
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Large Language Models Versus Static
Code Analysis Tools: A Systematic
Benchmark for Vulnerability Detection
DAMIAN GNIECIAK1, TOMASZ SZANDALA1
1Faculty of Information and Communication Technology, Wroclaw University of Science and Technology, Wroclaw, Poland

Corresponding author: Tomasz Szandala (e-mail: Tomasz.Szandala@pwr.edu.pl)

ABSTRACT Modern software relies on a multitude of automated testing and quality assurance tools
to prevent errors, bugs and potential vulnerabilities. This study sets out to provide a head-to-head,
quantitative and qualitative evaluation of six automated approaches: three industry-standard rule-based
static code-analysis tools (SonarQube, CodeQL and Snyk Code) and three state-of-the-art large language
models hosted on the GitHub Models platform (GPT-4.1, Mistral Large and DeepSeek V3). Using a
curated suite of ten real-world C# projects that embed 63 vulnerabilities across common categories
such as SQL injection, hard-coded secrets and outdated dependencies, we measure classical detection
accuracy (precision, recall, F-score), analysis latency, and the developer effort required to vet true positives.
The language-based scanners achieve higher mean F-1 scores,0.797, 0.753 and 0.750, than their static
counterparts, which score 0.260, 0.386 and 0.546, respectively. LLMs’ advantage originates from superior
recall, confirming an ability to reason across broader code contexts. However, this benefit comes with
substantial trade-offs: DeepSeek V3 exhibits the highest false-positive ratio, all language models mislocate
issues at line-or-column granularity due to tokenisation artefacts. Overall, language models successfully
rival traditional static analysers in finding real vulnerabilities. Still, their noisier output and imprecise
localisation limit their standalone use in safety-critical audits. We therefore recommend a hybrid pipeline:
employ language models early in development for broad, context-aware triage, while reserving deterministic
rule-based scanners for high-assurance verification. The open benchmark and JSON-based result harness
released with this paper lay a foundation for reproducible, practitioner-centric research into next-generation
automated code security.
ProjectAnalyzer Code is available on GitHub:https://github.com/Damian0401/ProjectAnalyzer

INDEX TERMS Large Language Models, Software Engineering, CI/CD, Software Quality

I. INTRODUCTION

Rapidly developed software has become vital for modern
industry. Yet, its growing complexity and attack surface have
outpaced the human capacity to reason about every line of
code [1]. Static Application Security Testing (SAST) has
long been the developer’s first line of defence: tools such
as SonarQube, CodeQL, and SnykCode integrate seamlessly
into continuous-integration pipelines, flagging defects be-
fore they ever reach production, and are trusted by more
than seven million developers across 400,000 organisations
worldwide.

Recent empirical studies nevertheless reveal a persis-
tent gap, while a single state-of-the-art analyser can
highlight vulnerabilities in roughly half of real-world,

vulnerability-contributing commits, false-positive noise and
rule coverage limitations continue to hamper day-to-day
adoption. Concurrently, the remarkable rise of large lan-
guage models (LLMs) has opened a new branch of code
intelligence. Industry surveys chart a rapid uptick in LLM
pilots across engineering teams. The research community
has begun to fine-tune these models for vulnerability de-
tection with promising results: early experiments report
competitive F-scores against graph-based and traditional se-
quence models, while comparative analyses on emerging
models—GPT-4-class systems, Mistral-Large, DeepSeek V3
and others—suggest that LLMs can reason across larger
contexts and identify subtle data-flow flaws that evade con-
ventional pattern-based rules.

VOLUME 4, 2016 1

ar
X

iv
:2

50
8.

04
44

8v
1 

 [
cs

.S
E

] 
 6

 A
ug

 2
02

5

https://github.com/Damian0401/ProjectAnalyzer
https://arxiv.org/abs/2508.04448v1


D.Gnieciak, T.Szandala et al.: Large Language Models Versus Static Code Analysis Tools

Yet, enthusiasm must be tempered with caution. The same
generative power that allows an LLM to "understand" source
code also enables failure modes alien to deterministic analy-
sers. For instance, a recent industry report warns of "slop-
squatting": hallucinated package names inserted by LLMs
that attackers later register in public repositories, creating an
entirely new supply-chain vector. Such findings underline the
need for a principled, head-to-head assessment rather than
anecdotes and marketing claims.TechRadar

This paper undertakes the first systematic comparison
between three mature static analysers, SonarQube, Cod-
eQL and SnykCode, and three cutting-edge LLMs, avail-
able on GitHub: GPT-4.1, Mistral-Large and DeepSeek V3,
evaluated on a standard benchmark suite spanning multi-
ple projects and vulnerability classes. We measure clas-
sical accuracy metrics (precision, recall, F1), as well as
developer-centric costs, such as inspection effort per true
positive, time-to-signal in CI, and the qualitative value of the
explanations generated by each approach.

Our contributions consits of:
• Unified benchmark and protocol. We form a diverse

dataset of real-world vulnerable functions, pair each
with ground-truth labels, and release an open evaluation
harness suitable for rule-based and generative systems.

• Comprehensive quantitative evaluation. We show where
LLMs already rival, and occasionally surpass, special-
ist analysers in recall, while highlighting scenarios in
which deterministic rules remain indispensable for sup-
pressing false alarms.

• Qualitative insight. Through thematic analysis of model
rationales and tool reports, we surface strengths (e.g.,
data-flow reasoning across files) and weaknesses (e.g.,
inconsistent CWE mapping) unique to each paradigm.

• Guidance for practitioners and researchers. We distil our
findings into recommendations on tool choice, prompt
engineering, and future benchmarks that capture emerg-
ing threat vectors.

II. STATE OF THE ART
Static code analysis represents an essential component within
modern software development processes. Early detection of
software defects, which, according to various studies, can
lead to a significant reduction in the cost and impact of
subsequent corrections [2], [3]. Furthermore, it simplifies
the code review process by assisting developers in detecting
potential issues early, reducing the time and effort required
for manual code reviews [4]. It is worth paying attention to
the fact that the utility of static analysis is not limited to pro-
fessional and commercial use. Academic research highlights
its educational value. A large-scale study analysing more
than 500 student-developed software projects illustrates that
regular static code analysis tools can significantly improve
code quality and student learning outcomes [5]. With the
increasing integration of artificial intelligence into the soft-
ware development lifecycle, the role and application of static
code analysis are also poised to evolve. AI-powered develop-

ment tools are a way of reinventing traditional programming
practices and introducing new possibilities. This approach
will enhance the effectiveness of static analysis techniques
and redefine their function, enabling more contextualised,
personalised, and proactive code evaluation processes.

A. HOW STATIC CODE ANALYSIS WORKS
Static source code analysis involves examining the source
code without executing it to detect potential bugs and weak-
nesses. The code is analysed for defined patterns or rules
that indicate undesirable behaviour. Typical tools use control,
data flow analysis, and pattern matching to known error
signatures [6]. Static scanners can detect, e.g. SQL Injection
or code injection vulnerabilities through taint analysis, but
usually only if such patterns have been predefined in their
rules. In industry practice, rule sets are constantly expanded
to include new bugs. Due to the multiplicity of use cases, they
have been divided into categories [7], such as:

• Naming – Issues related to inconsistent, misleading, or
nonstandard naming conventions for identifiers.

