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Abstract—Federated learning (FL) enables collaborative model
training without sharing raw data, but individual model up-
dates may still leak sensitive information. Secure aggregation
(SecAgg) mitigates this risk by allowing the server to access
only the sum of client updates, thereby concealing individual
contributions. However, a significant vulnerability has recently
attracted increasing attention: when model updates are sparse
vectors, a non-zero value contributed by a single client at a given
index can be directly revealed in the aggregate, enabling precise
data reconstruction attacks. In this paper, we propose a novel
enhancement to SecAgg that reveals aggregated values only at
indices with at least ¢ non-zero contributions. Our mechanism in-
troduces a per-element masking strategy to prevent the exposure
of under-contributed elements, while maintaining modularity and
compatibility with many existing SecAgg implementations by
relying solely on cryptographic primitives already employed in
a typical setup. We integrate this mechanism into Flamingo, a
low-round SecAgg protocol, to provide a robust defense against
such attacks. Our analysis and experimental results indicate
that the additional computational and communication overhead
introduced by our mechanism remains within an acceptable
range, supporting the practicality of our approach.

Index Terms—Federated learning, Secure aggregation, Data
reconstruction attacks

I. INTRODUCTION

Federated learning (FL) [1] is widely adopted for its ability
to train models on distributed data while preserving data
privacy. In each training round, clients independently train
the received global model on their datasets and send model
updates to the server. Please note that models and updates are
represented as vectors, and the terms “models/updates” and
“vectors” are used interchangeably throughout this paper. The
server aggregates these updates to produce a new global model,
which is again distributed to clients. The privacy principle of
FL is that only updates are shared under the assumption that
these updates do not reveal the raw datasets. However, numer-
ous studies [2], [3] have shown that a motivated server can
often reconstruct clients’ data from their individual updates.

Secure aggregation (SecAgg) [4]-[8] is a key countermea-
sure to this privacy risk. It ensures that the server receives
only the aggregate of at least ¢ vectors (where ¢t > 2), without
revealing any individual vector. When integrated into FL,
SecAgg prevents the server from accessing individual updates
and mitigates the risk of data reconstruction.

However, a critical vulnerability occurs when the vectors are
sparse. SecAgg hides individual vectors but does not always
hide individual elements. If only one client provides a non-
zero value at a given index in the vector, that value can be

revealed from the aggregate result. This loophole poses a
serious privacy threat. Recent studies [9]-[14] propose data
reconstruction attacks under SecAgg, where the server mali-
ciously crafts global models so that updates from non-victim
clients are zero at specific indices, exposing corresponding
elements in the victim clients’ updates.

To counter such attacks, two types of defenses have been
proposed: model inconsistency checks and model integrity
checks. However, both approaches rely on client-side model
checks, which suffer from fundamental limitations. First,
model inconsistency checks [12], [15] attempt to detect
attacks by verifying whether all clients receive the same
model, which prevents a malicious server from delivering
different modified models to different clients. Unfortunately,
this type of defense is not applicable to modern FL, such as
personalized FL [16] and asynchronous FL [17], [18], where
the server inherently distributes different models. In addition,
model inconsistency checks fail to detect attacks where the
same modified model is sent to all clients [10], [13], as no
inconsistency arises to be detected.

Second, model integrity checks [19]-[23] aim to detect
attacks by verifying whether the received model has been
maliciously modified. This class of defenses falls into two
main categories, each with drawbacks. One approach relies
on cryptographic verification to ensure that the global model
correctly reflects client updates [19]-[21]. While this provides
strong security, it relies on costly cryptographic techniques
such as zero-knowledge proofs, which significantly increase
computational overhead. Another approach inspects the model
for anomalous parameters or structures [22], [23]. While
lightweight, in FL settings where clients receive only partial
models [24], [25], it becomes impossible to verify the unseen
parts. These parts are treated as zero elements, which opens
the door to data reconstruction attacks.

This paper proposes a fundamental mechanism to prevent
the exposure of individual element values unless at least ¢ non-
zero contributions are made at a given index. This mechanism
inherently nullifies data reconstruction attacks, as it prevents
the server from unmasking elements contributed by too few
clients. The key idea is to introduce two types of new vectors:
one for counting non-zero contributors and the other for
masking model updates. In the SecAgg procedure, each client
masks its model update using both conventional and newly
introduced masks; at a given index, the new mask is sent to
the server only if the number of contributors exceeds a certain
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TABLE I
NOTATION FREQUENTLY USED IN THIS PAPER.

Notation Description

N Set of all users

C,D Set of clients and decryptors, respectively

ép Dropout rate of decryptors

nc, b Colluding rate of clients and decryptors, respectively
x; Model update vector of client ¢ € C

K All indices in model update vector x;

t, Threshold in SecAgg and secret sharing, respectively

threshold. Our approach does not rely on client-side model
checks and remains simple, thereby avoiding the inherent
limitations of existing methods.

The contributions of this paper are as follows. First, we pro-
pose Per-element SecAgg, a framework that reveals aggregated
values only at indices with at least ¢ non-zero contributions.
Our design does not require any new cryptographic primitives
beyond standard SecAgg protocols [4]-[6]. Second, we de-
velop a full protocol by extending Flamingo [6], a lightweight
SecAgg. Our protocol ensures that the guarantees of Per-
element SecAgg hold even in the presence of a malicious
server, user dropouts, and user collusion. Third, we implement
the protocol and evaluate its performance. The results show
that the additional overhead is acceptable, and that the impact
of Per-element SecAgg on model performance is minimal,
confirming that our protocol is practical.

