
ter understand the interplay between language, speaker, and
model-specific factors in deepfake attribution tasks. Our bench-
mark aims to establish a foundation for this emerging field and
promote further research into multilingual, speaker-aware, and
model-specific audio deepfake forensics.
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