• Style – Violations of code formatting or stylistic guide-
lines can affect readability.

• Concurrency – Problems arising from incorrect han-
dling of parallel execution or shared resources.

• Exceptions – Improper use or handling of exceptions
and error conditions.

• Performance – Inefficiencies or bottlenecks that could
degrade the system’s performance.

• Interoperability – Compatibility problems between
different systems, platforms, or APIs.

• Security – Vulnerabilities that could be exploited to
compromise the system’s integrity or data.

• Maintainability – Code complexity or structure issues
that make future modification or understanding more
difficult.

• General – Broad or uncategorised issues that do not fit
neatly into other specific groups.

B. FORMAT OF RESULTS
Static code analysis tools are often integrated into other
software development processes. The analysis results are
usually an essential element before the final implementation
of the system under development.

SARIF (Static Analysis Results Interchange Format) was
presented in 2020 [8] as a standardized and extensible format
for exchanging results produced by static analysis tools, en-
abling consistent interpretation, comparison, and integration
between different platforms. Since then, it has been adopted
and integrated by many static analysis tools [9]. The structure
shown in listing 1 represents a simplified example of a SARIF
JSON output. The list includes only the fields necessary to
generate a minimal report.

$schema: Specifies the URL of the JSON schema used to
validate the structure, referencing the official SARIF 2.1.0
specification.

2 VOLUME 4, 2016



D.Gnieciak, T.Szandala et al.: Large Language Models Versus Static Code Analysis Tools

{
"$schema": "https://json.schemastore.org/sarif-2.1.0.json",
"version": "2.1.0",
"runs": [{
"tool": {
"driver": {
"name": "SonarQube",
"semanticVersion": "1.0.0",
"version": "1.0.0",
"rules": [{
"id": "SQL_INJECTION",
"shortDescription": { "text": "SQL Injection vulnerability" }

}]
}

},
"results": [{
"ruleId": "SQL_INJECTION",
"ruleIndex": 0,
"level": "error",
"message": { "text": "User input is used directly in a SQL query. This can lead to

↪→ SQL injection." },
"locations": [{
"physicalLocation": {
"artifactLocation": { "uri": "Controllers/UserController.cs" },
"region": {
"startLine": 27,
"endLine": 27,
"startColumn": 17,
"endColumn": 66

}
}

}]
}]
}]
}

Listing 1: Example SARIF JSON output

version: Defines the version of the SARIF format that is
being used (here, "2.1.0").
runs: An array containing analysis runs.
tool: Provides metadata on the analysis tool.
driver: Describes the tool driver (e.g., SonarQube).
name, semanticVersion, version: Identify the tool and its
version.
rules: An array of rules-objects applied during analysis.
id: Unique identifier for the rule (e.g., "SQL_INJECTION").
shortDescription: A brief text describing the rule.
results: An array of analysis results.
ruleId, ruleIndex: Reference the rule responsible for the
finding.
level: Indicates the severity level of the result (e.g., "er-
ror").
message: A descriptive message on the issue was found.

locations: An array indicating the location of the issue in
the code.
physicalLocation: Provides detailed location data.
artifactLocation: The file where the issue occurs.
region: Describes the exact range in the file (line and
column numbers).

This structure is not a complete representation of all
available SARIF fields. According to the official SARIF
schema [10], many additional fields and features are sup-
ported. The example includes only the fields required to
produce a minimal report.

C. LIMITATIONS OF TRADITIONAL CODE ANALYSIS

Despite their widespread use, static approaches face signif-
icant challenges. First, designing a good analyser is time-
consuming and difficult; each new type of defect requires

VOLUME 4, 2016 3



D.Gnieciak, T.Szandala et al.: Large Language Models Versus Static Code Analysis Tools

the development of an appropriate rule. As a result, typical
tools are limited to predefined defect patterns and may fail to
recognise new or unusual problems [11]. Another limitation
may be the lack of ability to fully understand the context of
the analysed code, as shown by the authors of the paper [12].
This shortcoming underscores the need for more adaptive and
intelligent approaches and methods to fill the gap between
recognising a known pattern and deep semantic understand-
ing.

D. USE OF LARGE LANGUAGE MODEL
In recent years, numerous works have examined large lan-
guage models in the context of industry code quality [13],
[14]. Models trained on huge collections of code and text
demonstrate the ability to understand the context of a pro-
gram and suggest corrections. This raises the question of
whether they can take over the role of classic static analysers
in bug detection. An important advantage of LLMs is the
lack of rigidly defined rules - the model can potentially catch
an error based on its "understanding" of the context, even
if the pattern is not explicitly programmed. Research shows
that LLMs can detect certain defects without the need for
a complete set of tests or rules, due to their ability to infer
from the context of the code. The comparative potential of
large language models and traditional static analysis tools
has been explored in studies such as [12], which analysed
the performance of GPT-3.5 Turbo and GPT-4o in relation to
SonarQube. This work is extended by additional static analy-
sers, including CodeQL and SnykCode, as well as a broader
set of large language models such as GPT-4.1, DeepSeek V3,
and Mistral Large, enabling a more comprehensive evalua-
tion of their capabilities in the detection of defects in the
source code.

III. METHODS
Ensuring code quality and reliability is crucial in modern IT
systems. Static analysis tools typically identify vulnerabili-
ties based on predefined patterns or rule sets. The effective-
ness of such tools in improving software quality and their
efficiency in minimising code defects has been demonstrated
in the existing literature [15].

A. OVERVIEW OF EVALUATED TOOLS
For this work, three widely recognised static analysis tools
have been selected for evaluation: SonarQube, SnykCode and
CodeQL.

SonarCode is an open source tool that is used for static
code analysis, created in 2006 [16]. It is designed to automat-
ically detect errors, security vulnerabilities, and issues related
to code quality and technology debt. During almost 20 years
of existence on the market, it has grown to support over 30
programming languages [17] and offers a built-in interface
with comprehensive dashboards and detailed reports. This
tool is used by more than 400,000 organisations [18]. When
choosing SonarQube, it is possible to select one of two
options to use this solution.

The user can self-host the Community version, which is
open source and can be used initially without any costs. In
that case, it is in the consumer’s interests to ensure the safety
of processed data. The second option is to choose one of the
two paid versions provided by SonarSource, which are Team
and Enterprise [19]. The first version costs 65$ per month (as
of 2025), and the cost of the higher tier is determined indi-
vidually after contacting the sales department. SonarSource
guarantees the respect of the EU General Data Protection
Regulation (GDPR) or the California Consumer Privacy Act
to ensure the privacy of their users’ data [20]. Due to its long
existence on the market, SonarCode is a very mature and
proven tool.