The rest of the paper is organized as follows: Section II
explains the preliminaries. Sections III and IV describe the
design rationale of our Per-element SecAgg framework and
the protocol design, respectively. Section V analyzes the cost
and the security, and Section VI evaluates the performance of
the protocol. Section VII summarizes the related work, and
Section VIII concludes the paper.

II. PRELIMINARIES

In this section, we introduce the cryptographic primitives
and the Flamingo SecAgg protocol, which are essential for
understanding this paper. Table I summarizes the notation.

A. Cryptographic Primitives

1) Diffie-Hellman Key Exchange via PKI: A user ¢ gen-
erates a private key a; € {0,1}" and publishes the public
key g% via a public key infrastructure (PKI), where x is a
secyrity parameter and g is a generator of a cyclic group
with prime order. A pair of users ¢,; establishes a shared
secret s; ; = ¢%“ using their private key and the other’s
public key.

2) Pseudorandom Generators: PRG(r) is a deterministic
function that expands a random seed r € {0, 1}" into a longer
pseudorandom string. The PRGs used in this paper are secure,
meaning their outputs are computationally indistinguishable
from truly random strings, as long as the seeds remain secret.

3) Pseudorandom Functions: PRF(k,z) is a deterministic
function that maps an input x to a pseudorandom string
of the same length, using a secret key k£ € {0,1}". The
PRFs used in this paper are secure, meaning their outputs are
computationally indistinguishable from truly random strings,
as long as the keys remain secret.

4) Secret Sharing:  Shamir’s (¢,L) secret sharing
scheme distributes a secret s using two algorithms:
SS.share(s, ¢, L) —  {(s)1,...,(s)p} splits s into L
shares, and SS.recon({(s);}icz) — s reconstructs s from any
subset with |£| > ¢. The scheme ensures that fewer than ¢
shares reveal no information about s.

B. Flaminngo SecAgg Protocol

SecAgg enables the server to obtain the sum of client
inputs while keeping individual inputs private. We focus on
the Flamingo [6] protocol because it fits seamlessly into our
system model defined in Section III-A. A key innovation of
Flamingo lies in its highly efficient unmasking phase, which is
a bottleneck in [4]. Instead of involving all clients, Flamingo
offloads this task to decryptors, a small set of users.

1) Setup Phase: The setup phase is executed only once be-
fore training begins. During this phase, each pair of users ¢, j €
N establishes a long-term secret s; j and a symmetric key k; ;
using Diffie-Hellman key exchange through PKI. Long-term
secrets serve as the basis for generating pairwise masks in
subsequent rounds. In addition, a trusted source of public
randomness R [26] is used to select a small subset of users
as decryptors D from N.

2) Report Phase: In each round 7, each client : € C
uses R to determine a set of neighbors A; C C with whom it
will compute pairwise masks. Using the long-term secrets, @
derives round-specific pairwise seed r; ; < PRF(s; ;,7) for
all peers 7 € A;. In addition, ¢ randomly generates an
individual seed r;. Using these, ¢ masks its model update
vector x; as follows:

[[CBZ‘]] =x; + PRG(TZ‘) + Z iPRG(ri,j),
——  jea, (D
[

(individual mask)

(pairwise mask)

where the sign of each pairwise mask is positive if ¢ < j and
negative otherwise. Although individual masks are essential
for ensuring robustness against client dropouts, we assume no
dropouts occur in this explanation for simplicity.

To enable unmasking of the individual mask, i secret-
shares 7; as {(ri)u}tuep <+ SS.share(r;,¢,|D|). Then, it
encrypts each share (r;), using the symmetric key k;,
shared with decryptor w. That is, a total of |D| cipher-
texts {[(ri)u]k, . uep are generated. Finally, i sends the
masked input [x;] along with these ciphertexts to the server.
Although there are |D| ciphertexts, each seed and its share
are significantly smaller in size than the masked input vector
itself, resulting in only marginal communication overhead.



3) Unmasking Phase: The server aggregates all the re-
ceived masked vectors. Since we assume no client dropouts,
the pairwise masks cancel out upon aggregation, yielding:

ie€C ieC i€C

The goal of this phase is to remove individual masks so that
the server can recover the plaintext ), . ;.

To this end, the server sends the ciphertexts of seed shares
to their corresponding decryptors. Specifically, each decryp-
tor u € D receives a set of ciphertexts {[(r;)u]x, , }icc, which
it decrypts using the symmetric keys {k; , }icc. The plaintext
seed shares are then returned to the server.

The server can reconstruct each seed r; only if it collects
at least ¢ shares from a subset of decryptors D; C D,
ie., r; + SS.recon({(r;)u}uep,), Where |Di| > . Fi-
nally, the server regenerates the individual masks by applying
PRGs to each reconstructed seed and subtracts the total
mask » ... PRG(r;) from the aggregated vector to obtain the
plaintext sum ), . x;.

III. PER-ELEMENT SECAGG FRAMEWORK

This section defines the system and threat models along with
our design goals. Based on them, we propose the Per-element
SecAgg framework against data reconstruction attacks.

A. System Model

We consider a star topology with a single server and a set of
N users. Following prior work on Flamingo [6], Willow [8]
and OPA [7], we assume two roles among users: clients and
decryptors. In each round 7, a set of clients C C N is selected
at random based on a public source of randomness. Each
client ¢ € C receives the global model from the server, trains
it on its local dataset, and returns an update vector x; € RIXI,
Separately, a set of decryptors D C A is randomly selected
using the same public randomness. Decryptors assist in the
SecAgg procedure but do not participate in model training.
The server receives only the aggregated sum of the update
vectors » ... a; via the SecAgg protocol, without learning
any individual update.