CodeQL is an engine created and developed by GitHub. Its
main goal is discovering security vulnerabilities and bugs in
the analysed source code. The distinguishing feature of this
tool over others is that it allows users to write custom queries
using a specialised domain-specific language named QL.
CodeQL is part of the GitHub Advanced Security platform
and can be used with most popular programming languages,
such as C++, Java, and Python [21]. CodeQL, as part of
GitHub Code Security, also offers two pricing levels, Team
for the price of 4$ per month for each user and Enterprise
starting at 21$ per month for each user [22]. GitHub pro-
cessed personal data according to the declaration of respect
for the GDPR and other applicable laws [23].

SnykCode is a static application security testing tool cre-
ated by the Snyk company. Unlike traditional SAST tools,
SnykCode uses machine learning algorithms to detect issues
in the source code [24]. This tool focuses mainly on security
vulnerabilities such as SQL injection, cross-site scripting
(XSS), and authentication-related issues. The first version
was officially released in 2020 [25]. SnykCode is also avail-
able in two pricing plans, Team for 25$ per month for each
contributing developer and Enterprise, where the price is de-
termined individually after contacting the sales department,
similar to SonarQube [26]. To ensure data privacy, Snyk leads
a global program designed to align with the requirements of
the GDPR and other privacy laws [27].

Before using each static analysis tool, it is crucial to
be familiar with the license and data privacy arrangements.
Another important aspect is to conduct a cost analysis. Key
aspects were visualised with a Table 1 to compare each tool
better. All three solutions comply with data privacy regula-
tions and offer multiple pricing tiers, but differ in hosting
models and cost structures, which may influence the selection
based on organisational needs.

B. LARGE LANGUAGE MODELS IN CODE ANALYSIS

The use of large language models can significantly improve
code quality assessments, as they can analyse predefined
rules and vulnerabilities and contextual aspects of the code
under review [12]. For this work, three large language models
from leading companies have been selected for evaluation:
GPT 4.1, DeepSeek V3, and Mistral Large.

4 VOLUME 4, 2016



D.Gnieciak, T.Szandala et al.: Large Language Models Versus Static Code Analysis Tools

SonarQube CodeQL SnykCode
Hosting model Self-hosted (Community) or cloud-

based (Team, Enterprise)
Cloud-based via GitHub Code Secu-
rity

Cloud-based (Team, Enterprise)

Cost of license Free (Community), $65/month
(Team), Enterprise (custom pricing)

$4/user/month (Team), from
$21/user/month (Enterprise)

$25/user/month (Team), Enterprise
(custom pricing)

Data privacy Compliant with GDPR and CCPA Compliant with GDPR and other ap-
plicable laws

Global program aligned with GDPR
and other privacy laws

TABLE 1: Comparison of Code Analysis Tools

GPT 4.1, developed by OpenAI, is known for its extensive
context window of 1,047,576 tokens, significantly enhancing
its ability to handle complex tasks, such as analysing large
codebases or extensive documents. The price is set at $2 per
million input tokens and $8 per million output tokens [28].
Regarding data privacy, user interactions with GPT 4.1 in
consumer products can be used to train OpenAI models, but
users can opt out through settings. For business products,
data is not used for training by default [29]. The declared
knowledge cut-off date is June 2024 [30].

DeepSeek V3 offers a cost-effective alternative with a
context window of 64,000 tokens, attractively priced at $0.27
per million input tokens and $1.10 per million output tokens
[31]. However, DeepSeek collects extensive personal data,
including user inputs, uploaded files, and automatically col-
lected network information such as IP addresses and device
identifiers, raising significant concerns about data privacy
[32]. The declared knowledge cut-off date is July 2024 [33].
It was created by the Chinese company DeepSeek, founded in
2023. The model has gained popularity due to its competitive
capabilities in relation to the cost of its exploitation.

Mistral Large, from Mistral AI, features a balanced context
window of 32,000 tokens and costs $2 per million input
tokens and $6 per million output tokens [34]. Its data privacy
policy states that user data is not utilised for training except in
specific cases such as free-tier usage without explicit opt-out,
feedback provision, or content moderation purposes [35].

Before integrating LLM into practical workflows, it is
essential to understand their licensing terms, data privacy
policies, and associated costs. These factors are critical in
selecting a model that aligns with organisational require-
ments. Key aspects were visualised with a Table 2 to com-
pare each LLM better. Each of the selected models has
distinct advantages and limitations. GPT 4.1 excels with its
unparalleled context capacity, which is essential for complex
tasks, such as analysing a large codebase, but it has higher
pricing. DeepSeek V3 offers significant cost benefits, but at
the expense of increased data privacy risks. Mistral Large
presents a similar pricing and approach to data privacy to
GPT 4.1, but is slightly more cost-effective.

The effective use of large language models for static anal-
ysis requires a structured approach to data preparation and
result handling. This section covers the process of selecting
and preparing software projects, describes the SARIF format
used to represent results, and presents the tool created to
perform the analysis.

C. DATASET
For the purpose of analysis, 10 projects were prepared in the
popular programming language, which is C#. According to
Table 3, size of the prepared projects is between 3500 and
5500 characters and contains up to 10 files. This number of
files was selected based on the analysis, which shows that
it is the most common change based on the source control
history [36].

Each of project has a random number of vulnerabilities,
such as:

• SQL injection,
• cross-site scripting,
• hardcoded secrets,
• command injection,
• weak encryption algorithms,
• deprecated dependencies.

D. PROJECTANALYZER
Working with large language models requires intensive com-
putational power, which presents a notable challenge for
consistent evaluation. Furthermore, GPT 4.1, one of the
three models originally intended for study, is not publicly
accessible. As a result, to ensure equivalent conditions and
a fair basis for comparison, the GitHub Models platform
was chosen as the hosting environment. GitHub Models is
a publicly accessible repository developed through a col-
laboration between GitHub and Microsoft [37], providing
a standardized and open place to prototype and build AI-
powered solutions.

For the purpose of generating reports in SARIF format, the
tool named ProjectAnalyzer was developed. It is designed to
automate the analysis of software projects using large lan-
guage models. The tool facilitates static analysis by scanning
the current working directory for source code files with spec-
ified extensions (e.g., cs, .csproj, .sln). Once the relevant files
are identified, the tool constructs a single aggregated prompt
that represents the entire project, suitable for processing. The
prompt is then sent by API to each of the selected models.
Each model processes the prompt independently and returns
an analysis in JSON format. This response is subsequently
parsed and transformed into the SARIF format. The final
report is saved to the specified output location, providing a
machine-readable summary of the models findings. C# was
chosen as the programming language to develop the analyzer
due to its native and officially supported capabilities for
interacting with the API used in this project [38].

VOLUME 4, 2016 5



D.Gnieciak, T.Szandala et al.: Large Language Models Versus Static Code Analysis Tools

GPT 4.1 DeepSeek V3 Mistral Large
Knowledge cutoff June 1, 2024 July 1, 2024 Unknown

Context window
(in tokens)

1,047,576 64,000 32,000

Cost of usage (per
1M tokens)

2$ input, 8$ output 0.27$ input, 1.1$ output 2$ input, 6$ output

Data privacy User data may be used for training
(opt-out available for consumers; not
used by default for business products).