Some users may drop out during the protocol due to
unstable network conditions or battery limitations. We denote
the dropout rate of decryptors in each round by §p. We do not
explicitly define the dropout rate of clients, as their dropout
does not affect our Per-element SecAgg mechanism.

B. Threat Model

We assume that the server behaves as a malicious adversary.
It is allowed to arbitrarily deviate from the SecAgg protocol,
including manipulation of protocol messages. In addition, the
server can freely modify the global model distributed to clients
in each round. The server may also collude with up to a
fraction nc of clients and a fraction np of decryptors, from
whom it can obtain internal protocol information such as
secret keys or secret shares. As with Flamingo, we assume
that dp + np < 1/3 and treat dropped decryptors and

colluding decryptors as disjoint sets. The adversary’s goal is
to reconstruct the datasets of honest clients under SecAgg by
launching sparse update-based attacks [9]-[14].

C. Design Goals

Our primary goal is to prevent data reconstruction attacks by
simultaneously satisfying the following properties (P1)—(P4).
(P1) Per-element Threshold Aggregation. The server learns
only the aggregated values of elements that are contributed by
at least ¢ honest clients. This property is the core of our work.
(P2) Security against a malicious server. Even if the server
behaves maliciously, (P1) is still guaranteed. Specifically, this
property considers the case where the malicious server sends
forged information to honest decryptors.

(P3) Dropout Tolerance. Even if up to |§pD]| decryptors
drop out, the protocol does not abort, and (P1) remains
guaranteed. Tolerance to client dropouts is also required, but
this can be addressed by existing SecAgg protocols [4]-[6]
without affecting our framework. Therefore, the rest of this
paper does not elaborate on recovery from client dropouts.
(P4) Collusion resilience. Even if the server colludes with
up to |ncC] clients and up to |ncD] decryptors, (P1) is still
guaranteed.

On the other hand, the following properties are not part of

our goals.
Prevention of other attacks. We focus on defending against
data reconstruction attacks, the most critical privacy threat
in FL. Therefore, other attacks, such as property inference
attacks [12] and label inference attacks [27], are out of scope.
Privacy of index information. Our approach reveals to the
server and decryptors the indices where each client contributes
non-zero values, as is commonly done for sparse FL [28].
While such exposure may raise privacy concerns, we do not
attempt to hide them in our design, as it poses little threat. A
detailed discussion is deferred to Section V-C.

D. Core Mechanism and Rationale

We introduce a lightweight mechanism that extends the
SecAgg process to support Per-element SecAgg. This mech-
anism is built solely on standard cryptographic primitives
(Section II-A). The key idea is to enable decryptors to control
which elements are unmasked based on how many clients
contribute non-zero values at each index.

The protocol proceeds as follows (illustrated in Fig. 1):

o Each client adds additional pairwise masks—shared with
decryptors—to its local update vector, but only at the
indices corresponding to non-zero elements.

o After collecting the masked vectors, the server counts
how many clients contributed non-zero values at each
index and forwards this information to the decryptors.

o For each index that exceeds threshold ¢, the decryptors
return the corresponding pairwise mask, enabling the
server to unmask the element of the aggregated vectors.

This overall flow is designed to satisfy our key security

properties (P1) and (P2). In what follows, we explain the ratio-
nale behind each of the three components of the mechanism: 1)



Fig. 1.

per-element contributor counting, 2) per-element masking, and
3) per-element unmasking. The overall protocol, along with the
designs addressing (P3) and (P4), is presented in Sections IV
and V, respectively.

1) Per-element Contributor Counting: To realize (P1), the
decryptors must determine which indices have received at
least ¢ non-zero contributions. To this end, each client 7 € C
generates a binary indicator vector b;, where:

1 ifaifk] #0

b;[k] = )
0 otherwise,

3)
for all £k € K. This vector flags the indices where the
client’s local update vector x; has non-zero values. Clients
send their indicator vectors to the server, which collects and
forwards {b;};cc to the decryptors, in accordance with the
star topology of the network. This enables the decryptors
to compute, for each index, the number of clients that have
contributed non-zero values, and decide whether to unmask
the corresponding element accordingly.

2) Per-element Masking: For (P1), the server forwards the
set of indicator vectors {b;};cc to the decryptors. However, a
malicious server may forge these vectors, falsely claiming that
an index k has received at least ¢ non-zero contributions. This
may cause honest decryptors to return masks for elements that
do not genuinely satisfy the threshold condition, allowing the
server to unmask them and thus violating (P2).

A straightforward solution would be to make each b; ver-
ifiable using cryptographic tools. However, such an approach
introduces additional cryptographic primitives and complicates
the protocol. Instead, we adopt a simpler and more robust
design: we tolerate the possibility of forged indicators, but
ensure that any manipulation by the server cannot result in
successful unmasking.

To this end, each client adds pairwise masks with the
decryptors to its local update x;, but only at indices with non-
zero values. As a result, the total mask at each index reflects
only the contributions from clients with actual non-zero values
at that index. Any mask derived from forged indicators fails
to match this sum, making unmasking unsuccessful. Thus,
only elements with contributions from at least ¢ clients can
be correctly unmasked. Server-client collusion resilience is
addressed in Section V-B
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Overview of Per-element SecAgg framework.

3) Per-element Unmasking: To enforce per-element un-
masking control, each decryptor must return masks on an
element-wise basis. A naive approach—used in Flamingo—
would have decryptors send back the seeds (shares) allowing
the server to regenerate the full mask efficiently. However,
this would enable the server to unmask all elements, including
those that should remain hidden, thus violating (P1).

To avoid this, we have each decryptor return a mask vector
instead of the seeds. Specifically, the decryptor reveals actual
mask values only for indices that meet the threshold condition.
This design ensures that the server can unmask only the
intended elements, preserving per-element confidentiality.

E. Efficiency Gains by Using Partial Vectors

We reduce the size of binary indicator vectors b; and the
computational and communication overhead of per-element
masking/unmasking mechanisms.

1) Compression of Binary Indicator Vectors: In Sec-
tion III-D, we design the protocol in which each client
sends its full binary indicator vector b; to the server, which
then forwards {b;};cc to all decryptors. Since b; has the
same dimension as its local update x; (i.e., |K|), sending
such large vectors is communication-inefficient. However, we
can leverage the observation that local update vectors are
typically sparse. According to [29], more than 95% of their
elements are effectively zero. This means that b; is also
sparse. To reduce communication costs, we instead transmit
the set B; = {k € K | b;[k] = 1}, which compresses the
indicator information while preserving correctness.

2) Protecting Only FC Layers: We reduce the number of
elements protected by masks by leveraging the observation
that data reconstruction attacks primarily target a subset of
fully connected (FC) layers, particularly those near the input
or output layers [22], [23]. These gradients are semantically
informative and less protected by architectural structures such
as convolution or pooling. Therefore, we apply our mechanism
only to the parts of x; corresponding to selected FC layers. As
detailed in Section VI-A2, this reduces the masking/unmasking
scope to 5-40% of the entire update vector, depending on
the model architecture, and significantly lowers both compu-
tational and communication overhead.



Setup Phase.
— Useri € NV
o Generates key pairs (g% ,a;), (g% ,b;) and stores its public
keys (g%, g%) in PKL
- All:

* Given the security parameter s, a public randomness R, the number
of clients and decryptors, the size of neighbors, threshold values ¢, ¢,
and the parameter Apmax.

* Select the decryptors D with R.

Report Phase in round 7.
— Client 7 € C:
e Select A; with R.
* Retrieve g% for j € A;, and g%+ and g®+ for u € D from PKI.
* Derive s; ; +— g% for j € A;,
and s;, < g%, ki gbibu for u € D.
» Compute r; j < PRF(s; j,7) for j € A;,
and r; ,, < PRF(s;,,7) for u € D.
e Construct b; and B; from @x;, and compute as:
:13; =x; + bz ® ZuED PRG(%LU)
* Randomly generate r;, and mask m; as:
[[w;]] = :B; + PRG(r;) + ZjeAi +PRG(r5,5).
* Secret-share the seeds as {(r;)u}uep < SS.share(r;,£,|D|)
and {(7,v)u fu,veD + SS.share({r; » }vep, ¥, |D|).
* Encrypt (rj)w and {(rj v)u}oep with k;, for each u € D
(i-e-, [[<Ti>uﬂki)1L and {[[<”7ﬁ,1;>'11,]]k71:1l }UE'D)-
¢ Send to the server:
[=:]. Bis {[{ri)ulk; o Yueps {[(riw)ulk; \ FuveD-
— Server:
+ Collect messages from clients C and aggregate Y, . [«}].
* Send to decryptor u € D: {B;}icc and {[(ri)u]k, , }tiec-
Unmasking Phase in round .
— Decryptor u € D:
* Retrieve g% and gPi for i € C from the PKI.
Derive s; 4, < g%i“v and k; o gbibu for i € C.
Compute r; ,, <— PRF(s; 4, 7) for i € C.
Construct C[k] for each k by using {8, }icc.-
Derive emk,, [k] for each k:
emkqylk] =32, ccop PRG(ri,w) K] if [C[K]| > t; otherwise, L.
* Decrypt {[{ri)ulk, , }icc With {kiu}icc.
* Send to the server: emk, and {(r;)u}icc.
— Server:
¢ Collect messages from decryptors D1 C Ds.
o If |D1| > £, reconstruct seeds:
{ri}iec < SS.recon({{(ri)u}tuep, }icc); otherwise, abort.
* Subtract 3°, . emky and 37, PRG(r;) from 37, . [=].
e If D1 # D, derive V =D\ D;.
e Send to the decryptor u € Dy: V and {[[<7’i-v>u]]ki,u Yicc,vev

Dropout Recovery Phase in round 7 (if D1 # D).
— Decryptor u € Di:
* Proceed only if |V| > Amax; otherwise, abort.
» Decrypt {[[<ri,’lf>"lﬂkw,,“ }oev. with {k; w }iec-
* Send to the server: {(r; v)u}ticc,vev-
— Server:
¢ Collect messages from decryptors Dy C Dj.
o If |D2| > £, reconstruct seeds:
{ri,uticcuep\p;, < SS.recon({{ri,u)v}ticcvep\D1 )}
otherwise, abort.
» Construct {b; };cc from {B;}icc.
* Subtract -, cc >0, ep\p, bi @ PRG(r,4) from
2iec =] =2 uep, emku.
Fig. 2. The full protocol that realizes Per-element SecAgg based on Flamingo.

Red-colored components indicate the extended procedures. For simplicity,
client dropouts are not considered.

IV. PrOTOCOL

We present the full protocol that realizes Per-element
SecAgg. It extends Flamingo by incorporating the mechanisms
explained in Section III for (P1) and (P2), and introduces an

additional phase for dropout tolerance of decryptors (P3).