Extensive data collection including in-
puts, chat history, and automated net-
work data collection.

Data used for training only under spe-
cific conditions (e.g., free tier without
opt-out, moderation purposes).

TABLE 2: Comparison of Large Language Models

Project Number of files Number of characters Number of vuln.
S01 5 5317 8
S02 3 3145 3
S03 3 3431 6
S04 4 4016 1
S05 3 5117 6
S06 7 3791 8
S07 7 5036 13
S08 8 3878 7
S09 7 3709 8
S10 10 4938 3

TABLE 3: Number of files, characters and vulnerabilities in
each project

During analysis, a system prompt, shown in Figure 2, was
included as a system message. It was intended to instruct the
model on how it should behave and in what format the results
should be returned. Figure 1 illustrates the help command
of the ProjectAnalyzer tool, displaying available arguments,
flags, and usage options, while Figure 2 illustrates the usage
of the tool, showing the summary of the completed analyzes
for each selected model, and reporting the time required to
generate the full report. The token used to access models
from the GitHub Models platform was hidden.

FIGURE 1: ProjectAnalyzer - help command

FIGURE 2: ProjectAnalyzer - usage

IV. RESULTS
A set of standardised ML model performance metrics was
utilised for each static analysis tool and the large language
model under consideration to evaluate all the projects pre-
pared. Specifically, the evaluation measured the execution

time, the number of detected vulnerabilities, and the number
of true positive identifications. These indicators form the
basis for a more in-depth and comparative analysis.

A. DEFINITION OF EVALUATION METRICS
The total number of identified vulnerabilities was determined
by counting the number of entries present in the Results
section of the SARIF reports generated by the analysis tools
[10]. Each entry in this section represents a distinct issue
identified during the analysis process, and the aggregate
count serves as a quantitative indicator of detection capabili-
ties.

Each reported vulnerability was individually reviewed and
compared with a reference dataset of known vulnerabilities
for the given project to determine the number of true positive
results. Only findings that accurately matched a real problem
were counted as true positives. The only exception to this
rule was the location region of the results produced by the
large language models. The rationale behind this exception is
explained in detail in the Discussion section.

The number of false positive results was determined by
subtracting the number of confirmed true positives from the
total number of vulnerabilities identified by each tool or
model. A false positive is defined as a reported vulnerability
that does not correspond to any real or known problem in the
reference data set for the analysed project.

The F1 score is a standard evaluation metric used to assess
the overall effectiveness of a classification model by combin-
ing precision and recall into a single harmonic mean. In the
context of vulnerability detection, it provides a balanced view
of how well a tool or model identifies true vulnerabilities
while minimising incorrect detections. To fully understand
and calculate the F1 score, it is essential to introduce the indi-
vidual metrics on which it depends, including false negatives,
precision, and recall, which together determine the overall
value of the score.

False negatives is calculated by subtracting the number
of true positive results from the total number of known
vulnerabilities in the reference data set for each project.

False Negatives = Total Known Vulnerabilities−True Positives.

Precision is defined as the proportion of correctly identi-
fied vulnerabilities (True Positives) among all reported vul-
nerabilities and is calculated as:

6 VOLUME 4, 2016



D.Gnieciak, T.Szandala et al.: Large Language Models Versus Static Code Analysis Tools

You are a static code analysis engine. Your task is to review the provided source
↪→ code and identify security vulnerabilities. Focus on detecting vulnerabilities
↪→ such as (but not limited to):

- SQL Injection
- Cross-Site Scripting (XSS)
- Command Injection
- Insecure Deserialization
- Insecure or missing authentication/authorization mechanisms
- Hardcoded credentials or secrets
- Improper input validation or lack of sanitization
- Use of outdated or vulnerable libraries
- Insecure use of cryptography (e.g., weak algorithms, hardcoded keys)
- Insecure file handling (e.g., path traversal, unrestricted uploads)

Only analyze and report issues that pose a security risk. Do not report code smells,
↪→ general bugs, or non-security-related issues.

Your output must be a JSON array, enclosed between triple backticks (‘‘‘json and
↪→ ‘‘‘), with each finding represented as a JSON object in the following format:

[{"RuleId":"string","RuleDescription":"string","Level":"Error"|"Warning"|"Note"|"
↪→ None", "Message":"string","Path":"string","Category":"string","StartLine":
↪→ integer, "EndLine":integer,"StartColumn":integer,"EndColumn":integer}]

Field description:
- RuleId: A short identifier for the rule or issue.
- RuleDescription: A brief description of the rule being violated.
- Level: Severity of the issue (Error, Warning, Note, or None).
- Message: A concise explanation of the specific issue found.
- Path: The file path where the issue occurs.
- Category: The general category.
- StartLine, EndLine: Line range of the issue.
- StartColumn, EndColumn: Column range of the issue.

Ensure the JSON is well-formed and strictly adheres to this json structure. All
↪→ fields are required.

Listing 2: Prompt sent used for analysis

Precision =
True Positives

True Positives + False Positives
.

Recall, on the other hand, measures the proportion of
actual vulnerabilities that were correctly identified by the tool
and is given by:

Recall =
True Positives

True Positives + False Negatives
.

The F1 score is then calculated as the harmonic mean of
precision and recall, providing a single measure that balances
both:

F1 Score = 2 · Precision · Recall
Precision + Recall

.

This metric is handy when comparing tools with varying
balances of precision and recall, as it offers a comprehensive

view of detection performance. All F1 scores reported in
this work were calculated based on manually verified true
positive results.

Finally, the execution time was systematically measured
for each run of the static analysis tools and the imple-
mented analyser. These measurements were recorded in sec-
onds, maintaining a precision of three floating-point decimal
places, to support accurate performance comparisons and
detailed evaluation.

B. EXPERIMENTS

The results presented in the following tables illustrate the raw
performance data gathered during these experiments. This
data is then further analysed to provide insight into each
method’s strengths, limitations, and overall reliability. The
experiments were run in a uniform execution environment

VOLUME 4, 2016 7



D.Gnieciak, T.Szandala et al.: Large Language Models Versus Static Code Analysis Tools

Project SonaQube
Total

SonaQube
TP

CodeQL
Total

CodeQL
TP

Snyk
Total

Snyk
TP

S01 6 4 6 3 10 7
S02 1 1 1 1 1 1
S03 2 2 3 3 3 3
S04 0 0 0 0 0 0
S05 0 0 3 3 1 1
S06 1 1 3 3 7 7
S07 1 1 5 5 14 10
S08 0 0 1 0 7 5
S09 4 4 4 3 11 8
S10 0 0 0 0 3 0

TABLE 4: Number of Total Found and True Positive (TP)
findings for each project and tool

Project GPT-
4.1
Total

GPT-
4.1 TP

Mistral
Total

Mistral
TP

DSeek
Total

DSeek
TP

S01 13 8 11 7 11 7
S02 3 3 3 2 3 3
S03 8 6 8 6 8 6
S04 2 1 3 1 5 1
S05 4 4 5 4 6 5
S06 10 7 8 6 8 6
S07 15 11 9 8 10 8
S08 7 5 5 5 7 6
S09 9 8 7 7 7 7
S10 3 2 2 2 5 3

TABLE 5: Number of Total Found and True Positive (TP) per
project and model

to eliminate variability due to system performance. Further-
more, each static analysis tool and large language model was
executed using their default configuration settings, unless
explicitly stated otherwise, to maintain fairness and repro-
ducibility in all approaches tested.