A. Protocol Covering for (P1) and (P2)

This subsection explains the protocol phases—mainly the
Report Phase and Unmasking Phase—that work together to
achieve (P1) and (P2). We focus on the red-colored parts in
Fig. 2, which explain the extensions for Per-element SecAgg.
For simplicity, client dropout recovery mechanisms are omitted
here, but they can be achieved using Flamingo’s original
techniques [6] without affecting our extension.

1) Setup Phase: This phase is identical to the Setup Phase
in Flamingo (Section II-B). Our mechanism requires no addi-
tional setup beyond what Flamingo already provides.

2) Report Phase: To enable additional masking for Per-
element SecAgg, each client ¢ € C first retrieves the public
keys of all decryptors v € D from the PKI and derives long-
term secrets s; ,, <— g**“*. Then, ¢ computes a round-specific
seed 7, < PRF(s;.4, 7).

1 constructs an indicator vector b; and the set of its non-zero
indices B; from its local update x;, following Eq. (3). Next,
for per-element masking described in Section III-D2, ¢ masks
only the non-zero elements of x; as follows:

u€eD
where ® denotes element-wise multiplication. The masked
vector «, is then further processed using Flamingo’s original
masking procedure—adding an individual mask and pairwise
masks—to produce the final masked vector [x}].

To prepare for decryptor dropout recovery (explained in
the next subsection), ¢ secret-shares each seed r;, across
all decryptors: {(7;.4)u}uvep < SS.share({r; , }vep, 4, |D|).
Then, it encrypts each share (r;,), using the symmet-
ric key ki, producing [{r;.)u]k, . Finally, i sends the
following to the server: [}], B;, and the encrypted
shares {[{rs)ulk,.. buep and {[{rs.0)ulk,., buven-

Upon collecting all messages from the clients, the server
aggregates the masked vectors:

DIzl => i+ Y PRG(r) + > Y PRG(rin). (5)

ieC ieC i€C i€C ueD

To unmask Eq. (5), the server forwards {[(ri)u]#; ., }ueD
and {B,}icc to each decryptor v € D. This completes the
forwarding step described in Section III-D1, allowing the
decryptors to compute per-element contributor counts.

3) Unmasking Phase: Each decryptor u € D first derives
round-specific seeds {r; ., }icc using the public keys of clients
and their long-term secrets. Next, using the collection {B; };cc
received from the server, u constructs the set of contributors
for each index k € K as Clk] = {i € C | k € B;}. This
identifies the clients who reported non-zero values at index k.
Based on the contributor count |C[k]|, w determines which
indices satisfy the threshold ¢ and generates an element-wise
mask vector emk,, as follows:

>iccpw) PRG(riw) k] if [C[K]| = ¢

emk,[k] =
k] otherwise.

(6)



where L denotes a null value and PRG(r; ,[k]) denotes the
k-th element of the pseudorandom mask vector. In this way,
u explicitly controls which indices are eligible for unmasking,
in accordance with the per-element threshold policy described
in Section III-D3. Finally, the decryptor returns emk, and
the decrypted seed shares {(r;). }icc to the server.

Upon receiving messages from all decryptors, the server re-
constructs the individual seeds and regenerates ) ;. PRG(r;).
Then, using the sum of element-wise masks Zuep emk,,, the
server performs the unmasking:

y=) [~ PRG(r)~ ) emk,

ieC ieC uw€D o
_ ) Xiecmilk] if[ClE][ =t
1 otherwise.

This ensures that only elements with at least ¢ contributors are
unmasked, thereby fulfilling (P1).

B. Protocol Covering for (P3)

This subsection extends the protocol presented in Sec-
tion IV-A to tolerate decryptor dropouts (P3). We begin by
explaining the motivation and rationale behind this extension.
We then identify a potential threat to (P2) that arises from
this extension and describe our solution. Finally, we present
the detailed protocol steps.

1) Motivation: In the Unmasking Phase explained in Sec-
tion IV-A3, let D; C D be the set of decryptors from
whom the server receives element-wise masks emk,,. If any
decryptor drops out (i.e., D; # D), the corresponding element-
wise masks {emk,},ep\p, are missing. As a result, the
unmasking in Eq. (7) fails for all elements due to incomplete
subtraction. To satisfy (P3), we introduce a dropout recovery
mechanism that is executed only when Dy # D.

2) Rationale: To tolerate decryptor dropouts, clients pro-
vide encrypted shares of all seeds in advance during the Report
Phase. If some decryptors drop out, the server sends the drop
list V = D\ D; and corresponding ciphertexts of seed shares
to the surviving decryptors D;, requests the plaintexts, and
reconstructs the missing seeds. Since only seed shares are
exchanged, the communication overhead remains marginal.

This strategy may appear to contradict the per-element un-
masking (Section III-D3), which avoids disclosing seeds to the
server. However, revealing seeds for the dropped decryptors
does not violate (P1), since unmasking depends on element-
wise masks emk, from honest decryptors in D;, which are
revealed only for elements meeting the threshold. Thus, the
server still cannot unmask under-contributed elements.

3) Risk of Violating (P2) and Its Solution: The dropout re-
covery mechanism poses a threat to (P2), in which a malicious
server may add surviving and honest decryptors to the dropout
list V, so that they are disguised as having dropped out. The
server can then obtain at least ¢ shares for all decryptors’ seeds
and fully unmask every element, violating (P1).

To counter this threat, we adopt a simple but practical
strategy that requires no additional round for checking dropout

TABLE II
COST PER PROTOCOL PHASE OF OUR PROTOCOL

Client Server
Computation
Report O(DK' + AK + D3) O(CK)
Unmask O(CK") O(DK' 4+ CD? 4+ CK)
DropRev o(Ccv) O(V(CD? + K'))
Communication
Report O(K + aK' + D?) O(C(D? + DK'a + K))
Unmask O(CK'a) O(D(K'+CV))
DropRcv ocv) O(CDV)
Notation: C: number of clients, D: number of decryptors, A: size of

neighbors of each client, V: number of dropped decryptors, K: vector
size of @;, K': vector size to be additionally masked, «: sparsity of a
vector.

decryptors. We introduce a global constant A,.., which
defines the maximum number of decryptor dropouts tolerated
by honest decryptors. If |V| > Ayax, the protocol is aborted
by the honest decryptors. This bound limits how many seed
shares the server can receive from the honest decryptors,
ensuring that at least one honest decryptor’s seed cannot be
recovered. As proven in Section V-B, setting Ap.x = [£/2]
(where / is the threshold of the secret sharing scheme) prevents
this risk while ensuring that the protocol does not abort due
to decryptor dropouts.

4) Procedure: Upon detecting a decryptor dropout (i.e.,
Dy # D) during the Unmasking Phase, the server constructs
alist V = D\ D; of the dropped decryptors. It then sends V
and the encrypted seed shares {[(riv)u]r; , }icc,ucy to each
surviving decryptor v € D;.

In the Dropout Recovery Phase, each decryptor u € D;
first verifies that |V| < Apax. Then, u decrypts the received
ciphertexts using the symmetric keys {k; ,};cc, and returns
the plaintext shares to the server.

The server collects responses from a set Do of at least ¢
decryptors and reconstructs all missing seeds {r; , }icc,vey Via
secret sharing. Using the reconstructed seeds and the indicator
vectors {b; };cc, the server completes the unmasking step:

y= Y [2}] - 3 PRG(r))

ieC ieC
— Z emk, — Z b; © PRG(7; ).
UED\Dl

ueDy

®)

This yields the correct aggregate y, and achieves (P3).

V. COST, SECURITY AND PRIVACY ANALYSIS

A. Computation and Communication Cost Analysis

The computation and communication costs of our protocol
are summarized in Table II. We define the computation cost
by treating the following operations as O(1): one PRF eval-
uation, one PRG output for a vector element, one symmetric



encryption/decryption, and one addition/subtraction of a vec-
tor element. The cost of secret sharing (both SS.share and
SS.recon) is modeled as O(|D|?) per secret.

For communication cost, we define O(1) as the transfer of
one vector element, one item in a set, or one share.

B. Security Analysis

We analyze the security of our protocol. We first show how
collusion resilience (P4) is achieved by appropriate parameter
settings. Finally, we prove that our protocol remains secure
even in the presence of a malicious server, colluding users,
and decryptor dropouts, thereby satisfying (P1)-(P4).

1) Parameter Settings For (P4): As shown in Eq. (6),
each decryptor returns its element-wise mask if the number
of non-zero contributors at an index reaches the threshold £.
However, the element-wise mask alone cannot ensure (P1)—
that the server learns only the aggregated values of elements
contributed by at least ¢ honest clients—in the presence
of colluding clients. This is because colluding clients may
maliciously flag their binary indicator vectors, making the
contribution count exceed ¢.

To address this vulnerability, we redefine the decryptor’s
threshold from ¢ to ¢’ and discuss how to set it to enforce (P1)
under collusion. Clearly, ¢' > |n¢|C|] is required to prevent
colluding clients from meeting the threshold alone. The goal of
setting ¢’ is to hide the element values unless at least ¢ honest
clients contribute. We now define how to set ¢’ to ensure this.

Theorem 1. Let t be the minimum number of honest client
contributions required for an element to be revealed. Let t'
be the threshold used by the decryptors to determine whether
to return the element-wise mask for unmasking. Suppose the
server may collude with up to |nc|C|| clients. Then, setting
t' = |nc|C|] + t ensures that no element is unmasked unless
at least t honest clients have contributed non-zero values.

Sketch Proof. Since the server can control up to |[n¢|C|]
clients, it may attempt to inflate the contribution count to
[nc|C|| at arbitrary indices. By setting ¢’ = [nc|C|] + ¢, the
server with colluding clients cannot inflate the count to ¢'. [J

We then discuss the selection of ¢ and Ap.x to achieve
resilience against colluding decryptors.

Theorem 2. Let D1 C D be the set of online decryptors in
the Unmasking Phase, and Dy C Dy be those who respond in
the Dropout Recovery Phase. Suppose the server may collude
with up to |np|D|| decryptors and up to |6p|D|| honest
decryptors may drop out, under the constraint ép+np < 1/3.
Then, setting { = [2|D|/3]+1, Amax = [£/2] simultaneously
ensures the following:

(Recovery) The server can reconstruct the seeds of all dropped
decryptors v € D\ Dy if |Da| > L.

(Security) A malicious server cannot reconstruct the complete
seeds of all (| (1 —np)|D|]) honest decryptors.

Sketch Proof. Each decryptor u € Do returns |C| seed shares
for each dropped decryptor v € V reported by the server.

Treating this response as one unit per v, the total number of
shares the server receives is Apax - [(1 — dp — np)|D|].