Table 4 presents the total number of vulnerabilities found
and the number of true positive results for the static anal-
ysis tools. In contrast, Table 5 provides the corresponding
data for the large language models. It should be noted that
SnykCode consistently reports a significantly higher number
of vulnerabilities compared to the other tools evaluated. This
trend may indicate a higher detection sensitivity, suggesting
that SnykCode employs a more aggressive strategy to identify
potential problems.

Table 6 shows the total execution time measured for both
the large language models and the static analysis tools.
These measurements were obtained following the procedure
described in previous section. It should be noted that the
execution time recorded for CodeQL is significantly longer
than that of the other tools, which may reflect its deeper or
more comprehensive analysis process.

V. ANALYSIS OF RESULTS
As part of the effort to perform a comprehensive compar-
ative analysis using key evaluation metrics, including False
Positives, False Negatives, Precision, Recall, and the F1
Score. These metrics were computed for all large language
models and static analysis tools to facilitate an objective

and balanced comparison of their detection capabilities and
overall effectiveness.

The detailed results of this evaluation are presented in
Tables 7-12. The detailed results of this evaluation are pre-
sented in Tables 7–12. Tool-based methods include Sonar-
Qube (Table 7), CodeQL (Table 8), and SnykCode (Table 9),
while model-based approaches include GPT-4.1 (Table 10),
Mistral Large (Table 11), and DeepSeek V3 (Table 12). These
tables compile the computed metrics for each tool across all
target projects, enabling a direct side-by-side comparison of
their effectiveness. The tabulated data form the basis for the
comparative analysis discussed in the following sections.

The static analysis tools - SonarQube, CodeQL, and Snyk-
Code - achieved average F1 scores of 0.260, 0.386, and 0.546,
respectively. In comparison, the large language models eval-
uated, GPT-4.1, Mistral Large and DeepSeek V3, obtained
average F1 scores of 0.797, 0.753, and 0.750, respectively.
Detailed average results are presented in Table 13.

A. COMPARISON
Figure 3 illustrates the analysis runtime as a function of
project size, measured by the number of characters. As
shown, for a typical change size as reported by [36], the
number of characters does not substantially impact the
analysis time. However, a clear outlier is CodeQL, consis-
tently demonstrating significantly longer runtimes within this
range. This behaviour can probably be attributed to its archi-
tecture and operational design. Unlike lighter tools tailored
for rapid feedback, CodeQL is primarily intended for con-
tinuous integration and deployment (CI/CD) environments,
where more extensive computational resources are allocated,
and longer processing times are acceptable in exchange for
deeper and more thorough analysis.

FIGURE 3: Tool Runtime vs. Number of Characters

8 VOLUME 4, 2016



D.Gnieciak, T.Szandala et al.: Large Language Models Versus Static Code Analysis Tools

Project SonarQube CodeQL SnykCode GPT-4.1 Mistral DeepSeekV3

S01 39.928s 195.102s 27.370s 12.741s 35.149s 17.835s
S02 32.984s 186.703s 20.887s 4.407s 11.178s 5.815s
S03 33.544s 188.552s 27.071s 8.140s 24.019s 11.607s
S04 35.511s 207.137s 13.921s 3.526s 10.181s 7.345s
S05 34.426s 207.640s 16.886s 6.715s 14.790s 7.472s
S06 30.202s 197.323s 18.113s 9.536s 22.919s 29.860s
S07 35.921s 199.423s 21.590s 17.802s 26.623s 13.581s
S08 32.335s 185.923s 16.547s 7.633s 15.669s 12.701s
S09 38.701s 191.757s 19.025s 8.196s 22.696s 9.931s
S10 63.905s 213.088s 29.266s 4.769s 67.273s 9.083s

TABLE 6: Execution time for each tool and model

SonarQube
Project False

Positive
False
Nega-
tive

Precision Recall F1
Score

S01 2 4 0.667 0.500 0.571
S02 0 2 1.000 0.333 0.500
S03 0 4 1.000 0.333 0.500
S04 0 1 0.000 0.000 0.000
S05 0 6 0.000 0.000 0.000
S06 0 7 1.000 0.125 0.222
S07 0 12 1.000 0.077 0.143
S08 0 7 0.000 0.000 0.000
S09 0 4 1.000 0.500 0.667
S10 0 3 0.000 0.000 0.000

TABLE 7: Calculated metrics using SonarQube

CodeQL
Project False

Positive
False
Nega-
tive

Precision Recall F1
Score

S01 3 5 0.500 0.375 0.429
S02 0 2 1.000 0.333 0.500
S03 0 3 1.000 0.500 0.667
S04 0 1 0.000 0.000 0.000
S05 0 3 1.000 0.500 0.667
S06 0 5 1.000 0.375 0.545
S07 0 8 1.000 0.385 0.556
S08 1 7 0.000 0.000 0.000
S09 1 5 0.750 0.375 0.500
S10 0 3 0.000 0.000 0.000

TABLE 8: Calculated metrics using CodeQL

SnykCode
Project False

Positive
False
Nega-
tive

Precision Recall F1
Score

S01 3 1 0.700 0.875 0.778
S02 0 2 1.000 0.333 0.500
S03 0 3 1.000 0.500 0.667
S04 0 1 0.000 0.000 0.000
S05 0 5 1.000 0.167 0.286
S06 0 1 1.000 0.875 0.933
S07 4 3 0.714 0.769 0.741
S08 2 2 0.714 0.714 0.714
S09 3 0 0.727 1.000 0.842
S10 3 3 0.000 0.000 0.000

TABLE 9: Calculated metrics using SnykCode.

B. NUMBER OF FALSE POSITIVES

Figure 4 illustrates the juxtaposition of the average false
positive rate (FP) with the total number of vulnerabilities
found by each tool and the large language model. A lower
ratio indicates higher precision in vulnerability detection,
reflecting a lower percentage of incorrect alerts than the total
number of reported vulnerabilities.

As shown in the figure, SonarQube and CodeQL have
the lowest FP ratios, suggesting that these traditional tools
are more accurate and targeted in their analysis, generating
fewer false alerts and highlighting vulnerabilities with greater
reliability. Their performance indicates a level of reliability
that can be especially appreciated in software development
environments where accuracy and confidence in results are
essential.

On the other hand, DeepSeek V3 shows the highest FP ratio
in the investigated solutions. This behaviour may result in
the need to increase the effort in verification on the part of
developers, who must spend more time manually reviewing
and validating the analysis results. This suggests that while
the tool may be accurate in its assessments, it may also
overwhelm users with alerts that may not correspond to
actual threats.

It is also important to note that the performance of Snyk-
Code is closely aligned with that of LLM-based tools, with
its FP ratio between those of traditional analysers and large
language models. This similarity may be due to its hy-
brid analytical approach, which combines machine learning
algorithms with techniques commonly employed in static
analysis [24]. The fusion of these methods probably shapes
its detection behaviour, resulting in a reporting pattern that
reflects characteristics of both traditional and AI-enhanced
approaches.

VOLUME 4, 2016 9



D.Gnieciak, T.Szandala et al.: Large Language Models Versus Static Code Analysis Tools

GPT-4.1

Project False Positive False Negative Precision Recall F1 Score

S01 5 0 0.615 1.000 0.762
S02 0 0 1.000 1.000 1.000
S03 2 0 0.750 1.000 0.857
S04 1 0 0.500 1.000 0.667
S05 0 2 1.000 0.667 0.800
S06 3 1 0.700 0.875 0.778
S07 4 2 0.733 0.846 0.786
S08 2 2 0.714 0.714 0.714
S09 1 0 0.889 1.000 0.941
S10 1 1 0.667 0.667 0.667

TABLE 10: Calculated metrics for each project using GPT-4.1

Mistral Large

Project False Positive False Negative Precision Recall F1 Score

S01 4 1 0.636 0.875 0.737
S02 1 1 0.667 0.667 0.667
S03 2 0 0.750 1.000 0.857
S04 2 0 0.333 1.000 0.500
S05 1 2 0.800 0.667 0.727
S06 2 2 0.750 0.750 0.750
S07 1 5 0.889 0.615 0.727
S08 0 2 1.000 0.714 0.834
S09 0 1 1.000 0.875 0.934
S10 0 1 1.000 0.667 0.800

TABLE 11: Calculated metrics for each project using Mistral Large

DeepSeek V3

Project False Positive False Negative Precision Recall F1 Score

S01 4 1 0.636 0.875 0.737
S02 0 0 1.000 1.000 1.000
S03 2 0 0.750 1.000 0.857
S04 4 0 0.200 1.000 0.334
S05 1 1 0.833 0.833 0.834
S06 2 2 0.750 0.750 0.750
S07 2 5 0.800 0.615 0.696
S08 1 1 0.857 0.857 0.857
S09 0 1 1.000 0.875 0.934
S10 3 1 0.400 0.667 0.500

TABLE 12: Calculated metrics for each project using DeepSeek V3

Tool Avg. Precision Avg. Recall Avg. F1 Score
SonarQube 0.567 0.187 0.260
CodeQL 0.625 0.284 0.386
SnykCode 0.686 0.523 0.546
GPT-4.1 0.757 0.877 0.797
Mistral Large 0.783 0.783 0.753
DeepSeek V3 0.723 0.847 0.750

TABLE 13: Average Precision, Recall and F1 Score for each
tool and model

FIGURE 4: Average FP to Total Found Vulnerabilities Ratio
by Tool

C. AVERAGE F1 SCORE

Figure 7 builds on the insights from Figure 5 Figure 6 and
compares the effectiveness of each tool using the F1 score.
The FP ratio highlights the effectiveness of a tool in isolation.
Still, the F1 score provides a more comprehensive measure
that balances both the precision of correct detections and the
completeness of the tool in recognising issues.

Figure 5 and Figure 6 show that SnykCode performs better
than other traditional static analysis tools in the F1 score
and competes with systems based on large language models,
further validating the effectiveness of its hybrid analysis
strategy. The tool created by Snyk Company achieved the
highest average F1 score of 0.55; however, it should be noted
that it has two outliers for projects S04 and S10, which can
be easily seen earlier, in Figure 5. In contrast, although strong

10 VOLUME 4, 2016



D.Gnieciak, T.Szandala et al.: Large Language Models Versus Static Code Analysis Tools

in precision as shown earlier, SonarQube and CodeQL have
more limited recall, leading to greater variance and lower
medians in their F1 score distributions.

GPT-4.1, Mistral-Large and DeepSeek V3 achieve higher
F1 scores than traditional tools such as SonarQube and
CodeQL. Despite its high false-positive rate, DeepSeek V3
performs well in terms of F1 score, suggesting that this
compensates for its lower precision shown in Figure 3. It is
worth mentioning that with the use of large language models,
outliers can also be observed for Mistral-Large and DeepSeek
V3 in the S04 project. These can be observed in Figure 7.

FIGURE 5: Comparison of effectiveness (Precision)

FIGURE 6: Comparison of Effectiveness (Recall)

FIGURE 7: Comparison of Effectiveness (F1 score)

VI. DISCUSSION, LIMITATIONS, AND FUTURE WORK
One of the fields found in the SARIF schema is region,
which reports the location of vulnerabilities found with line
and column precision in a given file [10]. All of the large
language models tested were unable to determine it correctly.
All results correctly identified the file, but the incorrect
location was always reported. Upon further analysis, no
correlation was found in these errors. They are likely caused

by one of the steps the text undergoes before processing: BPE
tokenisation, which transformer-based models use [39]. This
is a known and common problem. It can be a major limitation
in building systems that require precisely determining error
locations.

CodeQL achieved the worst results of all the static code
analysis tools tested, regarding the time required for analysis.
This may be due to the intended use of this tool, which
was designed for professional applications that use many
predefined rules that the user can define. The need to load
them into memory and process them can be a potential reason
for these results.

A well-known problem that occurs when using large lan-
guage models is hallucinations. Is it a situation where the
generated response is deviated, based neither on training
data nor input from the user [40], [41]. Such an answer
only appears to be correct, but it contains false information.
Table 14 contains examples of such findings. In each case, the
latest available versions of the libraries are used in the anal-
ysed projects, but the models consider them obsolete. This
situation cannot occur with classical code analysis tools, as
they usually have a list of deprecated dependencies updated
regularly.

When analysing the results, false positives and false neg-
atives were considered. From the end user’s point of view,
false negatives are more dangerous, as they translate into
overlooking real vulnerabilities that could affect the system’s
functioning. However, it is worth noting that false positive
results also have negative effects. The primary one is that
developers pay less attention to the results of the analysis. As
a consequence, this can lead to the ignored real issues [42].

A. FUTURE WORKS
Although this thesis provides a comparative analysis of tradi-
tional static analysis tools such as SonarQube, CodeQL and
SnykCode and the large language models GPT-4.1, Mistral
Large and DeepSeek V3 in the context of vulnerability detec-
tion, several directions remain open for further exploration
and development. One aspect worth exploring is prompt
engineering, i.e. manipulating the content of queries that are
sent to the models and their impact on the results received.

Another direction could be an attempt to create a hybrid
solution that uses both classical tools and language mod-
els. These approaches can be used to prioritise and verify
vulnerabilities found. This could contribute to reducing the
weaknesses of both approaches.