(Recovery) To reconstruct the seeds of |dp|D|| dropped
decryptors, the server requires [dp|D|]| - (¢— |np|D|]) shares.
The server can successfully recover the missing seeds if the
number of received shares is at least this amount, i.e., Ayax
(1= 3 —1p)[DI] > |3pID]] - (£ = [np|DI]). In the worst
case setting for recovery, where 6p — 1/3 and np — 0, this
simplifies to Apax > £/2.

(Security) To reconstruct all seeds of | (1 —np)|D|] honest
decryptors, a malicious server requires | (1 — np)|D|| - (£ —
[7p|D]]) shares. To ensure security, the number of shares the
server obtains must be strictly less than this quantity: Ay -
(1= 6 —1p)[D] < L(1—np)[D]] - (¢ — [11p|D])). In the
worst-case for security, where 6p — 0 and np — 1/3, this
simplifies to Apax < £ —|D|/3.

From both conditions, Aax 18 £/2 < Apax < £—|D]|/3 is
derived. This range is non-empty if ¢ > 2|D|/3. Accordingly,
the optimal parameters that satisfy both recovery and security
are given by ¢ = |2|D|/3] + 1 and A = [£/2]. O

2) Per-element Threshold Aggregation: We now show that
our protocol ensures per-element threshold aggregation.

Theorem 3. Let the parameters be t' = |nc|C|] + t,
¢ = [2|D|/3] + 1, and Awnax = |¢/2]. Suppose the server
colludes with up to |nc|C|| clients and |np|D|| decryptors,
and up to |dp|D|| decryptors may drop out, with dp +np <
1/3. Assume the underlying cryptographic primitives, PRG-
based masking encryption [30] and the Flamingo protocol
are secure. Then, the server learns only the sum of elements
contributed by at least t honest clients; elements with fewer
contributions remain hidden.

Sketch Proof. A full proof via a hybrid argument is omitted;
we sketch the key ideas. By the security of Flamingo, the
server receives only the masked sum ), _, ;. This holds even
if the server is semi-honest or malicious.

If the number of contributors at an index is at least t,
then decryptors return the corresponding element-wise masks.
These are sufficient to cancel out all per-element masking,
allowing the server to recover the true sum at that index.
For indices with fewer than ¢ contributors, at least one honest
decryptor will withhold its mask. Due to the unpredictability of
PRG outputs and the security of the underlying key agreement,
this missing mask renders the masked value computationally
indistinguishable from random.

Theorems 1 and 2 guarantee that the server cannot forge
contribution counts or manipulate dropout reports to gain
access to missing masks. Thus, elements are revealed if and
only if at least ¢ clients contribute non-zero values. ]

C. Privacy Analysis

Our protocol reveals to the server and decryptors the indices
at which each client has non-zero updates, via the set of
indices ;. This subsection discusses the potential privacy
implications of this design choice.
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One concern is that index exposure may lead to data
reconstruction. Us Sami et al. [31] argue that, under SecAgg,
knowing the indices of non-zero updates can allow the server
to reconstruct clients’ datasets by solving linear systems.
However, this attack assumes the server sends an unchanged
global model to the same client for hundreds of rounds,
which is unrealistic in our setting, where clients are randomly
reselected in each round (see Section III-A).

Another possible risk is attribute inference. Pasquini et
al. [12] demonstrate that, by observing which indices are non-
zero, the server can infer sensitive properties of a client’s
dataset. As noted in Section III-C, our framework specifically
targets data reconstruction attacks and does not protect against
such inference. Addressing this remains future work.

VI. EVALUATION

We compare our proposed protocol with Flamingo and
evaluate the additional overhead. We also examine the impact
of Per-element SecAgg on model performance.

A. Experimental Setup

1) Implementation: We implement our protocol on the
ABIDES simulator [32], which has been used to evaluate sev-
eral SecAgg protocols [6], [7], [21]. Cryptographic primitives
are implemented by using the same modules used in Flamingo.

2) Parameter Settings: To reflect practical FL scenarios
in which a malicious server may launch data reconstruction
attacks under SecAgg, we configure the parameters as follows.
Model Update Vector Dimensionality. We assume a cross-
device setting in which clients are resource-constrained user
devices such as smartphones. In such settings, models typically
contain several million parameters (e.g., ResNet-9 has 4.9M,
LSTM has 8.3M [33], and small Transformer models around

4.1M [34]). Based on this observation, we fix the dimension-
ality of the model update vector to SM for all evaluations.
Additional Mask Rate As shown in Section V-A, the over-
head of our Per-element SecAgg depends on the proportion of
the update vector that is masked. When data reconstruction at-
tacks rely solely on model parameter manipulation, the masked
portion typically remains below 10% for architectures such
as ResNet and Transformer (e.g., Wen et al. [10] propose an
attack that observes only the output layer, which accounts for
4.4% of the parameters in ResNet-18 [35]). However, attacks
that involve modifications to the model architecture—such as
inserting additional linear layers for reconstruction [13]—may
require a higher masking rate. This also holds for potential
future attacks that exploit deeper model structures. Therefore,
we fix the update vector size to SM and vary the masking ratio
from 5% to 40% in our evaluation.

Sparsity of update vectors. To prevent reconstruction at-
tacks, elements in the model update vector with magnitudes
below a threshold A should be treated as zeros. This is aligned
with threshold-based sparsification approaches in FL [29],
[36]. According to [29], setting A between 10~3 and 1072
results in over 99% of elements being zeroed out. In our
evaluation, we conservatively assume a sparsity level of 95%.