VOLUME 4, 2016 11



D.Gnieciak, T.Szandala et al.: Large Language Models Versus Static Code Analysis Tools

Project Model Rule ID Message
S02 Mistral Large VULNERABLE_LIBRARY The version ’9.0.5’ of the ’Microsoft.Data.Sqlite’ package

is outdated. Consider updating to a more recent version.
S03 Mistral Large WEAK_ALGORITHM Using an outdated version of Microsoft.Data.SQLite li-

brary.
S06 GPT 4.1 OUTDATED_DEPENDENCY The Newtonsoft.Json package is used (version 13.0.3).

Ensure to update it against security vulnerabilities.

TABLE 14: Hallucinated findings by project and model

VII. CONCLUSION
After analysing all projects using the selected static code
analysis tools and large language models, conclusions can
be drawn. Large language models perform well in detecting
code vulnerabilities, as seen from comparing the F1 score
values shown in Figure 7. The ability to analyse the entire
context of the code, as opposed to traditional tools that rely
on defined patterns, can be considered the reason. It is also
worth noting that the increased probability of reporting false
positives comes with the greater ability to detect vulnerabil-
ities. This is shown in Figure 4. Another important factor
when considering large language models as code analysis
tools is their inability to provide the exact location of the
vulnerabilities found. When developing more elaborate code
analysis systems, the failure to provide location information
when the SARIF format is used may preclude using large
language models.

In conclusion, classical tools for static code analysis are
recommended in situations requiring reliability and preci-
sion, such as software audits, which are necessary for systems
that must be reliable and used in critical sectors. In such
situations, the definition of specific patterns is often required.
Solutions based on large language models have a higher
sensitivity, but generate more false-positive results. They
can be used during the development process to ensure that
developers working on the system are aware of defects.

REFERENCES
[1] Daniel Ajiga, Patrick Azuka Okeleke, Samuel Olaoluwa Folorunsho, and

Chinedu Ezeigweneme. The role of software automation in improving
industrial operations and efficiency. International Journal of Engineering
Research Updates, 7(1):22–35, 2024.

[2] Daniel Kästner, Laurent Mauborgne, and Christian Ferdinand. On soft-
ware safety, security, and abstract interpretation. In Computer Safety,
Reliability, and Security, pages 662–665. Springer, Cham, 2018.

[3] R. D. Venkatasubramanyam, S. Gupta, and U. Uppili. Assessing the
effectiveness of static analysis through defect correlation analysis. In Pro-
ceedings of the International Conference on Global Software Engineering
(ICGSE), pages 100–104, 2015.

[4] Devarshi Singh, Varun Ramachandra Sekar, Kathryn T. Stolee, and Brit-
tany Johnson. Evaluating how static analysis tools can reduce code review
effort. In 2017 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pages 101–105, 2017.

[5] Dušan Nikolić, Dragan Stefanović, Milica Nikolić, Darko Dakić, Marko
Stefanović, and Siniša Koprivica. Uncovering determinants of code quality
in education via static code analysis. IEEE Access, 1, 2024.

[6] Alexandru G Bardas et al. Static code analysis. Journal of Information
Systems & Operations Management, 4(2):99–107, 2010.

[7] Jernej Novak, Andrej Krajnc, and Rok Žontar. Taxonomy of static code
analysis tools. In The 33rd International Convention MIPRO, pages 418–
422, 2010.

[8] Michael C. Fanning and Laurence J. Golding. Static analysis results

interchange format (sarif) version 2.1.0. OASIS Standard, March 2020.
Edited by Michael C. Fanning and Laurence J. Golding.

[9] Sriteja Kummita and Goran Piskachev. Integration of the static analysis
results interchange format in cognicrypt. arXiv preprint arXiv:1907.02558,
2019.

[10] SchemaStore contributors. SARIF JSON Schema (Version 2.1.0). https:
//json.schemastore.org/sarif-2.1.0.json, 2020. Accessed: 2025-05-28.

[11] G. Liang and Q. Wang. CODAS: An Extensible Static Code Defect
Analysis Service. Computer Science, 39(1):14–18, 2012.

[12] Igor Regis da Silva Simões and Elaine Venson. Evaluating source code
quality with large languagem models: a comparative study. https://doi.org/
10.48550/arxiv.2408.07082, 2024. arXiv preprint.

[13] Baleegh Ahmad, Hammond Pearce, Ramesh Karri, and Benjamin Tan.
Lashed: Llms and static hardware analysis for early detection of rtl bugs.
arXiv preprint arXiv:2504.21770, 2025.

[14] Tomasz Szandała. Chatgpt vs human expertise in the context of it
recruitment. Expert Systems with Applications, 264:125868, 2025.

[15] W. R. Nichols Jr. The cost and benefits of static analysis during develop-
ment. arXiv preprint arXiv:2003.03001, 2020.

[16] Wikipedia contributors. SonarQube — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/SonarQube, 2025. Accessed: 2025-05-28.

[17] SonarSource. Languages Overview - SonarQube Documentation. https:
//docs.sonarsource.com/sonarqube-server/10.8/analyzing-source-code/
languages/overview/, 2025. Accessed: 2025-05-28.

[18] SonarSource. Sonar Extends Code Security Coverage with SonarQube Ad-
vanced Security. https://www.sonarsource.com/company/press-releases/
sonar-extends-code-security-coverage-with-sonarqube-advanced-security/,
2024. Accessed: 2025-05-28.

[19] SonarSource. Pricing. https://www.sonarsource.com/plans-and-pricing/,
2025. Accessed: 2025-05-28.

[20] SonarSource. Data Privacy. https://www.sonarsource.com/company/
privacy/, 2025. Accessed: 2025-05-28.

[21] GitHub Inc. About Code Scanning with CodeQL. https://docs.github.
com/en/code-security/code-scanning/introduction-to-code-scanning/
about-code-scanning-with-codeql, 2025. Accessed: 2025-05-28.

[22] GitHub Inc. About Code Scanning with CodeQL. https://github.com/
pricing, 2025. Accessed: 2025-05-28.

[23] GitHub Inc. GitHub General Privacy Statement. https://docs.github.com/
en/site-policy/privacy-policies/github-general-privacy-statement, 2025.
Accessed: 2025-05-28.

[24] Snyk Inc. Snyk Code Documentation. https://docs.snyk.io/
scan-with-snyk/snyk-code, 2024. Accessed: 2025-05-28.

[25] Ravi Maira. Developer Fist SAST with Snyk Code. https://snyk.io/blog/
developer-first-sast-with-snyk-code/, 2020. Accessed: 2025-05-28.

[26] Snyk Inc. Plans and Pricing. https://snyk.io/plans/, 2025. Accessed: 2025-
05-28.

[27] Snyk Inc. How Snyk Handles Your Data. https:
//github.com/snyk/user-docs/blob/main/docs/working-with-snyk/
how-snyk-handles-your-data.md, 2025. Accessed: 2025-05-28.

[28] OpenAI Inc. API Pricing. https://openai.com/api/pricing/, 2025. Ac-
cessed: 2025-05-28.

[29] OpenAI Inc. GPTs Data Privacy FAQs. https://help.openai.com/en/
articles/8554402-gpts-data-privacy-faqs, 2025. Accessed: 2025-05-28.