B. Computation Time and Communication Overhead

1) When Additional Mask Rate is 10%: We evaluate the
computation time and communication overhead in the most
practical setting, where the additional mask rate is 10%.
Figs. 3a and 3b show the computation time for a user (client
+ decryptor) and the server, respectively, as the number of
clients (|C|) increases, in comparison with Flamingo (“Fla.”)
and our protocol with Per-element SecAgg (“Ours”).
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At 256 clients, the additional time compared to Flamingo
is 1.6s on the user side and 6.0s on the server side, totaling
just 7.6s per round. While both increase with |C|, the overhead
remains modest. Fig. 4 breaks down the computation time and
communication overhead at 256 clients. On the user side, 1.2s
(75%) of the overhead comes from the decryptor’s Unmasking
phase (Fig. 4a), which is acceptable, as decryptors do not
perform training and remain lightweight. On the server side,
5.3s (80%) stems from Dropout Recovery (Fig. 4b).

Figs. 4c and 4d show the communication overheads, with
increases of 1.21x on the user side and 1.07x on the server
side. User-side growth is more notable. This is mainly due to
the decryptor’s reception of the index sets {B;};cc (“Recv.” in
Unmask) and the transmission of element-wise masks (“Send”
in Unmask), which together account for 96% of the increase.
Nevertheless, this is acceptable, as both are much lighter than
client communication, such as downloading the global model
(“Model Recv.”) or uploading updates (“Send” in Report).

2) Computation Time under Varying Additional Mask Rate:
Figs. 3c and 3d show the computation time for a user and the
server, respectively, as the additional mask rate varies. Note
that the case of 0% corresponds to the original Flamingo. We
also vary the decryptor dropout rate across 0%—30%.

On the user side, computation time increases roughly lin-
early with the additional mask rate. The maximum overhead
is a 6.4x increase over Flamingo when 40% of elements are
additionally masked. The user time is largely unaffected by
decryptor dropout, since the corresponding recovery involves
only lightweight symmetric decryption.

The server-side computation time also grows linearly with
the additional mask rate, and the slope increases with higher
dropout rates. The highest overhead—2.9x over Flamingo—
occurs at 40% additional masking and 30% dropout. Notably,
when the dropout rate is 0%, the server time remains nearly
identical to Flamingo, regardless of the additional mask rate.
This is because, in the absence of dropout, the server only
performs element-wise subtraction on masks, a lightweight
operation as shown in Fig. 4b.

C. Impact on Model Performance

In Per-element SecAgg, elements with fewer than ¢ non-
zero contributions in a round are not revealed to the server,
and the corresponding elements in the global model cannot be

updated. While this design enhances privacy—especially with
larger ¢, it may affect model accuracy.

We evaluate this effect using a three-layer fully connected
neural network and the MNIST dataset [21], with 100 clients.
Model updates are sparsified by thresholding small-magnitude
elements, yielding about 95% sparsity. In the IID setting, each
client holds data uniformly sampled across all 10 labels. In the
non-IID setting, each client holds data from 2 labels.

Under the IID setting (Fig. 5a), Per-element SecAgg shows
almost the same convergence speed and final accuracy as the
baseline (“w/o SecAgg”), even when ¢ is increased; the final
accuracy difference remains as small as 0.01. Under the non-
IID setting (Fig. 5b), the accuracy transition becomes less
stable due to data heterogeneity, and when ¢ = 20, 30, the final
accuracy degrades by up to 0.05 compared to the baseline.

This is likely due to reduced overlap of non-zero indices.
As noted in [37], [38], IID clients are more likely to update
the same elements, making threshold satisfaction easier—even
when the updates are highly sparse. In contrast, under non-
IID settings, heterogeneous data distributions lead to diverging
update patterns among clients. This divergence, combined
with high update sparsity, makes the overlap of non-zero
indices especially low, which in turn significantly hinders the
server’s ability to collect at least ¢ contributions at each index.
Improving robustness in non-IID settings under high ¢ remains
an important direction for future work.

VII. RELATED WORK

This section summarizes data reconstruction attacks that
exploit the sparsity of model update vectors, which our Per-
element SecAgg can potentially prevent. Existing countermea-
sures and their limitations are already discussed in Section I.

A common strategy exploits the ReL.U activation, which
outputs zero for negative inputs. A malicious server can
manipulate model weights so that only a specific sample yields
a non-zero output. When distributed to a client, the resulting
update reveals gradient information corresponding to that
sample, as demonstrated by Pasquini et al. [12] and Boenisch
et al. [11]. Other approaches aim for more accurate recon-
struction by modifying not only model parameters but also the
architecture itself. Fowl et al. [9] and Zhao et al. [13] propose
attacks that insert linear layers with ReLLU activation into the
global model to directly extract data from the corresponding
updates. Wen et al. [10] amplify gradients only for target
classes or features by carefully altering weights and biases.
Since this attack isolates updates by feature rather than by
client, distributing the same manipulated model to all clients
can still enable data extraction, effectively bypassing SecAgg.
Although most existing attacks target image reconstruction,
Chu et al. [14] extend this to text. They focus on Transformer
models and amplify updates associated with specific keywords
by modifying multi-head self-attention weights, enabling the
reconstruction of inputs such as credit card numbers.

VIII. CONCLUSION

This paper proposes Per-element SecAgg, a new mechanism
that enhances SecAgg in FL by revealing aggregated values



only when at least ¢ clients contribute non-zero elements.
We design a concrete protocol by integrating this mechanism
into the Flamingo SecAgg protocol without introducing new
cryptographic primitives. We evaluate the additional over-
head and model performance impact of Per-element SecAgg,
demonstrating its practicality in realistic settings.
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