[30] OpenAI Inc. Introducing GPT-4.1 in the API. https://openai.com/index/
gpt-4-1/, 2025. Accessed: 2025-05-28.

[31] DeepSeek Inc. Models & Pricing. https://api-docs.deepseek.com/quick_
start/pricing, 2025. Accessed: 2025-05-28.

[32] DeepSeek Inc. DeepSeek Privacy Policy. https://cdn.deepseek.com/
policies/en-US/deepseek-privacy-policy.html, 2025. Accessed: 2025-05-
28.

[33] DeepSeek Inc. DeepSeek V3 Model Card. https://www.prompthub.us/
models/deepseek-v3, 2025. Accessed: 2025-05-28.

12 VOLUME 4, 2016

https://json.schemastore.org/sarif-2.1.0.json
https://json.schemastore.org/sarif-2.1.0.json
https://doi.org/10.48550/arxiv.2408.07082
https://doi.org/10.48550/arxiv.2408.07082
https://en.wikipedia.org/wiki/SonarQube
https://docs.sonarsource.com/sonarqube-server/10.8/analyzing-source-code/languages/overview/
https://docs.sonarsource.com/sonarqube-server/10.8/analyzing-source-code/languages/overview/
https://docs.sonarsource.com/sonarqube-server/10.8/analyzing-source-code/languages/overview/
https://www.sonarsource.com/company/press-releases/sonar-extends-code-security-coverage-with-sonarqube-advanced-security/
https://www.sonarsource.com/company/press-releases/sonar-extends-code-security-coverage-with-sonarqube-advanced-security/
https://www.sonarsource.com/plans-and-pricing/
https://www.sonarsource.com/company/privacy/
https://www.sonarsource.com/company/privacy/
https://docs.github.com/en/code-security/code-scanning/introduction-to-code-scanning/about-code-scanning-with-codeql
https://docs.github.com/en/code-security/code-scanning/introduction-to-code-scanning/about-code-scanning-with-codeql
https://docs.github.com/en/code-security/code-scanning/introduction-to-code-scanning/about-code-scanning-with-codeql
https://github.com/pricing
https://github.com/pricing
https://docs.github.com/en/site-policy/privacy-policies/github-general-privacy-statement
https://docs.github.com/en/site-policy/privacy-policies/github-general-privacy-statement
https://docs.snyk.io/scan-with-snyk/snyk-code
https://docs.snyk.io/scan-with-snyk/snyk-code
https://snyk.io/blog/developer-first-sast-with-snyk-code/
https://snyk.io/blog/developer-first-sast-with-snyk-code/
https://snyk.io/plans/
https://github.com/snyk/user-docs/blob/main/docs/working-with-snyk/how-snyk-handles-your-data.md
https://github.com/snyk/user-docs/blob/main/docs/working-with-snyk/how-snyk-handles-your-data.md
https://github.com/snyk/user-docs/blob/main/docs/working-with-snyk/how-snyk-handles-your-data.md
https://openai.com/api/pricing/
https://help.openai.com/en/articles/8554402-gpts-data-privacy-faqs
https://help.openai.com/en/articles/8554402-gpts-data-privacy-faqs
https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://api-docs.deepseek.com/quick_start/pricing
https://api-docs.deepseek.com/quick_start/pricing
https://cdn.deepseek.com/policies/en-US/deepseek-privacy-policy.html
https://cdn.deepseek.com/policies/en-US/deepseek-privacy-policy.html
https://www.prompthub.us/models/deepseek-v3
https://www.prompthub.us/models/deepseek-v3


D.Gnieciak, T.Szandala et al.: Large Language Models Versus Static Code Analysis Tools

[34] Mistral AI Inc. Pricing. https://mistral.ai/pricing#api-pricing, 2025.
Accessed: 2025-05-28.

[35] Mistral AI Inc. Terms of Service. https://mistral.ai/terms#
terms-of-service, 2025. Accessed: 2025-05-28.

[36] Mívian Ferreira, Diego Gonçalves, Mariza A. S. Bigonha, and Kecia A. M.
Ferreira. Characterizing commits in open-source software. In Brazilian
Symposium on Software Quality, 2022.

[37] GitHub Inc. GitHub Models Marketplace. https://github.com/
marketplace?type=models, 2025. Accessed: 2025-05-28.

[38] Microsoft. Microsoft.extensions.ai libraries, May 2025. Accessed: 2025-
06-05.

[39] Yekun Chai, Yewei Fang, Qiwei Peng, and X. Li. Tokenization falling
short: The curse of tokenization. https://doi.org/10.48550/arxiv.2406.
11687, 2024. arXiv:2406.11687.

[40] Yejin Bang, Ziwei Ji, Alan Schelten, Anthony Hartshorn, Tara Fowler,
Cheng Zhang, Nicola Cancedda, and Pascale Fung. HalluLens: LLM
Hallucination Benchmark. arXiv preprint arXiv:2504.17550, 2025.

[41] Tomasz Szandała. Aiops for reliability: Evaluating large language models
for automated root cause analysis in chaos engineering. In International
Conference on Computational Science, pages 323–336. Springer, 2025.

[42] Foteini Cheirdari and George Karabatis. Analyzing false positive source
code vulnerabilities using static analysis tools. In Proceedings of the
International Conference on Big Data, pages 4782–4788, 2018.

DAMIAN GNIECIAK a WIT graduate with a mas-
ter’s degree in Computer Science and a software
engineer with a professional focus on cloud tech-
nologies, is currently developing a specialization
in Microsoft Azure. He is particularly interested in
the design and implementation of scalable, secure,
and highly available solutions.

TOMASZ SZANDALA a Ph.D. graduate in Com-
puter Science (2022), is a PostDoc researcher
at the Scuola Universitaria Professionale della
Svizzera italiana in Lugano, supported by an ES-
KAS scholarship. His academic work centers on
applied computer science and DevOps. In addition
to academic pursuits, Tomasz is a certified DevOps
engineer with expertise in Kubernetes and Google
Cloud Platform, frequently publishing industrial
papers that bridge theoretical and practical insights

across his academic and professional experience.

VOLUME 4, 2016 13

https://mistral.ai/pricing#api-pricing
https://mistral.ai/terms#terms-of-service
https://mistral.ai/terms#terms-of-service
https://github.com/marketplace?type=models
https://github.com/marketplace?type=models
https://doi.org/10.48550/arxiv.2406.11687
https://doi.org/10.48550/arxiv.2406.11687

	Introduction
	State of the Art
	How Static Code Analysis Works
	Format of Results
	Limitations of Traditional Code Analysis
	Use of Large Language Model

	Methods
	Overview of Evaluated Tools
	Large Language Models in Code Analysis
	Dataset
	ProjectAnalyzer

	Results
	Definition of Evaluation Metrics
	Experiments

	Analysis of Results
	Comparison
	Number of False Positives
	Average F1 Score

	Discussion, Limitations, and Future Work
	Future Works

	Conclusion
	REFERENCES
	Damian Gnieciak
	Tomasz Szandala


